
ar
X

iv
:0

80
8.

05
96

v1
 [

cs
.IT

]
5

A
ug

 2
00

8

On Row-by-Row Coding for 2-D Constraints
Ido Tal Tuvi Etzion Ron M. Roth

Computer Science Department,
Technion, Haifa 32000, Israel.

Email: {idotal, etzion, ronny}@cs.technion.ac.il

Abstract— A constant-rate encoder–decoder pair is presented
for a fairly large family of two-dimensional (2-D) constraints.
Encoding and decoding is done in a row-by-row manner, and is
sliding-block decodable.

Essentially, the 2-D constraint is turned into a set of indepen-
dent and relatively simple one-dimensional (1-D) constraints; this
is done by dividing the array into fixed-width vertical strip s. Each
row in the strip is seen as a symbol, and a graph presentation
of the respective 1-D constraint is constructed. The maxentropic
stationary Markov chain on this graph is next considered: a
perturbed version of the corresponding probability distribution
on the edges of the graph is used in order to build an encoder
which operates in parallel on the strips. This perturbation is
found by means of a network flow, with upper and lower bounds
on the flow through the edges.

A key part of the encoder is an enumerative coder for constant-
weight binary words. A fast realization of this coder is shown,
using floating-point arithmetic.

I. I NTRODUCTION

Let G = (V,E, L) be an edge-labeled directed graph
(referred to hereafter simply as a graph), whereV is the vertex
set,E is the edge set, andL : E → Σ is the edge labeling
taking values on a finite alphabetΣ [15, §2.1]. We require
that the labelingL is deterministic: edges that start at the same
vertex have distinct labels. We further assume thatG has finite
memory [15,§2.2.3]. The one-dimensional (1-D)constraint
S = S(G) that is presented byG is defined as the set of
all words that are generated by paths inG (i.e., the words
are obtained by reading-off the edge labels of such paths).
Examples of 1-D constraints include runlength-limited (RLL)
constraints [15,§1.1.1], symmetric runlength-limited (SRLL)
constraints [10], and the charge constraints [15,§1.1.2]. The
capacity ofS is given by

cap(S) = lim
ℓ→∞

(1/ℓ) · log2
∣

∣S ∩ Σℓ
∣

∣ .

An M -track parallel encoderfor S = S(G) at rateR is
defined as follows (see Figure 1).

1) At staget = 0, 1, 2, · · · , the encoder (which may be
state-dependent) receives as inputM ·R (unconstrained)
information bits.

2) The output of the encoder at staget is a wordg(t) =

(g
(t)
k)Mk=1 of lengthM overΣ.

The work of Tuvi Etzion was supported in part by the United States –
Israel Binational Science Foundation (BSF), Jerusalem, Israel, under Grant
No. 2006097.
The work of Ron M. Roth was supported in part by the United States –
Israel Binational Science Foundation (BSF), Jerusalem, Israel, under Grant
No. 2002197.

g
(t)
k

γk∈

S

g(t)∈ΣM

0

1

t

1 2 k M

m

a

Fig. 1. Array corresponding to anM -track parallel encoder.

3) For 1 ≤ k ≤ M , the kth track γk = (g
(t)
k)ℓ−1

t=0 of any
given lengthℓ, belongs toS.

4) There are integersm, a ≥ 0 such that the encoder is
(m, a)-sliding-block decodable(in short, (m, a)-SBD):
for t ≥ m, theM ·R information bits which were input
at staget are uniquely determined by (and can be effi-
ciently calculated from)g(t−m), g(t−m+1), . . . , g(t+a).

The decoding window size of the encoder ism+a+1, and it is
desirable to have a small window to avoid error propagation.
In this work, we will be mainly focusing on the case where
a = 0, in which case the decoding requires no look-ahead.

In [12], it was shown that by introducing parallelism, one
can reduce the window size, compared to conventional serial
encoding. Furthermore, it was shown that asM tends to
infinity, there are(0, 0)-SBD parallel encoders whose rates ap-
proachcap(S(G)). A key step in [12] is using some perturba-
tion of the conditional probability distribution on the edges of
G, corresponding to the maxentropic stationary Markov chain
onG. However, it is not clear how this perturbation should be
done: a naive method will only work for unrealistically large
M . Also, the proof in [12] of the(0, 0)-SBD property is only
probabilistic and does not suggest encoders and decoders that
have an acceptable running time.

In this work, we aim at making the results of [12] more

http://arxiv.org/abs/0808.0596v1

tractable. At the expense of possibly increasing the memory
of the encoder (up to the memory ofG) we are able to
define a suitable perturbed distribution explicitly, and provide
an efficient algorithm for computing it. Furthermore, the
encoding and decoding can be carried out in time complexity
O(M log2M log logM), where the multiplying constants in
theO(·) term are polynomially large in the parameters ofG.

Denote bydiam(G) the diameter ofG (i.e., the longest
shortest path between any two vertices inG) and letAG =
(ai,j) be the adjacency matrix ofG, i.e., ai,j is the number
of edges inG that start at vertexi and terminate in vertexj.
Our main result, specifying the rate of our encoder, is given
in the next theorem.

Theorem 1:Let G be a deterministic graph with memory
m. For M sufficiently large, one can efficiently construct an
M -track (m, 0)-SBD parallel encoder forS = S(G) at a rate
R such that

R ≥ cap(S(G))
(

1−
|V | diam(G)

2M

)

−O

(

|V |
2
log (M · amax/amin)

M − |V | diam(G)/2

)

, (1)

whereamin (respectively,amax) is the smallest (respectively,
largest)nonzeroentry inAG.

The structure of this paper is as follows. In Section II
we show how parallel encoding can be used to construct an
encoder for a 2-D constraint. As we will show, a parallel
encoder is essentially defined through what we term a multi-
plicity matrix. Section III defines how our parallel encoder
works, assuming its multiplicity matrix is given. Then, in
Section IV, we show how to efficiently calculate a good
multiplicity matrix. Although 2-D constraints are our main
motivation, Section V shows how our method can be applied
to 1-D constraints. Section VI defines two methods by which
the rate of our encoder can be slightly improved. Finally, in
Section VII we show a method of efficiently realizing a key
part of our encoding procedure.

II. T WO-DIMENSIONAL CONSTRAINTS

Our primary motivation for studying parallel encoding is to
show an encoding algorithm for a family of two-dimensional
(2-D) constraints.

The concept of a 1-D constraint can formally be generalized
to two dimensions (see [12,§1]). Examples of 2-D constraints
are 2-D RLL constraints [14], 2-D SRLL constraints [10], and
the so-called square constraint [16]. LetS be a given 2-D
constraint over a finite alphabetΣ. We denote byS[ℓ, w] the
set of allℓ×w arrays inS. The capacity ofS [5] is given by

cap(S) = lim
ℓ,w→∞

1

ℓ · w
· log2 |S[ℓ, w]| .

Suppose we wish to encode information to anℓ× w array
which must satisfy the constraintS; namely, the array must
be an element ofS[ℓ, w]. As a concrete example, consider the
square constraint [16]: its elements are all the binary arrays in

which no two ‘1’ symbols are adjacent on a row, column, or
diagonal.

