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On Capacity Scaling in Arbitrary Wireless Networks
Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract

In recent work,Özgür, Lévêque, and Tse (2007) obtained a complete scaling characterization of throughput
scaling for random extended wireless networks (i.e.,n nodes are placed uniformly at random in a square region of
arean). They showed that for small path-loss exponentsα ∈ (2, 3] cooperative communication is order optimal,
and for large path-loss exponentsα > 3 multi-hop communication is order optimal. However, their results (both
the communication scheme and the proof technique) are strongly dependent on the regularity induced with high
probability by the random node placement.

In this paper, we consider the problem of characterizing thethroughput scaling in extended wireless networks
with arbitrary node placement. As a main result, we propose amore general novel cooperative communication
scheme that works for arbitrarily placed nodes. For small path-loss exponentsα ∈ (2, 3], we show that our scheme
is order optimal for all node placements, and achieves exactly the same throughput scaling as inÖzgür et al. This
shows that the regularity of the node placement does not affect the scaling of the achievable rates forα ∈ (2, 3].
The situation is, however, markedly different for large path-loss exponentsα > 3. We show that in this regime the
scaling of the achievable per-node rates depends cruciallyon the regularity of the node placement. We then present a
family of schemes that smoothly “interpolate” between multi-hop and cooperative communication, depending upon
the level of regularity in the node placement. We establish order optimality of these schemes under adversarial
node placement forα > 3.

Index Terms

Arbitrary node placement, capacity scaling, cooperative communication, hierarchical relaying, multi-hop com-
munication, wireless networks.

I. INTRODUCTION

Consider a wireless network withn nodes placed on[0,
√
n]2 (usually referred to as anextended

network), with each node being the source for one ofn source-destination pairs and the destination for
another pair. The performance of this network is captured byρ∗(n), the largest uniformly achievable rate
of communication between these source-destination pairs.While the scaling behavior ofρ∗(n) as the
number of nodesn goes to infinity is by now well understood for random node placement, little is known
for the case of arbitrary node placements. In this paper, we are interested in analyzing the impact of such
arbitrary node placement on the scaling ofρ∗(n).

A. Related Work

The problem of determining the scaling ofρ∗(n) was first analyzed by Gupta and Kumar in [1]. They
show that, under random placement of nodes in the region, certain models of communication motivated
by current technology, and random source-destination pairing, the maximum achievable per-node rate
ρ∗(n) can scale at most asO(n−1/2). Moreover, it was shown that multi-hop communication can achieve
essentially the same order of scaling.

Since [1], the problem has received a considerable amount ofattention. One stream of work [2]–[8] has
progressively broadened the conditions on the channel model and the communication model, under which
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multi-hop communication is order optimal. Specifically, with a power loss ofr−α for signals sent over
distancer, it has been established that underhighsignal attenuationα > 3 and random node placement, the
best achievable per-node rateρ∗(n) for random source-destination pairing scales essentiallylike Θ(n−1/2)
and that this scaling is achievable with multi-hop communication.

Another stream of work [8]–[12] has proposed progressivelyrefined multi-user cooperative schemes,
which have been shown to significantly out-perform multi-hop communication in certain environments. In
an exciting recent work,̈Ozgür et al. [8] have shown that with nodes placed uniformlyat random, and with
low signal attenuationα ∈ (2, 3], a cooperative communication scheme can perform significantly better
than multi-hop communication. More precisely, they show that forα ∈ (2, 3], the best achievable per-node
rate for random source-destination pairing scales asρ∗(n) = O(n1−α/2+ε) and cooperative communication
achieves a per-node rate ofΩ(n1−α/2−ε) (here,ε > 0 is an arbitrary but fixed constant). That is, cooperative
communication is essentially order optimal in the attenuation regimeα ∈ (2, 3].

In summary, for random extended networks with random source-destination pairing, the optimal commu-
nication scheme exhibits the following threshold behavior: for α ∈ (2, 3] the cooperative communication
scheme is order optimal, while forα > 3 the multi-hop communication scheme is order optimal.

B. Our Contributions

The characterization of the scaling ofρ∗(n) as a function of the path-loss exponentα mentioned in
the last paragraph depends critically on the regularity induced with high probability by placing the nodes
uniformly at random. However, a wireless network encountered in practice might not exhibit this amount
of regularity. Our interest is therefore in understanding the impact of the node placement on the scaling
of ρ∗(n). To this end, we consider wireless networks with arbitrary (i.e., deterministic) node placement
(with minimum-separation constraint).

The impact of this arbitrary node placement depends crucially on the path-loss exponentα. For small
path-loss exponentsα ∈ (2, 3], we show that for random source-destination pairing, the rate of the
best communication scheme is upper bounded asρ∗(n) = O(log6(n)n1−α/2). We then present a novel
cooperative communication scheme that achieves for any path-loss exponentα > 2 a per-node rate of
ρHR(n) ≥ n1−α/2−o(1). Thus, our cooperative communication scheme is essentially order optimal for any
such arbitrary network withα ∈ (2, 3]. In other words, in the small path-loss regime, the scaling of ρ∗(n)
is the same irrespective of the regularity of the node placement.

The situation is, however, quite different for large path-loss exponentsα > 3. We show that in this
regime the scaling ofρ∗(n) depends crucially on the regularity of the node placement, and multi-hop
communication may not be order optimal for any value ofα. In fact, for less regular networks we
need more complicated cooperative communication schemes to achieve optimal network performance.
Towards that end, we present a family of communication schemes that smoothly “interpolate” between
cooperative communication and multi-hop communication, and in which nodes communicate at scales that
vary smoothly from local to global. The amount of “interpolation” between the cooperative and multi-hop
schemes depends on the level of regularity of the underlyingnode placement. We establish the optimality
of this family of schemes for allα > 3 under adversarial node placement.

In summary, forα ∈ (2, 3] the regularity of the node placement has no impact on the scaling of ρ∗(n).
Cooperative communication is order optimal in this regime and achieves the same scaling as in the case
of random node placement. Forα > 3 the regularity of the node placement strongly impacts the scaling of
ρ∗(n), and a communication scheme “interpolating” between multi-hop and cooperative communication
depending on the regularity of the node placement is order optimal (under adversarial node placement).
In particular, simple multi-hop communication may not be order optimal for anyα > 3. This contrasts
with the case of random node placement where multi-hop communication is order optimal for allα > 3.

C. Organization

The remainder of this paper is organized as follows. SectionII describes in detail the communication
model. Section III provides formal statements of our results. Sections IV and V describe our new
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cooperative communication scheme (for theα ∈ (2, 3] regime) and “interpolation” scheme (for theα > 3
regime) for arbitrary wireless networks. Sections VI through XI contain proofs. Finally, Sections XII
and XIII contain discussions and concluding remarks.

II. M ODEL

In this section, we introduce some notational conventions and describe in detail the network and channel
models.

We use the following conventions:Ki for different i denote strictly positive finite constants independent
of n. Vectors and matrices are denoted by boldface whenever the vector or matrix structure is of importance.
We denote by(·)T and (·)† transpose and conjugate transpose, respectively. To simplify notation, we
assume, when necessary, that fractions are integers and omit ⌈·⌉ and⌊·⌋ operators.

