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Abstract

This paper is devoted to the study of the performance of the Linear Minimum Mean-Square Error receiver for

(receive) correlated Multiple-Input Multiple-Output systems. By the random matrix theory, it is well-known that the

Signal-to-Noise Ratio (SNR) at the output of this receiver behaves asymptotically like a Gaussian random variable as

the number of receive and transmit antennas converge to+∞ at the same rate. However, this approximation being

inaccurate for the estimation of some performance metrics such as the Bit Error Rate and the outage probability,

especially for small system dimensions, Liet al. proposed convincingly to assume that the SNR follows a generalized

Gamma distribution which parameters are tuned by computingthe first three asymptotic moments of the SNR. In this

article, this technique is generalized to (receive) correlated channels, and closed-form expressions for the first three

asymptotic moments of the SNR are provided. To obtain these results, a random matrix theory technique adapted to

matrices with Gaussian elements is used. This technique is believed to be simple, efficient, and of broad interest in

wireless communications. Simulations are provided, and show that the proposed technique yields in general a good

accuracy, even for small system dimensions.

Index Terms: Large random matrices, correlated channels, outage probability, Bit Error Rate (BER), Gamma

approximation, minimum mean square error, Multiple-InputMultiple-Output (MIMO) systems, Signal-to-Noise

Ratio (SNR).

I. I NTRODUCTION

Since the mid-nineties, digital communications over Multiple Input Multiple Output (MIMO) wireless channels

have aroused an intense research effort. It is indeed well-known since Telatar’s work [1] that antenna diversity

increases significantly the Shannon mutual information of awireless link; In rich scattering environments, this

mutual information increases linearly with the minimum number of transmit and receive antennas. Since the findings

of [1], a major effort has been devoted to analyse the statistics of the mutual information. Such an analysis has

strong practical impacts: For instance, it can provide information about the gain obtained from scheduling strategies
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[2]; it can be used as a performance metric to optimally select the active transmit antennas [3], etc.

The early results on MIMO channels mutual information concerned channels with centered independent and

identically distributed entries. It is of interest to studythe statistics of this mutual information for more practical

(correlated) MIMO channels. In this course, many works established the asymptotic normality of the mutual

information in the large dimension regime for the so called Kronecker correlated channels [4], [5], for general

spatially correlated channels [6] and for general varianceprofile channels [7].

Another performance index of clear interest is the Signal toNoise Ratio (SNR) at the output of a given receiver.

In this paper we focus on one of the most popular receivers, namely the linear Wiener receiver, also called LMMSE

for Linear Minimum Mean Squared Error receiver. In this context, anoutageevent occurs when the SNR at the

LMMSE output lies beneath a given threshold. One purpose of this paper is to approximate the associated outage

probability for an important class of MIMO channel models. Another performance index associated with the SNR

is the Bit Error Rate (BER) which will be also studied herein.

Outage probability approximations has been provided in recent works for various channels, under very specific

technical conditions (in the case where the moment generating function [8] or the probability density function [9]

have closed form expressions; when a first order expansion ofthe probability density function can be derived [10];

in the more general case where the moment generating function can be approximated by using Padé approximations

[11]; etc.). All these results deal with specific situationswhere the statistics of the SNR could be derived for finite

system dimensions.

Alternatively, by making use of large random matrix theory,one can study the behavior of the SNR in the asymptotic

regime where the channel matrix dimensions grow to infinity.For fairly general channel statistical models, it is then

possible to prove the convergence of the SNR to deterministic values and even establish its asymptotic normality

(see for instance [12], [13]). However, this Gaussian approximation is not accurate when the channel dimensions

are small. This is confirmed ine.g. [14] where it is shown that the asymptotic BER based on the sole Gaussian

approximation is significantly smaller than the empirical estimate. A more precise approximation of the BER or the

outage probability is expected if one chooses to approximate the SNR probability distribution with a distribution

1) which is supported byR+ (indeed, a Gaussian random variable takes negative values which is not realistic), 2)

which is adjusted to the first three moments of the SNR insteadof the first two moments needed by the Gaussian

approximation.

In this line of thought, Li, Paul, Narasimhan and Cioffi [15] proposed to use alternative parameterized distributions

(Gamma and generalized Gamma distributions) whose parameters are set to coincide with the asymptotic moments

of the output SNR. This approach was derived for (transmit) correlated channels and asymptotic moments were

provided for the special case of uncorrelated or equicorrelated channels. For the general correlated channel case,

only limiting upper bounds for the first three asymptotic moments were provided. Based on Random Matrix Theory

and especially on the Gaussian mathematical tools elaborated in [4] and further used in [16], we derive closed-form

expressions for the first three moments, generalizing the work of [15] to a general (receive) correlated channel.

Using the generalized Gamma approximation, we provide closed-form expressions for the BER and numerical
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approximations for the outage probability.