We first partition our array into two alternating types of
vertical strips:data stripshaving widthwd, andmerging strips
having widthwm. In our example, letwd = 4 andwm = 1
(see Figure 2).

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 1

Fig. 2. Binary array satisfying the square constraint, partitioned into data
strips of widthwd = 4 and merging strips of widthwm = 1.

Secondly, we select a graphG = (V,E, L) with a labeling
L : E → S[1, wd] such thatS(G) ⊆ S, i.e., each path of
lengthℓ in G generates a (column) word which is inS[ℓ, wd].
We then fill up the data strips of ourℓ×w array withℓ×wd

arrays corresponding to paths of lengthℓ in G. Thirdly, we
assume that the choice ofwm allows us to fill up the merging
strips in a row-by-row (causal) manner, such that ourℓ × w
array is inS. Any 2-D constraintS for which suchwd, wm,
andG can be found, is in the family of constraints we can
code for (for example, the 2-D SRLL constraints belong to
this family [10]).

Consider again the square constraint: a graph which pro-
ducesall ℓ × wd arrays that satisfy this constraint is given
in Figure 3. Also, forwm = 1, we can take the merging
strips to be all-zero. (There are cases, such as the 2-D SRLL
constraints, where determining the merging strips may be less
trivial [10].)

0000 0100

00011000

0010

1010 1001 0101

Fig. 3. GraphG whose paths generate allℓ× 4 arrays satisfying the square
constraint. The label of an edge is given by the label of the vertex it enters.

Suppose we have an(m, 0)-SBD parallel encoder forS =
S(G) at rateR with M = (w + wm)/(wd + wm) tracks. We
may use this parallel encoder to encode information in a row-
by-row fashion to ourℓ× w array: at staget we feedM · R

information bits to our parallel encoder. Letg(t) = (g
(t)
k)Mk=1

be the output of the parallel encoder at staget. We writeg(t)k

to row t of the kth data strip, and then appropriately fill up
row t of the merging strips. Decoding of a row in our array
can be carried out based only on the contents of that row and
the previousm rows.

SinceM ·R information bits are mapped toM ·wd+(M−
1)·wm symbols inΣ, the rate at which we encode information

to the array is

R

wd + wm(1− 1/M)
≤

cap(S(G))

wd + wm(1− 1/M)
.

We note the following tradeoff: Typically, taking larger values
of wd (while keepingwm constant) will increase the right-
hand side of the above inequality. However, the number of
vertices and edges inG will usually grow exponentially with
wd. Thus,wd is taken to be reasonably small.

Note that in our scheme, a single error generally results in
the loss of information stored in the respective vertical sliding-
block window. Namely, a single corrupted entry in the array
may cause the loss ofm+ 1 rows. Thus, our method is only
practical if we assume an error model in which whole rows
are corrupted by errors. This is indeed the case if each row
is protected by an error-correcting code (for example, by the
use of unconstrained positions [7]).

III. D ESCRIPTION OF THE ENCODER

Let N be a positive integer which will shortly be specified.
The N words γk = (g

(t)
k)ℓ−1

t=0 , 1 ≤ k ≤ N , that we will
be writing to the firstN tracks are all generated by paths of
lengthℓ in G. In what follows, we find it convenient to regard
the ℓ×N arrays(γk)

N
k=1 = (g

(t)
k)ℓt=1

N
k=1 as (column) words

of lengthℓ of some new 1-D constraint, which we define next.
TheN th Kronecker powerof G = (V,E, L), denoted by

G⊗N = (V N , EN , LN), is defined as follows. The vertex set
V N is simply theN th Cartesian power ofV ; that is,

V N = {〈v1, v2, . . . , vN 〉 : vk ∈ V } .

An edgee = 〈e1, e2, . . . , eN 〉 ∈ EN goes from vertexv =
〈v1, v2, . . . , vN 〉 ∈ V N to vertexv′ = 〈v′1, v

′
2, . . . , v

′
N 〉 ∈ V N

and is labeledLN (e) = 〈b1, b2, . . . , bN 〉 whenever for all1 ≤
k ≤ N , ek is an edge fromvk to v′k labeledbk.

Note that a path of lengthℓ in G⊗N is just a handy way
to denoteN paths of lengthℓ in G. Accordingly, theℓ ×N
arrays(γk)

N
k=1 are the words of lengthℓ in S(G⊗N).

Let G be as in Section I and letAG = (ai,j) be the
adjacency matrix ofG. Denote by1 the 1 × |V | all-one row
vector. The description of ourM -track parallel encoder for
S = S(G) makes use of the following definition. A|V |× |V |
nonnegative integer matrixD = (di,j)i,j∈V is called a (valid)
multiplicity matrix with respect toG andM if

1 ·D · 1T ≤M , (2)

1 ·D = 1 ·DT , and (3)

di,j > 0 only if ai,j > 0 . (4)

(While any multiplicity matrix will produce a parallel encoder,
some will have higher rates than others. In Section IV, we
show how to compute multiplicity matricesD that yield rates
close tocap(S(G)).)

Recall that we have at our disposalM tracks. However, we
will effectively be using only the firstN = 1 ·D · 1T tracks
in order to encode information. The lastM − N tracks will
all be equal to the first track, say.

Write r = (ri)i∈V = 1 ·DT . A vertexv = 〈vk〉
N
k=1 ∈ V N

is a typical vertex(with respect toD) if for all i, the vertex
i ∈ V appears as an entry inv exactlyri times. Also, an edge
e = 〈ek〉

N
k=1 ∈ EN is a typical edgewith respect toD if for

all i, j ∈ V , there are exactlydi,j entriesek which—as edges
in G—start at vertexi and terminate in vertexj.

A simple computation shows that the number of outgoing
typical edges from a typical vertex equals

∆ =

∏

i∈V ri!
∏

i,j∈V di,j ! · a
−di,j

i,j

(5)

(where00 , 1). For example, in the simpler case whereG
does not contain parallel edges (ai,j ∈ {0, 1}), we are in effect
counting in (5) permutations with repetitions, each time for a
different vertexi ∈ V .

The encoding process will be carried out as follows. We
start at some fixed typical vertexv(0) ∈ V N . Out of the set of
outgoing edges fromv(0), we consider only typical edges. The
edge we choose to traverse is determined by the information
bits. After traversing the chosen edge, we arrive at vertexv(1).
By (3), v(1) is also a typical vertex, and the process starts
over. This process defines anM -track parallel encoder for
S = S(G) at rate

R = R(D) =
⌊log2 ∆⌋

M
.

This encoder is(m, 0)-SBD, wherem is the memory ofG.

