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Abstract

This paper is devoted to the study of the performance of timedr Minimum Mean-Square Error receiver for
(receive) correlated Multiple-Input Multiple-Output $gms. By the random matrix theory, it is well-known that the
Signal-to-Noise Ratio (SNR) at the output of this receivehdves asymptotically like a Gaussian random variable as
the number of receive and transmit antennas convergeoto at the same rate. However, this approximation being
inaccurate for the estimation of some performance mettch ss the Bit Error Rate and the outage probability,
especially for small system dimensions,dtial. proposed convincingly to assume that the SNR follows a gdized
Gamma distribution which parameters are tuned by computiadirst three asymptotic moments of the SNR. In this
article, this technique is generalized to (receive) catezl channels, and closed-form expressions for the firgethr
asymptotic moments of the SNR are provided. To obtain theselts, a random matrix theory technique adapted to
matrices with Gaussian elements is used. This techniquelisvbd to be simple, efficient, and of broad interest in
wireless communications. Simulations are provided, armvstnat the proposed technique yields in general a good
accuracy, even for small system dimensions.

Index Terms. Large random matrices, correlated channels, outage pititpaBit Error Rate (BER), Gamma
approximation, minimum mean square error, Multiple-Inpiltiple-Output (MIMO) systems, Signal-to-Noise
Ratio (SNR).

I. INTRODUCTION

Since the mid-nineties, digital communications over Miéilnput Multiple Output (MIMO) wireless channels
have aroused an intense research effort. It is indeed wellvk since Telatar's work [1] that antenna diversity
increases significantly the Shannon mutual information afieless link; In rich scattering environments, this
mutual information increases linearly with the minimum ragnof transmit and receive antennas. Since the findings
of [1], a major effort has been devoted to analyse the stistf the mutual information. Such an analysis has
strong practical impacts: For instance, it can providenmi@tion about the gain obtained from scheduling strategies
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[2]; it can be used as a performance metric to optimally $dhee active transmit antennas [3], etc.

The early results on MIMO channels mutual information caoned channels with centered independent and
identically distributed entries. It is of interest to stuthe statistics of this mutual information for more practica

(correlated) MIMO channels. In this course, many works ldisthed the asymptotic normality of the mutual

information in the large dimension regime for the so calle@nécker correlated channels [4], [5], for general
spatially correlated channels [6] and for general varigmodile channels [7].

Another performance index of clear interest is the Signalldise Ratio (SNR) at the output of a given receiver.
In this paper we focus on one of the most popular receiveraghathe linear Wiener receiver, also called LMMSE
for Linear Minimum Mean Squared Error receiver. In this @t anoutageevent occurs when the SNR at the
LMMSE output lies beneath a given threshold. One purposiefgaper is to approximate the associated outage
probability for an important class of MIMO channel modelsiother performance index associated with the SNR
is the Bit Error Rate (BER) which will be also studied herein.

Outage probability approximations has been provided iremeevorks for various channels, under very specific
technical conditions (in the case where the moment gengrétinction [8] or the probability density function [9]
have closed form expressions; when a first order expansitimegbrobability density function can be derived [10];
in the more general case where the moment generating funzdio be approximated by using Padé approximations
[11]; etc.). All these results deal with specific situatiomsere the statistics of the SNR could be derived for finite
system dimensions.

Alternatively, by making use of large random matrix theanye can study the behavior of the SNR in the asymptotic
regime where the channel matrix dimensions grow to infifkity. fairly general channel statistical models, it is then
possible to prove the convergence of the SNR to deterndnistiues and even establish its asymptotic normality
(see for instance [12], [13]). However, this Gaussian apipmation is not accurate when the channel dimensions
are small. This is confirmed in.g.[14] where it is shown that the asymptotic BER based on the &dussian
approximation is significantly smaller than the empiricstimate. A more precise approximation of the BER or the
outage probability is expected if one chooses to approxrtae SNR probability distribution with a distribution
1) which is supported bR (indeed, a Gaussian random variable takes negative valhieh s not realistic), 2)
which is adjusted to the first three moments of the SNR instéatie first two moments needed by the Gaussian
approximation.

