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Abstract— A constant-rate encoder—decoder pair is presented
for a fairly large family of two-dimensional (2-D) constraints. 0
Encoding and decoding is done in a row-by-row manner, and is
sliding-block decodable. 1
Essentially, the 2-D constraint is turned into a set of indepn-
dent and relatively simple one-dimensional (1-D) constraits; this
is done by dividing the array into fixed-width vertical strip s. Each
row in the strip is seen as a symbol, and a graph presentation m
of the respective 1-D constraint is constructed. The maxenpic
stationary Markov chain on this graph is next considered: a
perturbed version of the corresponding probability distribution
on the edges of the graph is used in order to build an encoder
which operatesin parallel on the strips. This perturbation is
found by means of a network flow, with upper and lower bounds a
on the flow through the edges.
A key part of the encoder is an enumerative coder for constant
weight binary words. A fast realization of this coder is shown,
using floating-point arithmetic.
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Yk
. INTRODUCTION m

Let G = (V,E,L) be an edge-labeled directed graph )
(referred to hereafter simply as a graph), wheres the vertex
set, E is the edge set, anfl : E — X is the edge labeling
taking values on a finite alphabé&t [15, §2.1]. We require
that the labeling. is deterministic: edges that start at the same 3
vertex have distinct labels. We further assume @hdias finite given length?, belongs toS.

memory [15,§2.2.3]. The one-dimensional (1-Djonstraint 4y There are integers,a > 0 such that the encoder is
S = S(G) that is presented by is defme_d as the set of (m, a)-sliding-block decodabldin short, (m, a)-SBD):
all words that are generated by pathsdh(i.e., the words for ¢ > m, the M - R information bits which were input

are obtained by reading-off the edge labels of such paths). at staget are uniquely determined by (and can be effi-
Examples of 1-D constraints include runlength-limited [[RL ciently calculated fromp(*—m), g(t=m+1) g(t+a)

constraints [15§1.1.1], symmetric runlength-limited (SRLL) _ _ _ _ o
constraints [10], and the charge constraints [§51.2]. The The decoding window size of the encodenis-a+1, and it is

Fig. 1. Array corresponding to af/-track parallel encoder.

) Forl < k < M, the kth track v, = (g\”)/=} of any

capacity ofS is given by desir.able to have a small w_indow to gvoid error propagation.
. ; In this work, we will be mainly focusing on the case where
cap(5) = lim (1/¢) - log, Bl a =0, in which case the decoding requires no look-ahead.

In [12], it was shown that by introducing parallelism, one
defined as follows (see Figui@ 1). can reduce the window size, compared to conventional serial
. encoding. Furthermore, it was shown that &6 tends to
1) At staget = 0,1,2,---, the encoder (which may beixfiniry there are(0,0)-SBD parallel encoders whose rates ap-
§tate-depend_ent) receives as inpiit R (unconstrained) proachcap(S(G)). A key step in [12] is using some perturba-
information bits. _ » tion of the conditional probability distribution on the esigof
2) TQS ?;tput of the encoder at stages a wordg'” = 7 corresponding to the maxentropic stationary Markov chain
(95 ")k= of length M over . on G. However, it is not clear how this perturbation should be

— , _ done: a naive method will only work for unrealistically larg
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tractable. At the expense of possibly increasing the memomhich no two ‘1’ symbols are adjacent on a row, column, or
of the encoder (up to the memory @f) we are able to diagonal.

define a suitable perturbed distribution explicitly, and\pde We first partition our array into two alternating types of
an efficient algorithm for computing it. Furthermore, theertical stripsdata stripshaving widthwg, andmerging strips
encoding and decoding can be carried out in time complexiiaving widthw,,. In our example, letvg = 4 andw,, = 1
O(M log® M loglog M), where the multiplying constants in(see Figurél?2).

the O(-) term are polynomially large in the parameters(af

Denote bydiam(G) the diameter ofG (i.e., the longest 0 01 0fl0]1 0 1 0]0J0O O 0 1
shortest path between any two verticesGi and let Ag = 10 0 0j0j0 0 0 O0j0O]1 0 0 O
(a; ;) be the adjacency matrix aF, i.e., a; ; is the number 0 0 0 17070 10 03010 0 00

- ! 10 0 0j0jO O O 1(0j1 0 O 1

of edges inG that start at vertex and terminate in vertex.
_Our main result, speC|fy|ng the rate of our encoder, is glvef-ﬁb. 2. Binary array satisfying the square constraint, ifianied into data
in the next theorem. strips of widthwq = 4 and merging strips of widthv,, = 1.

Theorem 1:Let G be a deterministic graph with memory
m. For M sufficiently large, one can efficiently construct an secondly, we select a gragh = (V, E, L) with a labeling
M-track (m, 0)-SBD parallel encoder fof = S(G) atarate 1 . g S[1,wq] such thatS(G) C S, i.e., each path of

R such that length/ in G generates a (column) word which is S, wq].
V| diam(G) We then fill up the data strips of odrx w array with ¢ x wq
R> cap(S(G))(l — T) arrays corresponding to paths of lengthn G. Thirdly, we

strips in a row-by-row (causal) manner, such that 6w w
array is inS. Any 2-D constraintS for which suchwg, wy,,
and G can be found, is in the family of constraints we can
code for (for example, the 2-D SRLL constraints belong to

assume that the choice allows us to fill up the mergin
o (VPO - s fein) | ok, P Jing
M — |V|diam(G)/2 ’

whereay,;, (respectivelyan,.x) is the smallest (respectively,
largest)nonzeroentry in Ag. ﬁhis family [10]).