Consider now how we mapM ·R information bits into an
edge choicee ∈ EN at any given staget. Assuming again
the simpler case of a graph with no parallel edges, a natural
choice would be to use an instance of enumerative coding [9].
Specifically, suppose that for0 ≤ δ ≤ n, a procedure for
encoding information by ann-bit binary vector with Hamming
weight δ were given. Suppose also thatV = {1, 2, . . . , |V |}.
We could use this procedure as follows. First, forn = r1 and
δ = d1,1, the binary word given as output by the procedure
will define whichd1,1 of the possibler1 entries ine will be
equal to the edge inE from the vertex1 ∈ V to itself (if no
such edge exists, thend1,1 = 0). Having chosen these entries,
we run the procedure withn = r1 − d1,1 and δ = d1,2 to
choose from the remainingr1 − d1,1 entries those that will
contain the edge inE from 1 ∈ V to 2 ∈ V . We continue this
process, until allr1 entries ine containing an edge outgoing
from 1 ∈ V have been picked. Next, we run the procedure with
n = r2 andδ = d2,1, and so forth. The more general case of
a graph containing parallel edges will include a preliminary
step: encoding information in the choice of thedi,j edges used
to traverse fromi to j (ai,j options for each such edge).

A fast implementation of enumerative coding is presented in
Section VII. The above-mentioned preliminary step makes use
of the Schönhage–Strassen integer-multiplication algorithm [3,
§7.5], and the resulting encoding time complexity is propor-

tional1 to M log2M log logM . It turns out that this is also
the decoding time complexity. Further details are given in
Section VII.

The next section shows how to find a good multiplicity
matrix, i.e., a matrixD such thatR(D) is close tocap(S(G)).

IV. COMPUTING A GOOD MULTIPLICITY MATRIX

In order to enhance the exposition of this section, we
accompany it by a running example (see Figure 4).

α β

θ

a
b

c

de
AG =





1 1 0
1 0 1
1 0 0





Fig. 4. Running Example (1): GraphG and the corresponding adjacency
matrix AG.

Throughout this section, we assume a probability distribu-
tion on the edges ofG, which is the maxentropic stationary
Markov chainP onG [15]. Without real loss of generality, we
can assume thatG is irreducible (i.e., strongly-connected), in
which caseP is indeed unique. Let the matrixQ = (qi,j) be
the transition matrix induced byP , i.e., qi,j is the probability
of traversing an edge fromi ∈ V to j ∈ V , conditioned on
currently being at vertexi ∈ V .

Let π = (πi) be the1×|V | row vector corresponding to the
stationary distribution onV induced byQ; namely,πQ = π

and
∑

i∈V πi = 1. Let

M ′ =M − ⌊|V |diam(G)/2⌋ , (6)

and define

ρ = (ρi) , ρi =M ′πi , and P = (pi,j) , pi,j = ρiqi,j

Running Example (2): Taking the number of tracks in our
running example (Figure 4) to beM = 12 givesM ′ = 9.
Also, our running example has

π =
(

0.619 0.282 0.099
)

,

and

Q =





0.544 0.456 0
0.647 0 0.353
1 0 0



 .

Thus,
ρ =

(

5.57 2.54 0.89
)

1Actually, the time complexity for the preliminary step can be made linear
in M , with a negligible penalty in terms of rate: Fixi andj, and letη be an
integer design parameter. Assume for simplicity thatη|di,j . The number of
vectors of lengthη over an alphabet of sizeai,j is obviouslyaηi,j . So, we can
encode⌊η log2 ai,j⌋ bits through the choice of such a vector. Repeating this
process, we can encode(di,j/η) · ⌊η log2 ai,j⌋ bits through the choice of
di,j/η such vectors. The concatenation of these vectors is taken torepresent
our choice of edges. Note that the encoding process is linearin M for constant
η. Also, our losses (due to the floor function) become negligible for modestly
largeη.

and

P =





3.03 2.54 0
1.65 0 0.89
0.89 0 0



 .

�

Note that

ρ = 1 · PT and M ′ = 1 · P · 1T .

Also, observe that (2)–(4) hold when we substituteP for
D. Thus, if all entries ofP were integers, then we could
takeD equal toP . In a way, that would be the best choice
we could have made: by using Stirling’s approximation, we
could deduce thatR(D) approachescap(S(G)) asM → ∞.
However, the entries ofP , as well asρ, may be non-integers.

We say that aninteger matrix P̃ = (p̃i,j) is a good
quantizationof P = (pi,j) if

M ′ =
∑

i,j∈V pi,j =
∑

i,j∈V p̃i,j , (7)
⌊

∑

j∈V pi,j

⌋

≤
∑

j∈V p̃i,j ≤
⌈

∑

j∈V pi,j

⌉

, (8)

⌊pi,j⌋ ≤ p̃i,j ≤ ⌈pi,j⌉ , and— (9)
⌊
∑

i∈V pi,j
⌋

≤
∑

i∈V p̃i,j ≤
⌈
∑

i∈V pi,j
⌉

. (10)

Namely, a given entry iñP is either the floor or the ceiling of
the corresponding entry inP , and this also holds for the sum
of entries of a given row or column iñP ; moreover, the sum
of entries in bothP̃ andP are exactly equal (toM ′).

Lemma 2:There exists a matrix̃P which is a good quan-
tization ofP . Furthermore, such a matrix can be found by an
efficient algorithm.

uσ

uω

u′1 u′2 u′i u′|V |

u′′1 u′′2 u′′j u′′|V |

uτ

(M ′,M ′)

(⌊
∑

j∈V pi,j⌋, ⌈
∑

j∈V pi,j⌉)

(⌊pi,j⌋, ⌈pi,j⌉)

(⌊
∑

i∈V pi,j⌋, ⌈
∑

i∈V pi,j⌉)

· · ·

· · ·

· · ·

· · ·

Fig. 5. Flow network for the proof of Lemma 2. An edge labeled(a, b) has
lower and upper boundsa andb, respectively.

Proof: We recast (7)–(10) as an integer flow problem
(see Figures 5 and 6). Consider the following flow network,
with upper and lower bounds on the flow through the edges [4,
§6.7]. The network has the vertex set

{uσ} ∪ {uω} ∪ {uτ} ∪ {u′i}i∈V ∪
{

u′′j
}

j∈V
,

with sourceuσ and targetuτ . Henceforth, when we refer to the
upper (lower) bound of an edge, we mean the upper (lower)
bound on the flow through it. There are four kinds of edges:

1) An edgeuσ → uω with upper and lower bounds both
equaling toM ′.

2) uω → u′i for every i ∈ V , with the upper and lower
bounds⌊

∑

j∈V pi,j⌋ and⌈
∑

j∈V pi,j⌉, respectively.
3) u′i → u′′j for every i, j ∈ V , with the upper and lower

bounds⌊pi,j⌋ and⌈pi,j⌉, respectively.
4) u′′j → uτ for every j ∈ V , with the upper and lower

bounds⌊
∑

i∈V pi,j⌋ and⌈
∑

i∈V pi,j⌉, respectively.

We claim that (7)–(10) can be satisfied if a legal integer
flow exists: simply takẽpi,j as the flow on the edge fromu′i
to u′′j .