Paper organization

In section II, we present the system model and derive the SNR expression. Then we review in section III the

Generalized Gamma approximation before providing the asymptotic central moments in the next section. Finally,

we discuss in the last section the simulation results.

II. SYSTEM MODEL AND SNR EXPRESSION

We consider an uplink transmission system, in which a base station equipped byN correlated antennas detects

the symbols of a given user of interest in the presence ofK interfering users. TheN dimensional received signal

writes:

r = Σs+ n,

wheres = [s0, · · · , sK ]
T is the transmitted complex vector signal with sizeK + 1 satisfyingEss∗ = IK+1, and

Σ is theN × (K + 1) channel matrix. We assume that this matrix writes as

Σ =
1√
K

Ψ
1

2WP
1

2 ,

whereΨ aN×N Hermitian nonnegative matrix that captures the correlations at the receiver,P = diag (p0, · · · , pK)

is the deterministic matrix of the powers allocated to the different users andW = [w0, · · · ,wK ] (wk being the

kth column) is aN × (K + 1) complex Gaussian matrix with centered unit variance (standard) independent and

identically distributed (i.i.d) entries. To detect symbols0 and to mitigate the interference caused by users1, . . . ,K,

the base station applies the LMMSE estimator, which minimizes the following metric:

g = min
h

E |h∗r− s0|2 .

Let y =
√

p0

K Ψ
1

2w0, then it is well known that the LMMSE estimator is given by:

g = (ΣΣ∗ + ρIN )
−1

y.

Writing the received vectorr = s0y + rin wheres0y is the relevant term andrin represents the interference plus

noise term, the SNR at the output of the LMMSE estimator is given by :βK = |g∗y|2 /E |g∗rin|2. Plugging the

expression ofg given above into this expression, one can show that the SNRβK is given by:

βK = y∗
(

1

K
Ψ

1

2W̃P̃W̃∗Ψ
1

2 + ρIN

)−1

y,

with P̃ = diag (p1, · · · , pK) andW̃ = [w1, · · · ,wK ]. Let Ψ = UDU∗ be a spectral decomposition ofΨ. Then,

βK writes:

βK =
p0
K

w∗
0UD

1

2

(
1

K
D

1

2U∗W̃P̃W̃∗UD
1

2 + ρIN

)−1

D
1

2U∗w0 ,

=
p0
ρK

z∗D
1

2

(
1

Kρ
D

1

2ZD̃Z∗D
1

2 + I

)−1

D
1

2 z
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where:z = U∗w0 (resp.Z = U∗W̃) is aN × 1 vector with complex independent standard Gaussian entries(resp.

N ×K matrix with independent Gaussian entries).

Under appropriate assumptions, it can be proved thatβK admits a deterministic approximation asK,N → ∞,

the ratio being bounded below by a positive constant and above by a finite constant. Furthermore, its fluctuations

can be precisely described under the same asymptotic regime(for a full and rigorous computation based on random

matrix theory, see [13]). As it will appear shortly, a deterministic approximation of the third centered moment of

βK is needed and will be computed in the sequel.

III. B IT ERROR RATE AND OUTAGE PROBABILITY APPROXIMATIONS

A. A quick reminder of the generalised Gamma distribution

Recall that if a random variableX follows a generalized gamma distributionG(α, b, ξ), whereα and b are

respectively referred to as the shape and scale parameters,then:

EX = αb, var(X) = αb2 and E(X − EX)3 = (ξ + 1)αb3 .

The probability density function (pdf) of the generalized Gamma distribution with parameters (α, b, ξ) does not

have a closed form expression but its moment generating function (MGF) writes:

MGF(s) =





exp( α
ξ−1 (1− (1− bξs)

ξ−1

ξ )) if ξ > 1,

exp( α
1−ξ ((1− bξs)

ξ−1

ξ − 1)) if ξ ≤ 1.

B. BER approximation

Under QPSK constellations with Gray encoding and assuming that the noise at the LMMSE output is Gaussian,

the BER is given by:

BER = EQ(
√
βK)

whereQ(x) = 1√
2π

∫∞
x

e−t2/2 dt and the expectation is taken over the distribution of the SNRβK . Based on the

asymptotic normality of the SNR, [17] and [18] proposed to use the limitingBER value given by:

BER =
1√
2π

∫ ∞
√

βK

e−t2/2dt,

whereβK denotes an asymptotic deterministic approximation of the first moment ofβK . It was shown however in

[15] that this expression is inaccurate since a Gaussian random variable allows negative values and has a zero third

moment while the output SNR is always positive and has a non-zero third moment for finite system dimensions.