In this line of thought, Li, Paul, Narasimhan and Cioffi [15pposed to use alternative parameterized distributions
(Gamma and generalized Gamma distributions) whose pagasnate set to coincide with the asymptotic moments
of the output SNR. This approach was derived for (transnotyedated channels and asymptotic moments were
provided for the special case of uncorrelated or equicatedl channels. For the general correlated channel case,
only limiting upper bounds for the first three asymptotic nemts were provided. Based on Random Matrix Theory
and especially on the Gaussian mathematical tools elazbnaf4] and further used in [16], we derive closed-form
expressions for the first three moments, generalizing thek wb [15] to a general (receive) correlated channel.

Using the generalized Gamma approximation, we provideedderm expressions for the BER and numerical
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approximations for the outage probability.

Paper organization

In section Il, we present the system model and derive the SkfRession. Then we review in section Ill the
Generalized Gamma approximation before providing the asytic central moments in the next section. Finally,

we discuss in the last section the simulation results.

II. SYSTEM MODEL AND SNR EXPRESSION

We consider an uplink transmission system, in which a bas@stequipped byV correlated antennas detects
the symbols of a given user of interest in the presenc& afterfering users. Thév dimensional received signal
writes:

r=23s+n,

wheres = [sq, - - ,sK]T is the transmitted complex vector signal with sige+ 1 satisfyingEss* = I, and

Y is the N x (K + 1) channel matrix. We assume that this matrix writes as
s - L giwpt
NG )
where® a N x N Hermitian nonnegative matrix that captures the correfatiat the receiveR = diag (po, - - - , px)
is the deterministic matrix of the powers allocated to thiéedent users andV = [wyg,--- ,wg] (w being the
kth column) is aN x (K + 1) complex Gaussian matrix with centered unit variance (sted)dindependent and

identically distributed (i.i.d) entries. To detect symbgland to mitigate the interference caused by ugers., K,

the base station applies the LMMSE estimator, which mingsithe following metric:
g= m}}nE Ih*r — so|® .

Lety = \/%\Il%wo, then it is well known that the LMMSE estimator is given by:
g=(IX" +ply) 'y

Writing the received vector = sgy + ry, wheresgy is the relevant term ang, represents the interference plus
noise term, the SNR at the output of the LMMSE estimator i2giby : Sx = |g*y|* /E |g*ri|*. Plugging the

expression og given above into this expression, one can show that the S8NRs given by:
-1
1 — e —
Bk =y* (E\II%WPW*\II% + pIN> y,

with P = diag (p1,--+ ,PK) and W = [wy, -+ ,wgk]. Let @ = UDU* be a spectral decomposition &. Then,

B writes:

1 o -1
Bx = %WSUD% (ED%U*WPW*UD%JF;)IN) D:U*wy ,

-1
1 ~
= f—;(z*D% (K—pD5ZDZ*D5+I) Diz
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where:z = U*w (resp.Z = U*W’) is aN x 1 vector with complex independent standard Gaussian erftesp.
N x K matrix with independent Gaussian entries).

Under appropriate assumptions, it can be proved fhatadmits a deterministic approximation & N — oo,
the ratio being bounded below by a positive constant andebgva finite constant. Furthermore, its fluctuations
can be precisely described under the same asymptotic reépma full and rigorous computation based on random
matrix theory, see [13]). As it will appear shortly, a deteristic approximation of the third centered moment of

Bk is needed and will be computed in the sequel.

IIl. BIT ERRORRATE AND OUTAGE PROBABILITY APPROXIMATIONS
A. A quick reminder of the generalised Gamma distribution

Recall that if a random variabl& follows a generalized gamma distributi@®(«, b, £), wherea and b are

respectively referred to as the shape and scale paramisiens,
EX =ab, var(X)=ab® and E(X —EX)> = (£+1)ad® .

The probability density function (pdf) of the generalizedr®ma distribution with parameters,(, &) does not

have a closed form expression but its moment generatingitmMGF) writes:

o 1.
sap(s) - | P (006 ) e

exp(12((1 —bs) € — 1)) if £ <1.