It is well known that if a legalreal flow exists for a flow
network with integer upper and lower bounds on the edges,
then a legalinteger flow exists as well [4, Theorem 6.5].
Moreover, such a flow can be efficiently found [4,§6.7]. To
finish the proof, we now exhibit such a legal real flow:

1) The flow on the edgeuσ → uω is
∑

i,j∈V pi,j =M ′.
2) The flow on an edgeuω → u′i is

∑

j∈V pi,j .
3) The flow on an edgeu′i → u′′j is pi,j .
4) The flow on an edgeu′′j → uτ is

∑

i∈V pi,j .

uσ

uω

u′α u′β u′θ

u′′α u′′β u′′θ

uτ

9;9

3.03;4

2.54;2 1.65;2

0.89;1

0.89;0

5.57;6
2.54;3

0.89;0

5.57;6
2.54;2

0.89;1

P =





3.03 2.54 0
1.65 0 0.89
0.89 0 0



 , P̃ =





4 2 0
2 0 1
0 0 0



 .

Fig. 6. Running Example (3): The flow network derived fromP in Running
Example 2. An edge labeleda;b has lower and upper bounds⌊a⌋ and⌈a⌉,
respectively. A legal real flow is given bya. A legal integer flow is given by
b. The matrixP̃ resulting from the legal integer flow is given, as well as the
matrix P (again).

For the remaining part of this section, we assume thatP̃ is
a good quantization ofP (say,P̃ is computed by solving the
integer flow problem in the last proof). The next lemma states
that P̃ “almost” satisfies (3).

Lemma 3:Let ρ̃ = (ρ̃i) = 1 · P̃T and r̃ = (r̃i) = 1 · P̃ .
Then, for alli ∈ V ,

ρ̃i − r̃i ∈ {−1, 0, 1} .
Proof: From (8), we get that for alli ∈ V ,

⌊
∑

j∈V pi,j⌋ ≤ ρ̃i ≤ ⌈
∑

j∈V pi,j⌉ . (11)

Recall that (3) is satisfied if we replaceD by P . Thus, by
(10), we have that (11) also holds if we replaceρ̃i by r̃i. We
conclude that|ρ̃i − r̃i| ≤ 1. The proof follows from the fact
that entries ofP̃ are integers, and thus so are those ofρ̃ and
r̃.

The following lemma will be the basis for augmenting̃P
so that (3) is satisfied.

Lemma 4:Fix two distinct verticess, t ∈ V . We can
efficiently find a |V | × |V | matrix F (s,t) = F = (fi,j)i,j∈V

with non-negative integer entries, such that the followingthree
conditions hold.

(i)
1 · F · 1T ≤ diam(G) .

(ii) For all i, j ∈ V ,

fi,j > 0 only if ai,j > 0 .

(iii) Denote ξ = 1 · FT andx = 1 · F . Then, for alli ∈ V ,

xi − ξi =











−1 if i = s,

1 if i = t,

0 otherwise.
Proof: Let k1 = s, k2, k3 . . . , kℓ+1 = t be the vertices

along a shortest path froms to t in G. For all i, j ∈ V , define

fi,j = |{1 ≤ h ≤ ℓ : kh = i and kh+1 = j}| . (12)

Namely, fi,j is the number of edges fromi to j along the
path.

Conditions (i) and (ii) easily follow from (12). Condition
(iii) follows from the fact thatξi (xi) is equal to the number
of edges along the path for whichi is the start (end) vertex
of the edge.

The matrix P̃ will be the basis for computing a good
multiplicity matrix D, as we demonstrate in the proof of the
next theorem.

Theorem 5:Let P̃ = (p̃i,j) be a good quantization ofP .
There exists a multiplicity matrixD = (di,j) with respect to
G andM , such that

1) di,j ≥ p̃i,j for all i, j ∈ V , and—
2) M ′ ≤ 1 ·D · 1T ≤M

(whereM ′ is as defined in (6)). Moreover, the matrixD can
be found by an efficient algorithm.

Proof: Consider a vertexi ∈ V . If r̃i > ρ̃i, then we say
that vertexi has asurplusof r̃i− ρ̃i. In this case, by Lemma 3,
we have that the surplus is equal to 1. On the other hand, if

r̃i < ρ̃i then vertexi has adeficiencyof ρ̃i − r̃i, which again
is equal to 1.

Of course, since
∑

i∈V ρ̃i =
∑

i∈V r̃i = M ′, the total
surplus is equal to the total deficiency, and both are denoted
by Surp:

Surp =
∑

i∈V

max {0, r̃i−ρ̃i} = −
∑

i∈V

min {0, r̃i−ρ̃i} . (13)

Denote the vertices with surplus as(sk)
Surp
k=1 and the vertices

with deficiency as(tk)
Surp
k=1 . Recalling the matrixF from

Lemma 4, we define

D = P̃ +

Surp
∑

k=1

F (sk,tk) .

We first show thatD is a valid multiplicity matrix. Note that
Surp ≤ |V | /2. Thus, (2) follows from (6), (7), and (i). The
definitions of surplus and deficiency vertices along with (iii)
give (3). Lastly, recall that (4) is satisfied if we replacedi,j by
pi,j . Thus, by (9), the same can be said forp̃i,j . Combining
this with (ii) yields (4).

Since the entries ofF (sk,tk) are non-negative for everyk,
we must have thatdi,j ≥ p̃i,j for all i, j ∈ V . This, together
with (2) and (7), implies in turn thatM ′ ≤ 1 ·D · 1T ≤M .

Running Example (4): For the matrixP̃ in Figure 6, we
have

r̃ =
(

6 2 1
)

, ρ̃ =
(

6 3 0
)

.

Thus,Surp = 1. Namely, the vertexθ has a surplus while the
vertexβ has a deficiency. Takings = θ and t = β we get

F (s,t) =





0 1 0
0 0 0
1 0 0



 , and D =





4 3 0
2 0 1
1 0 0



 .

�

Now that Theorem 5 is proved, we are in a position to prove
our main result, Theorem 1. Essentially, the proof involves
using the Stirling approximation and taking into account the
various quantization errors introduced intoD. The proof itself
is given in the Appendix.

V. ENUMERATIVE CODING INTO SEQUENCES WITH A

GIVEN MARKOV TYPE

The main motivation for our methods is 2-D constrained
coding. However, in this section, we show that they might be
interesting in certain aspects of 1-D coding as well. Given a
labeled graphG, a classic method for building an encoder for
the 1-D constraintS(G) is the state-splitting algorithm [2].
The rate of an encoder built by [2] approaches the capacity
of S(G). Also, the word the encoder outputs has a corre-
sponding path inG, with the following favorable property:
the probability of traversing a certain edge approaches the
maxentropic probability of that edge (assuming an unbiased
source distribution). However, what if we’d like to build
an encoder with a different probability distribution on the
edges? This scenario may occur, for example, when there is

a requirement that all the output words of a given lengthN
that are generated by the encoder have a prescribed Hamming
weight2.

More formally, suppose that we are given a labeled graph
G = (V,E, L); to make the exposition simpler, suppose that
G does not contain parallel edges. LetQ andπ be a transition
matrix and a stationary probability distribution corresponding
to a stationary (but not necessarily maxentropic) Markov chain
P onG. We assume w.l.o.g. that each edge inG has a positive
conditional probability. We are also given an integerM , which
we will shortly elaborate on.