To overcome these difficulties, Liet al. [15] approximate the BER by considering first that the SNR follows a

Gamma distribution with scaleα and shapeb, these parameters being tuned by equating the first two moments of

the Gamma distribution with the first two asymptotic momentsof the SNR. However, the third asymptotic moment

was shown to be different from the third moment of the Gamma distribution which only depends on the scaleα and

shapeb. In light of this consideration, Liet al. [15] refine this approximation and consider that the SNR follows

a generalized Gamma distribution which is adjusted by assuming that its first three moments equate the first three
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asymptotic moments of the SNR. As expected, this approximation has proved to be more accurate than the Gamma

approximation, and so will be the one considered in this paper. Next, we briefly review this technique, which we

will rely on to provide accurate approximations for the BER and outage probability.

Let E∞(βK), var∞(βK) and S∞(βK) denote respectively the deterministic approximations of the asymptotic

central moments ofβK . Then, the parametersξ, α andb are determined by solving:

E∞(βK) = αb, var∞(βK) = αb2 and S∞(βK) = (ξ + 1)αb3,

thus giving the following values:

α =
(E∞(βK))2

var∞(βK)
, β =

var∞(βK)

E∞(βK)
and ξ =

S∞(βK)E∞(βK)

(var∞(βK))2
− 1.

Using the MGF, one can evaluate the BER by using the followingrelation [19], that holds for QPSK constellation:

BER =
1

π

∫ π
2

0

MGF

(
− 1

2 sin2 φ

)
dφ. (1)

Note that similar expressions for the BER exist for other constellations and can be derived by plugging the following

identity involving the functionQ(x) [19]:

Q(x) =
1

π

∫ π
2

0

exp

(
− x2

2 sin2 θ

)
dθ

into the BER expression.

C. Outage probability approximation

Only the moment generation function (MGF) has a closed form expression. Knowing the MGF, one can compute

numerically the cumulative distribution function by applying the saddle point approximation technique [20]. Denote

by K(y) = log(MGF(y)) the cumulative generating function, byy the threshold SNR and byty the solution of

K ′(ty) = y. Let w0 andu0 be given by:w0 = sign(ty)
√
2 (tyy −K(ty)) andu0 = ty

√
K”(ty). The saddle point

approximate of the outage probability is given by:

Pout = Φ(w0) + φ(w0)

(
1

w0
− 1

u0

)
, (2)

whereΦ(x) =
∫ x

−∞
1√
2π

e−t2/2 dt and φ(x) = 1√
2π

e−x2/2 denote respectively the standard normal cumulative

distribution function and probability distribution function.

So far, we have presented the technique that will be used in simulations for the evaluation of the BER and outage

probability. This technique is heavily based on the computation of the three first asymptotic moments of the SNR

βK , an issue that is handled in the next section.

IV. A SYMPTOTIC MOMENTS

A. Assumptions

Recall from Section II the various definitionsK,N,D, D̃. In the following, we assume that bothK andN go

to +∞, their ratio being bounded below and above as follows:

0 < ℓ− = lim inf
K

N
≤ ℓ+ = lim sup

K

N
< +∞ .
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In the sequel, the notationK → ∞ will refer to this asymptotic regime. We will frequently write DK andD̃K to

emphasize the dependence inK, but may drop the subscriptK as well. Assume the following mild conditions:

Assumption A1: There exist real numbersdmax < ∞ and d̃max < ∞ such that:

sup
K

‖DK‖ ≤ dmax and sup
K

‖D̃K‖ ≤ d̃max,

where‖DK‖ and‖D̃K‖ are the spectral norms ofDK andD̃K .

Assumption A2: The normalized traces ofDK andD̃K satisfy:

inf
K

1

K
Tr(DK) > 0 and inf

K

1

K
Tr(D̃K) > 0.

B. Asymptotic moments computation

In this section, we provide closed form expressions for the first three asymptotic moments. We shall first introduce

some deterministic quantities that are used for the computation of the first, second and third asymptotic moments.

Proposition 1: (cf. [4]) For every integerK and anyt > 0, the system of equations in(δ, δ̃)




δK = 1
KTrDK

(
I+ tδ̃KDK

)−1

,

δ̃K = 1
KTrD̃K

(
I+ tδKD̃K

)−1

,

admits a unique solution
(
δK(t), δ̃K(t)

)
satisfyingδK(t) > 0, δ̃K(t) > 0.

Let T andT̃ be theN ×N andK ×K diagonal matrices defined by:

T =
(
I+ tδ̃KD

)−1

and T̃ =
(
I+ tδKD̃

)−1

.

Note that in particular:δ = 1
KTrDT andδ̃ = 1

KTrD̃T̃. Define alsoγ andγ̃ asγ = 1
KTrD2T2 andγ̃ = 1

KTrD̃2T̃2.

Finally, replacet by 1
ρ and introduce the following deterministic quantities:

Ω2
K =

γ

ρ2

(
γγ̃

ρ2 − γγ̃
+ 1

)
,

νK =
2ρ3

K (ρ2 − γγ̃)
3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
.