B. BER approximation

Under QPSK constellations with Gray encoding and assunfiagthe noise at the LMMSE output is Gaussian,
the BER is given by:
BER = EQ(v/Sk)

whereQ(z) = \/% I e~t’/2 4t and the expectation is taken over the distribution of the SR Based on the

asymptotic normality of the SNR, [17] and [18] proposed te tise limiting BER value given by:

1 [ 2
BER = —/ e V24,
V2 J\/B

where 3, denotes an asymptotic deterministic approximation of tre fnoment of3x. It was shown however in
[15] that this expression is inaccurate since a Gaussiatorarvariable allows negative values and has a zero third
moment while the output SNR is always positive and has a moa-third moment for finite system dimensions.
To overcome these difficulties, lat al. [15] approximate the BER by considering first that the SNRofes a
Gamma distribution with scale and shapé, these parameters being tuned by equating the first two misnoén
the Gamma distribution with the first two asymptotic momeaftthe SNR. However, the third asymptotic moment
was shown to be different from the third moment of the Gamrs&itution which only depends on the scaland
shapeb. In light of this consideration, Let al. [15] refine this approximation and consider that the SNRofed

a generalized Gamma distribution which is adjusted by assyithat its first three moments equate the first three
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asymptotic moments of the SNR. As expected, this approximdtas proved to be more accurate than the Gamma
approximation, and so will be the one considered in this pagpext, we briefly review this technique, which we
will rely on to provide accurate approximations for the BERIautage probability.

Let Ew(BK), vare(Sx) and So(Bk) denote respectively the deterministic approximationshef asymptotic

central moments ofx. Then, the parametets o andb are determined by solving:
Eoo(Br) = ab, vare(fx) =ab® and S.(Br) = (& +1)ab,

thus giving the following values:

=— =———>— and {=——"—""—-—1
C T (B 0T B (B) $ T e (Br)?
Using the MGF, one can evaluate the BER by using the followeigtion [19], that holds for QPSK constellation:
1 [ 1
BER = — MGF | ————— | d¢. 1
m /0 ( 25sin? <z>) ’ @

Note that similar expressions for the BER exist for othersteltations and can be derived by plugging the following
identity involving the functionQ(z) [19]:

1 [2 x?
== ———— | df
Q) 0 /0 P ( 2 sin? 9)

C. Outage probability approximation

into the BER expression.

Only the moment generation function (MGF) has a closed foxpression. Knowing the MGF, one can compute
numerically the cumulative distribution function by apiply the saddle point approximation technique [20]. Denote
by K(y) = log(MGF(y)) the cumulative generating function, lgythe threshold SNR and bgj, the solution of
K'(t,) = y. Letwo andug be given by, = sign(t,)/2 (t,y — K(t,)) andug = t,/K” (t,). The saddle point
approximate of the outage probability is given by:

mm=wmwwmwﬁl—i), )

wo uo
where ®(z) = [* \/%7642/2 dt and ¢(z) = \/%eﬂ”z/? denote respectively the standard normal cumulative
distribution function and probability distribution funah.
So far, we have presented the technique that will be usedrinlations for the evaluation of the BER and outage
probability. This technique is heavily based on the comgurtaof the three first asymptotic moments of the SNR

Br, an issue that is handled in the next section.
IV. ASYMPTOTIC MOMENTS

A. Assumptions

Recall from Sectiof]l the various definitiods, N, D, D. In the following, we assume that bofki and N go

to +o00, their ratio being bounded below and above as follows:

K K
0 < £*zliminfﬁ < €+:hmsupﬁ < 400 .
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In the sequel, the notatioR — oo will refer to this asymptotic regime. We will frequently weiD - and Dy to
emphasize the dependenceAn but may drop the subscrigt as well. Assume the following mild conditions:

Assumption Al: There exist real numberg, ., < oo and dmax < 00 such that:
sup |[Di|| < dmax  and  sup [Dg|| < dmax,
K K

where||Dx|| and|Dx || are the spectral norms @y andD.

