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Abstract

This work considers an additive noise channel where the time-k noise variance is a
weighted sum of the channel input powers prior to time k. This channel is motivated by
point-to-point communication between two terminals that are embedded in the same chip.
Transmission heats up the entire chip and hence increases the thermal noise at the receiver.
The capacity of this channel (both with and without feedback) is studied at low transmit
powers and at high transmit powers.

At low transmit powers, the slope of the capacity-vs-power curve at zero is computed
and it is shown that the heating-up effect is beneficial. At high transmit powers, conditions
are determined under which the capacity is bounded, i.e., under which the capacity does
not grow to infinity as the allowed average power tends to infinity.

1 Introduction

Thermal heating in electronic systems is strongly related to performance limitation, aging, relia-
bility and safety issues. High performance-density and small physical size (area or volume) make
thermal heating important and challenging to address. This is enhanced by the trend of modern
(micro-)electronics technology to pack more and faster operations within the smallest possible
physical area in order to increase performance, reduce cost and size, and therefore expand the
potential applications of the product and make it more profitable.

Electrical power dissipation into heat raises the local temperature of the circuit; more accu-
rately, the temperature depends on the circuit activity. The temperature influences the power
of the intrinsic noise in the circuit which in turn reduces the effective communication or com-
putation capacity of the circuit. This “negative” performance feedback is expected to become a
bottleneck of future technology [1], [2].

This work aims to add this dimension to our understanding of the coupling mechanism
between communication and computation performance and thermal heating. To this end a class
of communication channels is introduced, where the channel’s noise power depends dynamically
on the channel’s activity, and its channel capacity is studied.

To support the previous statements and motivate the mathematical development of this new
class of channels we first discuss the underlying physical mechanism that connects circuit activity
with power consumption and thermal heating. Thermal heating is unavoidable in electronic
circuits. Every circuit block converts part of the power it draws from the power supply network
(and to certain extent from its interconnections with other blocks) into heat which raises the
local temperature.

A circuit block in a microchip occupies certain physical space within which heat is dis-
tributively generated and diffused according to the heat diffusion equation (ignoring other heat
sources)

Chv
∂T

∂t
= ∇ ·

(

1

ρthd
∇T
)

+ E
′ (1)

The material in this paper was presented in part at the 2007 IEEE International Symposium on Information
Theory (ISIT), Nice, France, and at the 2007 IEEE Information Theory Workshop (ITW), Lake Tahoe, CA,
USA.
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where Chv is the volumetric heat capacity of the material, ∂T/∂t is the change in temperature
over time, ∇· is the divergence, ρthd is the distributed thermal resistance, ∇T is the temperature
gradient, and E

′ is the power density of the added heat, [3], [4].
In many cases the diffusion equation can be replaced by the corresponding ordinary differ-

ential equation (ODE) that provides a lumped model of the thermal dynamics. Consider for
example a microchip (die), made out of material of lower thermal resistance, which is internally
heated by the activity of circuits and transfers the heat to the environment (e.g., air) which has
much higher resistance. In this case we can write

Ch
dT

dt
=
Te − T

ρth
+ E (2)

where Ch is the heat capacity of the microchip (die), ρth is the thermal resistance between the
die and the environment (e.g., air), Te is the temperature of the environment, and E is the
instantaneous heat generated, i.e., the electrical power converted into heat by the circuit.

Solving (2) with the assumption that at time t = 0 we have T = Te with Te being fixed, we
obtain

T (t) = Te +
1

Ch

∫ t

0

e
ξ−t

ρthCh E(ξ)dξ, t ∈ R. (3)

If the circuit operates based on a reference clock of period τ , (3) can be approximated by its
discrete version

Tk = Te +

k−1
∑

ℓ=1

τ

Ch
e
− τ

ρthCh
(k−ℓ)

Eℓ, k ∈ Z
+, (4)

where Z
+ denotes the set of positive integers, and where the sequences {Tk} and {Ek} are the

samples at integer multiples of τ of T (·) and E(·), respectively. Equation (4) shows the fading
memory effect of temperature. Note that (4) also captures discrete versions of distributed or
higher order lumped approximations of the diffusion equation (1).

Every electronic circuit has some intrinsically generated noise. This noise is added to the
received signal degrading its quality. Especially in the popular class of circuits based on MOS
transistors [5], this noise is dominated by a thermal noise component that is stationary Gaussian,
and in most applications it can be considered white. The variance of the thermal noise N follows
the Johnson-Nyquist formula

N = λTW (5)

where W is the considered bandwidth, T is the temperature of the receiver circuit block, and λ
is a proportionality constant [5], [6], [7].

The transmission of information is typically associated with dissipation of energy into heat.
Thus, in view of (4) and (5), this motivates a channel model where the variance θ2 of the additive
noise is determined by the history of the power of the transmitted signal, i.e.,

θ2(x1, . . . , xk−1) = σ2 +

k−1
∑

ℓ=1

αk−ℓx
2
ℓ , k ∈ Z

+, (6)

where xℓ is the transmitted symbol at time ℓ ∈ Z
+, and where σ2 and {αℓ} will be defined in

Section 2.
The rest of this paper is organized as follows. Section 2 describes the channel model in more

detail. Section 3 discusses channel capacity and lists some important properties thereof. The
main results are presented in Section 4. The proofs of the results are given in Sections 5 and 6.
Section 7 concludes with a summary.
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Figure 1: A schema of the communication system.

2 Channel Model

We consider the communication system depicted in Figure 1. The messageM to be transmitted
over the channel is assumed to be uniformly distributed over the set M = {1, . . . , |M|} for some
positive integer |M|. The encoder maps the message to the length-n sequence X1, . . . , Xn, where
n is the block-length. In the absence of feedback, the sequence Xn

1 is a function of the message
M , i.e., Xn

1 = φn(M) for some mapping φn : M → R
n. Here An

m stands for Am, . . . , An,
and R denotes the set of real numbers. If there is a feedback link, then Xk, k = 1, . . . , n
is not only a function of the message M but also of the past channel output symbols Y k−1

1 ,

i.e., Xk = ϕ
(k)
n (M,Y k−1

1 ) for some mapping ϕ
(k)
n : M × R

k−1 → R. The receiver guesses the

transmitted message M based on the n channel output symbols Y n
1 , i.e., M̂ = ψn(Y

n
1 ) for some

mapping ψn : Rn → M.
Conditional on X1 = x1, . . . , Xk = xk ∈ R, the time-k channel output Yk ∈ R is given by

Yk = xk +

√

√

√

√

(

σ2 +

k−1
∑

ℓ=1

αk−ℓx2ℓ

)

· Uk, k ∈ Z
+, (7)

where {Uk} is a zero-mean, unit-variance, stationary & weakly-mixing random process, drawn
independently of M , and being of finite fourth moment and of finite differential entropy rate,
i.e.,

E
[

U4
k

]

<∞ and h
(

Uk

∣

∣Uk−1
−∞

)

> −∞. (8)

See [8] for a definition of weak mixing. For example, {Uk} could be a stationary & ergodic
Gaussian process [9]. In particular, the case of most interest is when {Uk} are independent
and identically distributed (IID), zero-mean, unit-variance Gaussian random variables, and the
reader is encouraged to focus on this case.

The parameter σ2 is assumed to be positive. It accounts for the temperature of the device
when the transmitter is silent. The coefficients αℓ, ℓ ∈ Z

+ are nonnegative and bounded, i.e.,

αℓ ≥ 0, ℓ ∈ Z
+ and sup

ℓ∈Z+

αℓ <∞. (9)

They characterize the dissipation of the heat produced by the transmission of the message M .1

An example for a heat dissipation profile that satisfies (9) is the geometric heat dissipation
profile where {αℓ} is a geometric sequence, i.e.,

αℓ = ρℓ, ℓ ∈ Z
+ (10)

for some 0 < ρ < 1.
The heat dissipation depends inter alia on the efficiency of the heat sink that is employed

in order to absorb the produced heat. In the above example (10), the heat sink’s efficiency is
described by the parameter ρ: the smaller ρ, the more efficient the heat sink. In general, an
efficient heat sink is modeled by a heat dissipation profile for which the sequence {αℓ} decays
fast.

1It seems reasonable to assume that the sequence {αℓ} is monotonically nonincreasing, i.e., αℓ ≤ αℓ′ for
ℓ ≥ ℓ′. This assumption is, however, not required for the results stated in this paper.
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We study the above channel under an average-power constraint on the inputs, i.e., the map-

pings φn (without feedback) and ϕ
(1)
n , . . . , ϕ

(n)
n (with feedback) are chosen such that—averaged

over the message M and channel outputs Y n
1 —the sequence Xn

1 satisfies

1

n

n
∑

k=1

E
[

X2
k

]

≤ P, (11)

and we define the signal-to-noise ratio (SNR) as

SNR ,
P

σ2
. (12)

Remark 1. The results presented in this paper do not change when (11) is replaced by a per-

message average-power constraint, i.e., when the mappings φn and ϕ
(1)
n , . . . , ϕ

(n)
n are chosen

such that, for each message m ∈ M and for any given sequence of output symbols Y n
1 = yn1 , the

sequence xn1 satisfies

1

n

n
∑

k=1

x2k ≤ P. (13)

Indeed, all achievability results (which are based on schemes that ignore the feedback) are derived
under (13), whereas all converse results are derived under (11). Since all mappings φn and

ϕ
(1)
n , . . . , ϕ

(n)
n that satisfy (13) also fulfill (11), this implies that the achievability results as well

as the converse results derived in this paper hold irrespective of whether constraint (11) or (13)
is imposed.

3 Channel Capacity

Let the rate R (in nats per channel use) be defined as

R ,
log |M|

n
, (14)

where log(·) denotes the natural logarithm function. A rate is said to be achievable if there

exists a sequence of mappings {φn} (without feedback) or
{(

ϕ
(1)
n , . . . , ϕ

(n)
n

)}

(with feedback)

and {ψn} such that the error probability Pr
(

M̂ 6= M
)

tends to zero as n goes to infinity. The
capacity C is the supremum of all achievable rates. We denote by C(SNR) the capacity under
the input constraint (11) when there is no feedback, and we add the subscript “FB” to indicate
that there is a feedback link. Clearly

C(SNR) ≤ CFB(SNR) (15)

as we can always ignore the feedback link.
In the absence of feedback, the information capacity is defined as

CInfo(SNR) , lim
n→∞

1

n
sup I(Xn

1 ;Y
n
1 ), (16)

where the supremum is over all joint distributions on X1, . . . , Xn satisfying (11). When there is
a feedback link, then we define the information capacity as

CInfo,FB(SNR) , lim
n→∞

1

n
sup I(M ;Y n

1 ), (17)

where the supremum is over all mappings ϕ
(1)
n , . . . , ϕ

(n)
n satisfying (11). By Fano’s inequality

[10, Thm. 2.11.1] no rate above CInfo(SNR) and CInfo,FB(SNR) is achievable, i.e.,

C(SNR) ≤ CInfo(SNR) and CFB(SNR) ≤ CInfo,FB(SNR). (18)
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See [11] for conditions that guarantee that CInfo(SNR) is achievable. Note that the channel (7)
is not stationary2 since the variance of the additive noise depends on the time-index k. It is
therefore prima facie not clear whether the inequalities in (18) hold with equality.