The structure of this paper is as follows. In Sectloh Consid in th traint: h which
we show how parallel encoding can be used to construct (?n onsider again the square constraint. a graph which pro-

encoder for a 2-D constraint. As we will show, a parallé ucesall ¢ x wq arrays that satisfy this constraint is given

. : . in Figure[3. Also, forw,, = 1, we can take the merging
encoder is essentially defined through what we term a multi fips to be all-zero. (There are cases, such as the 2-D SRLL

plicity matrix. SectionIll defines how our parallel encode?t . o ! .
works, assuming its multiplicity matrix is given. Then, incqpstra|nts, where determining the merging strips may e le
Section[1V, we show how to efficiently calculate a gooéi”vIal [10].)
multiplicity matrix. Although 2-D constraints are our main
motivation, Sectiof ¥/ shows how our method can be applied

to 1-D constraints. Sectidn VI defines two methods by which

the rate of our encoder can be slightly improved. Finally, in
Section[ VIl we show a method of efficiently realizing a key

part of our encoding procedure.

Il. TWO-DIMENSIONAL CONSTRAINTS

Our primary motivation for studying parallel encoding is to
show an encoding algorithm for a family of two-dimensiondfi9- 3- GraphG whose paths generate dlk 4 arrays satisfying the square
. constraint. The label of an edge is given by the label of theexeit enters.
(2-D) constraints.
The concept of a 1-D constraint can formally be generalized
to two dimensions (see [181]). Examples of 2-D constraints SUPPose we have afm, 0)-SBD parallel encoder fof' —
are 2-D RLL constraints [14], 2-D SRLL constraints [10], and®(G) at rateR with M = (w + ww)/(wa + wm) tracks. We
the so-called square constraint [16]. L®tbe a given 2-D May use th|§ parallel encoder to encode information in a row-
constraint over a finite alphab& We denote byS[¢, w] the DYy-row fashion to our’ x w array: at stage we feed{\/[ R
set of all# x w arrays inS. The capacity of [5] is given by information bits to our parallel encoder. Lgt") = (g0 L,
1 be the output of the parallel encoder at stagé/e write g,(f
cap(S) = lim —— -log, [S[¢,w]| . to row t of the kth data strip, and then appropriately fill up
tw—oo £+ w row t of the merging strips. Decoding of a row in our array
Suppose we wish to encode information tofr w array can be carried out based only on the contents of that row and
which must satisfy the constraift namely, the array must the previousm rows.
be an element a$[/, w]. As a concrete example, consider the SinceM - R information bits are mapped @& - wq + (M —
square constraint [16]: its elements are all the binaryyarna 1)-w,, symbols in%, the rate at which we encode information



to the array is Write 7 = (r;)iev = 1- DT. A vertexv = (vp)i_, e VN
is atypical vertex(with respect toD) if for all 4, the vertex
R cap(S9(@)) ) ) .
10 S T 13 1 € V appears as an entry inexactlyr; times. Also, an edge
wa + W (1= 1/M) = wa + wm(l —1/M) e = (ex)N_, € EN is atypical edgewith respect taD if for
We note the following tradeoff: Typically, taking largerlvas all i, j € V, there are exactly; ; entriese;, which—as edges
of wq (while keepingw,, constant) will increase the right-in G—start at vertex and terminate in vertey.
hand side of the above inequality. However, the number of o simple computation shows that the number of outgoing

vertices and edges i will usually grow exponentially with tynical edges from a typical vertex equals
wq. Thus,wyq is taken to be reasonably small.

Note that in our scheme, a single error generally results in Loy i
the loss of information stored in the respective verticalisg- A= eV v —— (5)
block window. Namely, a single corrupted entry in the array Hi,je\/ digl-a; ;"

may cause the loss of + 1 rows. Thus, our method is only
practical if we assume an error model in which whole rowgyhere 0° 2 1). For example, in the simpler case whege
are corrupted by errors. This is indeed the case if each rei§es not contain parallel edges ( € {0,1}), we are in effect

is protected by an error-correcting code (for example, B tRounting in [5) permutations with repetitions, each timedo
use of unconstrained positions [7]). different vertexi € V.

I1l. DESCRIPTION OF THE ENCODER The encoding process will be carried out as follows. We
start at some fixed typical vertax®) € V. Out of the set of
butgoing edges from (), we consider only typical edges. The

dge we choose to traverse is determined by the information
Eits. After traversing the chosen edge, we arrive at vewtéx

Let N be a positive integer which will shortly be specified
The N words v, = (g;(f))f;é, 1 < k < N, that we will
be writing to the firstV tracks are all generated by paths o
length? in G. In what follows, we find it convenient to regardBy @), v is also a typical vertex, and the process starts

N _ Oy N
the £ > N arrays(vy)y—1 = (95 )i—14—1 @S (column) words uer This process defines aw-track parallel encoder for
of length¢ of some new 1-D constraint, which we define nextg _ S(@) at rate
The Nth Kronecker powenf G = (V, E, L), denoted by
G®N = (VN EN LVN), is defined as follows. The vertex set

VN is simply the Nth Cartesian power oV; that is, R=R(D) = %

VN = {(vi,ve,...,on) 10 €V} .
This encoder igm, 0)-SBD, wherem is the memory ofG.

An edgee = (eq,es,...,en) € EN goes from vertexr = . . . L

(1 vzg vN<) é V?N to vgr>texz;’ _ <gv/ 0! vi) € VN Consider now how we map/ - R information bits into an
’ Yty - 1> Y2950 H H H H

and is labeled.™ (€) = (by, b, .. ., by} whenever %r alll < edge choicee € EV at any given stage. Assuming again

the simpler case of a graph with no parallel edges, a natural
choice would be to use an instance of enumerative coding [9].

to denoteN paths of lengtlY in G. Accordingly, thel x N Specif?call_y, suppose that fd.] S §<mna p.rocedure .for
arrays(v,)Y_, are the words of length in S(G®N) encoding information by an-bit binary vector with Hamming
k/k=1 .