Assumption A2: The normalized traces dDx and f)K satisfy:

o1 R NS
1}1? ETI"(DK) >0 and 1?(f ETr(DK) > 0.

B. Asymptotic moments computation

In this section, we provide closed form expressions for tts fiiree asymptotic moments. We shall first introduce
some deterministic quantities that are used for the contiputaf the first, second and third asymptotic moments.
Proposition 1: (cf. [4]) For every integet and anyt > 0, the system of equations i@, 6)
~ —1
5}( = %TI‘DK (I+t5KDK) )

Sk = LTiDg (I+t5Kf)K)_la

admits a unique solutioﬁzSK(t), SK(t)) satisfyingd (t) > 0, dx(t) > 0.
Let T andT be theN x N andK x K diagonal matrices defined by:

T = (I+t§}<D)71 and T = (I+t6K]~D)71.

Note that in particulard = L TrDT ands = +TrDT. Define alsoy andy asy = +TrD*T? andy = £+ TrD>T?.

Finally, replacet by % and introduce the following deterministic quantities:

02— l( w~+1>’
K p2 \ p2 — 7%
2P3 3m3 73 33
v = 7~3{TrDT ~ ZTiD*T
K (p* =77) p

As usual, the notationx = O(Bx) means thatvx (8x) ! is uniformly bounded ag — oco. Then, the first three
asymptotic moments are given by the following theorem:
Theorem 1:Assuming that the matricdd andD satisfy the conditions stated andA2 then the following
convergences hold true:
1) First asymptotic moment [12], [13]:
0K

7:(’)(1) and E(—)———NL

2) Second asymptotic moment [12], [13]:

2
Qx =0(1) and KE (B—K ~E (B—K)) -4 ——0,
Po Po K—o0
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3) Third asymptotic moment:

vk =0(1) and K°E (i—f -E (%))3 —vg — 0.
The two first items of the theorem are proved in [13] (bewasd the notations used in this article are the same
as those in [4] and slightly differ from those used in [13]jo&f of the third item of the theorem is postponed to
the appendix.
Remark 1:0ne can note that the third asymptotic moment is of odéK —2). This is in accordance with the
asymptotic normality of the SNR, where the third momentyak (3x — E(Sx)) will eventually vanish, as this
guantity becomes closer to a Gaussian random variable. ¥owits value remains significant for small dimension

systems.

V. SIMULATION RESULTS

In our simulations, we consider a MIMO system in the uplinkedtion. The base station is equipped with
receiving antennas and detects the symbols transmittedpayteular user in the presence A&f interfering users.
We assume that the correlation matdx is given by ¥ (i, j) = \/%a‘i_ﬂ with 0 < a < 1. Recall thatP is the
matrix of the interfering users’ powers. We s]@t(up to a permutation of its diagonal elements) to:

B_ diag([4P 5P]) if K=2
diag[P P 2P 4P)) if K=4
where P is the power of the user of interest. Féf = 2P with 3 < p < 5, we assume that the powers of

the interfering sources are arranged into five classes asbfe[M. We investigate the impact of the correlation

TABLE |

POWER CLASSES AND RELATIVE FREQUENCIES

Class 1 2 3 4 5
Power P 2P 4P 8P | 16P
Relative frequency| 1/8 | 1/4 | 1/4 | 1/8 | 1/4

coefficienta on the accuracy of the asymptotic moments when the input SN\seti to15dB for N = K (Fig.[)
and N = 2K (Fig.[2). In these figures, the relative error on the estichditest three momenté’*”p—_“‘ ( poo and

1 denote respectively the asymptotic and empirical momestdepicted with respect to the correlation coefficient
a. These simulations show that when the number of antennas&l, she asymptotic approximation of the second
and third moments degrades for large correlation coeffisién close to one). Despite these discrepanciesafor
close tol, simulations show that the BER and the outage probabiliéyveell approximated even for small system
dimensions. Indeed, Figufé 3 shows the evolution of the BoghiBER and the theoretical BER predicted by (1)
versus the input SNR for different values @f K and V. In Figure[4, the saddle point approximate of the outage

probability given by [(R) is compared with the empirical ofe.both Figures 3 anfd] 4000 channel realizations
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have been considered, and in Figj. 4, the input SNR has bed¢a s&tdB. These figures show that even for small
system dimensions, the BER is well approximated for a wiggyeaof SNR values. The outage probability is also
well approximated except for small values of the SNR thr&thizat are likely to be in the tail of the asymptotic

distribution.