In this paper, we shall investigate the capacities C(SNR) and CFB(SNR) at low SNR and at
high SNR. To study capacity at low SNR, we compute the capacities per unit cost defined as
[12]

Ċ(0) , sup
SNR>0

C(SNR)

SNR
and ĊFB(0) , sup

SNR>0

CFB(SNR)

SNR
. (19)

It will become apparent later that the suprema in (19) are attained when SNR tends to zero.
Note that (15) implies

Ċ(0) ≤ ĊFB(0). (20)

At high SNR, we study conditions under which capacity is unbounded in the SNR. Notice
that when the allowed transmit power is large, then there is a trade-off between optimizing the
present transmission and minimizing the interference to future transmissions. Indeed, increasing
the transmission power may help to overcome the present ambient noise, but it also heats up
the chip and thus increases the noise variance in future receptions. Prima facie it is not clear
that, as we increase the allowed transmit power, the capacity tends to infinity. We shall see that
this is not necessarily the case.

4 Main Results

Our main results are presented in the following two sections. Section 4.1 focuses on capacity at
low SNR and presents our results on the capacity per unit cost. Section 4.2 provides a sufficient
condition and a necessary condition on {αℓ} under which capacity is bounded in the SNR.

4.1 Capacity per Unit Cost

The results presented in this section hold under the additional assumptions that

∞
∑

ℓ=1

αℓ , α <∞ (21)

and that {Uk} is IID.

Proposition 1. Consider the above channel model, and assume additionally that the sequence
{αℓ} satisfies (21) and that {Uk} is IID. Then

sup
SNR>0

CInfo(SNR)

SNR
≥ sup

SNR>0

Cα=0(SNR)

SNR
, (22)

where Cα=0(SNR) denotes the capacity of the channel

Yk = xk + σ · Uk

which is a special case of (7) for α = 0.

Proof. See Appendix A.

This proposition demonstrates that the heating up can only increase the information capacity
per unit cost. Thus at low SNR the heating effect is unharmful.

For Gaussian noise, i.e., if {Uk} is a sequence of IID, zero-mean, unit-variance Gaussian
random variables, then the heating effect is beneficial.

2By a stationary channel we mean a channel where for any stationary sequence of channel inputs {Xk} and
corresponding channel outputs {Yk} the pair {(Xk , Yk)} is jointly stationary.
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Theorem 2. Consider the above channel model, and assume additionally that the sequence {αℓ}
satisfies (21) and that {Uk} is a sequence of IID, zero-mean, unit-variance Gaussian random
variables. Then, irrespective of whether feedback is available or not, the corresponding capacity
per unit cost is given by

ĊFB(0) = Ċ(0) = lim
SNR↓0

C(SNR)

SNR
=

1

2

(

1 +
∞
∑

ℓ=1

αℓ

)

. (23)

Proof. See Section 5.

For example, for the geometric heat dissipation profile (10) we obtain from Theorem 2

ĊFB(0) = Ċ(0) =
1

2

1

1− ρ
, 0 < ρ < 1. (24)

Thus the capacity per unit cost is monotonically decreasing in ρ.
The above result might be counterintuitive, because it suggests not to use heat sinks at low

SNR. Nevertheless it can be heuristically explained by noting that the heating effect increases
the channel gain3. Indeed, if we split up the channel output

Yk = Xk +

√

√

√

√

(

σ2 +

k−1
∑

ℓ=1

αk−ℓX2
ℓ

)

· Uk

into a data-dependent part

X̃k = Xk +

√

√

√

√

(

k−1
∑

ℓ=1

αk−ℓX2
ℓ

)

· Uk

and a data-independent part Zk (with {Zk} being a sequence of IID, zero-mean, variance-σ2,
Gaussian random variables drawn independently of {(Uk, Xk)}), then the channel gain G for (7)
is given by

G , lim
n→∞

sup

∑n
k=1 E

[

X̃2
k

]

∑n
k=1 E[X

2
k ]

= 1 +

∞
∑

ℓ=1

αℓ, (25)

where the supremum is over all joint distributions on X1, . . . , Xn satisfying (11). Thus, in view
of (25), Theorem 2 demonstrates that the capacity per unit cost is determined by the channel
gain G. This result is not specific to (7) but has also been observed for other channel models.
For example, the same is true for fading channels whenever the additive noise is Gaussian [13],
[14].

4.2 Conditions for Bounded Capacity

While at low SNR the heating effect is beneficial, at high SNR it is detrimental. In fact, it
turns out that capacity can be even bounded in the SNR, i.e., the capacity does not tend to
infinity as the SNR tends to infinity. The following theorem provides a sufficient condition and a
necessary condition on {αℓ} for the capacity to be bounded. Note that the results presented in
this section do not require the additional assumptions made in Section 4.1: we neither assume
that the sequence {αℓ} satisfies (21) nor that {Uk} is IID.

Theorem 3. Consider the channel model described in Section 2. Then

i)

(

lim
ℓ→∞

αℓ+1

αℓ
> 0

)

=⇒
(

sup
SNR>0

CFB(SNR) <∞
)

(26)

ii)

(

lim
ℓ→∞

αℓ+1

αℓ
= 0

)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)

, (27)

where we define, for any a > 0, a/0 , ∞ and 0/0 , 0.

3The channel gain is given by the ratio of the “desired” power at the channel output to the “desired” power
at the channel input.
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Proof. See Section 6.

For example, for a geometric heat dissipation (10) we have

lim
ℓ→∞

αℓ+1

αℓ
= ρ, 0 < ρ < 1

and it follows from Theorem 3 that the corresponding capacity is bounded. On the other hand,
for a sub-geometric heat dissipation, i.e.,

αℓ = ρℓ
κ

, ℓ ∈ Z
+

for some 0 < ρ < 1 and κ > 1, we obtain

lim
ℓ→∞

αℓ+1

αℓ
= lim

ℓ→∞
ρ(ℓ+1)κ−ℓκ = 0

and Theorem 3 implies that the corresponding capacity is unbounded. Roughly speaking, we
can say that whenever the sequence of coefficients {αℓ} decays not faster than geometrically then
capacity is bounded in the SNR, and whenever the sequence of coefficients {αℓ} decays faster
than geometrically then capacity is unbounded in the SNR.

Remark 2. For Part i) of Theorem 3 the assumptions that the process {Uk} is weakly-mixing
and that it has a finite fourth moment are not needed. These assumptions are only needed in the
proof of Part ii).4 In Part ii) of Theorem 3, the condition on the left-hand side (LHS) of (27)
can be replaced by

lim
ℓ→∞

1

ℓ
log

1

αℓ
= ∞. (28)

This condition (28) is weaker than the original condition (27) because
(

lim
ℓ→∞

αℓ+1

αℓ
= 0

)

=⇒
(

lim
ℓ→∞

1

ℓ
log

1

αℓ
= ∞

)

.

When neither the LHS of (26) nor the LHS of (27) hold, i.e.,

lim
ℓ→∞

αℓ+1

αℓ
> 0 and lim

ℓ→∞

αℓ+1

αℓ
= 0, (29)

then capacity can be bounded or unbounded. Example 1 exhibits a sequence {αℓ} satisfying
(29) for which the capacity is bounded, and Example 2 provides a sequence {αℓ} satisfying (29)
for which the capacity is unbounded.5

Example 1. Consider the sequence {αℓ} where all coefficients with an even index are equal to 1,
and where all coefficients with an odd index are 0. It satisfies (29) because limℓ→∞ αℓ+1/αℓ = ∞
and limℓ→∞ αℓ+1/αℓ = 0. Then the time-k channel output Yk corresponding to the channel
inputs (x1, . . . , xk) is given by

Yk = xk +

√

√

√

√

√



σ2 +

⌊(k−1)/2⌋
∑

ℓ=1

x2k−2ℓ



 · Uk, k ∈ Z
+,

where ⌊·⌋ denotes the floor function. Thus at even times the output Y2k, k ∈ Z
+ only depends on

the “even” inputs (X2, X4, . . . , X2k), while at odd times the output Y2k+1, k ∈ Z
+
0 only depends

on the “odd” inputs (X1, X3, . . . , X2k+1). By proceeding along the lines of the proof of Part i) of
Theorem 3 while choosing in (60) β = 1/y2k−2, it can be shown that the capacity of this channel
is bounded.6

4They are needed to prove Lemma 5.
5The provided sequences {αℓ} are not monotonically decreasing in ℓ. Consequently, Examples 1 & 2 are rather

of mathematical than of practical interest. Nevertheless they show that when neither condition of Theorem 3 is
satisfied, then one can construct simple examples yielding a bounded capacity or an unbounded capacity, thus
demonstrating the difficulty of finding conditions that are necessary and sufficient for the capacity to be bounded.

6Intuitively, with this choice of {αℓ} the channel can be divided into two parallel channels, one connecting
the inputs and outputs at even times, and the other connecting the inputs and outputs at odd times. As both
channels have the coefficients α̃0 = α̃1 = . . . = 1, it follows from Theorem 3 that the capacity of each parallel
channel is bounded and therefore also the capacity of the original channel.
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Example 2. Consider the sequence {αℓ} where all coefficients with an even positive index
are 0, and where all other coefficients are 1. (Again, we have limℓ→∞ αℓ+1/αℓ = ∞ and
limℓ→∞ αℓ+1/αℓ = 0.) In this case the time-k channel output Yk corresponding to (x1, . . . , xk)
is given by

Yk = xk +

√

√

√

√

√



σ2 +

⌊k/2⌋
∑

ℓ=1

x2k−2ℓ+1



 · Uk, k ∈ Z
+.

Using Gaussian inputs of power 2P at even times while setting the inputs to be zero at odd times,
and measuring the channel outputs only at even times, reduces the channel to a memoryless
additive noise channel and demonstrates (using the result of [15]) the achievability of

R =
1

4
log(1 + 2 SNR)

which is unbounded in the SNR.

The two seemingly-similar examples thus lead to completely different capacity results. The
crucial difference between Example 1 and Example 2 is that in the former example at even
times the interference is caused by the past channel inputs at even times, whereas in the latter
example at even times the interference is caused by the past channel inputs at odd times. Thus
in Example 2 setting all “odd” inputs to zero cancels (at even times) the interference from past
channel inputs and hence transforms the channel into an additive noise channel whose capacity
is unbounded. Evidently, this approach does not work for Example 1.

5 Proof of Theorem 2

In Section 5.1 we derive an upper bound on the feedback capacity CFB(SNR), and in Section 5.2
we derive a lower bound on the capacity C(SNR) in the absence of feedback. These bounds are
used in Section 5.3 to derive an upper bound on ĊFB(0) and a lower bound on Ċ(0), which are
then both shown to be equal to 1/2 (1 + α). Together with (20) this proves Theorem 2.