Let G be as in Sectiol | and letle — () be the weight § were giyen. Suppose also thbft:_{l,2,...,|V|}.
adjacency matrix of?. Denote byl the 1 x |V all-one row We could use this procedure as follows. First, fo= r; and

vector. The description of oud -track parallel encoder for 8 - d1=_1' the pmary word given as output_by _the p_rocedure
S = 5(G) makes use of the following definition. A’| x [V/| will define which d1_,1 of the possibler; entries ine W|I_I be
nonnegative integer matrik = (d; ;) jev is called a (valid) equal fo the e_dge iy from the vertexl ¢ V to itself (if no
multiplicity matrix with respect ta(; and M if such edge exists, thefj ; = 0). Having chosen these entries,
we run the procedure withh = 1 —d;; andd = dj» to
1-D-17"< M, (2) choose from the remaining; — d; ; entries those that will
1.D=1-DT, and A3) contain the edge iy from 1 € V to 2 € V.. We continue this
process, until all~; entries ine containing an edge outgoing
from1 € V have been picked. Next, we run the procedure with
(While any multiplicity matrix will produce a parallel ender, 7 =72 andd = d» 1, and so forth. The more general case of
some will have higher rates than others. In Secfioh IV, w& graph containing parallel edges will include a prelimynar
show how to compute multiplicity matrice® that yield rates Step: encoding information in the choice of t#e; edges used
close tocap(S(G)).) to traverse fromi to j (a;,; options for each such edge).
Recall that we have at our dispogHl tracks. However, we A fast implementation of enumerative coding is presented in
will effectively be using only the firstV =1 - D - 17 tracks Sectior. VI. The above-mentioned preliminary step makes us
in order to encode information. The ladf — N tracks will of the Schonhage—Strassen integer-multiplication &lyor[3,
all be equal to the first track, say. §7.5], and the resulting encoding time complexity is propor-

k < N, ey is an edge fromy, to vj, labeledby.
Note that a path of length in G® is just a handy way

diyj >0 Only if Q5 > 0. (4)



tionall to M log® M loglog M. It turns out that this is also and

the decoding time complexity. Further details are given in 3.03 254 0
Section VI]. P=| 165 0 0.89
The next section shows how to find a good multiplicity 089 0 0
matrix, i.e., a matrixD such thatR(D) is close tocap(S(G)). [
Note that

IV. COMPUTING A GOOD MULTIPLICITY MATRIX
In order to enhance the exposition of this section, we p=1-P" and M'=1-P-1".
accompany it by a running example (see Fidlre 4). Also, observe that[{2)EH4) hold when we substitutefor
a D. Thus, if all entries of P were integers, then we could

take D equal toP. In a way, that would be the best choice
we could have made: by using Stirling’s approximation, we

€ d 110 could deduce thaR (D) approachesap(S(G)) asM — .
Adg=1|( 1 0 1 However, the entries aP, as well asp, may be non-integers.
a. 100 We say that aninteger matrix P = (j;;) is a good
‘ 5 quantizationof P = (p; ;) if
a ' -
Fig. 4. Running Example (1): GraphG and the corresponding adjacency N Zi’jevpi’j B Zi’jevpi’j ’ (7)
matrix Ag- {Zjev Pm‘J < Yjevbij < [Zjev Pm‘w . (8

Throughout this section, we assume a probability distribu- [pi,;] Dij [pij] , and— (9)
tion on the edges of7, which is the maxentropic stationary {Ziev pi,jJ

ZiEV Di.j {Zz‘ev piﬂ . (20
Markov chainP on G [15]. Without real loss of generality, we : S .
can assume tha® is irreducible (i.e., strongly-connected), in 2mely a given entry i is either the floor or the ceiling of

which caseP is indeed unique. Let the matri® = (¢; ;) be ﬂ}e C‘t”.resp?”d”_‘g entry i, anld th|s_§l.so holds fort:]he sum
the transition matrix induced by, i.e., ¢; ; is the probability O’ eniries ot a given row or column I, MOreover, the sum

; ; > /
of traversing an edge frome V to j € V, conditioned on of entries |n. both? an_dP are ex?“it'y e_qua_l (tar’).
currently being at vertex e V. Lemma 2:There exists a matri¥’ which is a good quan-

Let = (m;) be thel x |V'| row vector corresponding to the fization of P. Furthermore, such a matrix can be found by an

stationary distribution o’/ induced by@; namely,7Q = = efficient algorithm.
and), ., m = 1. Let

M’ = M — ||V|diam(G)/2] (6)

<
<

IAIA

and define (M',M")

p=(pi), pp=Mm, and P=(pij), pij=pigi;
Running Example (2): Taking the number of tracks in our ([2jev pis)s T25ev Pis])

running example (Figurgl4) to b& = 12 gives M’ = 9.
Also, our running example has @ @ @
= (0619 0282 0.099 ), ([pisls [Pigl)

and
0.544 0.456 0

Q=1 0647 0  0.353
([Ziev Pijls [Xiev pisl)

1 0 0

Thus,
p= ( 5.57 2.54 0.89 )

. . . . Fig. 5. Flow network for the proof of Lemnid 2. An edge labeledd) has
Actually, the time complexity for the preliminary step caa imade linear |ower and upper bounds andb, respectively.