Consider the square
A(n) , [0,

√
n]2

of arean, and letV (n) ⊂ A(n) be a set of|V (n)| = n nodes on1 A(n). We say thatV (n) hasminimum-
separationrmin if ru,v ≥ rmin for all u, v ∈ V (n), whereru,v is the Euclidean distance between nodesu
andv. We use the same channel model as in [8]. Namely, the (sampled) received signal at nodev is

yv[t] =
∑

u∈V (n)\{v}

hu,v[t]xu[t] + zv[t] (1)

for all v ∈ V (n), and where{xu[t]}u,t are the (sampled) signals sent by the nodes inV (n). Here{zv[t]}v,t
are independent and identically distributed (i.i.d.) withdistributionNC(0, 1) (i.e., circularly symmetric
complex Gaussian with mean0 and variance1), and

hu,v[t] = r−α/2
u,v exp(

√
−1θu,v[t]),

for path-loss exponentα > 2. We assume that for eacht ∈ N, the phases{θu,v[t]}u,v are i.i.d.2 with
uniform distribution on[0, 2π). We either assume that for eachu, v ∈ V (n) the random process{θu,v[t]}t
is stationary ergodic int, which is calledfast fadingin the following, or that for eachu, v ∈ V (n) the
random process{θu,v[t]}t is constant int, which is calledslow fadingin the following. In either case, we
assume full channel state information (CSI) is available atall nodes, i.e., each node knows all{θu,v[t]}u,v
at time t. While the full CSI assumption is quite strong, it can be shown that availability of a2-bit
quantizedversion of{θu,v[t]}u,v at all nodes is sufficient for the achievable schemes presented here (see
Section XII-A for the details). We also impose an average power constraint of1 on the signal{xu[t]}t
for every nodeu ∈ V (n).

Each nodeu ∈ V (n) wants to transmit information at uniform rateρ(n) to some other nodew ∈ V (n).
We callu thesourceandw thedestinationnode of this communication pair. The set of all communication
pairs can be described by atraffic matrix λ(n) ∈ {0, 1}n×n, where the entry inλ(n) corresponding to
(u, w) is equal to1 if nodeu is a source for nodew. We say thatλ(n) is apermutation traffic matrixif it is
a permutation matrix (i.e., every node is a source for exactly one communication pair and a destination for
exactly one communication pair). For a traffic matrixλ(n), let ρ∗(n) be the highest rate of communication
that is uniformly achievable for each source-destination pair. For a permutation traffic matrixλ(n), ρ∗(n)
can also be understood as the maximal achievable per-node rate.

1The setting considered here withn nodes placed on a square of arean is called anextendednetwork. If then nodes are placed on a
square of unit area, we speak of adensenetwork. While dense networks are not treated in detail in this paper, we briefly discuss implications
of the results for the dense setting in Section XII-C.

2It is worth pointing out that recent work [13] suggests that,under certain assumptions on scattering elements, forα ∈ (2, 3), and for very
large values ofn, the i.i.d. phase assumption as a function ofu, v ∈ V (n) used here is too optimistic. However, subsequent work by the
same authors [14] shows that under different assumptions onthe scatterers, the channel model used here is still valid even for α ∈ (2, 3),
and for very large values ofn. This indicates that the question of channel modeling for very large networks in the low path-loss regime is
somewhat delicate and requires further investigation. We point out that forα ≥ 3 this issue does not arise.
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III. M AIN RESULTS

This section presents the formal statement of our results. The results are divided into two parts. In Section
III-A, we consider low path-loss exponents, i.e.,α ∈ (2, 3]. We present a cooperative communication
scheme for arbitrary node placement and for either fast or slow fading. We show that this communication
scheme is order optimal for all node placements whenα ∈ (2, 3]. In Section III-B, we consider high
path-loss exponents, i.e.,α > 3. We present a communication scheme that “interpolates” between the
cooperative and the multi-hop communication schemes, depending on the regularity of the node placement.
We show that this communication scheme is order optimal under adversarial node placement with regularity
constraint whenα > 3.

A. Low Path Loss Regimeα ∈ (2, 3]

The first result proposes a novel communication scheme, called hierarchical relayingin the following,
and bounds the per-node rateρHR(n) that it achieves. This provides a lower bound toρ∗(n), the largest
achievable per-node rate. The hierarchical relaying scheme enables cooperative communication on the
scale of the network size. In the random node placement case,this cooperation could be enabled in a
cluster around the source node (cooperatively transmitting) and in a cluster around its destination node
(cooperatively receiving). With arbitrary node placement, such an approach does no longer work, as both
the source as well as the destination nodes may be isolated. The hierarchical relaying scheme circumvents
this issue by relaying data between each source-destination pair over a densely populated region in the
network. A detailed description of this scheme is provided in Section IV, the proof of Theorem 1 is
contained in Section VII.

Theorem 1. Under fast fading, for anyα > 2, rmin ∈ (0, 1), and δ ∈ (0, 1/2), there exists

b1(n) ≥ n−O
(
logδ−1/2(n)

)

such that for anyn, node placementV (n) with minimum separationrmin, and permutation traffic matrix
λ(n), we have

ρ∗(n) ≥ ρHR(n) ≥ b1(n)n
1−α/2.

The same conclusion holds for slow fading with probability at least

1− exp
(
− 2Ω

(
log1/2+δ(n)

))
= 1− o(1)

as n → ∞.

Theorem 1 shows that the per-node rateρHR(n) achievable by the hierarchical relaying scheme is at
leastn1−α/2−β(n), where the “loss” termβ(n) converges to zero asn → ∞ at a rate arbitrarily close to
O
(
log−1/2(n)

)
(by choosingδ small). The performance of the hierarchical relaying scheme can intuitively

be understood as follows. As mentioned before, the scheme achieves cooperation on a global scale. This
leads to a multi-antenna gain of ordern. On the other hand, communication is over a distance of order
n1/2, leading to a power loss of ordern−α/2. Combining these two factors results in a per-node rate of
n1−α/2.

We note that Theorem 1 remains valid under somewhat weaker conditions than having minimum
separationrmin ∈ (0, 1). Specifically, we show that the result ofÖzgür et al. [8] can be recovered through
Theorem 1 as the random node placement satisfies these weakerconditions. We discuss this in more detail
in Section XII-D.

The next theorem establishes optimality of the hierarchical relaying scheme in the range ofα ∈ (2, 3]
for arbitrary node placement. The proof of the theorem is presented in Section VIII.
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Theorem 2. Under either fast or slow fading, for anyα ∈ (2, 3], rmin ∈ (0, 1), there existsb2(n) =
O
(
log6(n)

)
such that for anyn, node placementV (n) with minimum separationrmin, and for λ(n)

chosen uniformly at random from the set of all permutation traffic matrices, we have

ρ∗(n) ≤ b2(n)n
1−α/2

with probability 1− o(1) as n → ∞.

Note that Theorem 2 holds only with probability1 − o(1) for different reasons for the slow and fast
fading case. For fast fading, this is due to the randomness inthe selection of the permutation traffic matrix.
In other words, for fast fading, with high probability we select a traffic matrix for which the theorem
holds. For the slow fading case, there is additional randomness due to the fading realization. Here, with
high probability we select a traffic matrix and we experiencea fading for which the theorem hold.