5.1 Converse

The upper bound on CFB(SNR) is based on (18) and on an upper bound on 1
nI(M ;Y n

1 ), which
for our channel can be expressed, using the chain rule for mutual information, as

1

n
I(M ;Y n

1 ) =
1

n

n
∑

k=1

(

h
(

Yk
∣

∣Y k−1
1

)

− h
(

Yk
∣

∣Y k−1
1 ,M

)

)

=
1

n

n
∑

k=1

(

h
(

Yk
∣

∣Y k−1
1

)

− h
(

Yk
∣

∣Y k−1
1 ,M,Xk

1

)

)

=
1

n

n
∑

k=1

(

h
(

Yk
∣

∣Y k−1
1

)

− h(Uk)−
1

2
E

[

log

(

σ2 +

k−1
∑

ℓ=1

αk−ℓX
2
ℓ

)])

, (30)

where the second equality follows because Xk
1 is a function ofM and Y k−1

1 ; and the last equality
follows from the behavior of differential entropy under translation and scaling [10, Thms. 9.6.3
& 9.6.4], and because Uk is independent of

(

Y k−1
1 ,M,Xk

1

)

.
Evaluating the differential entropy h(Uk) of a Gaussian random variable, and using the trivial

lower bound E

[

log
(

σ2 +
∑k−1

ℓ=1 αk−ℓX
2
ℓ

)]

≥ log σ2, we obtain the final upper bound

1

n
I(M ;Y n

1 ) ≤ 1

n

n
∑

k=1

(

h
(

Yk
∣

∣Y k−1
1

)

− 1

2
log(2πeσ2)

)

≤ 1

n

n
∑

k=1

1

2
log

(

1 +

k
∑

ℓ=1

αk−ℓE
[

X2
ℓ

]

/σ2

)

8



≤ 1

2
log

(

1 +
1

n

n
∑

k=1

k
∑

ℓ=1

αk−ℓE
[

X2
ℓ

]

/σ2

)

=
1

2
log

(

1 +
1

n

n
∑

k=1

E
[

X2
k

]

/σ2
n−k
∑

ℓ=0

αℓ

)

≤ 1

2
log

(

1 + (1 + α)
1

n

n
∑

k=1

E
[

X2
k

]

/σ2

)

≤ 1

2
log (1 + (1 + α) SNR) , (31)

where we define α0 , 1. Here the second inequality follows because conditioning cannot in-
crease entropy and from the entropy maximizing property of Gaussian random variables [10,
Thm. 9.6.5]; the next inequality follows by Jensen’s inequality; the following equality by rewrit-
ing the double sum; the subsequent inequality follows because the coefficients are nonnegative
which implies that

∑n−k
ℓ=0 αℓ ≤

∑∞
ℓ=0 αℓ = 1+ α; and the last inequality follows from the power

constraint (11).

5.2 Direct Part

As aforementioned, the above channel (7) is not stationary and it is therefore prima facie not
clear whether CInfo(SNR) is achievable. We shall sidestep this problem by studying the capacity
of a different channel whose time-k channel output Ỹk ∈ R is, conditional on the sequence
{Xk} = {xk}, given by

Ỹk = xk +

√

√

√

√

(

σ2 +
k−1
∑

ℓ=−∞

αk−ℓx2ℓ

)

· Uk, k ∈ Z
+, (32)

where {Uk} and {αℓ} are defined in Section 2. This channel has the advantage that it is
stationary & ergodic in the sense that when {Xk} is a stationary & ergodic process then the pair
{(Xk, Ỹk)} is jointly stationary & ergodic. It follows that if the sequences {Xk , k = 0,−1, . . .}
and {Xk , k = 1, 2, . . .} are independent of each other, and if the random variables Xk, k =
0,−1, . . . are bounded, then any rate that can be achieved over this new channel is also achievable
over the original channel. Indeed, the original channel (7) can be converted into (32) by adding

Sk =

√

√

√

√

(

0
∑

ℓ=−∞

αk−ℓX2
ℓ

)

· U−k

to the channel output Yk,
7 and, since the independence of {Xk , k = 0,−1, . . .} and {Xk , k =

1, 2, . . .} ensures that the sequence {Sk , k ∈ Z
+} is independent of the message M , it follows

that any rate achievable over (32) can be achieved over (7) by using a receiver that generates
{Sk , k ∈ Z

+} and guesses then M based on (Y1 + S1, . . . , Yn + Sn).
8

We shall consider channel inputs {Xk} that are blockwise IID in blocks of L symbols (for
some L ∈ Z

+). Thus denoting Xb = (XbL+1, . . . , X(b+1)L)
T (where (·)T denotes the transpose),

{Xb} is a sequence of IID random length-L vectors with Xb taking on the value (ξ, 0, . . . , 0)T

with probability δ and (0, . . . , 0)T with probability 1 − δ, for some ξ ∈ R. Note that to satisfy
the average-power constraint (11) we shall choose ξ and δ so that

ξ2

σ2
δ = L SNR. (33)

7The boundedness of the random variables Xk, k = 0,−1, . . . guarantees that the quantity
P

0

ℓ=−∞
αk−ℓx

2

ℓ

is finite for any realization of {Xk , k = 0,−1, . . .}.
8Note that this approach is specific to the case where {Uk} is a sequence of Gaussian random variables. Indeed,

it relies heavily on the fact that given {Xk} = {xk} the additive noise term on the right-hand side of (32) can
be written as the sum of two independent random variables, of which one only depends on {Xk , k = 0,−1, . . .}
and the other only on {Xk , k = 1, 2, . . .}. This surely holds for Gaussian random variables, but it does not
necessarily hold for other distributions on {Uk}.
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Let Ỹb = (ỸbL+1, . . . , Ỹ(b+1)L)
T. Noting that the pair {(Xb, Ỹb)} is jointly stationary &

ergodic, it follows from [11] that the rate

lim
n→∞

1

n
I
(

X
⌊n/L⌋−1
0 ; Ỹ

⌊n/L⌋−1
0

)

is achievable over the new channel (32) and thus yields a lower bound on the capacity C(SNR)

of the original channel (7). We lower bound 1
nI
(

X
⌊n/L⌋−1
0 ; Ỹ

⌊n/L⌋−1
0

)

as

1

n
I
(

X
⌊n/L⌋−1
0 ; Ỹ

⌊n/L⌋−1
0

)

=
1

n

⌊n/L⌋−1
∑

b=0

I
(

Xb; Ỹ
⌊n/L⌋−1
0

∣

∣Xb−1
0

)

≥ 1

n

⌊n/L⌋−1
∑

b=0

I
(

Xb; Ỹb

∣

∣Xb−1
0

)

≥ 1

n

⌊n/L⌋−1
∑

b=0

(

I
(

Xb; Ỹb

∣

∣Xb−1
−∞

)

− I
(

X−1
−∞; Ỹb

∣

∣Xb
0

)

)

, (34)

where we use the chain rule and the nonnegativity of mutual information. It is shown in Ap-
pendix B that

lim
b→∞

I
(

X−1
−∞; Ỹb

∣

∣Xb
0

)

= 0. (35)

This together with a Cesáro type theorem [10, Thm. 4.2.3] yields

lim
n→∞

1

n
I
(

X
⌊n/L⌋−1
0 ; Ỹ

⌊n/L⌋−1
0

)

≥ 1

L
I
(

X0; Ỹ0

∣

∣X−1
−∞

)

− 1

L
lim
n→∞

1

⌊n/L⌋

⌊n/L⌋−1
∑

b=0

I
(

X−1
−∞; Ỹb

∣

∣Xb
0

)

=
1

L
I
(

X0; Ỹ0

∣

∣X−1
−∞

)

, (36)

where the first inequality follows by the stationarity of {(Xb, Ỹb)} which implies that

I
(

Xb; Ỹb|Xb−1
−∞

)

does not depend on b, and by noting that limn→∞
⌊n/L⌋

n = 1/L.

We proceed to analyze I
(

X0; Ỹ0|X−1
−∞ = x−1

−∞

)

for a given sequence X−1
−∞ = x−1

−∞. Making
use of the canonical decomposition of mutual information (e.g., [12, Eq. (10)]), we have

I
(

X0; Ỹ0

∣

∣X−1
−∞ = x−1

−∞

)

= I
(

X1; Ỹ0

∣

∣X−1
−∞ = x−1

−∞

)

=

∫

D
(

P
Ỹ0|X1=x,x−1

−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

P. X1
(x)

−D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

= δD
(

P
Ỹ0|X1=ξ,x−1

−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

−D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥
P
Ỹ0|X1=0,x−1

−∞

)

, (37)

where the first equality follows because, for our choice of input distribution, X2 = . . . = XL = 0
and hence X1 conveys as much information about Ỹ0 as X0. Here D(·‖·) denotes relative
entropy, i.e.,

D
(

P1

∥

∥P0

)

=







∫

log
P. 1
P. 0

P. 1 if P1 ≪ P0

+∞ otherwise,

and
P
Ỹ0|X1=ξ,x−1

−∞

, P
Ỹ0|X1=0,x−1

−∞

, and P
Ỹ0|x

−1
−∞

denote the distributions of Ỹ0 conditional on the inputs
(

X1 = ξ,X−1
−∞ = x−1

−∞

)

,
(

X1 =
0,X−1

−∞ = x−1
−∞

)

, and on X−1
−∞ = x−1

−∞, respectively. Thus P
Ỹ0|X1=ξ,x−1

−∞

is the law of an L-

variate Gaussian random vector of mean (ξ, 0, . . . , 0)T and of diagonal covariance matrix K
(ξ)

x
−1
−∞

10



with diagonal entries

K
(ξ)

x
−1
−∞

(1, 1) = σ2 +

−1
∑

ℓ=−∞

α−ℓLx
2
ℓL+1

K
(ξ)

x
−1
−∞

(i, i) = σ2 + αi−1ξ
2 +

−1
∑

ℓ=−∞

α−ℓL+i−1x
2
ℓL+1, i = 2, . . . , L;

P
Ỹ0|X1=0,x−1

−∞

is the law of an L-variate, zero-mean Gaussian random vector of diagonal covari-

ance matrix K
(0)

x
−1
−∞

with diagonal entries

K
(0)

x
−1
−∞

(i, i) = σ2 +
−1
∑

ℓ=−∞

α−ℓL+i−1x
2
ℓL+1, i = 1, . . . , L;

and P
Ỹ0|x

−1
−∞

is given by

P
Ỹ0|x

−1
−∞

= δP
Ỹ0|X1=ξ,x−1

−∞

+ (1− δ)P
Ỹ0|X1=0,x−1

−∞

.

In order to evaluate the first term on the right-hand side (RHS) of (37) we note that the
relative entropy of two real, L-variate Gaussian random vectors of means µ1 and µ2 and of
covariance matrices K1 and K2 is given by

D
(

N (µ1,K1)
∥

∥ N (µ2,K2)
)

=
1

2
log detK2 −

1

2
log detK1 +

1

2
tr
(

K1K
−1
2 − IL

)

+
1

2
(µ1 − µ2)

T
K
−1
2 (µ1 − µ2), (38)

with detA and tr (A) denoting the determinant and the trace of the matrix A, and where IL

denotes the L×L identity matrix. The second term on the RHS of (37) is analyzed in the next
subsection.

Let E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥P
Ỹ0|X1=0,X−1

−∞

)

]

denote the second term on the RHS of (37) averaged

over X−1
−∞, i.e.,

E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

= E
X

−1
−∞

[

D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)]

.