in M, with a negligible penalty in terms of rate: Fixand j, and letn be an
integer design parameter. Assume for simplicity that; ;. The number of .
vectors of length; over an alphabet of size; ; is obviouslya?j. So, we can Proof: We recast[{[7)£(10) as an integer flow problem

encode|nlog, a; ;| bits through the choice of such a vector. Repeating thilsee Figure§]5 anld 6). Consider the following flow network,

process, we can encode ; /1) - |nlog, a;,;| bits through the choice of \yith ypper and lower bounds on the flow through the edges [4
d;,;/n such vectors. The concatenation of these vectors is takegptesent !

our choice of edges. Note that the encoding process is linelf for constant  $6-7]- The network has the vertex set
7. Also, our losses (due to the floor function) become nedkgibr modestly

large . {ust U{uw} U{urbU {U/i}iev U {u;/}jev )



with sourceu,, and target.,. Henceforth, when we refer to the  For the remaining part of this section, we assume has
upper (lower) bound of an edge, we mean the upper (lower)good quantization of (say, P is computed by solving the
bound on the flow through it. There are four kinds of edgesnteger flow problem in the last proof). The next lemma states

1) An edgeu, — u,, with upper and lower bounds boththat P “aimost” satisfies[(8). o _
Lemma 3:Let p = (p;) = 1- PT and# = (7;) = 1- P.

equaling toM’. ;

2) u, — u; for everyi € V, with the upper and lower Then, for alli € v,
bounds|> ..y pi,;] and >y pi; ], respectively. pi — 7 € {—1,0,1} .

3) U; — U;l for eVeryi,j S V, with the upper and lower Proof: From B)’ we get that for all € Vv,
bounds|p; ;| and[p; ], respectively.

4) v/ — u, for everyj € V, with the upper and lower 122 jev Pi] < pi < [ jevpigl - (11)

bounds|>;cy pij] and [ ey pijl, respectively.  pecall that [B) is satisfied if we replade by P. Thus, by
We claim that [7)-£(Z0) can be satisfied if a legal integddd), we have tha{{11) also holds if we replageby ;. We
flow exists: simply takep; ; as the flow on the edge from, conclude thatp, — 7;| < 1. The proof follows from the fact
to uf. that entries ofP are integers, and thus so are thosepaind
It is well known that if a legakeal flow exists for a flow 7. u
network with integer upper and lower bounds on the edges,The following lemma will be the basis for augmentiity
then a legalinteger flow exists as well [4, Theorem 6.5].s0 that[(B) is satisfied.
Moreover, such a flow can be efficiently found [6.7]. To ~ Lemma 4:Fix two distinct verticess,t € V. We can
finish the proof, we now exhibit such a legal real flow: efficiently find a|V| x [V| matrix F(Y = F = (f; ;)i jev
with non-negative integer entries, such that the followtimge

i L = !
1) The flow on the edge, — u,, is Zm.eva M’ conditions hold.

2) The flow on an edge,, — u} is Zjev Dij- _
3) The flow on an edge;] — v/ is p; ;. (0 .o
4) The flow on an edge’ — u. is >,y pi;j- 1-F-1" <diam(G) .

m (i) Foralli,jeV,
fi_,j >0 only if Qi j > 0.
(iii) Denoteé =1-FT andz =1-F. Then, foralli € V,

-1 ifi=s,
T; — fi = 1 if 1= t,
0 otherwise.
Proof: Let k1 = s,ko, ks ..., ker1 = t be the vertices
along a shortest path fromto ¢ in G. For all¢, j € V, define

f”:|{1§h§€kh:z and kthl :j}| . (12)

0.89;0 Namely, f; ; is the number of edges fromto j along the
path.
0.89;1 Conditions [(i) and[{i) easily follow from[{12). Condition
(i) follows from the fact that¢; (z;) is equal to the number
of edges along the path for whichis the start (end) vertex
of the edge. ]
The matrix P will be the basis for computing a good
multiplicity matrix D, as we demonstrate in the proof of the
next theorem.
Theorem 5:Let P = (ps,;) be a good quantization aP.
There exists a multiplicity matrixXD = (d, ;) with respect to
G and M, such that

3.03 254 0 4 2 0 . o
P=|165 0 08 |, P=|201]. 1) dij > pi; forall 4, j € V, and—
000

2) M'<1-D-1T <M

(where M’ is as defined in[{6)). Moreover, the matrix can
Fig. 6. Running Example (3): The flow network derived fron# in Running  pe found by an efficient algorithm.

Example 2. An edge labeled b has lower and upper bounds| and [a], . ; , S =
respectively. A legal real flow is given hy. A legal integer flow is given by Proof: Consider a vertex € V. If 7; > Piy then we say

b. The matrix P resulting from the legal integer flow is given, as well as thdhat vertexi has asurplusof 7; — p;. In this case, by Lemnid 3,
matrix P (again). we have that the surplus is equal to 1. On the other hand, if

089 0 0



7; < p; then vertex; has adeficiencyof g; — 7;, which again a requirement that all the output words of a given length
is equal to 1. that are generated by the encoder have a prescribed Hamming
Of course, sincey .y pi = >,y 7 = M/, the total WeighE.
surplus is equal to the total deficiency, and both are denotedViore formally, suppose that we are given a labeled graph
by Surp: G = (V, E, L); to make the exposition simpler, suppose that
o ] o G does not contain parallel edges. lgtand# be a transition
Surp = Z max {0, 7 —pi} = — Z min {0,7=pi} - (13)  matrix and a stationary probability distribution corresgimg
eV eV to a stationary (but not necessarily maxentropic) Markairch
Denote the vertices with surplus &s,);™? and the vertices P onG. We assume w.l.0.g. that each edgé&imas a positive

with deficiency aS(tk)iff- Recalling the matrix® from conditional probability. We are also given an integér which