Comparing Theorems 1 and 2, we see that forα ∈ (2, 3] the proposed hierarchical relaying scheme is
order optimal, in the sense that

lim
n→∞

log(ρHR(n))

log(n)
= lim

n→∞

log(ρ∗(n))

log(n)
= 1− α/2.

Moreover, the rate it achieves is the same order as is achievable in the case of randomly placed nodes.
Hence in the low path-loss regimeα ∈ (2, 3], the heterogeneity caused by the arbitrary node placement
has no effect on achievable communication rates.

B. High Path Loss Regimeα > 3

We now turn to the high path-loss regimeα > 3. In the case ofrandomlyplaced nodes, multi-hop
communication achieves a per-node rate ofρMH(n) = Ω(n−1/2) with probability 1 − o(1) and is order
optimal forα > 3. For arbitrarily placed nodes, the situation is quite different as Theorem 3 shows. The
proof of Theorem 3 is contained in Section IX.

Theorem 3. Under either fast or slow fading, for anyα > 3, for any n, there exists a node placement
V (n) with minimum separation1/2 such that forλ(n) chosen uniformly at random from the set of all
permutation traffic matrices, we have

ρ∗(n) ≤ 22+5αn1−α/2,

ρMH(n) ≤ 4αn−α/2,

as n → ∞ with probability 1− o(1).

Comparing Theorem 3 with Theorem 1 shows that under adversarial node placement with minimum-
separation constraint the hierarchical relaying scheme isorder optimal even whenα > 3. Moreover,
Theorem 3 shows that there exist node placements satisfyinga minimum separation constraint for which
hierarchical relaying achieves a rate of at least a factor ofordern higher than multi-hop communication
for any α > 3. In other words, for those node placements cooperative communication is necessary for
order optimality also for anyα > 3, in stark contrast to the situation with random node placement, where
multi-hop communication is order optimal for allα > 3.

Theorem 3 suggests that it is the level of regularity of the node placement that decides what scheme to
choose for path-loss exponentα > 3. So far, we have seen two extreme cases: For random node placement,
resulting in very regular node placements with high probability, only local cooperation is necessary and
multi-hop is an order-optimal communication scheme. For adversarial arbitrary node placement, resulting
in a very irregular node placement, global cooperation is necessary and hierarchical relaying is an order-
optimal communication scheme. We now make this notion of regularity precise, and show that, depending
on the regularity of the node placement, an appropriate “interpolation” between multi-hop and hierarchical
relaying is required forα > 3 to achieve the optimal performance. We refer to this “interpolation” scheme
ascooperative multi-hopcommunication in the following.
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Before we state the result, we need to introduce some notation. Consider again a node placement
V (n) ⊂ A(n) with minimum separationrmin ∈ (0, 1). DivideA(n) into squares of sidelengthd(n) ≤ √

n,
and fix a constantµ ∈ (0, 1]. We say thatV (n) is µ-regular at resolutiond(n) if every such square
contains at leastµd2(n) nodes. Note that every node placement is trivially1-regular at resolution

√
n; a

random node placement can be shown to beµ-regular at resolutionlog(n) with probability 1 − o(1) as
n → ∞ for any µ < 1; and nodes that are placed on each point in the integer lattice insideA(n) are
1-regular at resolution1.

The cooperative multi-hop scheme enables cooperative communication on the scale of regularityd(n).
Neighboring squares of sidelengthd(n) cooperatively communicate with each other. To transmit between
a source and its destination, we use multi-hop communication over those squares. In other words, we
use cooperative communication at small scaled(n), and multi-hop communication at large scale

√
n. For

regular node placements, i.e.,d(n) = 1, the cooperative multi-hop scheme becomes the classical multi-hop
scheme. For very irregular node placement, i.e.,d(n) = n1/2, the cooperative multi-hop scheme becomes
the hierarchical relaying scheme discussed in the last section.

The next theorem provides a lower bound on the per-node rateρCMH(n) achievable with the cooperative
multi-hop scheme. The proof of the theorem can be found in Section X.

Theorem 4. Under fast fading, for anyα > 2, rmin ∈ (0, 1), µ ∈ (0, 1), and δ ∈ (0, 1/2) there exists

b3(n) ≥ n−O
(
logδ−1/2(n)

)

such that for anyn, node placementV (n) with minimum separationrmin, and permutation traffic matrix
λ(n), we have

ρ∗(n) ≥ ρCMH(n) ≥ b3(n)d
∗3−α(n)n−1/2,

where
d∗(n) , min{h : V (n) is µ regular at resolutionh}.

The same conclusion holds for slow fading with probability1− o(1) as n → ∞.

Theorem 4 shows that ifV (n) is regular at resolutiond∗(n) then a per-node rate of at leastρCMH(n) ≥
d∗3−α(n)n−1/2−β(n) is achievable, where, as before, the “loss” termβ(n) converges to zero asn → ∞
at a rate arbitrarily close toO

(
log−1/2(n)

)
. The performance of the cooperative multi-hop scheme can

intuitively be understood as follows. The scheme achieves cooperation on a scale ofd2(n). This leads to
a multi-antenna gain of orderd2(n). On the other hand, communication is over a distance of orderd(n),
leading to a power loss of orderd−α(n). Moreover, each source-destination pair at a distance of order
n1/2 must transmit their data over ordern1/2d−1(n) many hops, leading to a multi-hop loss ofn−1/2d(n).
Combining these three factors results in a per-node rate ofd3−α(n)n−1/2.

The next theorem shows that Theorem 4 is tight under adversarial node placement under a constraint
on the regularity. The proof of the theorem is presented in Section XI.

Theorem 5. Under either fast or slow fading, for anyα > 3, there existsb4(n) = O
(
log6(n)

)
, such that

for anyn, andd∗(n), there exists a node placementV (n) with minimum separation1/2 and 1/2-regular
at resolutiond∗(n) such that forλ(n) chosen uniformly at random from the set of all permutation traffic
matrices, we have

ρ∗(n) ≤ b4(n)d
∗3−α(n)n−1/2,

with probability 1− o(1) as n → ∞.

As an example, assume that
d∗(n) = nη

for someη ≥ 0. Then Theorem 4 shows that for any node placement of regularity d∗(n) andα > 3,

ρCMH(n) ≥ n(3−α)η−1/2−β(n),
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whereβ(n) converges to zero asn → ∞ at a rate arbitrarily close toO
(
log−1/2(n)

)
. In other words

lim
n→∞

log(ρCMH(n))

log(n)
≥ (3− α)η − 1/2.

Moreover, by Theorem 5 there exist node placements with sameregularity such that for random permu-
tation traffic with high probabilityρ∗(n) is (essentially) of the same order, in the sense that

lim
n→∞

log(ρ∗(n))

log(n)
≤ (3− α)η − 1/2.

In particular, forη = 0 (i.e., regular node placement), and forη = log log(n)/ log(n) (i.e., random node
placement), we obtain the ordern−1/2 scaling as expected. Forη = 1/2 (i.e., completely irregular node
placement), we obtain the ordern1−α/2 scaling as in Theorems 1 and 3.