APPENDIX |

PROOF OFTHEOREMI[I]

In the sequel, we shall heavily rely on the results and tepies developed in [4]. In the sequ#), andD are
respectivelyN x N and K x K diagonal matrices which satisfIl and[A2, Z is a N x K matrix whose entries

are i.i.d. standard complex Gaussi3,is a N x K matrix defined by:
X =D?ZD>? .

We shall often writeX = [x1, - - - ,xx] where thex;'s areX’s columns. We recall hereafter the mathematical tools

that will be of constant use in the sequel.

A. Notations
Define the resolvant matrik by:
t 1~ 1 - t -t
H=|-=D?ZDZ*D> +1 = | =XX*"+1 .
(K 2 2 + N) (K + N)
We introduce the following intermediate quantities:
1 1 o
B(t) = ETr(DH), at) = ETr(DIEH) and p=p-a.
Matrix R(t) = diag (71, --- ,7x) is a K x K diagonal matrix defined by:
~ ~ —1
R() = (T+ta()Dk) .
Leta = %Tr(ﬁf{). Then, matrixR(t) = diag (r1,--- ,7n) is @ N x N matrix defined by:

R(t) = (I+ta(t)D)~".

B. Mathematical Tools

The results below, of constant use in the proof of Thedremam, e found in [4].
1) Differentiation formulas :
OHpq t t

X, = F (X"H];, Hyi = — 5 [ H] Hy. (3)
0Hpq t t
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2) Integration by parts formula for Gaussian functionals:Let ® be aC' complex function polynomially

bounded together with its derivatives, then:

- |0 @(X)}
E[X;;®(X)] = d;d;E . 5
x,000) = a2 ®
3) Poincaré-Nash inequalityLet X and® be as above, then:
N K 2 2
~ 09(X) 09(X)
Var(® () = i=1 j=1 i U 0Xi; ’ 0X,; ©)

4) Deterministic approximations and various estimations:
Proposition 2: Let (A k) and(B ) be two sequences of respectivélyx N and K x K diagonal deterministic

matrices whose spectral norm are uniformly bounde&inthen the following hold true:

1 ! s 1 SN s s
KTr(AR) = KTr(AT) +O(K™9), KTr(BR) = KTr(BT) + O(K™9).
Proposition 3: Let (A k), (Bx) and(C) be three sequences dfx N, K x K andN x N diagonal deterministic
matrices whose spectral norm are uniformly bounde&’inConsider the following functions:
XBX* XBX*
e .

d(X) = %Tl" (AH ) . U(X) = %Tl" (AHDH

Then,

1) the following estimations hold true:
var ®(X), var ¥(X), var(8) and var <%TrAHCH> are O(K™?%).

2) the following approximations hold true:

E[®(X)] = %Tr (f)’f‘B) %Tr(ADT) +O(K™2), (7)
E[W(X)] = ﬁ <%Tr (ﬁTB) Tr(ADT?) — %Tr (f)QTQB) Tr(ADT)) +O(K™2), (8)

1 11 _
ETr [AHDH] = mETr(ADTQ) + O(K™2). (9)

Proofs of Propositions|2 arid 3 are essentially provided jnlfdthe same vein, the following proposition will be
needed.