We first describe our encoder in broad terms, so as that
its merits will be obvious. LetD and N be as previously
defined, and letRT (D) be specified shortly. We start at some
fixed vertexv0 ∈ V . GivenM · RT (D) information bits, we
traverse a soon to be defined cyclic path of lengthN in G. The
concatenation of the edge labels along the path is the word we
output. Of course, since the path is cyclic, the concatenation
of such words is indeed inS(G). Moreover, the path will have
the following key property: the number of times an edge from
i to j is traversed equalsdi,j . Namely, if we uniformly pick
one of theN edges of the path, the probability of picking a
certain edgee is constant (not a function of the input bits), and
is equal to the probability of traversinge on the Markov chain
P , up to a small quantization error. The rateRT of our encoder
will satisfy (1), where we replaceR by RT and cap(S) by
the entropy ofP . We would like to be able to exactly specify
the path lengthN as a design parameter. However, we specify
M and get anN betweenM andM − ⌊|V | diam(G)/2⌋.

Our encoding process will make use of anoriented tree,
a term which we will now define. A set of edgesT ⊆ E
is an oriented tree ofG with root v0 if |T | = |V | − 1 and
for eachu ∈ V there exists a path fromu to v0 consisting
entirely of edges inT (see Figure 7). Note that if we reverse
the edge directions of an oriented tree, we get a directed tree
as defined in [11, Theorem 2.5]. Since reversing the directions
of all edges in an irreducible graph results in an irreducible
graph, we have by [11, Lemma 3.3] that an oriented treeT
indeed exists inG, and can be efficiently found. So, let us fix
some oriented treeT with root v0. By [11, Theorem 2.5], we
have that every vertexu ∈ V which is not the rootv0 has an
out-degree equal to 1. Thus, for each such vertexu we may
defineparent(u) as the destination of the single edge inT
going out ofu.

We now elaborate on the encoding process. The encoding
consists of two steps. In the first step, we map the information
bits to a collection of lists. In the second step, we use the lists
in order to define a cyclic path.

First step: GivenM ·RT (D) information bits, we build for
each vertexi ∈ V a list λ(i) of lengthri,

λ
(i) = (λ

(i)
1 , λ

(i)
2 , . . . , λ(i)ri

) .

2We remark in passing that one may use convex programming techniques
(see [18,§V]) in order to efficiently solve the following optimizationproblem:
find a probability distribution on the edges ofG yielding a stationary Markov
chain with largest possible entropy, subject to a set of edges (such as the set
of edges with label ‘1’) having a prescribed cumulative probability.

v0

Fig. 7. Oriented tree with rootv0.

The entries of eachλ(i) are vertices inV . Moreover, the
following properties are satisfied for alli:

• The number of timesj is an entry inλ(i) is exactlydi,j .
• If i 6= v0, then the last entry of the list equals the parent

of i. Namely,

λ(i)ri
= parent(i) .

Recalling (5), a simple calculation shows that the number
of possible list collections is

∆T = ∆ ·
∏

i∈V \{v0}

di,parent(i)

ri
. (14)

Thus, we define the rate of encoding as

RT =
⌊log2 ∆T ⌋

M
.

Also, note that as in the 2-D case, we may use enumerative
coding in order to efficiently map information bits to lists.

Second step: We now use the listsλ(i), i ∈ V , in order to
construct a cyclic path starting at vertexv0. We start the path
at v0 and build a length-N path according to the following
rule: when exiting vertexi for thekth time, traverse the edge
going into vertexλ(i)k .

Of course, our encoding method is valid (and invertible) iff
we may always abide by the above-mentioned rule. Namely,
we don’t get “stuck”, and manage to complete a cyclic path
of lengthN . This is indeed the case: define an auxiliary graph
G(D) with the same vertex set,V , asG anddi,j parallel edges
from i to j (for all i, j ∈ V). First, recall that for sufficiently
largeM , the presence of an edge fromi to j in G implies that
di,j > 0. Thus, sinceG was assumed to be irreducible,G(D)
is irreducible as well. Also, an edge inT from i to j implies
the existence of an edge inG(D) from i to j. Secondly, note
that by (3), the number of times we are supposed to exit a
vertex is equal to the number of times we are supposed to
enter it. The rest of the proof follows from [19, p. 56, Claim
2], applied to the auxiliary graphG(D). Namely, our encoder
follows directly from van Aardenne-Ehrenfest and de Bruijn’s
[1] theorem on counting Eulerian cycles in a graph.

We now return to the rate,RT , of our encoder. From (6),
(9), (10) and Theorem 5, we see that forM sufficiently large,
∆T is greater than some positive constant times∆. Thus, (1)
still holds if we replaceR by RT andcap(S) by the entropy
of P .

VI. A N EXAMPLE, AND TWO IMPROVEMENT TECHNIQUES

Recall from Section II the square constraint: its elements
are all the binary arrays in which no two ‘1’ symbols are
adjacent on a row, column, or diagonal. By employing the
methods presented in [6], we may calculate an upper bound
on the rate of the constraint. This turns out to be0.425078.
We will show an encoding/decoding method with rate slightly
larger than0.396 (about93% of the upper bound). In order to
do this, we assume that the array has100,000 columns. Our
encoding method has a fixed rate and has a vertical window
of size 2 and vertical anticipation 0.

We should point out now that a straightforward implemen-
tation of the methods we have previously defined gives a rate
which is strictly less than 0.396. Namely, this section also
outlines two improvement techniques which help boost the
rate.

We start out as in the example given in Section II, except
that the width of the data strips is nowwd = 9 (the width of
the merging strips remainswm = 1). The graphG we choose
produces all width-wd arrays satisfying the square constraint,
and we take the merging strips to be all-zero. Our array has
100,000 columns, so we haveM = 10,000 tracks (the last,
say, column of the array will essentially be unused; we can
set all of its values to 0).

Define the normalized capacity as

cap(S(G))

wd + wm
.

The graphG has|V | = 89 vertices and normalized capacity

cap(S(G))

wd + wm
≈

cap(S(G))

wd + wm(1− 1/M)
≈ 0.402 .

This number is about94.5% from the upper bound on the
capacity of our 2-D constraint. Thus, as expected, there is an
inherent loss in choosing to model the 2-D constraint as an
essentially 1-D constraint. Of course, this loss can be made
smaller by increasingwd (but the graphG will grow as well).

From Theorem 1, the rate of our encoder will approach
the normalized capacity of0.402 as the number of tracksM
grows. So, once the graphG is chosen, the parameter we
should be comparing ourselves to is the normalized capacity.
We now apply the methods defined in Section IV and find
a multiplicity matrix D. Recall that the matrixD defines
an encoder. In our case, this encoder has a rate of about
0.381. This is 94% of the normalized capacity, and is quite
disappointing (but the improvements shown in Sections VI-A
and VI-B below are going to improve this rate). On the other
hand, note that if we had limited ourselves to encode to each
track independently of the others, then the best rate we could
have hoped for with 0 vertical anticipation turns out to be0.3
(see [17, Theorem 5]).