IV. H IERARCHICAL RELAYING SCHEME

This section describes the architecture of our hierarchical relaying scheme. On a high level, the
construction of this scheme is as follows. Considern nodesV (n) placed arbitrarily on the square region
A(n) with a minimum separationrmin. Divide A(n) into squarelets of equal size. Call a squareletdense,
if it contains a number of nodes proportional to its area. Foreach source-destination pair, choose such a
dense squarelet as arelay, over which it will transmit information (see Figure 1).

u1

u2

u3

w1

w2

w3

BC

MAC

Fig. 1. Sketch of one level of the hierarchical relaying scheme. Here{(ui, wi)}3i=1 are three source-destination pairs. Groups of source-
destination pairs relay their traffic over dense squarelets, which contain a number of nodes proportional to their area (shaded). We time
share between the different dense squarelets used as relays. Within all these relay squarelets the scheme is used recursively to enable joint
decoding and encoding at each relay.

Consider now one such relay squarelet and the nodes that are transmitting information over it. If we
assume for the moment that all the nodes within the same relaysquarelet could cooperate then we would
have a multiple access channel (MAC) between the source nodes and the relay squarelet, where each of
the source nodes has one transmit antenna, and the relay squarelet (acting as one node) has many receive
antennas. Between the relay squarelet and the destination nodes, we would have a broadcast channel (BC),
where each destination node has one receive antenna, and therelay squarelet (acting again as one node)
has many transmit antennas. The cooperation gain from usingthis kind of scheme arises from the use of
multiple antennas for these multiple access and broadcast channels.

To actually enable this kind of cooperation at the relay squarelet, local communication within the relay
squarelets is necessary. It can be shown that this local communication problem is actually the same as
the original problem, but at a smaller scale. Hence we can usethe same scheme recursively to solve this
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subproblem. We terminate the recursion after several iterations, at which point we use simple TDMA to
bootstrap the scheme.

The construction of the hierarchical relaying scheme is presented in detail in Section IV-A. A back-of-
the-envelope calculation of the per-node rate it achieves is presented in Section IV-B. A detailed analysis
of the hierarchical relaying scheme is presented in Sections VI and VII.

A. Construction

Recall that
A(b) , [0,

√
b]2

is the square region of areab. The scheme described here assumes thatn nodes are placed arbitrarily in
A(n) with minimum separationrmin ∈ (0, 1). We want to find some rate, sayρ0, that can be supported
for all n source-destination pairs of a given permutation traffic matrix λ(n). The scheme that is described
below is “recursive” (and hence hierarchical) in the following sense. In order to achieve rateρ0 for n
nodes inA(n), it will use as a building block a scheme for supporting rateρ1 for a network of

n1 ,
n

2γ(n)

nodes overA(a1) (square of areaa1) with

a1 ,
n

γ(n)

for any permutation traffic matrixλ(n1) of n1 nodes. Here thebranching factorγ(n) is a function such
that γ(n) → ∞ as n → ∞. We will optimize over the choice ofγ(n) later. The same construction is
used for the scheme overA(a1), and so on. In general, our scheme does the following at levelℓ ≥ 0 of
the hierarchy (or recursion). In order to achieve rateρℓ for any permutation traffic matrixλ(nℓ) over

nℓ ,
n

2ℓγℓ(n)

nodes inA(aℓ), with
aℓ ,

n

γℓ(n)
,

use a scheme achieving rateρℓ+1 overnℓ+1 nodes inA(aℓ+1) for any permutation traffic matrixλ(nℓ+1).
The recursion is terminated at some levelL(n) to be chosen later.

We now describe how the hierarchy is constructed between levels ℓ and ℓ + 1 for 0 ≤ ℓ < L(n).
Each source-destination pair chooses some squarelet as a relay over which it transmits its message. This
relaying of messages takes place in two phases – a multiple access phase and a broadcast phase. We first
describe the selection of relay squarelets, then the operation of the network during the multiple access
and broadcast phases, and finally the termination of the hierarchical construction.

1) Setting up Relays:Given nℓ nodes inA(aℓ), divide the square regionA(aℓ) into γ(n) equal sized
squarelets. Denote them by{Ak(aℓ+1)}γ(n)k=1 . Call a squareletdenseif it contains at leastnℓ/2γ(n) = nℓ+1

nodes. In other words, a dense squarelet contains a number ofnodes of at least a1/2ℓ+1 fraction of its area.
We show that since the nodes inA(aℓ) have constant minimum separationrmin, a squarelet can contain
at mostO(aℓ+1) (i.e. O(aℓ/γ(n))) nodes, and hence that there are at leastΘ(2−ℓγ(n)) dense squarelets.
Each source-destination pair chooses a dense squarelet such that both the source and the destination are
at a distanceΩ(

√
aℓ+1) from it. We call this dense squarelet therelay of this source-destination pair. We

show that the relays can be chosen such that each relay squarelet has at mostnℓ+1 communication pairs
that use it as relay, and we assume this worst case in the following discussion.
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2) Multiple Access Phase:Source nodes that are assigned to the same (dense) relay squarelet send their
messages simultaneously to that relay. We time share between theΘ(2−ℓγ(n)) different relay squarelets.
If the nodes in the relay squarelet could cooperate, we wouldbe dealing with a MAC with at mostnℓ+1

transmitters, each with one antenna, and one receiver with at leastnℓ+1 antennas. In order to achieve this
cooperation, we use a hierarchical (i.e., recursive) construction. For this recursive construction, assume
that we have access to a communication scheme to transmit data according to a permutation traffic matrix
λ(nℓ+1) betweennℓ+1 nodes located in a square of areaaℓ+1. We now show how this scheme at scale
aℓ+1 can be used to construct a scheme for scaleaℓ (see Figure 2).
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Fig. 2. Description of the multiple access phase at levelℓ in the hierarchy withm , nℓ+1. The first system block represents the wireless
channel, connecting source nodes{ui}nℓ+1

i=1 with relay nodes{vi}nℓ+1

i=1 . The second system block are quantizers{qi}nℓ+1

i=1 used at the relay
nodes. The third system block represents usingnℓ+1 times the communication scheme at levelℓ+1 (organized asnℓ+1 permutation traffic
matrices{λk(nℓ+1)}nℓ+1

k=1
) to “transpose” the matrix of quantized observations{ŷij}nℓ+1

i,j=1. In other words, before the third system block,
nodev1 has access to{ŷ1j}nℓ+1

j=1 , and after the third system block, nodev1 has access to{ŷi1}nℓ+1

i=1 . The fourth system block are matched
filters used at the relay nodes.

Suppose there arenℓ+1 source nodesu1, . . . , unℓ+1
(located anywhere inA(aℓ)) that relay their message

over thenℓ+1 relay nodesv1, . . . , vnℓ+1
(located in the same dense squarelet of areaaℓ+1). Each source

nodeui divides its message bits intonℓ+1 parts of equal length. Denote byxij the encoded partj of the
message bits of nodeui (xij is really a large sequence of channel symbols; to simplify the exposition, we
shall, however, assume it is only a single symbol). The message parts corresponding to{xij}nℓ+1

i=1 will be
relayed over nodevj , as will become clear in the following. Sources{ui}nℓ+1

i=1 , transmit{xij}nℓ+1

i=1 at time
j for j ∈ {1, . . . nℓ+1}.