Proposition 4: Let (A k), (Bx) and(Cx) be three sequences dfx N, K x K andN x N diagonal deterministic
matrices whose spectral norm are uniformly bounde&’inConsider the following function:

1 XBX*
¢(X) = = Tr | CHAHAH

Thenvar o(X) = O(K~?) andvar (+TrAHAHAH) = O(K %) .
Proof of Propositioill4 is essentially the same as the pro&fropositior B-1). It is provided for completeness and

postponed to appendix II.
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C. End of proof of Theoref 1

We are now in position to complete the proof of Theofem 1. Yshe notations of [4], the SNR writes:
t
Bx = %Z*D%H(t)D%z,

wheret = %. Hence, the third moment is given by:

tp0)° (it 3
E(8x —EBk)® = %E (z D:HD?z — IETrDH) ,

(tP0)® o [ ey gy 3

~ 2 E(z'D'HD’z - T'DH + ThDH — ET:DH) .
t 3T 3 2

- (?3) E (z*D%HD%z - TrDH) +3E (z*D%HD%z - TrDH) (TtDH — ETrDH)
+3E (z*D%HD%z - TrDH) (TtDH — ETrDH)? + E (TrDH — ETrDH)ﬂ ,
tpo)S T 3 2

- (?3) E (z*D%HD%z - TrDH) +3E (z*D%HD%z - TrDH) (TrDH — ETrDH)
+E (TrDH — ETrDH)?’} (10)

In order to deal with the first term of the right-hand side[dl)(Inotice that ifM is a deterministic matrix anst

is a standard Gaussian vector, then:
E (x*Mx — TrM)® = Te(M?)E (a1 2 - 1)°
(such an identity can be easily proved by considering thetsgledecomposition oM). Hence,
1 1 3 3 2 3
E (z*DEHsz - TrDH) = ETr(DHPE(|Zu)* -1)°,
= 2ETr (DHDHDH).
The second term of the right-hand side [of1(10) is uniformlymaed inK. Indeed:

3E (|Z11|* — 1)’ TTDHDH (TrDH — ETYDH) ,

3E (z*D%HD%z - Tr(DH))2

IN

3y/var (T'DHDH)+/var (TrDH)

which is O(1) according to Propositiofl 3. It remains to deal Wit TrDH — ETrDH)®, which can be proved to
be uniformly bounded irK using concentration results for the spectral measure afarmnmatrices [21] (see also
[15, eq.(86)-(87)], where details are provided). Consetlyewe end up with the following approximation:

3
K2E (Bx — EBk)® = %E (121> — 1)’ ETY'DHDHDH + O (K ")

which is deterministic but still depends on the distribotf the entries via the expectation operdforThe rest of

the proof is devoted to provide a deterministic approxioratf ETr (DHDHDH) depending ory, 4, T andT.
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11

Note thatH = I — - HXX", thus:

XX*
[HDHDH]|,, = [HDHD] -t [HDHDH = Lp,
K
t _
= [HDHDJ,, — - ) [HDHDHx;], X, (11)
j=1

Let us deal with the second term ¢f{11). We have:

N
1 — 1 _
E— [HDHDHx;], X,; = — > E ([HDHDH]pk X,Cjij) .
k=1
Using the integration by part formulfl(5), we get:
N N N
— . N Hopododp Hp Hyp,
E[HDHDHx;| X,; = Y dpd;d(p— k)E[HDHDH],, + Y dpd;E | X5 > O Hpe Eax—g i
k=1 k=1 £,m=1 kj
- t N -
~ d,d;E[HDHDH],, — — Y ddjdud(E [ Xy [Hx;], HeeHom Ho
kl,m=1
t X - _
% > dididimdeR [ X5 Hpp [HX;], Hy Honi |
k4,m=1
t X .
— > dididimdeE [HyHpp [Hx;],, Hir] -
k,4,m=1

~ d,d,E[HDHDH], — %J,-]E {[ij]px_pjﬂ (DHDHDH)}

—%JJE [[HDij]p X—pjTr(DHDH)} - %JJE [[HDHDij]p X, Tr (DH)| .
Substituting in the last terng}TrDH =§ +a whereéz 8 — «, we get:

E[HDHDHx] X,; = d,d,E[HDHDH], — %JJ—E [[ij]p X, Tr (DHDHDH)}
—%J,-]E [HDHx;], X,,;Ts (DHDH) | — td;E {[HDHDij]pX—pj ﬂ}
~td;E |[HDHDHXx;], X, o.
Therefore, we have:
(1 + tacij) E {[HDHDij]p X—m] = d,d;E[HDHDH], — %IE {[ij]px—pjdjﬂ [DHDHDH]}