Lemmal4, we define we will shortly elaborate on.
We first describe our encoder in broad terms, so as that

D P+S§:pF(5k’tk) ' its .merits will be obvious. LetD and N be as previously
Pt defined, and leRRy (D) be specified shortly. We start at some

) ) ) o ) fixed vertexvy € V. Given M - Rr(D) information bits, we
We first show thaD is a valid multiplicity matrix. Note that {r5verse a soon to be defined cyclic path of lenl§tm G. The
Surp < |V /2. Thus, [2) follows from[(5),[{7), andl(i). The cqncatenation of the edge labels along the path is the word we
definitions of surplus and deficiency vertices along With) (ii oytput. Of course, since the path is cyclic, the concatenati
give (3). Lastly, recall tha{{4) is satisfied if we replatg; by  of such words is indeed ii(G'). Moreover, the path will have
pij- Thus, by [(9), the same can be said fo;. Combining he following key property: the number of times an edge from
this with (i) yields [2). . i to j is traversed equald; ;. Namely, if we uniformly pick
Since the entries of"(*+') are non-negative for every, one of the NV edges of the path, the probability of picking a
we must have thad; ; > p; ; for all 4, j € V. This, together certain edge is constant (not a function of the input bits), and
with @) and [7), implies in tumn thad’ <1-D-1" < M. g equal to the probability of traversingon the Markov chain
. o ® P, up to a small quantization error. The rate of our encoder
Running Example (4): For the matrixP in Figure[8, we satisfy (1), where we replac& by Ry and cap(S) by
have the entropy ofP. We would like to be able to exactly specify
r= ( 6 2 1 ) , P= ( 6 30 ) : the path lengthV as a design parameter. However, we specify
M and get anV betweenM and M — ||V|diam(G)/2].
Our encoding process will make use of ariented tree
a term which we will now define. A set of edgds C F

Thus,Surp = 1. Namely, the verteX¥ has a surplus while the
vertex 5 has a deficiency. Taking= 0 andt = 8 we get

o) 0 10 430 is an oriented tree ofi with root v, if |T| = |[V| — 1 and
F® 0 00]J],ad D=1|2 01 for eachu € V there exists a path from to vy consisting
100 100 entirely of edges irl’ (see Figur€l7). Note that if we reverse

m the edge directions of an oriented tree, we get a directed tre

our main result, Theorerl 1. Essentially, the proof involve¥ all edges in an irreducible graph results in an irredwibl
using the Stirling approximation and taking into accoure thdraph, we have by [11, Lemma 3.3] that an oriented ffee
various quantization errors introduced inffo The proof itself indeed exists inG, and can be efficiently found. So, let us fix

is given in the Appendix. some oriented tre with root vo. By [11, Theorem 2.5], we
have that every vertex € V' which is not the root, has an

V. ENUMERATIVE CODING INTO SEQUENCES WITH A out-degree equal to 1. Thus, for each such vettexe may
GIVEN MARKOV TYPE define parent(u) as the destination of the single edge’in

The main motivation for our methods is 2-D constrainegoing out ofu.
coding. However, in this section, we show that they might be We now elaborate on the encoding process. The encoding
interesting in certain aspects of 1-D coding as well. Givenc@nsists of two steps. In the first step, we map the informatio
labeled graplG, a classic method for building an encoder fobits to a collection of lists. In the second step, we use #ts li
the 1-D constraintS(G) is the state-splitting algorithm [2]. in order to define a cyclic path.
The rate of an encoder built by [2] approaches the capacityFirst step: Given\/ - Ry (D) information bits, we build for
of S(G). Also, the word the encoder outputs has a corr€ach vertex € V a list A®) of lengthr;,
sponding path inG, with the following favorable property: A@D — (/\(i) A9 /\(i)) '
the probability of traversing a certain edge approaches the Lorz ot
maxentropic probability of that edge (assuming an unbiased@we remark in passing that one may use convex programmingitRes
source distribution). However, what if we'd like to build(See [185V]) in order to efficiently solve the following optimizatioprobier:
an encoder with a different probability distribution on th probability distribution on the edges @fyielding a stationary Markov

h ] %hain with largest possible entropy, subject to a set of dgech as the set
edges? This scenario may occur, for example, when therefigdges with label ‘1) having a prescribed cumulative faroility.



VI. AN EXAMPLE, AND TWO IMPROVEMENT TECHNIQUES

Recall from Sectioi ]l the square constraint; its elements
are all the binary arrays in which no two ‘1’ symbols are
adjacent on a row, column, or diagonal. By employing the
methods presented in [6], we may calculate an upper bound
on the rate of the constraint. This turns out to (b¢25078.

We will show an encoding/decoding method with rate slightly

larger than).396 (about93% of the upper bound). In order to
Fig. 7. Oriented tree with rooto. do this, we assume that the array H&$,000 columns. Our
encoding method has a fixed rate and has a vertical window
] @ ] ] of size 2 and vertical anticipation 0.

The entries of eact\' are vertices inV. Moreover, the  \ye should point out now that a straightforward implemen-
following properties are satisfied for al tation of the methods we have previously defined gives a rate
« The number of timeg is an entry inA(¥) is exactlyd; ;. which is strictly less than 0.396. Namely, this section also
o If i # vg, then the last entry of the list equals the paremiutlines two improvement techniques which help boost the

of 4. Namely, rate.
)\g) = parent (i) . We start out as in the example given in Secfidn Il, except
' that the width of the data strips is nowy = 9 (the width of
Recalling [%), a simple calculation shows that the numbgie merging strips remains,, = 1). The graphG we choose

of possible list collections is produces all widths, arrays satisfying the square constraint,
d. _ and we take the merging strips to be all-zero. Our array has
Ap=A- H Zi,parent(i) (14) 100,000 columns, so we havé/ = 10,000 tracks (the last,
ieV\{vo} " say, column of the array will essentially be unused; we can

set all of its values to 0).