As usual, the notationαK = O(βK) means thatαK(βK)−1 is uniformly bounded asK → ∞. Then, the first three

asymptotic moments are given by the following theorem:

Theorem 1:Assuming that the matricesD andD̃ satisfy the conditions stated inA1 andA2, then the following

convergences hold true:

1) First asymptotic moment [12], [13]:

δK
ρ

= O(1) and E

(
βK

p0

)
− δK

ρ
−−−−→
K→∞

0,

2) Second asymptotic moment [12], [13]:

ΩK = O(1) and KE

(
βK

p0
− E

(
βK

p0

))2

− Ω2
K −−−−→

K→∞
0,
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3) Third asymptotic moment:

νK = O(1) and K2
E

(
βK

p0
− E

(
βK

p0

))3

− νK −−−−→
K→∞

0.

The two first items of the theorem are proved in [13] (beware that the notations used in this article are the same

as those in [4] and slightly differ from those used in [13]). Proof of the third item of the theorem is postponed to

the appendix.

Remark 1:One can note that the third asymptotic moment is of orderO(K−2). This is in accordance with the

asymptotic normality of the SNR, where the third moment of
√
K(βK − E(βK)) will eventually vanish, as this

quantity becomes closer to a Gaussian random variable. However, its value remains significant for small dimension

systems.

V. SIMULATION RESULTS

In our simulations, we consider a MIMO system in the uplink direction. The base station is equipped withN

receiving antennas and detects the symbols transmitted by aparticular user in the presence ofK interfering users.

We assume that the correlation matrixΨ is given byΨ(i, j) =
√

K
N a|i−j| with 0 ≤ a < 1. Recall thatP̃ is the

matrix of the interfering users’ powers. We setP̃ (up to a permutation of its diagonal elements) to:

P̃ =





diag([4P 5P ]) if K = 2

diag([P P 2P 4P ]) if K = 4
,

whereP is the power of the user of interest. ForK = 2p with 3 ≤ p ≤ 5, we assume that the powers of

the interfering sources are arranged into five classes as in Table V. We investigate the impact of the correlation

TABLE I

POWER CLASSES AND RELATIVE FREQUENCIES

Class 1 2 3 4 5

Power P 2P 4P 8P 16P

Relative frequency 1/8 1/4 1/4 1/8 1/4

coefficienta on the accuracy of the asymptotic moments when the input SNR is set to15dB for N = K (Fig. 1)

andN = 2K (Fig. 2). In these figures, the relative error on the estimated first three moments|µ∞−µ|
µ ( µ∞ and

µ denote respectively the asymptotic and empirical moment ) is depicted with respect to the correlation coefficient

a. These simulations show that when the number of antennas is small, the asymptotic approximation of the second

and third moments degrades for large correlation coefficients (a close to one). Despite these discrepancies fora

close to1, simulations show that the BER and the outage probability are well approximated even for small system

dimensions. Indeed, Figure 3 shows the evolution of the empirical BER and the theoretical BER predicted by (1)

versus the input SNR for different values ofa, K andN . In Figure 4, the saddle point approximate of the outage

probability given by (2) is compared with the empirical one.In both Figures 3 and 4,2000 channel realizations
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have been considered, and in Fig. 4, the input SNR has been setto 15 dB. These figures show that even for small

system dimensions, the BER is well approximated for a wide range of SNR values. The outage probability is also

well approximated except for small values of the SNR threshold that are likely to be in the tail of the asymptotic

distribution.

APPENDIX I

PROOF OFTHEOREM 1

In the sequel, we shall heavily rely on the results and techniques developed in [4]. In the sequel,D andD̃ are

respectivelyN ×N andK ×K diagonal matrices which satisfyA1 andA2, Z is aN ×K matrix whose entries

are i.i.d. standard complex Gaussian,X is aN ×K matrix defined by:

X = D
1

2ZD̃
1

2 .

We shall often writeX = [x1, · · · ,xK ] where thexj ’s areX’s columns. We recall hereafter the mathematical tools

that will be of constant use in the sequel.

A. Notations

Define the resolvant matrixH by:

H =

(
t

K
D

1

2ZD̃Z∗D
1

2 + IN

)−1

=

(
t

K
XX∗ + IN

)−1

.

We introduce the following intermediate quantities:

β(t) =
1

K
Tr(DH), α(t) =

1

K
Tr(DEH) and

o

β= β − α .

Matrix R̃(t) = diag (r̃1, · · · , r̃K) is aK ×K diagonal matrix defined by:

R̃(t) =
(
I+ tα(t)D̃K

)−1

.

Let α̃ = 1
KTr(D̃R̃). Then, matrixR(t) = diag (r1, · · · , rN ) is aN ×N matrix defined by:

R(t) = (I+ tα̃(t)D)
−1

.