Then using (38) & (37) and taking expectations over X−1
−∞, we obtain, again defining α0 , 1,

1

L
I
(

X0; Ỹ0

∣

∣X−1
−∞

)

=
δ

L

ξ2

σ2

1

2

L
∑

i=1

E

[

αi−1

1 +
∑−1

ℓ=−∞ α−ℓL+i−1X2
ℓL+1/σ

2

]

− δ

L

1

2

L
∑

i=2

E

[

log

(

1 +
αi−1ξ

2

σ2 +
∑−1

ℓ=−∞ α−ℓL+i−1X2
ℓL+1

)]

− 1

L
E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

≥ δ

L

ξ2

σ2

1

2

L
∑

i=1

αi−1

1 +
∑−1

ℓ=−∞ α−ℓL+i−1E
[

X2
ℓL+1

]

/σ2

− δ

L

1

2

L
∑

i=2

log
(

1 + αi−1ξ
2/σ2

)

− 1

L
E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

≥ 1

2
SNR

L
∑

i=1

αi−1

1 + α L SNR

− 1

2
SNR

L
∑

i=2

log
(

1 + αi−1ξ
2/σ2

)

ξ2/σ2

− 1

L
E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

, (39)
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where the first inequality follows by the lower bound E[1/(1 +X)] ≥ 1/(1 + E[X ]), which is a
consequence of Jensen’s inequality applied to the convex function 1/(1 + x), x > 0, and by the
upper bound

E

[

log

(

1 +
αi−1ξ

2

σ2 +
∑−1

ℓ=−∞ α−ℓL+i−1X2
ℓL+1

)]

≤ log
(

1 + αi−1ξ
2/σ2

)

, i = 2, . . . , L;

and the second inequality follows by (33) and by upper bounding

−1
∑

ℓ=−∞

α−ℓL+i−1 ≤
∞
∑

ℓ=1

αℓ = α, i = 1, . . . , L.

The final lower bound follows now by (39) and (36)

lim
n→∞

1

n
I
(

X
⌊n/L⌋−1
0 ; Ỹ

⌊n/L⌋−1
0

)

≥ 1

2
SNR

L
∑

i=1

αi−1

1 + α L SNR

− 1

2
SNR

L
∑

i=2

log
(

1 + αi−1ξ
2/σ2

)

ξ2/σ2

− 1

L
E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

(40)

and by recalling that

C(SNR) ≥ lim
n→∞

1

n
I
(

X
⌊n/L⌋−1
0 ; Ỹ

⌊n/L⌋−1
0

)

. (41)

5.3 Asymptotic Analysis

We start with analyzing the upper bound (31). Using that log(1 + x) ≤ x, x > −1 we have

CFB(SNR)

SNR
≤

1
2 log(1 + (1 + α) SNR)

SNR
≤ 1

2
(1 + α), (42)

and we thus obtain

ĊFB(0) = sup
SNR>0

CFB(SNR)

SNR
≤ 1

2
(1 + α). (43)

In order to derive a lower bound on Ċ(0) we first note that

Ċ(0) = sup
SNR>0

C(SNR)

SNR
≥ lim

SNR↓0

C(SNR)

SNR
(44)

and proceed by analyzing the limiting ratio of the lower bound (40) to SNR as SNR tends to
zero. To this end we first shall show that

lim
SNR↓0

E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

SNR
= 0. (45)

We recall that for any pair of distributions P0 and P1 satisfying P1 ≪ P0 [12, p. 1023]

lim
β↓0

D (βP1 + (1− β)P0‖P0)

β
= 0. (46)

Thus, for any given X−1
−∞ = x−1

−∞, (46) together with δ = SNR L σ2/ξ2 implies that

lim
SNR↓0

D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

SNR
= 0. (47)
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In order to show that this also holds when D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

is averaged over X−1
−∞,

we derive in the following the uniform upper bound

sup
x
−1
−∞

D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

= D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)∣

∣

∣

x
−1
−∞

=0
. (48)

The claim (45) follows then by upper bounding

E

[

D
(

P
Ỹ0|X

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,X−1

−∞

)]

≤ D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)∣

∣

∣

x
−1
−∞

=0
(49)

and by (47).
In order to prove (48) we use that any Gaussian random vector can be expressed as the sum

of two independent Gaussian random vectors to write the channel output Ỹ0 as

Ỹ0 = X0 +V +W, (50)

where, conditional on X0
−∞ = x0

−∞, V and W are L-variate, zero-mean Gaussian random vec-
tors, drawn independently of each other and having the respective diagonal covariance matrices
KV|x0

and K
W|x−1

−∞

whose diagonal entries are given by

KV|x0
(1, 1) = σ2

KV|x0
(i, i) = σ2 + αi−1x

2
1, i = 2, . . . , L,

and

K
W|x−1

−∞

(i, i) =
−1
∑

ℓ=−∞

α−ℓL+i−1x
2
ℓL+1, i = 1, . . . , L.

Thus W is the portion of the noise due to X−1
−∞, and V is the portion of the noise that remains

after subtracting W. Note that X0 +V and W are independent of each other because X0 is,
by construction, independent of X−1

−∞. The upper bound (48) follows now by

D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)

= D
(

P
X0+V+W|x−1

−∞

∥

∥

∥P
X0+V+W|X1=0,x−1

−∞

)

≤ D
(

PX0+V

∥

∥PX0+V|X1=0

)

= D
(

P
Ỹ0|x

−1
−∞

∥

∥

∥P
Ỹ0|X1=0,x−1

−∞

)∣

∣

∣

x
−1
−∞

=0
, (51)

where
P
X0+V+W|x−1

−∞

and P
X0+V+W|X1=0,x−1

−∞

denote the distributions of X0 +V +W conditional on the inputs X−1
−∞ = x−1

−∞ and on (X1 =

0,X−1
−∞ = x−1

−∞), respectively; PX0+V denotes the unconditional distribution of X0 + V; and
PX0+V|X1=0 denotes the distribution of X0 + V conditional on X1 = 0. Here the inequality
follows by the data processing inequality for relative entropy (see [10, Sec. 2.9]) and by noting
that X0 +V is independent of X−1

−∞.
Returning to the analysis of (40), we obtain from (44) and (45)

Ċ(0) ≥ lim
SNR↓0

C(SNR)

SNR

≥ lim
SNR↓0

1

2

L
∑

i=1

αi−1

1 + α L SNR
− 1

2

L
∑

i=2

log
(

1 + αi−1ξ
2/σ2

)

ξ2/σ2

=
1

2

L
∑

i=1

αi−1 −
1

2

L
∑

i=2

log
(

1 + αi−1ξ
2/σ2

)

ξ2/σ2
. (52)

By letting first ξ2 go to infinity while holding L fixed, and by letting then L go to infinity, we
obtain the desired lower bound on the capacity per unit cost

Ċ(0) ≥ lim
SNR↓0

C(SNR)

SNR
≥ 1

2
(1 + α). (53)
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Thus (53), (20), and (43) yield

1

2
(1 + α) ≤ lim

SNR↓0

C(SNR)

SNR
≤ Ċ(0) ≤ ĊFB(0) ≤

1

2
(1 + α) (54)

which proves Theorem 2.

6 Proof of Theorem 3

6.1 Part i)

In order to show that
lim
ℓ→∞

αℓ+1

αℓ
> 0 (55)

implies that the feedback capacity CFB(SNR) is bounded, we derive a capacity upper bound
which is based on (18) and on an upper bound on 1

nI(M ;Y n
1 ). Again we define α0 , 1.

We first note that, according to (55), we can find an ℓ0 ∈ Z
+ and a 0 < ρ < 1 so that

αℓ0 > 0 and
αℓ+1

αℓ
≥ ρ, ℓ ≥ ℓ0. (56)

We continue with the chain rule for mutual information

1

n
I(M ;Y n

1 ) =
1

n

ℓ0
∑

k=1

I
(

M ;Yk
∣

∣Y k−1
1

)

+
1

n

n
∑

k=ℓ0+1

I
(

M ;Yk
∣

∣Y k−1
1

)

. (57)

Each summand in the first sum on the RHS of (57) is upper bounded by

I
(

M ;Yk
∣

∣Y k−1
1

)

≤ h(Yk)− h
(

Yk
∣

∣Y k−1
1 ,M

)

= h(Yk)−
1

2
E

[

log

(

σ2 +

k−1
∑

ℓ=1

αk−ℓX
2
ℓ

)]

− h
(

Uk

∣

∣Uk−1
1

)

≤ 1

2
log

(

2πe

(

1 +

k
∑

ℓ=1

αk−ℓ

E
[

X2
ℓ

]

σ2

))

− h
(

Uk

∣

∣Uk−1
1

)

≤ 1

2
log

(

2πe

(

1 +
(

sup
ℓ′∈Z

+
0

αℓ′
)

k
∑

ℓ=1

E
[

X2
ℓ

]

σ2

))

− h
(

Uk

∣

∣Uk−1
1

)

≤ 1

2
log

(

2πe

(

1 +
(

sup
ℓ′∈Z

+
0

αℓ′
)

n SNR

))

− h
(

Uk

∣

∣Uk−1
1

)

≤ 1

2
log

(

2πe

(

1 +
(

sup
ℓ′∈Z

+
0

αℓ′
)

n SNR

))

− h
(

Uk

∣

∣Uk−1
−∞

)

. (58)

Recall that supℓ′∈Z
+
0
αℓ′ is finite (9). Here the first inequality follows because conditioning

cannot increase entropy; the following equality follows because
(

Xk
1 , U

k−1
1

)

is a function of
(

M,Y k−1
1

)

, from the behavior of entropy under translation and scaling [10, Thms. 9.6.3 & 9.6.4],

and from the fact that, conditional on Uk−1
1 , Uk is independent of

(

Xk
1 ,M, Y k−1

1

)

; the subsequent
inequality follows from the entropy maximizing property of Gaussian random variables and by

lower bounding E

[

log
(

σ2 +
∑k−1

ℓ=1 αk−ℓX
2
ℓ

)]

≥ log σ2; the next inequality by upper bounding

each coefficient αℓ ≤ supℓ′∈Z
+
0
αℓ′ , ℓ = 1, . . . , k; the subsequent inequality follows from the power

constraint (11); and the last inequality follows because conditioning cannot increase entropy.
The summands in the second sum on the RHS of (57) are upper bounded using the general

upper bound for mutual information [16, Thm. 5.1]

I(X ;Y ) ≤
∫

D
(

W (·|x)
∥

∥R(·)
)

Q. (x), (59)
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where W (·|·) is the channel law, Q(·) is the distribution on the channel input X , and R(·) is
any distribution on the output alphabet. Thus any choice of output distribution R(·) yields an
upper bound on the mutual information.