Let ykj be the observed channel output at relayvk at time j. Note thatykj depends only on channel
inputs {xij}nℓ+1

i=1 . In order to decode the message parts corresponding to{xij}nℓ+1

i=1 at relay nodevj, it
needs to obtain the observations{yij}nℓ+1

i=1 from all other relay nodes. In other words, all relays need to
exchange information. For this, each relayvk quantizes its observation{ykj}nℓ+1

j=1 at an appropriate rateK
independent ofn to obtain{ŷkj}nℓ+1

j=1 . Quantized observation̂ykj is to be sent from relayvk to relay vj .
Thus, each of thenℓ+1 relay nodes now has a message of sizeK for every other relay node.

This communication demand within the relay squarelet can beorganized asnℓ+1 permutation traffic
matrices{λj(nℓ+1)}nℓ+1

j=1 between thenℓ+1 relay nodes. Note that these relay nodes are located in the same
square of areaaℓ+1. In other words, we are now faced with the original problem, but at smaller scale
aℓ+1. Therefore, usingnℓ+1 times the assumed scheme for transmitting according to a permutation traffic
matrix for nℓ+1 nodes inA(aℓ+1), relay vj can obtain all quantized observations{ŷij}nℓ+1

i=1 . Now vj uses
nℓ+1 matched filters on{ŷij}nℓ+1

i=1 to obtain estimates{x̂ij}nℓ+1

i=1 of {xij}nℓ+1

i=1 . In other words, each nodevj
computes3

x̂ij =

nℓ+1∑

k=1

h†
ui,vk

[j]√∑
k|hui,vk [j]|2

ŷkj

for everyi ∈ {1, . . . , nℓ+1}. Using these estimates it then decodes the messages corresponding to{xij}nℓ+1

i=1 .

3Note that, since we assume full CSI, nodevj has access to the channel gains{hui,vk [j]}i,k at any timet ≥ j. In particular, this is the
case at the time the matched filtering is performed.
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3) Broadcast Phase:Nodes in the same relay squarelet then send their decoded messages simulta-
neously to the destination nodes corresponding to this relay. We time share between the different relay
squarelets. If the nodes in the relay squarelet could cooperate, we would be dealing with a BC with one
transmitter with at leastnℓ+1 antennas and with at mostnℓ+1 receivers, each with one antenna. In order
to achieve this cooperation, a similar hierarchical construction as for the MAC phase is used. As in the
MAC phase, assume that we have access to a scheme to transmit data according to a permutation traffic
matrix λ(nℓ+1) betweennℓ+1 nodes located in a square of areaaℓ+1. We again use this scheme at scale
aℓ+1 in the construction of the scheme for scaleaℓ (see Figure 3).
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Fig. 3. Description of the broadcast phase at levelℓ in the hierarchy withm , nℓ+1. The first system block represents transmit beamforming
at each of the relay nodes{vi}nℓ+1

i=1 . The second system block are quantizers{qi}nℓ+1

i=1 used at the relay nodes. The third system block
represents usingnℓ+1 times the communication scheme at levelℓ+ 1 (organized asnℓ+1 permutation traffic matrices{λk(nℓ+1)}nℓ+1

k=1
) to

“transpose” the matrix of quantized beamformed channel symbols {x̂ij}nℓ+1

i,j=1. In other words, before the third system block, nodev1 has
access to{x̂i1}nℓ+1

i=1 , and after the third system block, nodev1 has access to{x̂1j}nℓ+1

j=1 . The fourth system block is the wireless channel,
connecting relay nodes{vi}nℓ+1

i=1 with destination nodes{wi}nℓ+1

i=1 .

Suppose there arenℓ+1 relay nodesv1, . . . , vnℓ+1
(located in the same dense squarelet of areaaℓ+1) that

relay traffic fornℓ+1 destination nodesw1, . . . , wnℓ+1
(located anywhere inA(aℓ)). Recall that at the end

of the MAC phase, each relay nodevj has (assuming decoding was successful) access to partsj of the
message bits of all source nodes{ui}nℓ+1

i=1 . Nodevj re-encodes these parts independently; call{x̃ij}nℓ+1

i=1 the
encoded channel symbols (as before, we assumex̃ij is only a single symbol to simplify exposition). Relay
nodevj then performs transmit beamforming on{x̃ij}nℓ+1

i=1 for the nℓ+1 transmit antennas of{vk}nℓ+1

k=1 to
be sent at timeT + j (for some appropriately chosenT > 0 not depending onj). Call xkj the resulting
channel symbol to be sent from relay nodevk. Then4

xkj =
∑

i

h†
vk ,wi

[T + j]√∑
k|hvk,wi

[T + j]|2
x̃ij .

In order to actually send this channel symbol, relay nodevk needs to obtainxkj from nodevj . Thus,
again all relay nodes need to exchange information.

To enable local cooperation within the relay squarelet, each relay nodevj quantizes its beamformed
channel symbols{xkj}nℓ+1

k=1 at an appropriate rateK log(n) with K independent ofn to obtain{x̂kj}nℓ+1

k=1 .
Now, quantized valuêxkj is sent from relayvj to relayvk. Thus, each of thenℓ+1 relay nodes now has
a message of sizeK log(n) for every other relay node.

This communication demand within the relay squarelet can beorganized asnℓ+1 permutation traffic
matrices{λk(nℓ+1)}nℓ+1

k=1 between thenℓ+1 relay nodes. Note that these relay nodes are located in the same
square of areaaℓ+1. Hence, we are again faced with the original problem, but at smaller scaleaℓ+1. Using
nℓ+1 times the assumed scheme for transmitting according to a permutation traffic matrix fornℓ+1 nodes
in A(aℓ+1), relayvk can obtain all quantized beamformed channel symbols{x̂kj}nℓ+1

j=1 . Now eachvk sends
x̂kj over the wireless channel at time instanceT + j (with T chosen to account for the preceding MAC
phase and the local cooperation in the BC phase). Callyij the received channel output at destination node

4Note that, since we only assume causal CSI, relay nodevj does not actually have access to{hvk ,wi
[T+j]}k,i at the time the beamforming

is performed. This problem can, however, be circumvented. The details are provided in the proofs (see Lemma 10).
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wi at time instanceT + j. Using yij, destination nodewi can now decode partj of the message bits of
its source nodeui.

4) Spatial Re-Use and Termination of Recursion:The scheme does appropriately weighted time-
division among different levels0 ≤ ℓ ≤ L(n). Within any levelℓ ≥ 1, multiple regions of the original
squareA(n) of arean are being operated in parallel. The details related to the effects of interference
between different regions operating at the same level of hierarchy are discussed in the proofs.

The recursive construction terminates at some large enoughlevel L = L(n) (to be chosen later). At
this scale, we havenL nodes in areaA(aL). A permutation traffic matrix at this level comprisesnL

source-destination pairs. These transmissions are performed using TDMA. Again, multiple regions in the
original square of arean at levelL are active simultaneously.

B. Achievable Rates

Here we present a back-of-the-envelope calculation of the per-node rateρHR(n) achievable with the
hierarchical relaying scheme described in the previous section. The complete proof is stated in Section
VII. We assume throughout that long block codes and corresponding optimal decoders are used for
transmission.