B. Mathematical Tools

The results below, of constant use in the proof of Theorem 1, can be found in [4].

1) Differentiation formulas :

∂Hpq

∂Xij
= − t

K
[X∗H]jq Hpi = − t

K

[
x∗
jH
]
q
Hpi. (3)

∂Hpq

∂Xij

= − t

K
[HX]pj Hiq = − t

K
[Hxj ]p Hiq (4)
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2) Integration by parts formula for Gaussian functionals:: Let Φ be a C1 complex function polynomially

bounded together with its derivatives, then:

E [XijΦ(X)] = did̃jE

[
∂ Φ(X)

∂Xij

]
. (5)

3) Poincaré-Nash inequality:Let X andΦ be as above, then:

Var(Φ(X)) ≤
N∑

i=1

K∑

j=1

did̃jE

[∣∣∣∣
∂Φ(X)

∂Xij

∣∣∣∣
2

+

∣∣∣∣
∂Φ(X)

∂Xij

∣∣∣∣
2
]
. (6)

4) Deterministic approximations and various estimations:

Proposition 2: Let (AK) and(BK) be two sequences of respectivelyN ×N andK×K diagonal deterministic

matrices whose spectral norm are uniformly bounded inK, then the following hold true:

1

K
Tr(AR) =

1

K
Tr(AT) +O(K−2),

1

K
Tr(BR̃) =

1

K
Tr(BT̃) +O(K−2).

Proposition 3: Let (AK), (BK) and(CK) be three sequences ofN×N , K×K andN×N diagonal deterministic

matrices whose spectral norm are uniformly bounded inK. Consider the following functions:

Φ(X) =
1

K
Tr

(
AH

XBX∗

K

)
, Ψ(X) =

1

K
Tr

(
AHDH

XBX∗

K

)
.

Then,

1) the following estimations hold true:

varΦ(X), varΨ(X), var(β) and var

(
1

K
TrAHCH

)
are O(K−2) .

2) the following approximations hold true:

E [Φ(X)] =
1

K
Tr
(
D̃T̃B

) 1

K
Tr (ADT) +O(K−2), (7)

E [Ψ(X)] =
1

1− t2γγ̃

(
1

K2
Tr
(
D̃T̃B

)
Tr(AD2T2)− tγ

K2
Tr
(
D̃2T̃2B

)
Tr(ADT)

)
+O(K−2), (8)

E
1

K
Tr [AHDH] =

1

1− t2γγ̃

1

K
Tr(ADT2) +O(K−2). (9)

Proofs of Propositions 2 and 3 are essentially provided in [4]. In the same vein, the following proposition will be

needed.

Proposition 4: Let (AK), (BK) and(CK) be three sequences ofN×N , K×K andN×N diagonal deterministic

matrices whose spectral norm are uniformly bounded inK. Consider the following function:

ϕ(X) =
1

K
Tr

[
CHAHAH

XBX∗

K

]
.

Thenvarϕ(X) = O(K−2) andvar
(

1
KTrAHAHAH

)
= O(K−2) .

Proof of Proposition 4 is essentially the same as the proof ofProposition 3-1). It is provided for completeness and

postponed to appendix II.
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C. End of proof of Theorem 1

We are now in position to complete the proof of Theorem 1. Using the notations of [4], the SNR writes:

βK =
tp0
K

z∗D
1

2H(t)D
1

2 z,

wheret = 1
ρ . Hence, the third moment is given by:

E (βK − EβK)
3

=
(tp0)

3

K3
E

(
z∗D

1

2HD
1

2 z− ETrDH
)3

,

=
(tp0)

3

K3
E

(
z∗D

1

2HD
1

2 z− TrDH+TrDH− ETrDH
)3

,

=
(tp0)

3

K3

[
E

(
z∗D

1

2HD
1

2 z− TrDH
)3

+ 3E
(
z∗D

1

2HD
1

2 z− TrDH
)2

(TrDH− ETrDH)

+3E
(
z∗D

1

2HD
1

2 z− TrDH
)
(TrDH− ETrDH)

2
+ E (TrDH− ETrDH)

3
]
,

=
(tp0)

3

K3

[
E

(
z∗D

1

2HD
1

2 z− TrDH
)3

+ 3E
(
z∗D

1

2HD
1

2 z− TrDH
)2

(TrDH− ETrDH)

+E (TrDH− ETrDH)3
]

(10)

In order to deal with the first term of the right-hand side of (10), notice that ifM is a deterministic matrix andx

is a standard Gaussian vector, then:

E (x∗Mx− TrM)
3
= Tr(M3)E

(
|x1|2 − 1

)3

(such an identity can be easily proved by considering the spectral decomposition ofM). Hence,

E

(
z∗D

1

2HD
1

2 z− TrDH
)3

= ETr (DH)
3
E
(
|Z11|2 − 1

)3
,

= 2ETr (DHDHDH) .