_%JJ—E [[HDij]p X,; Tr [DHDH]} — td;E {[HDHDij]pX—m- [3] :
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12

Multiplying the right hand and the left hand sides by= we get:

1 _
1+tad;’
- - t ~
E [HDHDij]p Xp; = T7Tidpd;E [HDHDH]pp - ?ijE [[ij] X jd;Tr [DHDHDH]}
t ~ __ ~ ____ o
— EdﬁjE [[HDij]p X, Tr [DHDH]} —td;7;E {HDHDij]p Xy [3] . (12)

Plugging [I2) into[(T1), we obtain:

K K
E[HDHDH],, = E[HDHD], Z E[HDHDH], Z E [Hx;], X,;d; Tr[DHDHDH]|
2 Ko K Y
+-= Y d;iE[HDHx,;] X, ;Tr[DHDH] + Z E[HDHDHXx;] X, ; 3,

j=1 j=1

- t2 .

~ E[HDHD],, tad,E [HDHDH], + —ET(DHDHDH) [HXRDX Lp
t2 — t2 o ~ ~

+-=ETr [DHDH] [HDHXDRX*} +=E3 [HDHDHXDRX*}

pp pp

Hence,

- 2 -
(1+tad,)E[HDHDH],, = E[HDHD], + —ETr[DHDHDH] [HXRDX }

pp
12 o~ t2_ o o~
+-ETr [DHDH] [HDHXDRX*} +—E3 [HDHDHXDRX }

pp pp

Multiplying the left and right hand sides by, = we get:

a1

Tttad,’
12 ~

E[HDHDH],, = r,E[HDHD], + ——,ETr[DHDHDH] {HXRDX*}

2

K2

pp
2

—r,ETr [DHDH] [HDHX]SIN{X*} + %%Eé [HDHDHX]NDIN{X*} .(13)
pp

pp
Multiplying by d,,, summing overp and dividing by X', we obtain:
1 1 &
E=Tr[DHDHDH] = E- ) d,[HDHDH]
p=1
K 2 —
- erd E[HDHD] KSETr(DHDHDH) Tr (DRHXRDX*)
K=

2 ~ ~
+% r (DHDH) Tr (DRHDHXDRX*)

2
el
X1+ x2 + X3+ X4, (14)

pp’

E §Tr (PREHDHDHXDRX" ).,

>
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where:

X1 = %ETI" (DRHDHD) |,
2 1 XDRX*
2 1 XDRX*
2 o XDRX*

According to PropositioRl3var 4 Tr (DRHDHDH%) is of orderO(K —2). Similarly, var(8) = O(K ~2).
Hence, using Cauchy-Schwartz inequality, we get the efitimac, = O(K~2). It remains to work out the
expressions involved ig1, x2 andys by removing the terms with expectation and replacing theth déterministic
equivalents.

Since var Tr (DRH%) = O(K~?) by Proposition[B andvar(+TrDHDHDH) = O(K~?) by
Propositio %, we have:

t? 1
= —ETr(DHDHDH)E | —Tr
X2 K ( ) (K

DRH%]) + O(K™2),

@ 1 P e . o

¢ —ETr(DHDHDH) —_Tr (DTDR) = Tr (DRDT) + O(K ),

2

®) %]ETr (DHDHDH) 73 + O(K~?) . (15)

where (a) follows from Propositidd 3-2) and (b), from Pragos [2. Similar arguments yield:

2 D *
X3 = %]ETr(DHDH)E<%Tr lDRHDH%D +O(K™?),
~ [ L1 (BTBR) LTt (DRD*T?) - 1 (B*1*DR) LTH(DRDT)| + O(K )
0-27)7 | K K K "k |
#2 5 2 s _
= R [T - DT ot Y
and
v = — L1 @RDT?) + 0K
! 1—1297 K
11 _
= o DT 4 O(K ). (7