Instead of computing the rate achieved by hierarchical relaying, it will be convenient to instead analyze
its inverse, i.e., the time utilized for transmission of a single message bit from each source to its destination
under a permutation traffic matrixλ(n). Using the hierarchical relaying scheme, each message travels
through L levels of the hierarchy. Callτℓ(n) the amount of time spent for the transmission of one
message bit between each of thenℓ source-destination pairs at levelℓ in the hierarchy. We computeτℓ(n)
recursively.

At any levelℓ ≥ 1, there are multiple regions of areaaℓ operating at the same time. Due to the spatial
re-use, each of these regions gets to transmit a constant fraction of time. It can be shown that the addition
of interference due to this spatial re-use leads only to a constant loss in achievable rate. Hence the time
required to send one message bit is only a constant factor higher than the one needed if regionA(aℓ) is
considered separately. Consider now one such regionA(aℓ). By the time sharing construction, only one of
its Θ(2−ℓγ(n)) dense relay squarelets of areaaℓ+1 is active at any given moment. Hence the time required
to operate all relay squarelets is aΘ(2−ℓγ(n)) factor higher than for just one relay squarelet separately.
Consider now one such relay squarelet, and assumenℓ+1 source nodes inA(aℓ) communicate eachnℓ+1

message bits to their respective destination nodes througha MAC phase and BC phase with the help of
the nℓ+1 relay nodes in this relay squarelet of areaaℓ+1.

In the MAC phase, each of thenℓ+1 sources simultaneously sends one bit to each of thenℓ+1 relay
nodes. The total time for this transmission is composed of two terms.

i) Transmission ofnℓ+1 message bits from each of thenℓ+1 source nodes to those many relay nodes.
Since we time share betweenΘ(2−ℓγ(n)) relay squarelets, we can transmit with an average power
constraint ofΘ(2−ℓγ(n)) during the time a relay squarelet is active, and still satisfies the overall
average power constraint of1. With this “bursty” transmission strategy, we require a total of

O

(
nℓ+1

a
α/2
ℓ

2−ℓγ(n)nℓ+1

)
= O

(
nℓ+14

ℓγℓ(1−α/2)(n)nα/2−1
)

(2)

channel uses to transmitnℓ+1 bits per source node. The terms on the left-hand side of (2) can be
understood as follows:nℓ+1 is the number of bits to be transmitted;aα/2ℓ is the power loss since
most nodes communicate over a distance ofΘ(a

1/2
ℓ ); 2−ℓγ(n) is the average transmit power;nℓ+1

is the multiple-antenna gain, since we have that many transmit and receive antennas.
ii) We show that constant rate quantization of the received observations at the relays is sufficient.

Hence thenℓ+1 bits for all sources generateO(nℓ+1) transmissions at levelℓ + 1 of the hierarchy.
Therefore,

O(nℓ+1τℓ+1(n)) (3)
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channel uses are needed to communicate all quantized observations to their respective relay nodes.
Combining (2) and (3), accounting for the factor2−ℓγ(n) loss due to time division between relay squarelets,
we obtain that the transmission time for one message bit fromeach source to the relay squarelet in the
MAC phase at levelℓ is

τMAC
ℓ (n) = O

(
2ℓγ1+ℓ(1−α/2)(n)nα/2−1 + τℓ+1(n)

)
. (4)

Next, we compute the number of channel uses per message bit received by the destination nodes in the
BC phase. Similar to the MAC phase, each of thenℓ+1 relay nodes hasnℓ+1 message bits out of which
one bit is to be transmitted to each of thenℓ+1 destination nodes. Since there arenℓ+1 relay nodes, each
destination node receivesnℓ+1 message bits. As before the required transmission time has two components.

i) Transmission of the encoded and quantized message bits from each of thenℓ+1 relay nodes to
all other relay nodes at levelℓ + 1 of the hierarchy. We show that each message bit results in
O
(
(ℓ + 1) logn

)
quantized bits. Therefore,O

(
nℓ+1(ℓ + 1) logn

)
bits need to be transmitted from

each relay node. This requires

O
(
nℓ+1(ℓ+ 1) log(n)τℓ+1(n)

)
(5)

channel uses.
ii) Transmission ofnℓ+1 message bits from the relay nodes to each destination node. As before, we use

bursty transmission with an average power constraint ofΘ(2−ℓγ(n)) during the fractionΘ(2ℓγ−1(n))
of time each relay squarelet is active (this satisfies the overall average power constraint of1). Using
this bursty strategy requires

O

(
nℓ+1

a
α/2
ℓ

2−ℓγ(n)nℓ+1

)
= O

(
nℓ+14

ℓγℓ(1−α/2)(n)nα/2−1
)

(6)

channel uses for transmission ofnℓ+1 bits per destination node. As in the MAC phase,nℓ+1 in the
left hand side of (6) can be understood as the number of bits tobe transmitted,aα/2ℓ as the power
loss for communicating over distanceΘ(a

1/2
ℓ ), 2−ℓγ(n) as the average transmit power, andnℓ+1 as

the multiple-antenna gain.
Combining (5) and (6), accounting for a factor2−ℓγ(n) loss due to time division between relay squarelets,
the transmission time for one message bit from the relays to each destination node in the BC phase at
level ℓ is

τBC
ℓ (n) = O

(
2ℓγ1+ℓ(1−α/2)(n)nα/2−1 + (ℓ+ 1) log(n)τℓ+1(n)

)
. (7)

From (4) and (7), we obtain the following recursion

τℓ(n) = τMAC
ℓ (n) + τBC

ℓ (n)

= O
(
2ℓγℓ(1−α/2)+1(n)nα/2−1 + (ℓ+ 1) log(n)τℓ+1(n)

)

= O
(
2Lγ(n)nα/2−1 + L log(n)τℓ+1(n)

)
, (8)

where we have usedα > 2. This recursion holds for all0 ≤ ℓ < L. At level L, we use TDMA amongnL

nodes in regionA(aL) with a permutation traffic matrixλ(nL). Each of thenL source-destination pairs
uses the wireless channel for1/nL fraction of the time at powerO(nL), satisfying the average power
constraint. Assuming the received power is less than1 for all n (so that we operate in the power limited
regime), we can achieve a rate of at leastΩ(a

−α/2
L ) between any source-destination pair. Equivalently

τL(n) = O(a
α/2
L )

= O
(
nα/2γ−Lα/2(n)

)

= O
(
nα/2γ−L(n)

)
. (9)
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Combining (8) and (9), we have

τ0(n) = O
(
nα/2−12Lγ(n) + L log(n)τ1(n)

)

= . . .

= O
(
nα/2−1

(
L log(n)

)L
2Lγ(n) +

(
L log(n)

)L
τL(n)

)

= O
(
nα/2−1

(
L log(n)

)L(
2Lγ(n) + nγ−L(n)

))
. (10)

The term (
L log(n)

)L(
2Lγ(n) + nγ−L(n)

)

is the “loss” factor over the desired ordernα/2−1 scaling, and we now choose the branching factorγ(n)
and the hierarchy depthL , L(n) to make it small. Fix aδ ∈ (0, 1/2) and set

L(n) , log1/2−δ(n),

γ(n) , n1/(L(n)+1).

With this
(
L(n) log(n)

)L(n) ≤ n2 log−1/2−δ(n) log log(n),

2L(n)γ(n) ≤ nlog−1/2−δ(n)+logδ−1/2(n),

nγ−L(n)(n) ≤ nlogδ−1/2(n).