The second term of the right-hand side of (10) is uniformly bounded inK. Indeed:

3E
(
z∗D

1

2HD
1

2 z− Tr(DH)
)2

= 3E
(
|Z11|2 − 1

)2
TrDHDH (TrDH− ETrDH) ,

≤ 3
√
var (TrDHDH)

√
var (TrDH)

which isO(1) according to Proposition 3. It remains to deal withE (TrDH− ETrDH)
3, which can be proved to

be uniformly bounded inK using concentration results for the spectral measure of random matrices [21] (see also

[15, eq.(86)-(87)], where details are provided). Consequently, we end up with the following approximation:

K2
E (βK − EβK)

3
=

(tp0)
3

K
E
(
|Z11|2 − 1

)3
ETrDHDHDH+O

(
K−1

)

which is deterministic but still depends on the distribution of the entries via the expectation operatorE. The rest of

the proof is devoted to provide a deterministic approximation of ETr (DHDHDH) depending onγ, γ̃, T andT̃.
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Note thatH = I− t
K HXX∗, thus:

[HDHDH]pp = [HDHD]pp − t

[
HDHDH

XX∗

K

]

pp

,

= [HDHD]pp −
t

K

K∑

j=1

[HDHDHxj ]p Xpj . (11)

Let us deal with the second term of (11). We have:

E
1

K
[HDHDHxj ]p Xpj =

1

K

N∑

k=1

E

(
[HDHDH]pk XkjXpj

)
.

Using the integration by part formula (5), we get:

E [HDHDHxj ]p Xpj =

N∑

k=1

dkd̃jδ(p− k)E [HDHDH]pk +

N∑

k=1

dkd̃jE


Xpj

N∑

ℓ,m=1

∂ [HpℓdℓdmHℓmHmk]

∂Xkj


 ,

= dpd̃jE [HDHDH]pp −
t

K

N∑

k,ℓ,m=1

dkd̃jdmdℓE
[
Xpj [Hxj ]p HkℓHℓmHmk

]

− t

K

N∑

k,ℓ,m=1

dkd̃jdmdℓE
[
XpjHpℓ [Hxj ]ℓ HkmHmk

]

− t

K

N∑

k,ℓ,m=1

dkd̃jdmdℓE
[
HpℓHℓm [Hxj ]m Hkk

]
.

= dpd̃jE [HDHDH]pp −
t

K
d̃jE

[
[Hxj ]p XpjTr (DHDHDH)

]

− t

K
d̃jE

[
[HDHxj ]p XpjTr (DHDH)

]
− t

K
d̃jE

[
[HDHDHxj]p XpjTr (DH)

]
.

Substituting in the last term1
KTrDH =

o

β +α where
o

β= β − α, we get:

E [HDHDHxj ]p Xpj = dpd̃jE [HDHDH]pp −
t

K
d̃jE

[
[Hxj ]p XpjTr (DHDHDH)

]

− t

K
d̃jE

[
[HDHxj ]p XpjTr (DHDH)

]
− td̃jE

[
[HDHDHxj ]p Xpj

o

β

]

−td̃jE
[
[HDHDHxj ]p Xpj

]
α.

Therefore, we have:
(
1 + tαd̃j

)
E

[
[HDHDHxj ]p Xpj

]
= dpd̃jE [HDHDH]pp −

t

K
E

[
[Hxj ]p Xpj d̃jTr [DHDHDH]

]

− t

K
d̃jE

[
[HDHxj ]p XpjTr [DHDH]

]
− td̃jE

[
[HDHDHxj ]p Xpj

o

β

]
.
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Multiplying the right hand and the left hand sides byr̃j = 1
1+tαd̃j

, we get:

E [HDHDHxj ]p Xpj = r̃jdpd̃jE [HDHDH]pp −
t

K
r̃jE

[
[Hxj ]p Xpj d̃jTr [DHDHDH]

]

− t

K
d̃j r̃jE

[
[HDHxj ]p XpjTr [DHDH]

]
− td̃j r̃jE

[
[HDHDHxj ]p Xpj

o

β

]
. (12)

Plugging (12) into (11), we obtain:

E [HDHDH]pp = E [HDHD]pp −
K∑

j=1

t

K
r̃jdpd̃jE [HDHDH]pp +

t2

K2

K∑

j=1

r̃jE [Hxj ]p Xpj d̃jTr [DHDHDH]

+
t2

K2

K∑

j=1

d̃j r̃jE [HDHxj ]p Xp,jTr [DHDH] +
t

K

K∑

j=1

d̃j r̃jE [HDHDHxj]p Xp,j

o

β,

= E [HDHD]pp − tα̃dpE [HDHDH]pp +
t2

K2
ETr(DHDHDH)

[
HXR̃D̃X∗

]
pp

+
t2

K2
ETr [DHDH]

[
HDHXD̃R̃X∗

]
pp

+
t2

K
E

o

β
[
HDHDHXD̃R̃X∗

]
pp

.