Define the normalized capacity as

Ry — [logy A | ' cap(S(G))
M wq + Wy

Also, note that as in the 2-D case, we may use enumeratife graph(; has|V'| = 89 vertices and normalized capacity
coding in order to efficiently map information bits to lists.

Second step: We now use the lit§), i € V, in order to cap(5(G)) cap(5(G)) ~ 0.402 .
construct a cyclic path starting at vertex We start the path wq + Wy wa +wn(l—1/M)

at vp and build a lengthV path according to the following This number is abou®4.5% from the upper bound on the
rule: when exiting vertex for the £th time, traverse the edgecapacity of our 2-D constraint. Thus, as expected, therais a
going into vertex)\,(j). inherent loss in choosing to model the 2-D constraint as an

Of course, our encoding method is valid (and invertible) iféssentially 1-D constraint. Of course, this loss can be made
we may always abide by the above-mentioned rule. Namedynaller by increasingq (but the graphG will grow as well).
we don't get “stuck”, and manage to complete a cyclic path From Theoreni]l, the rate of our encoder will approach
of length N. This is indeed the case: define an auxiliary grapfie normalized capacity df.402 as the number of tracka/
G(D) with the same vertex sel], asG andd; ; parallel edges grows. So, once the grapfi is chosen, the parameter we
from i to j (for all ¢, j € V). First, recall that for sufficiently should be comparing ourselves to is the normalized capacity
large M, the presence of an edge franto j in G implies that \We now apply the methods defined in Sectiord IV and find
di,; > 0. Thus, sincex was assumed to be irreducib®(D) a multiplicity matrix D. Recall that the matrixD defines
is irreducible as well. Also, an edge i from i to j implies an encoder. In our case, this encoder has a rate of about
the existence of an edge (D) from i to j. Secondly, note (.381. This is 94% of the normalized capacity, and is quite
that by [3), the number of times we are supposed to exitggsappointing (but the improvements shown in Sectfons VI-A
vertex is equal to the number of times we are supposed4Rd[VI-B below are going to improve this rate). On the other
enter it. The rest of the proof follows from [19, p. 56, Clainhand, note that if we had limited ourselves to encode to each
2], applied to the auxiliary grap&(D). Namely, our encoder track independently of the others, then the best rate wedcoul
follows directly from van Aardenne-Ehrenfest and de Brsijn have hoped for with 0 vertical anticipation turns out to(b#
[1] theorem on counting Eulerian cycles in a graph. (see [17, Theorem 5]).

We now return to the rateR, of our encoder. Fron[6), )
@), (10) and Theoreifl 5, we see that faf sufficiently large, A- Moore-style reduction
Ar is greater than some positive constant tirdesThus, [1) We now define a graplk which we call the reduction of
still holds if we replaceR by Ry andcap(S) by the entropy G. Essentially, we will encode by constructing pathsGn
of P. and then translate these to pathsGnIn both G andG, the

Thus, we define the rate of encoding as




maxentropic distributions have the same entropy. The mainLemma 6: The entropies of the maxentropic Markov chains
virtue of G is that it often has less vertices and edges compared G andG are equal.
to G. Thus, the penalty in({1) resulting from using a finite  Proof: Let A = A¢ be the adjacency matrix d§, and
number of tracks will often be smaller. recall thatA = Ag is the adjacency matrix ofs. Let )\
For s > 0, we now recursively define the concept & andz’ = (z.).cv be the Perron eigenvalue and right Perron
equivalence (very much like in the Moore algorithm [15, pageigenvector ofA, respectively [15,§3.1]. Next, define the
1660]). vectore = (x,)yey as
o For s =0, any two vertices;, v, € V are 0-equivalent.
o For s > 0, two verticesvy, vy € V are s-equivalent iff

1) the two vert|ce3_;1,v2 are (s — 1)-equivalent, and 2) It is easily verifiable thate is a right eigenvector ofd, with
for each(s — 1)-equivalence class, the number of edges _. p . L _
eigenvalue)’. Now, sincex’ is a Perron eigenvector of an

from v, to vertices inc is equal to the number of edges|rreducible matrix, each entry of it is positive. Thus, eacitry
from vy to vertices inc.

of x is positive as well. Sincel is irreducible, we must have
Denote byll, the partition induced by-equivalence. For the that 4 is a Perron eigenvector of. So, the Perron eigenvalue
graphG given in Figure(B, of A is also\. -

The next lemma essentially states that we can think of paths
in G as if they were paths i,

Lemma 7:Let ¢/ > 1. Fix somecgy,cer1 € V, andyy €
Note that, by definition]I,; is a refinement ofl,. Thus, let co. There exists a one-to-one correspondence between the
s’ be the smalless for which II, = II,, ;. The setll,, can following sets. First set: paths of lengtlin G with start vertex
be efficiently found (essentially, by the Moore algorithn3[1 co and end vertex,;. Second set: paths of lengthin G

_
Ty = xc(v) .

11y = {0000,0001,0010,0100,0101,1000,1001,1010} ,
IT5>1 ={0000},{0010,0100},{1000,0001},{1010,1001,0101} .

page 1660]). with start vertexvo and end vertex i, ;1.
Define a (non-labeled) grapé = (V,E) as follows. The  Moreover, forl <t < ¢ — 1, the firstt edges in a path
vertex set ofG is belonging to the second set are a function of only the first
V=TI . edges in the respective path in the first set.