Plugging [16), [(Ib) and_(17) intg_(1L4), we obtain:
343

1 1 1>y 3 _
—ETv(DHDHDH)=—— TyD’T3 - ——_ _TvT3D3 + O(K?).
T )= R KT~ £73)? TOE™)
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Hence,

3 3 3 o 3
K2F (B_K _ EB_K> = p7~3 [’I‘rD3T3 — 7—3’I‘rD3T3} E (|le|2 — 1) +0 (i) ’
Po Po K (p? —v9) P K
3 3
S - [TrD?’T3 - 7—3TrD3T3} +0 (i) .
K (p? —~7) p K
The fact thatx = ﬁ [’I‘rD3T3 7;’ Trﬁ?”f‘ﬂ is of orderO(1) is straightforward and its proof is omitted.

Proof of Theorenil is completed.

APPENDIXII

PROOF OFPROPOSITIONZ]

The proof mainly relies on Poincaré-Nash inequality. Uding Poincaré-Nash inequality, we have:

var(p <ZdeE’ +ZdeE’ai

=1 j=1 =1 j=1

We only deal with the first term of the last inequality (the aed term can be handled similarly). We have
p(X) = % Zﬁfns,t:l Zle CppHpr Arr Hys Ass Hst Xou Buu X, - After straightforward calculations using the dif-

ferentiation formulal(3), we get that:

¢ 1) 4 4@ 4 43
oy =0 o+ + e,
where
L * * 2 _ *
o) = _F [(X*HAHAHXBX'CH],, ¢, = K3 [(X"HAHXBX"CHAH],,
(3) * @ _ *
b3 K3 [X*HXBX* CHAHAH]JZ, bi; = ﬁ [BX CHAHAH]ji.
2 2
Hence‘ §4< 1)‘ + qbl(-?)‘ + 4) ) and
N K . b 2 4t2 -
> didE ‘ 5 )‘(p 1 < BT (DHCXBX*HAHAHXDX*HAHAHXBX*CH)
i=1 j=1 K

4¢2 ~
+ BT (DHAHCXBX*HAHXDX*HAHXBX*CHAH)

2 ~
+ETr (DHAHAHCXBX*HXDX*HXBX*CHAHAH)

4 ~
+ETr (DHAHAHCXBDBX*CHAHAH) .
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We only prove that the first term of the right hand side is ofesrHl —2; the other terms being handled similarly.

Using Cauchy-Schwartz inequality, we get:

A

N K 2 2 2
7 112 4% dumax || H||I%|| C|] 2 S~ 2 )
13" S ddiElel” < = ETr ((HA) HXDX'H (AH)® (XBX") )
i=1 j=1
1

2 _ _ 1
it e | H|I?|C12 (ETr (HA) HXDX*H (AH)* (HA)* HXDX*H (AH)Q) ’

K6
X (IETr (XBX*)4)%

~ 2
442 1 [ XDX* 1 /XBX*\*
S dmaXHH”8”CH2HAH4 E— < ) E— ( ) 5

IN

K2 K K K K

where the first inequality follows by using the fact tHarAB| < ||B||Tr (A), A being hermitian non-negative

matrix and the second follows by applyig twice Cauchy-SatmiaequalitiesTr (AB) < /Tr (AA¥),/Tr (BB*)
andEXY < vVEX2vEY2. We end up the proof of the first statement by using the fa¢thia [+ Tr (£ XBxX*)"]
is uniformly bounded i’ wheneveB is a sequence of diagonal matrices with uniformly boundespl norm

andn is a given integer.
The second statement follows from the resolvent identity:

%TrAHAHAH = %TrAHAHA — %TrAHAHAHXX*.

According to the first part of the proposition,
var (%TrAHAHAHXX*) =0(K™?).

Now, TTAHAHA = TrA?HAH and var+TrA?HAH = O(K~?) by Proposition[B-1). Hence, applying
inequality var(X +Y) < var(X) + var(Y) + 24/var(X)var(Y) yields the desired result. Proof of Propositldn 4
is completed.
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