A. Moore-style reduction

We now define a graphG which we call the reduction of
G. Essentially, we will encode by constructing paths inG,
and then translate these to paths inG. In bothG andG, the

maxentropic distributions have the same entropy. The main
virtue ofG is that it often has less vertices and edges compared
to G. Thus, the penalty in (1) resulting from using a finite
number of tracks will often be smaller.

For s ≥ 0, we now recursively define the concept ofs-
equivalence (very much like in the Moore algorithm [15, page
1660]).

• For s = 0, any two verticesv1, v2 ∈ V are 0-equivalent.
• For s > 0, two verticesv1, v2 ∈ V are s-equivalent iff

1) the two verticesv1, v2 are (s − 1)-equivalent, and 2)
for each(s−1)-equivalence classc, the number of edges
from v1 to vertices inc is equal to the number of edges
from v2 to vertices inc.

Denote byΠs the partition induced bys-equivalence. For the
graphG given in Figure 3,

Π0 = {0000,0001,0010,0100,0101,1000,1001,1010} ,

Πs≥1 ={0000},{0010,0100},{1000,0001},{1010,1001,0101} .

Note that, by definition,Πs+1 is a refinement ofΠs. Thus, let
s′ be the smallests for which Πs = Πs+1. The setΠs′ can
be efficiently found (essentially, by the Moore algorithm [15,
page 1660]).

Define a (non-labeled) graphG = (V,E) as follows. The
vertex set ofG is

V = Πs′ .

For eachc ∈ V, let v(c) be a fixed element ofc (if c contains
more than one vertex, then pick one arbitrarily). Also, for each
v ∈ V , let c(v) be the classc ∈ V such thatv ∈ c. Let σG(e)
(σG(e)) andτG(e) (τG(e)) denote the start and end vertex of
an edgee in G (G), respectively. The edge setE is defined as

E =
⋃

c∈V

{e ∈ E : σG(e) = v(c)} , (15)

where

σG(e) = c(σG(e)) and τG(e) = c(τG(e)) .

Namely, the number of edges fromc1 to c2 in G is equal to the
number of edges inG from some fixedv1 ∈ c1 to elements of
c2, and, by the definition ofs′, this number does not depend
on the choice ofv1. The graphG is termed thereductionof G.
The reduction ofG from Figure 3 is given in Figure 8. Note
that sinceG was assumed to be irreducible, we must have that
G is irreducible as well.

{0000} {0100, 0010}

{1000, 0001}

{1010, 1001, 0101}

Fig. 8. Reduction of the graphG from Figure 3.

Lemma 6:The entropies of the maxentropic Markov chains
onG andG are equal.

Proof: Let A = AG be the adjacency matrix ofG, and
recall thatA = AG is the adjacency matrix ofG. Let λ′

andx′ = (x′c)c∈V be the Perron eigenvalue and right Perron
eigenvector ofA, respectively [15,§3.1]. Next, define the
vectorx = (xv)v∈V as

xv = x′
c(v) .

It is easily verifiable thatx is a right eigenvector ofA, with
eigenvalueλ′. Now, sincex′ is a Perron eigenvector of an
irreducible matrix, each entry of it is positive. Thus, eachentry
of x is positive as well. SinceA is irreducible, we must have
thatx is a Perron eigenvector ofA. So, the Perron eigenvalue
of A is alsoλ′.

The next lemma essentially states that we can think of paths
in G as if they were paths inG.

Lemma 7:Let ℓ ≥ 1. Fix somec0, cℓ+1 ∈ V, and v0 ∈
c0. There exists a one-to-one correspondence between the
following sets. First set: paths of lengthℓ in G with start vertex
c0 and end vertexcℓ+1. Second set: paths of lengthℓ in G
with start vertexv0 and end vertex incℓ+1.

Moreover, for1 ≤ t ≤ ℓ − 1, the first t edges in a path
belonging to the second set are a function of only the firstt
edges in the respective path in the first set.

Proof: We prove this by induction onℓ. For ℓ = 1, we
have

|{e ∈ E : σG(e) = c0 , τG(e) = c1}| =

|{e ∈ E : σG(e) = v0 , τG(e) ∈ c1}| .

To see this, note that we can assume w.l.o.g. thatv0 = v(c0),
and then recall (15). Forℓ > 1, combine the claim forℓ − 1
with that for ℓ = 1.

Notice thatdiam(G) ≤ diam(G). We now show whyG is
useful.

Theorem 8:Let D be the multiplicity matrix found by the
methods previously outlined, where we replaceG by G. Let
N = 1 · D · 1T . We may efficiently encode (and decode)
information toG⊗N in a row-by-row manner at rateR(D).

Proof: We conceptually break our encoding scheme into
two steps. In the first step, we “encode” (map) the information
into N paths inG, each path having lengthℓ. We do this as
previously outlined (through typical vertices and edges inG).
Note that this step is done at a rate ofR(D). In the second
step, we map each such path inG to a corresponding path in
G. By Lemma 7, we can indeed do this (takec0 as the first
vertex in the path,cℓ+1 as the last vertex, andv0 = v(c0)).

By Lemma 7 we see that this two-step encoding scheme
can easily be modified into one that is row-by-row.
Applying the reduction to our running example (square con-
straint with wd = 9 and wm = 1), reduces the number of
vertices from89 in G to 34 in G. The computedD increases
the rate to about0.392, which is 97.5% of the normalized
capacity.

B. Break-merge

Let G⊗N be theNth Kronecker power of the Moore-style
reductionG. Recall that the rate of our encoder is

R(D) =
⌊log2 ∆⌋

M
,

where∆ is the number of typical edges inG⊗N going out of
a typical vertex. The second improvement involves expanding
the definition of a typical edge, thus increasing∆. This is best
explained through an example. Suppose thatG has Figure 9 as
a subgraph; namely, we show all edges going out of vertices
α andβ. Also, let the numbers next to the edges be equal to
the corresponding entries inD. The main thing to notice at
this point is that if the edges toǫ andζ are deleted (“break”),
thenα and β have exactly the same number of edges from
them to vertexj, for all j ∈ V (after the deletion of edges,
verticesα andβ can be “merged”).

ε ζ

α β

θ δ

5 2

4 7

3 9

Fig. 9. Break-merge example graph.

Let v be a typical vertex. A short calculation shows that the
number of entries inv that are equal toα (β) is 5+4+3 = 12
(9 + 7 + 2 = 18). Recall that the standard encoding process
consists of choosing a typical edgee going out of the typical
vertex v and into another typical vertexv′. We now briefly
review this process. Consider the12 entries inv that are equal
to α. The encoding process with respect to them will be as
follows (see Figure 10):

• Out of these12 entries, choose5 for which the corre-
sponding entry inv′ will be ε. Since there is exactly one
edge fromα the ε in G, the corresponding entries ine
must be equal to that edge.