Sinceδ > 0, thenlogδ−1/2(n) term dominates in (10), and we obtain

τ0(n) ≤ b̃(n)nα/2−1,

where
b̃(n) ≤ nO(logδ−1/2(n)).

Hence the per-node rate of the hierarchical relaying schemeis lower bounded as

ρHR(n) = 1/τ0(n) ≥ b(n)n1−α/2,

with
b(n) ≥ n−O(logδ−1/2(n)).

Note that to minimize the loss term, we should chooseδ > 0 to be small.

V. COOPERATIVE MULTI -HOP SCHEME

In this section, we provide a brief description of the cooperative multi-hop scheme. The details of the
construction and the analysis of its performance can be found in Section X.

Recall that a node placementV (n) is µ-regular at resolutiond(n) if every square[id(n), (i+1)d(n)]×
[jd(n), (j+1)d(n)] for somei, j ∈ N contains at leastµd2(n) nodes. Given such a node placementV (n),
divide it into squares of sidelengthd(n). Consider four adjacent squares, combined into a bigger square
of sidelength2d(n). By the regularity assumption onV (n), this bigger square contains at least4µd2(n)
nodes. Hence we can apply the hierarchical relaying scheme introduced in the last section to support any
permutation traffic within this bigger square at a per-node rate of

b(n)(d2(n))1−α/2 = b(n)d2−α(n),

whereb(n) is essentially of ordern− log−1/2(n). By properly choosing the permutation traffic matrices within
every possible such bigger square of sidelength2d(n), this creates a equivalent communication graph with
n/d2(n) nodes each corresponding to a square of sidelengthd(n) in A(n), and with edges between nodes
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corresponding to neighboring squares. With the above communication procedure and appropriate spatial
re-use, each such edge has a capacity of

d2(n)b(n)d2−α(n) = b(n)d4−α(n).

The resulting communication graph is depicted in Figure 4.

Fig. 4. Communication graph (in bold) resulting from the construction of the cooperative multi-hop scheme. The entire square has sidelength√
n, and the dashed squares have sidelengthd(n). Each (bold) edge in the communication graph corresponds tousing the hierarchical relaying

scheme between the nodes in the adjacent squares of sidelength d(n).

Now, to send a message from a source node inV (n) to its destination node, we first locate the squares
of sidelengthd(n) they are located in. We then route the message over the edges of the communication
graph constructed above in a multi-hop fashion. By the construction of the communication graph, each
such edge is implemented using the hierarchical relaying scheme. In other words, we perform multi-
hop communication over distance

√
n with hop lengthd(n), and each such hop is implemented using

hierarchical relaying over distanced(n). Since each edge in the communication graph has a capacity of
b(n)d4−α(n) and has to support roughlyn1/2d(n) source-destination pairs, we obtain a per-node rate of

ρCMH(n) ≥ b(n)d4−α(n)n−1/2d−1(n)

= b(n)d3−α(n)n−1/2

per source-destination pair.

VI. A NALYSIS OF THE HIERARCHICAL RELAYING SCHEME

In this section, we analyze in detail the hierarchical relaying scheme. Throughout Sections VI-A to
VI-C, we consider communication at levelℓ, 0 ≤ ℓ < L = L(n), of the hierarchy. All constantsKi are
independent ofℓ.

Recall that at levelℓ, we have a square regionA(aℓ) of area

aℓ ,
n

γℓ(n)

containing
nℓ ,

n

2ℓγℓ(n)

nodesV (nℓ). We divideA(aℓ) into γ(n) squarelets of areaaℓ+1. Recall that a squarelet of areaaℓ+1 in
level ℓ of the hierarchy is called dense if it contains at leastnℓ+1 nodes. We impose a power constraint of
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Pℓ(n) = Θ(2−ℓγ(n)) during the time any particular relay squarelet is active. Since we time share between
Θ(2−ℓγ(n)) relay squarelets, this satisfies the overall average power constraint (by choosing constants
appropriately).

Since other regions of areaaℓ are active at the same time as the one under consideration, wehave to
deal with interference. To this end, we consider a slightly more general noise model that includes the
experienced interference at the relay squarelets. More precisely, we assume that, for allu ∈ V (nℓ), the
additive noise term{zu[t]}t is independent of the signal{xu[t]}t and of the channel gains{hu,v[t]}v,t;
that the noise term is stationary and ergodic across timet, but with arbitrary dependence across nodesu;
and that the noise has zero mean and bounded powerN0 independent ofn. Note that we do not require
the additive noise term to be Gaussian. In the above,N0 accounts for both noise (which has power1 in
the original model), as well as interference. We show in Section VII that these assumptions are valid.

Recall the following choice ofγ(n) andL(n):

L(n) , log1/2−δ(n),

γ(n) , n1/(L(n)+1),
(11)

with δ ∈ (0, 1/2) independent ofn. This choice satisfies

γ(n) ≤ γ(ñ) if n ≤ ñ,

γL(n)(n) ≤ n for all n,

2−L(n)γ(n) → ∞ asn → ∞,

(12)

The first condition in (12) implies that the number of squareletsγ(n) we divideA(n) into increases in
n. The second condition implies the squarelet areaaL(n) at the last level of the hierarchy is bigger than
1. As we shall see, the third condition implies that the numberof dense squarelets at the last level (and
hence at every level) grows unbounded asn → ∞ (see Lemma 6 below).

Throughout Section VI, we consider the fast fading channel model. Slow fading is discussed in
Section VII-B.

A. Setting up Relays

The first lemma states that the minimum-separation requirement rmin ∈ (0, 1) implies that a constant
fraction of squarelets must be dense. We point out that this is the only consequence of the minimum-
separation requirement used to prove Theorem 1. Thus Theorem 1 remains valid if we just assume that
Lemma 6 below holds directly. See also Section XII-D for further details.

Lemma 6. For any V (nℓ) ⊂ A(aℓ) with |V (nℓ)| ≥ nℓ and with minimum separationrmin ∈ (0, 1), each
of its squarelets of areaaℓ+1 contains at mostK1aℓ/γ(n) nodes, and there are at leastK22

−ℓγ(n) dense
squarelets.

Proof. Put a circle of radiusrmin/2 around each node. By the minimum-separation requirement, these
circles do not intersect. Each node covers an area ofπr2min/4. Increasing the sidelength of each squarelet
by rmin, this provides a total area of

(√
aℓ/γ(n) + rmin

)2 ≤ aℓ
γ(n)

(1 + rmin)
2

in which the circles around these nodes are packed. Here we have used thatγℓ+1(n) ≤ n by (12), and
therefore

γ(n) ≤ n/γℓ(n) = aℓ.

Hence there can be at mostK1aℓ/γ(n) nodes per squarelet with

K1 , 4
(1 + rmin)

2

πr2min

.
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Note that, sincermin < 1, we haveK1 > 1.
Let d(nℓ) be the number of dense squarelets inA(aℓ), and thereforeγ(n) − d(nℓ) is the number of

squarelets that are not dense. By the argument in the last paragraph, each dense squarelet contains at most
K1aℓ/γ(n) nodes, and those squarelets that are not dense contain less thannℓ+1 nodes by the definition
of dense squarelets. Henced(nℓ) must satisfy

d(nℓ)K1aℓ/γ(n) +
(
γ(n)− d(nℓ)

)
nℓ+1 ≥ |V (nℓ)| ≥ nℓ.