We upper bound I
(

M ;Yk
∣

∣Y k−1
1 = yk−1

1

)

, k = ℓ0 + 1, . . . , n for a given Y k−1
1 = yk−1

1 by
choosing R(·) to be a Cauchy distribution whose density is given by

√
β

π

1

1 + βy2k
, yk ∈ R, (60)

where we choose the scale parameter β to be9

β =
1

β̃y2k−ℓ0

and β̃ = min







ρℓ0−1 αℓ0

max
ℓ′=0,...,ℓ0−1

αℓ′
, αℓ0 , ρ

ℓ0







, (61)

with 0 < ρ < 1 and ℓ0 ∈ Z
+ given by (56). Note that (56) together with (9) implies that

0 < β̃ < 1 and β̃αℓ ≤ αℓ+ℓ0 , ℓ ∈ Z
+
0 . (62)

Applying (60) to (59) yields

I
(

M ;Yk
∣

∣Y k−1
1 = yk−1

1

)

≤ E

[

log

(

1 +
Y 2
k

β̃Y 2
k−ℓ0

) ∣

∣

∣

∣

∣

Y k−1
1 = yk−1

1

]

+
1

2
log
(

β̃y2k−ℓ0

)

+ log π − h
(

Yk
∣

∣M,Y k−1
1 = yk−1

1

)

, (63)

and we thus obtain, averaging over Y k−1
1 ,

I
(

M ;Yk
∣

∣Y k−1
1

)

≤ log π − h
(

Yk
∣

∣Y k−1
1 ,M

)

+
1

2
E

[

log
(

β̃Y 2
k−ℓ0

)

]

+ E

[

log
(

β̃Y 2
k−ℓ0 + Y 2

k

)

]

− E
[

log
(

Y 2
k−ℓ0

)]

− log β̃. (64)

We evaluate the terms on the RHS of (64) individually. We begin with

h
(

Yk
∣

∣Y k−1
1 ,M

)

≥ 1

2
E

[

log

(

σ2 +

k−1
∑

ℓ=1

αk−ℓX
2
ℓ

)]

+ h
(

Uk

∣

∣Uk−1
−∞

)

, (65)

where we use the same steps as in the equality in (58) and that conditioning cannot increase
entropy. The next term is upper bounded by

E

[

log
(

β̃Y 2
k−ℓ0

)

]

= E

[

E

[

log
(

β̃
(

Xk−ℓ0 + θ
(

Xk−ℓ0−1
1

)

· Uk−ℓ0

)2
) ∣

∣

∣ Xk−ℓ0
1

]]

≤ E

[

log
(

β̃E
[

(

Xk−ℓ0 + θ
(

Xk−ℓ0−1
1

)

· Uk−ℓ0

)2
∣

∣

∣ Xk−ℓ0
1

])]

= E

[

log

(

β̃X2
k−ℓ0 + β̃σ2 + β̃

k−ℓ0−1
∑

ℓ=1

αk−ℓ0−ℓX
2
ℓ

)]

≤ E

[

log

(

σ2 +

k−ℓ0
∑

ℓ=1

αk−ℓX
2
ℓ

)]

, (66)

where we define, for a given Xk−1
1 = xk−1

1 ,

θ
(

xk−1
1

)

,

√

√

√

√σ2 +

k−1
∑

ℓ=1

αk−ℓx2ℓ . (67)

9When yk−ℓ0
= 0 then with this choice of β the density of the Cauchy distribution (60) is undefined. However,

this event is of zero probability and has therefore no impact on the mutual information I
`

M ;Yk

˛

˛Y k−1

1

´

.
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Here the first inequality in (66) follows from Jensen’s inequality, and the second inequality follows
from (62). Similarly we use Jensen’s inequality along with (62) to upper bound

E

[

log
(

β̃Y 2
k−ℓ0 + Y 2

k

)

]

≤ E

[

log

(

σ2 +

k−ℓ0
∑

ℓ=1

αk−ℓX
2
ℓ + σ2 +

k
∑

ℓ=1

αk−ℓX
2
ℓ

)]

≤ log 2 + E

[

log

(

σ2 +

k
∑

ℓ=1

αk−ℓX
2
ℓ

)]

. (68)

In order to lower bound E
[

log
(

Y 2
k−ℓ0

)]

we need the following lemma:

Lemma 4. Let X be a random variable of density fX(x), x ∈ R. Then, for any 0 < δ ≤ 1 and
0 < η < 1 we have

sup
c∈R

E
[

log |X + c|−1 · I {|X + c| ≤ δ}
]

≤ ǫ(δ, η) +
1

η
h−(X) (69)

where I {·} denotes the indicator function10; h−(X) is defined as

h−(X) ,

∫

{x∈R:fX(x)>1}

fX(x) log fX(x)x. ; (70)

and where ǫ(δ, η) > 0 tends to zero as δ ↓ 0.

Proof. See [16, Lemma 6.7].

We write the expectation as

E
[

log
(

Y 2
k−ℓ0

)]

= E

[

E

[

log
(

Xk−ℓ0 + θ
(

Xk−ℓ0−1
1

)

· Uk−ℓ0

)2
∣

∣

∣

∣

Xk−ℓ0
1

]]

and lower bound the conditional expectation for a given Xk−ℓ0
1 = xk−ℓ0

1 by

E

[

log
(

Xk−ℓ0 + θ
(

Xk−ℓ0−1
1

)

· Uk−ℓ0

)2
∣

∣

∣

∣

Xk−ℓ0
1 = xk−ℓ0

1

]

= log θ2
(

xk−ℓ0−1
1

)

− 2 E



 log

∣

∣

∣

∣

∣

Xk−ℓ0

θ
(

Xk−ℓ0−1
1

) + Uk−ℓ0

∣

∣

∣

∣

∣

−1
∣

∣

∣

∣

∣

∣

Xk−ℓ0
1 = xk−ℓ0

1





≥ log θ2
(

xk−ℓ0−1
1

)

− 2ǫ(δ, η)− 2

η
h−(Uk−ℓ0) + log δ2 (71)

for some 0 < δ ≤ 1 and 0 < η < 1. Here the inequality follows by splitting the conditional
expectation into the two expectations

E



 log

∣

∣

∣

∣

∣

Xk−ℓ0

θ
(

Xk−ℓ0−1
1

) + Uk−ℓ0

∣

∣

∣

∣

∣

−1
∣

∣

∣

∣

∣

∣

Xk−ℓ0
1 = xk−ℓ0

1





= E



 log

∣

∣

∣

∣

∣

Xk−ℓ0

θ
(

Xk−ℓ0−1
1

) + Uk−ℓ0

∣

∣

∣

∣

∣

−1

· I
{∣

∣

∣

∣

∣

Xk−ℓ0

θ
(

Xk−ℓ0−1
1

) + Uk−ℓ0

∣

∣

∣

∣

∣

≤ δ

}

∣

∣

∣

∣

∣

∣

Xk−ℓ0
1 = xk−ℓ0

1





+ E



 log

∣

∣

∣

∣

∣

Xk−ℓ0

θ
(

Xk−ℓ0−1
1

) + Uk−ℓ0

∣

∣

∣

∣

∣

−1

· I
{∣

∣

∣

∣

∣

Xk−ℓ0

θ
(

Xk−ℓ0−1
1

) + Uk−ℓ0

∣

∣

∣

∣

∣

> δ

}

∣

∣

∣

∣

∣

∣

Xk−ℓ0
1 = xk−ℓ0

1





and by upper bounding then the first term on the RHS using Lemma 4 and the second term by
− log δ. Averaging (71) over Xk−ℓ0

1 yields

E
[

log
(

Y 2
k−ℓ0

)]

≥ E

[

log

(

σ2 +

k−ℓ0−1
∑

ℓ=1

αk−ℓ0−ℓX
2
ℓ

)]

− 2ǫ(δ, η)− 2

η
h−(Uk−ℓ0) + log δ2. (72)

10The indicator function I {statement} takes on the value 1 if the statement is true and 0 otherwise.
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Note that, since Uk−ℓ0 is of unit variance, (8) together with [16, Lemma 6.4] implies that
h−(Uk−ℓ0) is finite.

Turning back to the upper bound (64) we obtain from (65), (66), (68), and (72)

I
(

M ;Yk
∣

∣Y k−1
1

)

≤ log π − 1

2
E

[

log

(

σ2 +

k−1
∑

ℓ=1

αk−ℓX
2
ℓ

)]

− h
(

Uk

∣

∣Uk−1
−∞

)

+
1

2
E

[

log

(

σ2 +

k−ℓ0
∑

ℓ=1

αk−ℓX
2
ℓ

)]

+ log 2 + E

[

log

(

σ2 +

k
∑

ℓ=1

αk−ℓX
2
ℓ

)]

− E

[

log

(

σ2 +

k−ℓ0−1
∑

ℓ=1

αk−ℓ0−ℓX
2
ℓ

)]

+ 2ǫ(δ, η) +
2

η
h−(Uk−ℓ0)− log δ2 − log β̃

≤ E

[

log

(

σ2 +

k
∑

ℓ=1

αk−ℓX
2
ℓ

)]

− E

[

log

(

σ2 +

k−ℓ0−1
∑

ℓ=1

αk−ℓ0−ℓX
2
ℓ

)]

+ K, (73)

where

K , log
2π

β̃δ2
− h
(

Uk

∣

∣Uk−1
−∞

)

+
2

η
h−(Uk−ℓ0) + 2ǫ(δ, η) (74)

is a finite constant, and where the last inequality in (73) follows because for any Xk−1
k−ℓ0+1 =

xk−1
k−ℓ0+1 we have

∑k−ℓ0
ℓ=1 αk−ℓ x

2
ℓ ≤ ∑k−1

ℓ=1 αk−ℓ x
2
ℓ . Note that K does not depend on k as the

process {Uk} is stationary.
Turning back to the evaluation of the second sum on the RHS of (57), we use that for any

sequences {ak} and {bk}
n
∑

k=ℓ0+1

(ak − bk) =

n
∑

k=n−2ℓ0+1

(ak − bk−n+3ℓ0) +

n−2ℓ0
∑

k=ℓ0+1

(ak − bk+2ℓ0). (75)

Defining

ak , E

[

log

(

σ2 +

k
∑

ℓ=1

αk−ℓX
2
ℓ

)]

(76)

and

bk , E

[

log

(

σ2 +

k−ℓ0−1
∑

ℓ=1

αk−ℓ0−ℓX
2
ℓ

)]

(77)

we have for the first sum on the RHS of (75)

n
∑

k=n−2ℓ0+1

(ak − bk−n+3ℓ0) =

n
∑

k=n−2ℓ0+1

E

[

log

(

σ2 +
∑k

ℓ=1 αk−ℓX
2
ℓ

σ2 +
∑k−n+2ℓ0−1

ℓ=1 αk−n+2ℓ0−ℓX2
ℓ

)]

≤ 2ℓ0 log

(

1 +
(

sup
ℓ∈Z

+
0

αℓ

)

n SNR

)

(78)

which follows by lower bounding the denominator by σ2, and by using then Jensen’s inequality
together with the third and fourth inequality in (58). For the second sum on the RHS of (75)
we have

n−2ℓ0
∑

k=ℓ0+1

(ak − bk+2ℓ0) =

n−2ℓ0
∑

k=ℓ0+1

E

[

log

(

σ2 +
∑k

ℓ=1 αk−ℓX
2
ℓ

σ2 +
∑k+ℓ0−1

ℓ=1 αk+ℓ0−ℓX2
ℓ

)]

≤
n−2ℓ0
∑

k=ℓ0+1

E

[

log

(

σ2 +
∑k

ℓ=1 αk+ℓ0−ℓX
2
ℓ

σ2 +
∑k+ℓ0−1

ℓ=1 αk+ℓ0−ℓX2
ℓ

)]

− (n− 3ℓ0) log β̃

≤ −(n− 3ℓ0) log β̃, (79)
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where the first inequality follows by adding log β̃ to the expectation and by upper bounding
then β̃αℓ < αℓ+ℓ0 , ℓ ∈ Z

+
0 (62); and the last inequality follows because for any given Xk+ℓ0−1

k+1 =

xk+ℓ0−1
k+1 we have

∑k
ℓ=1 αk+ℓ0−ℓ x

2
ℓ ≤∑k+ℓ0−1

ℓ=1 αk+ℓ0−ℓ x
2
ℓ .