• Next, from the remaining7 entries, choose4 for which
the corresponding entries inv′ will be θ. There are two
parallel edges fromα to θ, so choose which one to use
in the corresponding entries ine.

• We are left with 3 entries, the corresponding entries
in v′ will be δ. Also, we have one option as to the
corresponding entries ine.

A similar process is applied to the entries inv that are equal
to β. Thus, the total number of options with respect to these
entries is

12! · 24

5! · 4! · 3!
·

18! · 29

2! · 9! · 7!
≈ 3.97 · 1014 .

Next, consider a different encoding process (see Figure 11).
• Out of the12 entries inv that are equal toα, choose5 for

which the corresponding entry inv′ will be ε. As before,
the corresponding entries ine have only one option.

v = α

12

β

18

. . .

v
′ = ǫ

5

θ

4

δ

3

θ

9

δ

7

ζ

2

. . .

Fig. 10. Illustration of the entries in two typical verticesv, v′, where we
got fromv to v

′ by the standard encoding process.

• Out of the18 entries inv that are equal toβ, choose2
for the corresponding entry inv′ will be ζ. Again, one
option for entries ine.

• Now, of the remaining23 entries inv that are equal to
α or β, choose4 + 9 = 13 for which the corresponding
entry inv′ will be θ. We have two options for the entries
in e.

• We are left with3 + 7 = 10 entries inv that are equal
to α or β. These will haveδ as the corresponding entry
in v′, and one option ine.

v = α

12

β

18

. . .

v
′ = ǫ

5

θ

13

δ

10

ζ

2

. . .

Fig. 11. Illustration of the entries in two typical verticesv, v′, where we got
from v to v

′ by the improved encoding process. The shaded part corresponds
to vertices that were merged.

Thus, the total number of options is now
(

12

5

)

·

(

18

2

)

·
23! · 213

13! · 10!
≈ 1.14 · 1015 .

The important thing to notice is that in both cases, we arrive
at a typical vertexv′.

To recap, we first “broke” the entries inv that are equal
to α into two groups: Those which will haveε as the
corresponding entry inv′ and those which will haveθ or δ
as the corresponding entry. Similarly, we broke entries inv

that are equal toβ into two groups. Next, we noticed that of
these four groups, two could be “merged”, since they were
essentially the same. Namely, removing some edges from the
corresponding vertices inG resulted in vertices which were
mergeable.

Of course, these operations can be repeated. The hidden
assumption is that the sequence of breaking and merging is
fixed, and known to both the encoder and decoder. The optimal
sequence of breaking and merging is not known to us. We used
a heuristic. Namely, choose two vertices such that the sets of

edges emanating from both have a large overlap. Then, break
and merge accordingly. This was done until no breaking or
merging was possible. We got a rate of about0.396, which is
98.5% of the normalized capacity.

VII. FAST ENUMERATIVE CODING

Recall from Section III that in the course of our encoding
algorithm, we make use of a procedure which encodes in-
formation into fixed-length binary words of constant weight.
A way to do this would be to use enumerative coding [9].
Immink [13] showed a method to significantly improve the
running time of an instance of enumerative coding, with a
typically negligible penalty in terms of rate. We now briefly
show how to tailor Immink’s method to our needs.

Denote by n and δ the length and Hamming weight,
respectively, of the binary word we encode into. Some of our
variables will befloating-pointnumbers with a mantissa ofµ
bits and an exponent ofǫ bits: each floating-point number is
of the formx = a · 2b wherea andb are integers such that

2µ ≤ a < 2µ+1 and − 2ǫ−1 ≤ b < 2ǫ−1 .

Note thatµ+ ǫ bits are needed to store such a number. Also,
note that every positive realx such that

2µ · 2−2ǫ−1

≤ x ≤ (2µ+1 − 1) · 22
ǫ−1−1

has a floating point approximationx with relative precision
(

1−
1

2µ

)

≤
x

x
≤

(

1 +
1

2µ

)

. (16)

We assume the presence of two look-up tables. The first
will contain the floating-point approximations of1!, 2!, . . . , n!.
The second will contain the floating-point approximations of
f(0), f(1), . . . , f(δ), where

f(χ) = fµ(χ) = 1−
32χ+ 16

2µ
.

In order to exclude uninteresting cases, assume thatµ ≥ 10
and is such thatf(δ) ≥ 1/2. Also, takeǫ large enough so
thatn! is less than the maximum number we can represent by
floating point. Thus, we can assume thatµ = O(log δ) and
ǫ = O(log n).

Notice that in our case, we can bound bothn and δ from
above by the number of tracksM . Thus, we will actually build
beforehand two look-up tables of size2M(µ+ ǫ) bits.

Let x denote the floating-point approximation ofx, and
let ∗ and÷ denote floating-point multiplication and division,
respectively. For0 ≤ χ ≤ κ ≤ n we define

⌈

κ

χ

⌉

=
⌈

(κ! ∗ f(χ))÷ (χ! ∗ (κ− χ)!)
⌉

.

Note that since we have stored the relevant numbers in our
look-up table, the time needed to calculate the above function
is only O(µ2 + ǫ). The encoding procedure is given in
Figure 12. We note the following points:

• The variablesn, ψ, δ and ι are integers (as opposed to
floating-point numbers).

• In the subtraction of
⌈

n−ι
δ−1

⌉

from ψ in line 5, the floating-
point number

⌈

n−ι
δ−1

⌉

is “promoted” to an integer (the result
is an integer).

Name: EnumEncode(n, δ, ψ)

Input: Integersn, δ, ψ such that0 ≤ δ ≤ n and0 ≤ ψ <
˚
n

δ

ˇ
.

Output: A binary word of lengthn and weightδ.

if (δ == 0) // stopping condition: /* 1 */
return00 . . . 0

| {z }

n

; /* 2 */

for (ι← 1; ι ≤ n− δ + 1; ι++) { /* 3 */
if (ψ ≥

˚
n−ι

δ−1

ˇ
) /* 4 */

ψ ← ψ −
˚
n−ι

δ−1

ˇ
; /* 5 */

else /* 6 */
return00..0

| {z }

ι−1

1‖EnumEncode(n− ι, δ − 1, ψ); /* 7 */

} /* 8 */

Fig. 12. Enumerative encoding procedure for constant-weight binary words.

We must now show that the procedure is valid, namely,
that given a valid input, we produce a valid output. For our
procedure, this reduce to showing two things: 1) If the stopping
condition is not met, a recursive call will be made. 2) The
recursive call is given valid parameters as well. Namely, in
the recursive call,ψ is non-negative. Also, for the encoding
to be invertible, we must further require that 3)

⌈

n
0

⌉

= 1 for
n ≥ 0.

Condition 2 is clearly met, because of the check in line 4.
Denote

〈

κ

χ

〉

= (κ! ∗ f(χ))÷ (χ! ∗ (κ− χ)!)

(and so,
⌈

κ
χ

⌉

= ⌈
〈

κ
χ

〉

⌉). Condition 3 follows from the next
lemma.