) ] ] Proof: We prove this by induction oé. For ¢ = 1, we
For eachc € V, letv(c) be a fixed element of (if c contains o e

more than one vertex, then pick one arbitrarily). Also, facle
v €V, letc(v) be the class € V such that € c. Let og(e) He€E:ogle) =co, Tale)=c1} =
(oc(e)) andTG(e) (t(e)) d_enote the start ano_l end_vertex of {e€ E:oale)=vo, 7a(e)cci}| .
an edges in G (G), respectively. The edge sEtis defined as
To see this, note that we can assume w.l.0.g. that v(co),

E= Uv{e € E:og(e) =v(9)} (15) " and then recall[{d5). Fof > 1, combine the claim for — 1

< with that for ¢ = 1. n

where Notice thatdiam(G) < diam(G). We now show whyG is
useful.

=c and =c .
76(c) (06(c)) ma(e) (ra(e)) Theorem 8:Let D be the multiplicity matrix found by the

Namely, the number of edges framto c, in G is equal to the methods previously outlined, where we replageby G. Let
number of edges id’ from some fixed); € c; to elementsof N = 1. D - 17. We may efficiently encode (and decode)
c2, and, by the definition o#’, this number does not dependnformation toG®N in a row-by-row manner at rat&(D).
on the choice ob;. The graptG is termed theeductionof G. Proof: We conceptually break our encoding scheme into
The reduction of from Figure[3 is given in Figurgl8. Note two steps. In the first step, we “encode” (map) the infornatio
that sinceG was assumed to be irreducible, we must have thigto N paths inG, each path having length We do this as
G is irreducible as well. previously outlined (through typical vertices and edge&)n
Note that this step is done at a rate ®{D). In the second
step, we map each such pathGnto a corresponding path in
G. By LemmalY, we can indeed do this (takg as the first
vertex in the pathg,;1 as the last vertex, and) = v(cy)).
By LemmalT we see that this two-step encoding scheme
can easily be modified into one that is row-by-row. ]
Applying the reduction to our running example (square con-
straint withwq = 9 andw,, = 1), reduces the number of
vertices from89 in G to 34 in G. The computed increases
Fig. 8. Reduction of the grap&' from Figure[3. the rate to abou0.392, which is 97.5% of the normalized
capacity.




B. Break-merge ~ -~ N
Let G®N be theNth Kronecker power of the Moore-style
reductionG. Recall that the rate of our encoder is V= o p
o |logy A
R(D) = —"—, 5 4 3 9 72

whereA is the number of typical edges &N going out of ol g

a typical vertex. The second improvement involves expamdin v/ — € 0 |6 0 5 ¢

the definition of a typical edge, thus increasifig This is best

explalned throth an example. Suppose Gﬂi.las Flgur@ aS_ Fig. 10. Illustration of the entries in two typical vertices v/, where we

a subgraph; namely, we show all edges going out of verticgs from v to v by the standard encoding process.

« and . Also, let the numbers next to the edges be equal to

the corresponding entries iR. The main thing to notice at

this point is that if the edges toand¢ are deleted (“break”), « Out of the18 entries inv that are equal t@, choose2

thena and 5 have exactly the same number of edges from for the corresponding entry in" will be (. Again, one

them to vertexj, for all j € V (after the deletion of edges,  option for entries ire.

verticesa and 5 can be “merged”). « Now, of the remaining3 entries inv that are equal to
« or 3, chooset + 9 = 13 for which the corresponding
entry inv’ will be . We have two options for the entries
in e.

o We are left with3 + 7 = 10 entries inv that are equal
to « or 8. These will have) as the corresponding entry
in v’, and one option ire.

12 18

Fig. 9. Break-merge example graph. VvV = a B
Let v be a typical vertex. A short calculation shows that the ) 1 5
number of entries i that are equal tex (5) is5+4+3 =12 5,. . 13 ~ 10 A

(9 + 7+ 2 = 18). Recall that the standard encoding process
consists of choosing a typical edgegoing out of the typical v = € 0 5 ¢
vertex v and into another typical vertex’. We now briefly
review this proce_ss. Consider tlt_'@ entries inv that are ?qual Fig. 11. lllustration of the entries in two typical verticesv’, where we got
to a. The encoding process with respect to them will be @®m v to v’ by the improved encoding process. The shaded part corréspon
follows (see Figur&10): to vertices that were merged.
o Out of thesel2 entries, choosé for which the corre- Th h | ber of oot .
sponding entry ino’ will be e. Since there is exactly one us, the total number of options is now
edge froma the ¢ in G, the corresponding entries i <12) (18> 23! . 213

~ 1015
must be equal to that edge. 5 9 ) Tarqor ~ 114107
« Next, from the remaining entries, choosé for which

, L2 ) The important thing to notice is that in both cases, we arrive
the corresponding entries i will be 6. There are two at a typical vertex'.

parallel edges froma to 6, so choose which one to use To recap, we first “broke” the entries in that are equal

in the corresponding entries i to « into two groups: Those which will have as the

« We are left with 3 entries, the corresponding entriesCorresponding entry in’ and those which will havé or 6

C X
in v wil b_e 0. AI.SO’ e have one option as to theas the corresponding entry. Similarly, we broke entriessin
corresponding entries ia.

e ; : . that are equal t@ into two groups. Next, we noticed that of
A similar process is applied to the entriesurthat are equal hase four groups, two could be “merged”, since they were

to 5. Thus, the total number of options with respect to thesgsentially the same. Namely, removing some edges from the

entries is ) . corresponding vertices i resulted in vertices which were
121-2° 18127 4 gr. 104 mergeable.
5r-41.31 21.9!.7! Of course, these operations can be repeated. The hidden

Next, consider a different encoding process (see Figure 1a3sumption is that the sequence of breaking and merging is
« Out of thel2 entries inv that are equal te, chooses for  fixed, and known to both the encoder and decoder. The optimal
which the corresponding entry sl will be . As before, sequence of breaking and merging is not known to us. We used
the corresponding entries #nhave only one option. a heuristic. Namely, choose two vertices such that the dets o



edges emanating from both have a large overlap. Then, break In the subtraction of:;:ﬂ from ¢ in line 5, the floating-
and merge accordingly. This was done until no breaking or point number} /] is “promoted” to an integer (the result
merging was possible. We got a rate of ab0wo6, which is is an integer).