We apply now (73), (75), (78), and (79) to upper bound

1

n

n
∑

ℓ=ℓ0+1

I
(

M ;Yk
∣

∣Y k−1
1

)

≤ n− ℓ0
n

K+
2ℓ0
n

log

(

1 +
(

sup
ℓ∈Z

+
0

αℓ

)

n SNR

)

− n− 3ℓ0
n

log β̃ (80)

which together with (57) and (58) yields

1

n
I(M ;Y n

1 ) ≤ n− ℓ0
n

K− n− 3ℓ0
n

log β̃ +
ℓ0
2n

log(2πe)− ℓ0
n
h
(

Uk

∣

∣Uk−1
−∞

)

+
ℓ0
n

5

2
log

(

1 +
(

sup
ℓ∈Z

+
0

αℓ

)

n SNR

)

. (81)

This converges to K−log β̃ <∞ as we let n tend to infinity, thus proving that limℓ→∞ αℓ+1/αℓ >
0 implies that the capacity CFB(SNR) is bounded in the SNR.

6.2 Part ii)

We shall show that

lim
ℓ→∞

1

ℓ
log

1

αℓ
= ∞ (82)

implies that the capacity C(SNR) in the absence of feedback is unbounded in the SNR. Part ii)
of Theorem 3 follows then by noting that

lim
ℓ→∞

αℓ+1

αℓ
= 0 =⇒ lim

ℓ→∞

1

ℓ
log

1

αℓ
= ∞. (83)

We prove the claim by proposing a coding scheme that achieves an unbounded rate. We first
note that (82) implies that for any 0 < ̺ < 1 we can find an ℓ0 ∈ Z

+ so that

αℓ < ̺ℓ, ℓ = ℓ0, ℓ ≥ ℓ0. (84)

If there exists an ℓ0 ∈ Z
+ so that αℓ = 0, ℓ ≥ ℓ0, then we can achieve the (unbounded) rate

R =
1

2L
log(1 + L SNR), L ≥ ℓ0 (85)

by a coding scheme where the channel inputs {XkL+1 , k ∈ Z
+
0 } are IID, zero-mean Gaussian

random variables of variance LP, and where the other inputs are deterministically zero. Indeed,
by waiting L time-steps, the chip’s temperature cools down to the ambient one so that the noise
variance is independent of the previous channel inputs and we can achieve—after appropriate
normalization—the capacity of the additive white Gaussian noise (AWGN) channel [15].

For the more general case (84) we propose the following encoding and decoding scheme.
Let xn1 (m), m ∈ M denote the codeword sent out by the transmitter that corresponds to the
message M = m. We choose some L ≥ ℓ0 and generate the components xkL+1(m), m ∈ M,
k = 0, . . . , ⌊n/L⌋ − 1 independently of each other according to a zero-mean Gaussian law of
variance P. The other components are set to zero.11

The receiver uses a nearest neighbor decoder in order to guess M based on the received
sequence of channel outputs yn1 . Thus it computes ‖y − x(m′)‖2 for each m′ ∈ M and decides
on the message that satisfies

M̂ = arg min
m′∈M

‖y − x(m′)‖2, (86)

11It follows from the weak law of large numbers that, for any m ∈ M, 1

n

P

n

k=1
x2

k
(m) converges to P/L in

probability as n tends to infinity. This guarantees that the probability that a codeword does not satisfy the
per-message power constraint (13)—and hence also the average-power constraint (11)—vanishes as n tends to
infinity.
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where ties are resolved with a fair coin flip. Here, ‖ · ‖ denotes the Euclidean
norm, and y and x(m′) denote the respective vectors (y1, yL+1, . . . , y(⌊n/L⌋−1)L+1)

T and
(x1(m

′), xL+1(m
′), . . . , x(⌊n/L⌋−1)L+1(m

′))T.

We are interested in the average probability of error Pr
(

M̂ 6= M
)

, averaged over all code-
words in the codebook, and averaged over all codebooks. By the symmetry of the codebook
construction, the probability of error corresponding to the m-th message Pr

(

M̂ 6=M
∣

∣M = m
)

does not depend on m, and we thus conclude that Pr
(

M̂ 6= M
)

= Pr
(

M̂ 6= M
∣

∣M = 1
)

. We
further note that

Pr
(

M̂ 6=M
∣

∣M = 1
)

≤ Pr

(

|M|
⋃

m′=2

‖Y −X(m′)‖2 ≤ ‖Z‖2
∣

∣

∣

∣

∣

M = 1

)

, (87)

where

Z =
(

θ
(

X1(1)
)

· U1, θ
(

XL
1 (1)

)

· UL+1, . . . , θ
(

X
(⌊n/L⌋−1)L+1
1 (1)

)

· U(⌊n/L⌋−1)L+1

)

T

which is, conditional on M = 1, equal to ‖Y − X(1)‖2. In order to analyze (87) we need the
following lemma.

Lemma 5. Consider the channel described in Section 2, and assume that {αℓ} satisfies (82).
Further assume that {XkL+1 , k ∈ Z

+
0 } is a sequence of IID, zero-mean Gaussian random vari-

ables of variance P, and that Xk = 0 if k mod L 6= 1 (where k mod L stands for the remainder
upon diving k by L). Let the set Dǫ be defined as

Dǫ ,

{

(y, z) ∈ R
⌊n/L⌋ × R

⌊n/L⌋ :

∣

∣

∣

∣

1

⌊n/L⌋‖y‖
2 − (σ2 + P+ α(L)

P)

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

⌊n/L⌋‖z‖
2 − (σ2 + α(L)

P)

∣

∣

∣

∣

< ǫ

}

, (88)

with α(L) being defined as

α(L) ,

∞
∑

ℓ=1

αℓL. (89)

Then
lim
n→∞

Pr
(

(Y,Z) ∈ Dǫ

)

= 1 (90)

for any ǫ > 0.

Proof. See Appendix C.

In order to upper bound the RHS of (87) we proceed along the lines of [15], [14]. We have

Pr

(

|M|
⋃

m′=2

‖Y −X(m′)‖2 ≤ ‖Z‖2
∣

∣

∣

∣

∣

M = 1

)

≤ Pr
(

(Y,Z) /∈ Dǫ

)

+

∫

Dǫ

Pr

(

|M|
⋃

m′=2

‖y −X(m′)‖2 ≤ ‖z‖2
∣

∣

∣

∣

∣

(y, z),M = 1

)

P. (y, z), (91)

where we use that, by the symmetry of the codebook construction, the law of (Y,Z) does not
depend on M . It follows from Lemma 5 that the first term on the RHS of (91) vanishes as n
tends to infinity. Since the codewords are independent of each other, conditional on M = 1, the
distribution of X(m′), m′ = 2, . . . , |M| does not depend on (y, z). We upper bound the second
term on the RHS of (91) by analyzing Pr

(

‖y−X(m′)‖2 ≤ ‖z‖2
∣

∣ (y, z),M = 1
)

, m′ = 2, . . . , |M|
and by applying then the union of events bound.
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For m′ = 2, . . . , |M|, we have

Pr
(

‖y −X(m′)‖2 ≤ ‖z‖2
∣

∣ (y, z)
)

≤ exp

{

− s⌊n/L⌋(σ2 + α(L)
P+ ǫ) +

s‖y‖2
1− 2sP

− 1

2
⌊n/L⌋ log(1− 2sP)

}

, (y, z) ∈ Dǫ (92)

for any s < 0. This follows by upper bounding ‖z‖2 by ⌊n/L⌋(σ2+α(L)
P+ǫ) and from Chernoff’s

bound [17, Sec. 5.4]. Using that, for (y, z) ∈ Dǫ,

‖y‖2 > ⌊n/L⌋(σ2 + P+ α(L)
P− ǫ)

it follows from the union of events bound and from (92) that (91) goes to zero as n tends to
infinity if for some s < 0 the rate R satisfies

R <
s

L
(σ2 + α(L)

P+ ǫ) +
1

2L
log(1− 2sP)− s

L

σ2 + P+ α(L)
P− ǫ

1− 2sP
. (93)

Thus choosing s = −1/2 · 1/(1 + α(L)
P) yields that any rate below

− 1

2L

σ2 + α(L)
P+ ǫ

1 + α(L) P
+

1

2L
log

(

1 +
P

1 + α(L) P

)

+
1

2L

σ2 + P+ α(L)
P− ǫ

1 + α(L) P

1

1 + P

1+α(L) P

(94)

is achievable. As P tends to infinity this converges to

1

2L
log

(

1 +
1

α(L)

)

>
1

2L
log

1

α(L)
. (95)

It remains to show that given (84) we can make − 1
L logα(L) arbitrarily large. Indeed, (84)

implies that

α(L) =

∞
∑

ℓ=1

αℓL <

∞
∑

ℓ=1

̺ℓL =
̺L

1− ̺L

and (95) can therefore be further lower bounded by

1

2L
log
(

1− ̺L
)

+
1

2
log

1

̺
. (96)

Letting L tend to infinity yields then that we can achieve any rate below 1
2 log

1
̺ . As this can be

made arbitrarily large by choosing ̺ sufficiently small, we conclude that limℓ→∞
1
ℓ log

1
αℓ

= ∞
implies that the capacity is unbounded.

7 Conclusion

We studied a model for on-chip communication with nonideal heat sinks. To account for the
heating up effect we proposed a channel model where the variance of the additive noise depends
on a weighted sum of the past channel input powers. The weights characterize the efficiency of
the heat sink.

To study the capacity of this channel at low SNR, we computed the capacity per unit cost.
We showed that the heating effect is not just unharmful but can be even beneficial in the sense
that the capacity per unit cost can be larger than the capacity per unit cost of a corresponding
channel with ideal heat sink, i.e., where the weights describing the dependency of the noise
variance on the channel input powers are zero. This suggests that at low SNR no heat sinks
should be used.

Studying capacity at high SNR, we derived a sufficient condition and a necessary condition
on the weights for the capacity to be bounded in the SNR. We showed that when the sequence of
weights decays not faster than geometrically, then capacity is bounded in the SNR. On the other
hand, if the sequence of weights decays faster than geometrically, then capacity is unbounded in
the SNR. This result demonstrates the importance of an efficient heat sink at high SNR.
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A Proof of Proposition 1

We first note that by the expression of the capacity per unit cost of a memoryless channel [12]
we have

sup
SNR>0

Cα=0(SNR)

SNR
= sup

ζ2>0

D
(

Wα=0(·|ζ)
∥

∥Wα=0(·|0)
)

ζ2/σ2
, (97)

where Wα=0(·|·) denotes the channel law of the channel

Yk = xk + σ · Uk. (98)

Thus to prove Proposition 1 it suffices to show that

sup
SNR>0

CInfo(SNR)

SNR
≥ sup

ζ2>0

D
(

Wα=0(·|ζ)
∥

∥Wα=0(·|0)
)

ζ2/σ2
.

We shall obtain this result by deriving a lower bound on CInfo(SNR) and by computing then its
limiting ratio to SNR as SNR tends to zero.