Hence,

(1 + tα̃dp)E [HDHDH]pp = E [HDHD]pp +
t2

K2
ETr [DHDHDH]

[
HXR̃D̃X∗

]
pp

+
t2

K2
ETr [DHDH]

[
HDHXD̃R̃X∗

]
pp

+
t2

K
E

o

β
[
HDHDHXD̃R̃X

∗]
pp

.

Multiplying the left and right hand sides byrp = 1
1+tα̃dp

, we get:

E [HDHDH]pp = rpE [HDHD]pp +
t2

K2
rpETr [DHDHDH]

[
HXR̃D̃X∗

]
pp

+
t2

K2
rpETr [DHDH]

[
HDHXD̃R̃X∗

]
pp

+
t2

K
rpE

o

β
[
HDHDHXD̃R̃X∗

]
pp

. (13)

Multiplying by dp, summing overp and dividing byK, we obtain:

E
1

K
Tr [DHDHDH] = E

1

K

K∑

p=1

dp [HDHDH]pp ,

=
1

K

K∑

p=1

rpdpE [HDHD]pp +
t2

K3
ETr (DHDHDH)Tr

(
DRHXR̃D̃X∗

)

+
t2

K3
ETr (DHDH)Tr

(
DRHDHXD̃R̃X∗

)

+
t2

K2
E

o

β Tr
(
DRHDHDHXD̃R̃X∗

)
,

△
= χ1 + χ2 + χ3 + χ4, (14)
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where:

χ1 =
1

K
ETr (DRHDHD) ,

χ2 =
t2

K
ETr (DHDHDH)

1

K
Tr

(
DRH

XD̃R̃X∗

K

)
,

χ3 =
t2

K
ETr (DHDH)

1

K
Tr

(
DRHDH

XD̃R̃X∗

K

)
,

χ4 =
t2

K
E

o

β Tr

(
DRHDHDH

XD̃R̃X∗

K

)
.

According to Proposition 3,var 1
KTr

(
DRHDHDHXeDeRX

∗

K

)
is of orderO(K−2). Similarly, var(β) = O(K−2).

Hence, using Cauchy-Schwartz inequality, we get the estimation χ4 = O(K−2). It remains to work out the

expressions involved inχ1, χ2 andχ3 by removing the terms with expectation and replacing them with deterministic

equivalents.

Since var 1
KTr

(
DRHXeDeRX

∗

K

)
= O(K−2) by Proposition 3 andvar( 1

KTrDHDHDH) = O(K−2) by

Proposition 4, we have:

χ2 =
t2

K
ETr (DHDHDH)E

(
1

K
Tr

[
DRH

XD̃R̃X∗

K

])
+O(K−2),

(a)
=

t2

K
ETr (DHDHDH)

1

K
Tr
(
D̃T̃D̃R̃

) 1

K
Tr (DRDT) +O(K−2),

(b)
=

t2

K
ETr (DHDHDH) γγ̃ +O(K−2) . (15)

where (a) follows from Proposition 3-2) and (b), from Proposition 2. Similar arguments yield:

χ3 =
t2

K
ETr (DHDH)E

(
1

K
Tr

[
DRHDH

XD̃R̃X∗

K

])
+O(K−2),

=
t2γ

(1− t2γγ̃)2

[
1

K
Tr
(
D̃T̃D̃R̃

) 1

K
Tr
(
DRD2T2

)
− tγ

K
Tr
(
D̃2T̃2D̃R̃

) 1

K
Tr(DRDT)

]
+O(K−2) ,

=
t2γ

(1− t2γγ̃)2

[
γ̃

K
Tr(D3T3)− tγ2

K
Tr(D̃3T̃3)

]
+O(K−2) (16)

and

χ1 =
1

1− t2γγ̃

1

K
Tr
(
D2RDT2

)
+O(K−2)

=
1

1− t2γγ̃

1

K
Tr(D3T3) +O(K−2). (17)

Plugging (16), (15) and (17) into (14), we obtain:

1

K
ETr(DHDHDH) =

1

K(1− t2γγ̃)3
TrD3T3 − t3γ3

K(1− t2γγ̃)3
TrT̃3D̃3 +O(K−2).
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Hence,

K2
E

(
βK

p0
− E

βK

p0

)3

=
ρ3

K (ρ2 − γγ̃)
3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
E

(
|Z11|2 − 1

)3
+O

(
1

K

)
,

=
2ρ3

K (ρ2 − γγ̃)
3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
+O

(
1

K

)
.