98.5% of the normalized capacity.

VIl. FAST ENUMERATIVE CODING Name: EnumEncodén, 6, 1)

Recall from Sectio ]l that in the course of our encodinghput: Integersn, 5, such that) < § < n and0 < 1 < 1.
algorithm, we make use of a procedure which encodes iButput: A binary word of lengthn and weights.

formation into fixed-length binary words of constant weight, = _ _— 1w
A way to do this would be to use enumerative coding [Q]T (0 == 0) /' stopping condition: Fa

; N ’ return00...0; [*2*
Immink [13] showed a method to significantly improve the —
running time of an instance of enumerative coding, with fr (1 < 1; : <n —6 +1; t++) { [* 3%
typically negligible penalty in terms of rate. We now briefly if (¥ > [;7]]) a4
show how to tailor Immink’s method to our needs. Iw —y—=1771; ;* g *5
Denote byn and § the length and Hamming weight, ©IS€ *6*
. yn .5 9 . 9 g return00..0 1||[EnumEncodén — ¢, 6 — 1,); *7*
respectively, of the binary word we encode into. Some of our ~~
variables will befloating-pointnumbers with a mantissa @f ot 158 *

bits and an exponent af bits: each floating-point number is
of the formZ = a - 2° wherea andb are integers such that Fig. 12. Enumerative encoding procedure for constantHueiinary words.

o< p+1 _ 9e—1 < e—1 ) . )
2 sa<2 and 27 =b<2 We must now show that the procedure is valid, namely,

Note thaty + € bits are needed to store such a number. Alsthat given a valid input, we produce a valid output. For our
note that every positive real such that procedure, this reduce to showing two things: 1) If the stogp

condition is not met, a recursive call will be made. 2) The
recursive call is given valid parameters as well. Namely, in

has a floating point approximatianwith relative precision ~ the recursive cally is non-negative. Also, for the encoding
to be invertible, we must further require that §)] = 1 for

1. 272 < g < (ot ). 927 L

<1—i>g§g<1+—). a6 n=0. o

20 x 20 Condition 2 is clearly met, because of the check in line 4.

We assume the presence of two look-up tables. The fildgnote

will contain the floating-point approximations of, 2!, ..., nl. N (k' % f(x)) = (xX!* (k — Xx)!)

The second will contain the floating-point approximatioiis o X

f(0), f(1),..., f(5), where (and so,[%] = [(%)]). Condition 3 follows from the next
_ 32x+16 lemma.

fox) = fulx) =1

o Lemma 9:Fix 0 < § < n. Then,

In order to exclude uninteresting cases, assume that10 n 32(0+1) n n 320
and is such thaff(6) > 1/2. Also, takee large enough so (5) ' gl N T) = <5> a3 (5) ' (1 N Q_u)
thatn! is less than the maximum number we can represent by Proof: The proof is essentially repeated invocations of
floating point. Thus, we can assume that= O(logd) and (L86) on the various stages of computation. We leave thelgetai
e = O(logn). to the reader. |

Notice that in our case, we can bound betland § from Finally, Condition 1 follows easily from the next lemma.
above by the number of trackd. Thus, we will actually build  Lemma 10:Fix 0 < é < n. Then,
beforehand two look-up tables of si2d/(u + ¢€) bits.

n—o0+1
Let z denote the floating-point approximation of and Fﬂ < Z Fl— ﬂ _
let + and = denote floating-point multiplication and division, o = = |o-1
respectively. Fob < x < k < n we define Proof: The claim will follow if we show that

] = [ 7o + G Te=m] m\ 5 n-

X 5§/~ ; §—1/"

Note that since we have stored the relevant numbers in our. . . . ) . ,
look-up table, the time needed to calculate the above fancti ' NS is immediate from Lemnid 9 and the binomial identity

is only O(u? + ¢). The encoding procedure is given in n ndtl
Figure[12. We note the following points: (6) = Z (5 B 1) .

« The variables:, ¢, § and. are integers (as opposed to
floating-point numbers). ]

=1



Note that the penalty in terms of rate one suffers becausbere H(P) is the entropy of the stationary Markov chain
of using our procedure (instead of plain enumerative cading with transition matrix@Q. Recall thatP was selected to be
is negligible. Namelylog, m can be made arbitrarily closemaxentropic:H (P) = cap(S(G)). This fact, along with[(6)
to log, (). Since we take: = O(logn) and u = O(logd), and a short calculation, finishes the proof. [ |
we can show by amortized analysis that the running time
of the procedure i¥)(nlog?n). Specifically, see [8, Section
17.3], and take the potential of the binary vector correspupy ~ The first author would like to thank Roee Engelberg for
to ¢» as the number of entries in it that are equal €. ¢ Very helpful discussions.

The decoding procedure is a straightforward “reversalhef t
encoding procedure, and its running time is al¥@ log® n).
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