In order to lower bound CInfo(SNR), which was defined in (16) as

CInfo(SNR) = lim
n→∞

1

n
sup I(Xn

1 ;Y
n
1 ),

we evaluate 1
nI(X

n
1 ;Y

n
1 ) for inputs {Xk} that are blockwise IID in blocks of L symbols (for some

L ∈ Z
+). Thus {(XbL+1, . . . , X(b+1)L), b ∈ Z

+
0 } is a sequence of IID random length-L vectors

with (XbL+1, . . . , X(b+1)L) taking on the value (ξ, 0, . . . , 0) with probability δ and (0, . . . , 0) with
probability 1− δ, for some ξ ∈ R. To satisfy the power constraint (11) we shall choose ξ and δ
such that

ξ2

σ2
δ = L SNR. (99)

We use the chain rule for mutual information to write

1

n
I(Xn

1 ;Y
n
1 ) =

1

n

⌊n/L⌋−1
∑

b=0

I
(

XbL+1;Y
n
1

∣

∣XbL
1

)

≥ 1

n

⌊n/L⌋−1
∑

b=0

I
(

XbL+1;YbL+1

∣

∣XbL
1

)

, (100)

where the inequality follows because reducing observations cannot increase mutual information.

Let R
(ξ)
on-off(snr) denote the maximum rate achievable on (98) using on-off keying with on-

symbol ξ and with its corresponding probability ℘ chosen in order to satisfy the power constraint
snr, i.e.,

R
(ξ)
on-off (snr) , sup

PX (ξ)=1−PX (0)=℘,

ξ2/σ2℘≤snr

I(X ;X + σ · Uk), snr ≥ 0. (101)

Notice that R
(ξ)
on-off(snr), snr ≥ 0 is a nonnegative, monotonically nondecreasing function of snr

with R
(ξ)
on-off(0) = 0. From the strict concavity of mutual information it follows that R

(ξ)
on-off(snr) >

0 whenever snr > 0. Also, for a fixed ξ, snr 7→ R
(ξ)
on-off(snr) is concave in snr. Consequently, for

some snr0 > 0, the function snr 7→ R
(ξ)
on-off(snr) is strictly monotonic in the interval snr ∈ [0, snr0],

and hence the supremum on the RHS of (101) is attained for ℘ = snr σ2/ξ2, snr ∈ [0, snr0].
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By writing I(XbL+1;YbL+1|XbL
1 = xbL1 ) for a given XbL

1 = xbL1 as

I
(

XbL+1;YbL+1

∣

∣XbL
1 = xbL1

)

= I
(

XbL+1;XbL+1 + θ
(

xbL1
)

· UbL+1

)

= I

(

XbL+1;
σ

θ
(

xbL1
)XbL+1 + σ · UbL+1

)

(with θ
(

xbL1
)

defined in (67)), and by using that for snr ∈ [0, snr0] the supremum on the RHS of
(101) is attained for ℘ = snr σ2/ξ2 we obtain

I
(

XbL+1;YbL+1

∣

∣XbL
1 = xbL1

)

= R
(ξ)
on-off

(

L SNR

1 +
∑b−1

ℓ=0 α(b−ℓ)Lx
2
ℓL+1/σ

2

)

, SNR ∈ [0, SNR0], (102)

where SNR0 , snr0/L. Averaging over XbL
1 and combining with (100) yields

1

n
I(Xn

1 ;Y
n
1 ) ≥ 1

n

⌊n/L⌋−1
∑

b=0

E

[

R
(ξ)
on-off

(

L SNR

1 +
∑b−1

ℓ=0 α(b−ℓ)LX
2
ℓL+1/σ

2

)]

≥ ⌊n/L⌋
n

R
(ξ)
on-off

(

L SNR

1 +
∑∞

ℓ=1 αℓLξ2/σ2

)

, SNR ∈ [0, SNR0], (103)

where the second inequality follows by upper bounding
∑b−1

ℓ=0 α(b−ℓ)LX
2
ℓL+1/σ

2 ≤
∑∞

ℓ=1 αℓLξ
2/σ2, and by using that snr 7→ R

(ξ)
on-off(snr) is monotonically increasing in snr. The

lower bound on CInfo(SNR) follows then by letting n tend to infinity

CInfo(SNR) = lim
n→∞

1

n
I(Xn

1 ;Y
n
1 ) ≥ 1

L
R

(ξ)
on-off

(

L SNR

1 +
∑∞

ℓ=1 αℓLξ2/σ2

)

. (104)

With this we can lower bound the information capacity per unit cost as

sup
SNR>0

CInfo(SNR)

SNR
≥ lim

SNR↓0

CInfo(SNR)

SNR

≥ lim
SNR↓0

1

L

R
(ξ)
on-off

(

L SNR
1+

P

∞

ℓ=1 αℓLξ2/σ2

)

SNR

= lim
SNR↓0

R
(ξ)
on-off

(

L SNR
1+

P

∞

ℓ=1 αℓLξ2/σ2

)

L SNR
1+

P

∞

ℓ=1 αℓLξ2/σ2

1

1 +
∑∞

ℓ=1 αℓLξ2/σ2

= lim
SNR′↓0

R
(ξ)
on-off(SNR

′)

SNR′

1

1 +
∑∞

ℓ=1 αℓLξ2/σ2
,

(105)

where the first inequality follows by lower bounding the supremum by the limit; and where the
last equality follows by substituting SNR′ = L SNR

1+
P

∞

ℓ=1 αℓLξ2/σ2 .

Proceeding along the lines of the proof of [12, Thm. 3], it can be shown that

lim
SNR′↓0

R
(ξ)
on-off(SNR

′)

SNR′ =
D
(

Wα=0(·|ξ)
∥

∥Wα=0(·|0)
)

ξ2/σ2
(106)

and therefore

sup
SNR>0

CInfo(SNR)

SNR
≥ D

(

Wα=0(·|ξ)
∥

∥Wα=0(·|0)
)

ξ2/σ2
· 1

1 +
∑∞

ℓ=1 αℓLξ2/σ2
. (107)

Noting that (9) & (21) imply

0 ≤ lim
L→∞

∞
∑

ℓ=1

αℓL ≤ lim
L→∞

∞
∑

ℓ=L

αℓ = 0 (108)

22



we obtain by letting L tend to infinity

sup
SNR>0

CInfo(SNR)

SNR
≥ D

(

Wα=0(·|ξ)
∥

∥Wα=0(·|0)
)

ξ2/σ2
. (109)

Maximizing (109) over ξ2 yields then

sup
SNR>0

CInfo(SNR)

SNR
≥ sup

ξ2>0

D
(

Wα=0(·|ξ)
∥

∥Wα=0(·|0)
)

ξ2/σ2
(110)

which, in view of (97), proves Proposition 1.

B Appendix to Section 5.2

We shall prove that
lim
b→∞

I
(

X−1
−∞; Ỹb

∣

∣Xb
0

)

= 0. (111)

Let α
(i)
b be defined as

α
(1)
0 , 0 (112)

α
(i)
b , αbL+i−1, (b, i) ∈ Z

+
0 × Z

+ \ {(0, 1)}. (113)

We have

I
(

X−1
−∞; Ỹb

∣

∣Xb
0

)

=

L
∑

i=1

I
(

X−1
−∞; ỸbL+i

∣

∣Xb
0, Ỹ

bL+i−1
bL+1

)

≤
L
∑

i=1

(

h
(

ỸbL+i

∣

∣Xb
0

)

− h
(

ỸbL+i

∣

∣Xb
−∞

)

)

≤ 1

2

L
∑

i=1

E

[

log

(

(2πe)

(

σ2 +

b
∑

ℓ=0

α
(i)
b−ℓX

2
ℓL+1 + P L

∞
∑

ℓ=b+1

α
(i)
ℓ

))]

− 1

2

L
∑

i=1

E

[

log

(

(2πe)

(

σ2 +

b
∑

ℓ=0

α
(i)
b−ℓX

2
ℓL+1 +

−1
∑

ℓ=−∞

α
(i)
b−ℓX

2
ℓL+1

))]

≤ 1

2

L
∑

i=1

E

[

log

(

(2πe)

(

σ2 +

b
∑

ℓ=0

α
(i)
b−ℓX

2
ℓL+1 + P L

∞
∑

ℓ=b+1

α
(i)
ℓ

))]

− 1

2

L
∑

i=1

E

[

log

(

(2πe)

(

σ2 +

b
∑

ℓ=0

α
(i)
b−ℓX

2
ℓL+1

))]

=
1

2

L
∑

i=1

E

[

log

(

1 +
P L

∑∞
ℓ=b+1 α

(i)
ℓ

σ2 +
∑b

ℓ=0 α
(i)
b−ℓX

2
ℓL+1

)]

≤ 1

2

L
∑

i=1

log

(

1 + L SNR

∞
∑

ℓ=b+1

α
(i)
ℓ

)

, (114)

where the first inequality follows because conditioning cannot increase entropy and because,
conditional on Xb

−∞, ỸbL+i is independent of Ỹ bL+i−1
bL+1 ; the next inequality follows from the

entropy maximizing property of Gaussian random variables; the subsequent inequality fol-

lows because
∑−1

ℓ=−∞ α
(i)
b−ℓX

2
ℓL+1 ≥ 0, i = 1, . . . , L; and the last inequality follows because

∑b
ℓ=0 α

(i)
b−ℓX

2
ℓL+1 ≥ 0, i = 1, . . . , L.

By upper bounding
∞
∑

ℓ=b+1

α
(i)
ℓ ≤

∞
∑

ℓ=b+1

αℓ, i = 1, . . . , L (115)
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we obtain

I
(

X−1
−∞; Ỹb

∣

∣Xb
0

)

≤ L

2
log

(

1 + L SNR
∞
∑

ℓ=b+1

αℓ

)

, (116)

and (111) follows by noting that (21) implies

lim
b→∞

∞
∑

ℓ=b+1

αi = 0.

C Proof of Lemma 5

We shall show that for any ǫ > 0

lim
n→∞

Pr

(∣

∣

∣

∣

1

⌊n/L⌋‖Y‖2 − (σ2 + P+ α(L)
P)

∣

∣

∣

∣

≥ ǫ

)

= 0 (117)

and

lim
n→∞

Pr

(∣

∣

∣

∣

1

⌊n/L⌋‖Z‖
2 − (σ2 + α(L)

P)

∣

∣

∣

∣

≥ ǫ

)

= 0. (118)

Lemma 5 follows then by the union of events bound.
In order to prove (117) & (118), we first note that

1

⌊n/L⌋E
[

‖Y‖2
]

= σ2 + P+
P

⌊n/L⌋

⌊n/L⌋−1
∑

k=1

k
∑

ℓ=1

αℓL (119)

1

⌊n/L⌋E
[

‖Z‖2
]

= σ2 +
P

⌊n/L⌋

⌊n/L⌋−1
∑

k=1

k
∑

ℓ=1

αℓL (120)

and therefore, by Cesáro’s mean [10, Thm. 4.2.3],

lim
n→∞

1

⌊n/L⌋E
[

‖Y‖2
]

= σ2 + P+ α(L)
P (121)

lim
n→∞

1

⌊n/L⌋E
[

‖Z‖2
]

= σ2 + α(L)
P, (122)

where α(L) was defined in (89) as

α(L) =

∞
∑

ℓ=1

αℓL.