The fact thatνK = 2ρ3

K(ρ2−γγ̃)3

[
TrD3T3 − γ3

ρ3 TrD̃
3T̃3

]
is of orderO(1) is straightforward and its proof is omitted.

Proof of Theorem 1 is completed.

APPENDIX II

PROOF OFPROPOSITION4

The proof mainly relies on Poincaré-Nash inequality. Usingthe Poincaré-Nash inequality, we have:

var(ϕ(X)) ≤
N∑

i=1

K∑

j=1

did̃jE

∣∣∣∣
∂ϕ

∂Xij

∣∣∣∣
2

+

N∑

i=1

K∑

j=1

did̃jE

∣∣∣∣
∂ϕ

∂Xij

∣∣∣∣
2

.

We only deal with the first term of the last inequality (the second term can be handled similarly). We have

ϕ(X) = 1
K2

∑N
p,r,s,t=1

∑K
u=1 cppHprArrHrsAssHstXtuBuuX

∗
pu. After straightforward calculations using the dif-

ferentiation formula (3), we get that:

∂ϕ

∂Xij
= φ

(1)
ij + φ

(2)
ij + φ

(3)
ij + φ

(4)
ij ,

where:

φ
(1)
ij = − t

K3
[X∗HAHAHXBX∗CH]ji , φ

(2)
ij = − t

K3
[X∗HAHXBX∗CHAH]ji ,

φ
(3)
ij = − t

K3
[X∗HXBX∗CHAHAH]ji , φ

(4)
ij =

1

K2
[BX∗CHAHAH]ji .

Hence,
∣∣∣ ∂ϕ
∂Xij

∣∣∣
2

≤ 4

(∣∣∣φ(1)
ij

∣∣∣
2

+
∣∣∣φ(2)

ij

∣∣∣
2

+
∣∣∣φ(3)

ij

∣∣∣
2

+
∣∣∣φ(4)

ij

∣∣∣
2
)

and

N∑

i=1

K∑

j=1

did̃jE

[∣∣∣∣
∂ϕ

∂Xij

∣∣∣∣
2
]

≤ 4t2

K6
ETr

(
DHCXBX∗HAHAHXD̃X∗HAHAHXBX∗CH

)

+
4t2

K6
ETr

(
DHAHCXBX∗HAHXD̃X∗HAHXBX∗CHAH

)

+
4t2

K6
ETr

(
DHAHAHCXBX∗HXD̃X∗HXBX∗CHAHAH

)

+
4

K4
ETr

(
DHAHAHCXBD̃BX∗CHAHAH

)
.
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We only prove that the first term of the right hand side is of order K−2; the other terms being handled similarly.

Using Cauchy-Schwartz inequality, we get:

4

N∑

i=1

K∑

j=1

did̃jE
∣∣φ1

ij

∣∣2 ≤ 4t2dmax‖H‖2‖C‖2
K6

ETr
(
(HA)

2
HXD̃X∗H (AH)

2
(XBX∗)2

)
,

≤ 4t2

K6
dmax‖H‖2‖C‖2

(
ETr (HA)

2
HXD̃X∗H (AH)

2
(HA)

2
HXD̃X∗H (AH)

2
) 1

2

×
(
ETr (XBX∗)4

) 1

2

≤ 4t2

K2
dmax‖H‖8‖C‖2‖A‖4

√√√√
E
1

K

(
XD̃X∗

K

)2
√

E
1

K

(
XBX∗

K

)4

,

where the first inequality follows by using the fact that|TrAB| ≤ ‖B‖Tr (A), A being hermitian non-negative

matrix and the second follows by applyig twice Cauchy-Schwartz inequalities:Tr (AB) ≤
√

Tr (AA∗)
√
Tr (BB∗)

andEXY ≤
√
EX2

√
EY 2. We end up the proof of the first statement by using the fact that 1

KE
[
1
KTr

(
1
KXBKX∗)n]

is uniformly bounded inK wheneverBK is a sequence of diagonal matrices with uniformly bounded spectral norm

andn is a given integer.

The second statement follows from the resolvent identity:

1

K
TrAHAHAH =

1

K
TrAHAHA− t

K
TrAHAHAHXX∗.

According to the first part of the proposition,

var

(
1

K
TrAHAHAHXX∗

)
= O(K−2) .

Now, TrAHAHA = TrA2HAH and var 1
KTrA2HAH = O(K−2) by Proposition 3-1). Hence, applying

inequalityvar(X + Y ) ≤ var(X) + var(Y ) + 2
√
var(X)var(Y ) yields the desired result. Proof of Proposition 4

is completed.
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Fig. 1. Absolute value of the relative error whenN = K
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(c) N = 2K = 4 anda = 0
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(d) N = 2K = 4 anda = 0.9

Fig. 4. Outage Probability vs SNR threshold
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