Lemma 9:Fix 0 ≤ δ ≤ n. Then,
(

n

δ

)

·

(

1−
32(δ + 1)

2µ

)

≤

〈

n

δ

〉

≤

(

n

δ

)

·

(

1−
32δ

2µ

)

.

Proof: The proof is essentially repeated invocations of
(16) on the various stages of computation. We leave the details
to the reader.

Finally, Condition 1 follows easily from the next lemma.
Lemma 10:Fix 0 ≤ δ ≤ n. Then,

⌈

n

δ

⌉

≤

n−δ+1
∑

ι=1

⌈

n− ι

δ − 1

⌉

.

Proof: The claim will follow if we show that

〈

n

δ

〉

≤

n−δ+1
∑

ι=1

〈

n− ι

δ − 1

〉

.

This is immediate from Lemma 9 and the binomial identity

(

n

δ

)

=

n−δ+1
∑

ι=1

(

n− ι

δ − 1

)

.

Note that the penalty in terms of rate one suffers because
of using our procedure (instead of plain enumerative coding)
is negligible. Namely,log2

⌈

n
δ

⌉

can be made arbitrarily close
to log2

(

n
δ

)

. Since we takeǫ = O(log n) andµ = O(log δ),
we can show by amortized analysis that the running time
of the procedure isO(n log2 n). Specifically, see [8, Section
17.3], and take the potential of the binary vector corresponding
to ψ as the number of entries in it that are equal to ‘0’.
The decoding procedure is a straightforward “reversal” of the
encoding procedure, and its running time is alsoO(n log2 n).

VIII. A PPENDIX

Proof of Theorem 1:Let ∆̃ be as in (5), where we replace
di,j by p̃i,j andri by ρ̃i. By the combinatorial interpretation
of (5), and the fact thatdi,j ≥ p̃i,j for all i, j ∈ V , it easily
follows that∆ ≥ ∆̃. Thus,

R(D) ≥
⌊log2 ∆̃⌋

M
=
M ′

M
·
⌊log2 ∆̃⌋

M ′
.

Denote bye the base of natural logarithms. By Stirling’s
formula we have

log2(t!) = t log2(t/e) +O(log t) ,

and from (5) we get that

log2 ∆̃ =
∑

i∈V

ρ̃i log2(ρ̃i/e)−
∑

i,j∈V

p̃i,j log2(p̃i,j/e)

+
∑

i,j∈V

p̃i,j log2(ai,j)−O(|V |2 logM) .

By (7) and (9),
∑

i,j∈V

p̃i,j log2(ai,j) =

∑

i,j∈V

pi,j log2(ai,j)−O
(

|V |2 log2(amax/amin)
)

.

Since
∑

j p̃i,j = ρ̃i, we have

∑

i∈V

ρ̃i log2(ρ̃i/e)−
∑

i,j∈V

p̃i,j log2(p̃i,j/e)

=
∑

i∈V

ρ̃i log2(ρ̃i)−
∑

i,j∈V

p̃i,j log2(p̃i,j) .

Moreover, by (8) and (9), the RHS of the last equation equals
∑

i∈V

ρi log2(ρi)−
∑

i,j∈V

pi,j log2(pi,j)− O(|V |2) .

We conclude that

log2 ∆̃ =
∑

i∈V

ρi log2(ρi)−
∑

i,j∈V

pi,j log2(pi,j)

+
∑

i,j∈V

pi,j log2(ai,j)−O
(

|V |2(logM · amax/amin)
)

.

Lastly, recall thatρi =M ′πi andpi,j = ρiqi,j . Thus,

log2 ∆̃ =M ′H(P)−O
(

|V |2(logM · amax/amin)
)

,

whereH(P) is the entropy of the stationary Markov chain
P with transition matrixQ. Recall thatP was selected to be
maxentropic:H(P) = cap(S(G)). This fact, along with (6)
and a short calculation, finishes the proof.

IX. A CKNOWLEDGMENTS

The first author would like to thank Roee Engelberg for
very helpful discussions.

REFERENCES

[1] T. van Aardenne-Ehrenfest and N. G. de Bruijn, “Circuitsand trees in
oriented linear graphs,”Simon Stevin, 28 (1951), 203–217.

[2] R. L. Adler, D. Coppersmith, and M. Hassner “Algorithms for sliding
block codes—an application of symbolic dynamics to information theory,”
IEEE Trans. Inform. Theory, 29 (1983), 5–22.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of
Computer Algorithms. Reading, Massachusetts: Addison-Wesley, 1974.

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows. Engelwood
Cliffs, New Jersey: Prentice Hall, 1993.

[5] R. Burton and J. E. Steif, “Non-uniqueness of measures ofmaximal
entropy for subshifts of finite type,”Ergod. Th. Dynam. Sys., 14 (1994),
213–235.

[6] N. Calkin and H. S. Wilf, “The number of independent sets in a grid
graph,” SIAM J. Discrete Math., 11 (1997), 54–60.

[7] J. Campello de Souza, B. Marcus, R. New, and B. Wilson, “Constrained
Systems with Unconstrained Positions,”IEEE Trans. Inform. Theory, 48
(2002), 866–879.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to
Algorithms, 2nd ed. Cambridge, Massachusetts: The MIT Press, 2001.

[9] T. Cover, “Enumerative source coding,”IEEE Trans. Inform. Theory, 19
(1973), 73–77.

[10] T. Etzion, “Cascading methods for runlength-limited arrays,” IEEE
Trans. Inform. Theory, 43 (1997), 319–324.

[11] S. Even,Graph Algorithms. Computer Science Press, 1979.
[12] S. Halevy and R. M. Roth, “Parallel constrained coding with application

to two-dimensional constraints,”IEEE Trans. Inform. Theory, 48 (2002),
1009–1020.

[13] K. A. S. Immink, “A practical method for approaching thechannel
capacity of constrained channels,”IEEE Trans. Inform. Theory, 43 (1997),
1389–1399.

[14] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained code,”IEEE Trans. Inform. Theory, 45 (1999), 1527–1540.

[15] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems and
coding for recording channels,” inHandbook of Coding Theory, V. Pless
and W. Huffman, Eds. Amsterdam: Elsevier, 1998, pp. 1635–1764.

[16] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain
checkerboard codes,”IEEE Trans. Inform. Theory, 44 (1998), 1193–1203.

[17] B. H. Marcus and R. M. Roth, “Bounds on the number of states in
encoder graphs for input-constrained channels,”IEEE Trans. Inform.
Theory, 37 (1991), 742–758.

[18] B. H. Marcus and R. M. Roth, “Improved Gilbert–Varshamov bound
for constrained systems,”IEEE Trans. Inform. Theory, 38 (1992), 1213–
1221.

[19] R. P. Stanley,Enumerative Combinatorics, Volume 2. Cambridge, UK:
Cambridge University Press, 1999.

	Introduction
	Two-dimensional constraints
	Description of the encoder
	Computing a good multiplicity matrix
	Enumerative coding into sequences with a given Markov type
	An example, and two improvement techniques
	Moore-style reduction
	Break-merge

	Fast enumerative coding
	Appendix
	Acknowledgments
	References