Thus, for any ǫ > 0 and 0 < ε < ǫ, there exists an n0 such that for all n ≥ n0
∣

∣

∣

∣

1

⌊n/L⌋E
[

‖Y‖2
]

− (σ2 + P+ α(L)
P)

∣

∣

∣

∣

≤ ε (123)

∣

∣

∣

∣

1

⌊n/L⌋E
[

‖Z‖2
]

− (σ2 + α(L)
P)

∣

∣

∣

∣

≤ ε (124)

and it follows from the triangle inequality that
∣

∣

∣

∣

1

⌊n/L⌋‖Y‖2 − (σ2 + P+ α(L)
P)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

⌊n/L⌋‖Y‖2 − 1

⌊n/L⌋E
[

‖Y‖2
]

∣

∣

∣

∣

+ ε (125)

∣

∣

∣

∣

1

⌊n/L⌋‖Z‖
2 − (σ2 + α(L)

P)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

⌊n/L⌋‖Z‖
2 − 1

⌊n/L⌋E
[

‖Z‖2
]

∣

∣

∣

∣

+ ε. (126)

From this we obtain

Pr

(∣

∣

∣

∣

1

⌊n/L⌋‖Y‖2 − (σ2 + P+ α(L)
P)

∣

∣

∣

∣

≥ ǫ

)

≤ Pr

(∣

∣

∣

∣

1

⌊n/L⌋‖Y‖2 − 1

⌊n/L⌋E
[

‖Y‖2
]

∣

∣

∣

∣

≥ ǫ− ε

)

≤
Var

(

1
⌊n/L⌋‖Y‖2

)

(ǫ − ε)2
(127)
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and

Pr

(∣

∣

∣

∣

1

⌊n/L⌋‖Z‖
2 − (σ2 + α(L)

P)

∣

∣

∣

∣

≥ ǫ

)

≤ Pr

(∣

∣

∣

∣

1

⌊n/L⌋‖Z‖
2 − 1

⌊n/L⌋E
[

‖Z‖2
]

∣

∣

∣

∣

≥ ǫ− ε

)

≤
Var

(

1
⌊n/L⌋‖Z‖2

)

(ǫ− ε)2
, (128)

with Var(A) = E
[

(A− E[A])2
]

denoting the variance of A. Here the last inequalities in (127) &
(128) follow from Chebyshev’s inequality [17, Sec. 5.4].

It remains to show that

lim
n→∞

Var

(

1

⌊n/L⌋‖Y‖2
)

= lim
n→∞

Var

(

1

⌊n/L⌋‖Z‖
2

)

= 0. (129)

We shall prove (129) for Y. The proof for Z follows along the same lines. We begin by writing

Var

(

1
⌊n/L⌋‖Y‖2

)

as

Var

(

1

⌊n/L⌋‖Y‖2
)

=
1

(

⌊n/L⌋
)2Var





⌊n/L⌋−1
∑

k=0

Y 2
kL+1





=
1

(

⌊n/L⌋
)2

⌊n/L⌋−1
∑

k=0

Var
(

Y 2
kL+1

)

+
2

(

⌊n/L⌋
)2

⌊n/L⌋−1
∑

k=1,j=0
k>j

Cov
(

Y 2
kL+1, Y

2
jL+1

)

, (130)

where Cov(A,B) = E[(A− E[A])(B − E[B])] denotes the covariance between A and B. We shall
evaluate both terms on the RHS of (130) separately. For the sake of clarity, we shall omit the
details of the derivations and show only the main steps. Unless otherwise stated these steps can
be derived in a straightforward way using that

i) {XkL+1 , k ∈ Z
+
0 } is a sequence of IID, zero-mean, variance-P Gaussian random variables

whose fourth moments are given by 3P, while all odd moments are zero;

ii) Xk = 0 if k mod L 6= 1;

iii) {Uk} (and hence also {UkL+1 , k ∈ Z
+
0 }) is a zero-mean, unit-variance, stationary &

weakly-mixing random process;

iv) and that {Xk} and {Uk} are independent of each other.

For the first sum on the RHS of (130) it suffices to show that Var(YkL+1) < ∞, k ∈ Z
+
0 .

Indeed, this sum contains only ⌊n/L⌋ summands and hence, when divided by (⌊n/L⌋)2, this sum
vanishes as n tends to infinity, given that Var(YkL+1) <∞, k ∈ Z

+
0 . We have

Var
(

Y 2
kL+1

)

= E
[

Y 4
kL+1

]

−
(

E
[

Y 2
kL+1

])2

≤ E
[

Y 4
kL+1

]

= E

[

(

XkL+1 + θ
(

XkL
1

)

· UkL+1

)4
]

= 3P2 + 6P

(

σ2 + P

k
∑

ℓ=1

αℓL

)

+



σ4 + 2σ2
P

k
∑

ℓ=1

αℓL + 2P2
k
∑

ℓ=1

α2
ℓL + P

2

(

k
∑

ℓ=1

αkL

)2


E
[

U4
kL+1

]

≤ 3P2 + 6P
(

σ2 + Pα(L)
)

+

(

σ4 + 2σ2
Pα(L) + 2P2

∞
∑

ℓ=1

α2
ℓL + P

2
(

α(L)
)2
)

E
[

U4
kL+1

]

(131)
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where the second inequality follows by upper bounding
∑k

ℓ=1 αℓL ≤ α(L). Note that (84) implies
that α(L) and

∑∞
ℓ=1 α

2
ℓL are bounded. It follows therefore by noting that UkL+1 has a finite fourth

moment that (for a finite P)
Var(YkL+1) <∞. (132)

In order to show that the second term on the RHS of (130) vanishes as n tends to infinity,
we shall evaluate

Cov(YkL+1, YjL+1) = E
[

Y 2
kL+1Y

2
jL+1

]

− E
[

Y 2
kL+1

]

E
[

Y 2
jL+1

]

for k ∈ Z
+, j ∈ Z

+
0 , k > j. We have

E
[

Y 2
kL+1Y

2
jL+1

]

= E

[

(

XkL+1 + θ
(

XkL
1

)

· UkL+1

)2
(

XjL+1 + θ
(

XjL
1

)

· UjL+1

)2
]

= P
2 + P

(

σ2 + P

j
∑

ℓ=1

αℓL

)

+ P

(

σ2 + P

k
∑

ℓ=1

αℓL

)

+ 2P2α(k−j)L

+

(

σ2 + P

k
∑

ℓ=1

αℓL

)(

σ2 + P

j
∑

ℓ′=1

αℓ′L

)

E
[

U2
kL+1U

2
jL+1

]

+ 2P2
j
∑

ℓ=1

αℓLα(ℓ+k−j)L E
[

U2
kL+1U

2
jL+1

]

. (133)

Evaluating

E
[

Y 2
kL+1

]

E
[

Y 2
jL+1

]

= P
2 + P

(

σ2 + P

j
∑

ℓ=1

αℓL

)

+ P

(

σ2 + P

k
∑

ℓ=1

αℓL

)

+

(

σ2 + P

k
∑

ℓ=1

αℓL

)(

σ2 + P

j
∑

ℓ′=1

αℓ′L

)

(134)

we obtain from (134) & (133)

Cov(YkL+1, YjL+1) = 2P2α(k−j)L + 2P2
j
∑

ℓ=1

αℓLα(ℓ+k−j)LE
[

U2
kL+1U

2
jL+1

]

+

(

σ2 + P

k
∑

ℓ=1

αℓL

)(

σ2 + P

j
∑

ℓ′=1

αℓ′L

)

(

E
[

U2
kL+1U

2
jL+1

]

− 1
)

. (135)

Summing over k and j and diving by (⌊n/L⌋)2 yields
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⌊n/L⌋−1
∑

k=1,j=0
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Y 2
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2
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=
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k>j
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)(
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j
∑
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(

E
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kL+1U

2
jL+1

]

− 1
)

)

=
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(⌊n/L⌋)2
⌊n/L⌋−2
∑

j=0
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ν=1

(
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j
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νL+1U

2
1

]

+

(
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ℓ=1
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)(
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j
∑
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)

(

E
[

U2
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2
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]

− 1
)

)
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=
2

(⌊n/L⌋)2
⌊n/L⌋−2
∑

j=0
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∑
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2P2ανL

+
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(

E
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2
1

]

− 1
)

,

(136)

where the second equality follows by substituting ν = k − j and from the stationarity of {Uk}.
The first two terms on the RHS of (136) can be upper bounded using (84)

αℓ < ̺ℓ, 0 < ̺ < 1, ℓ ≥ ℓ0.

Indeed, noting that L ≥ ℓ0, we have

⌊n/L⌋−1−j
∑

ν=1

ανL <

⌊n/L⌋−1−j
∑

ν=1

̺νL <

⌊n/L⌋
∑

ν=1

̺νL (137)

and

⌊n/L⌋−1−j
∑

ν=1

j
∑

ℓ=1

αℓLα(ℓ+ν)L <

⌊n/L⌋−1−j
∑

ν=1

j
∑

ℓ=1

(

̺2L
)ℓ
̺νL

<
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∑

ν=1

∞
∑

ℓ=1

(

̺2L
)ℓ
̺νL

=
̺2L

1− ̺2L

⌊n/L⌋
∑

ν=1

̺νL. (138)

Consequently with (137) we can upper bound the first term on the RHS of (136) as

2

(⌊n/L⌋)2
⌊n/L⌋−2
∑

j=0

⌊n/L⌋−1−j
∑
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∑

j=0
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= 4P2 ⌊n/L⌋ − 1

⌊n/L⌋
1

⌊n/L⌋

⌊n/L⌋
∑

ν=1

̺νL, (139)

and it follows from Cesáro’s mean that this upper bound tends to zero as n tends to infinity.
Likewise with (138) we can upper bound the second term on the RHS of (136) as

2
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̺νL, (140)

where the first inequality follows from the Cauchy-Schwarz inequality. As above, it follows from
Cesáro’s mean that this upper bound tends to zero as n tends to infinity.
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It thus remains to show that the last term on the RHS of (136) vanishes as n tends to infinity.
We have for each j = 0, . . . , ⌊n/L⌋ − 2
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∑
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− 1
)
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where the first inequality follows by upper bounding E
[

U2
νL+1U

2
1

]

− 1 ≤
∣

∣E
[

U2
νL+1U

2
1

]

− 1
∣

∣; and

the second inequality follows by upper bounding
∑j

ℓ=1 αℓL ≤ ∑j+ν
ℓ=1 αℓL ≤ ∑∞

ℓ=1 αℓL = α(L).
The last term on the RHS of (136) is therefore upper bounded by

2
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(
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(
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∣
E
[
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2
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∣

∣

= 2
(
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1
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∣

∣E
[
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∣

∣

∣. (142)

It follows now from the weakly-mixing property of {Uk} that [8, Thm. 6.1]

lim
n→∞

1

⌊n/L⌋

⌊n/L⌋
∑

ν=1

∣

∣

∣E
[

U2
νL+1U

2
1

]

− 1
∣

∣

∣ = lim
n→∞

1

⌊n/L⌋

⌊n/L⌋
∑

ν=1

∣

∣

∣E
[

U2
νL+1U

2
1

]

− E
[

U2
νL+1

]

E
[

U2
1

]

∣

∣

∣ = 0

so that the last term on the RHS of (136) vanishes as n tends to infinity.
Thus (142), (140), and (139) show that (136) vanishes as n tends to infinity which in turn

shows, along with (130) and (132), that

lim
n→∞

Var

(

1

⌊n/L⌋‖Y‖2
)

= 0.

Together with (127), this proves (117). The proof of (118) follows along the same lines.
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