Thus, usingaℓ = 2ℓnℓ, nℓ+1 = nℓ/2γ(n), we have

d(nℓ)K12
ℓ + (γ(n)− d(nℓ))/2 ≥ γ(n).

As K12
ℓ > 1, this yields

d(nℓ) ≥
1− 1/2

K12ℓ − 1/2
γ(n) ≥ 2−ℓ

2K1
γ(n) = K22

−ℓγ(n),

with
K2 ,

1

2K1

.

ConsiderV (nℓ) ⊂ A(aℓ) with |V (nℓ)|, and choose arbitraryK22
−ℓγ(n) dense squarelets of areaaℓ+1

(as guaranteed by Lemma 6). Call those squarelets{Ak(aℓ+1)}K22−ℓγ(n)
k=1 . For each sour-destination pair,

we now select one such dense squarelet to relay traffic over. To avoid bottlenecks, this selection has to be
done such that all relay squarelets carry approximately thesame amount of traffic. Moreover, for technical
reasons, the distances from the source and the destination to the relay squarelet cannot be too small.

Formally, the selection of relay squarelets can be described by theschedulesS ∈ {0, 1}nℓ×K22−ℓγ(n)

with su,k = 1 if source nodeu relays traffic over dense squareletk, and S̃ ∈ {0, 1}K22−ℓγ(n)×nℓ with
s̃k,w = 1 if destination nodew receives traffic from dense squareletk. With slight abuse of notation, let
ru,Ak(aℓ+1) be the distance between nodeu ∈ V (nℓ) and the closest point inAk(aℓ+1), i.e.,

ru,Ak(aℓ+1) , min
v∈Ak(aℓ+1)

ru,v. (13)

Define the sets

S(nℓ) ,
{
S ∈ {0, 1}nℓ×K22−ℓγ(n) :

0 ≤∑nℓ

u=1 su,k ≤ nℓ+1 ∀k,
0 ≤∑K22−ℓγ(n)

k=1 su,k ≤ 1 ∀u,
su,k = 1 implies ru,Ak(aℓ+1) ≥

√
2aℓ+1 ∀u, k

}
(14)

and
S̃(nℓ) ,

{
S̃ ∈ {0, 1}K22−ℓγ(n)×nℓ : S̃T ∈ S(nℓ)

}
.

The setsS(nℓ) and S̃(nℓ) are the collection of schedules satisfying the conditions mentioned in the last
paragraph. More precisely, the first condition in (14) ensures that at mostnℓ+1 source-destination pairs
relay over the same dense squarelet, the second condition ensures that each source-destination pair chooses
at most one relay squarelet, and the third condition ensuresthat sources and destinations are at least at
distance

√
2aℓ+1 from the chosen relay squarelet.

Next, we prove that any node placement that satisfies Lemma 6 allows for a decomposition of any
permutation traffic matrixλ(nℓ) into a small number of schedules belonging toS(nℓ) and S̃(nℓ).
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Lemma 7. There existK3 such that for alln large enough (independent ofℓ), and every permutation traffic
matrix λ(nℓ) ∈ {0, 1}nℓ×nℓ we can findK32

ℓ schedules{S(i)(nℓ)}K32ℓ

i=1 ⊂ S(nℓ), {S̃(i)(nℓ)}K32ℓ

i=1 ⊂ S̃(nℓ)
satisfying

λ(nℓ) =

K32ℓ∑

i=1

S(i)(nℓ)S̃
(i)(nℓ).

Proof. Pick an arbitrary source-destination pair inλ(nℓ), and consider the squarelets containing the source
and the destination node. Since each squarelet has side length

√
aℓ+1, there are at most50 squarelets at

distance less than
√
2aℓ+1 from either of those two squarelets. As2−L(n)γ(n) → ∞ asn → ∞ by (12),

there existsK (independent ofℓ) such that forn ≥ K we have50 ≤ K22
−ℓ−1γ(n). Since there are at

leastK22
−ℓγ(n) dense squarelets by Lemma 6, there must exist at leastK22

−ℓ−1γ(n) dense squarelets
that are at distance at least

√
2aℓ+1 from both the squarelets containing the source and the destination

node.
In order to construct a decomposition ofλ(nℓ), we use the following procedure. Sequentially, each of

the nℓ source-destination pairs chooses one of the (at least)K22
−ℓ−1γ(n) dense squarelets at distance

at least
√
2aℓ+1 that has not already been chosen bynℓ+1 other pairs. If any source-destination pair can

not select such a squarelet, then stop the procedure and use the source-destination pairs matched with
dense squarelets so far to define matricesS(1)(nℓ) and S̃(1)(nℓ). Now, remove all the matched source-
destination pairs, forget that dense squarelets were matched to any source-destination pair and redo the
above procedure, going through the remaining source-destination pairs.

Let
K3 , 4/K2.

We claim that by repeating this process of generating matrices S(i)(nℓ) and S̃(i)(nℓ), we can match
all source-destination pairs to some dense squarelet with at most K32

ℓ such matrices. Indeed, a new
pair of matrices is generated only when a source-destination pair can not be matched to any of its
available (at least)K22

−ℓ−1γ(n) dense squarelets. If this happens, all these dense squarelets are matched
by nℓ+1 = nℓ/2γ(n) pairs. Hence at leastK22

−ℓ−2nℓ source-destination pairs are matched in each “round”.
Since there arenℓ total pairs, we need at most

nℓ

K22−ℓ−2nℓ
= K32

ℓ

matricesS(i)(nℓ) and S̃(i)(nℓ).

For a permutation traffic matrixλ(nℓ), communication proceeds as follows. Write

λ(nℓ) =

K32ℓ∑

i=1

S(i)(nℓ)S̃
(i)(nℓ)

as in Lemma 7. Split time intoK32
ℓ equal length time slots. In sloti, we useS(i)(nℓ)S̃

(i)(nℓ) as our
traffic matrix. Consider without loss of generalityi = 1 in the following. Write

S(1)(nℓ)S̃
(1)(nℓ) =

K22−ℓγ(n)∑

k=1

S(1,k)(nℓ+1)S̃
(1,k)(nℓ+1),

whereS(1,k)(nℓ+1)S̃
(1,k)(nℓ+1) is the traffic relayed over the dense squareletAk(aℓ+1). We time share

between the schedules fork ∈ {1, . . . , K22
−ℓγ(n)}. Consider now any suchk. In the worst case, there are

exactlynℓ+1 communication pairs to be relayed overAk(aℓ+1), and the relay squareletAk(aℓ+1) contains
exactlynℓ+1 nodes. We shall assume this worst case in the following.

We focus on the transmission according to the traffic matrixS(1,1)(nℓ+1)S̃
(1,1)(nℓ+1). Let V (nℓ+1) be the

nodes inA1(aℓ+1), and letU(nℓ+1) andW (nℓ+1) be the source and destination nodes ofS(1,1)(nℓ+1)S̃
(1,1)(nℓ+1),

respectively. In other words, the source nodesU(nℓ+1) communicate to their respective destination nodes
W (nℓ+1) using the nodesV (nℓ+1) as relays.
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B. Multiple Access Phase

Each source node inU(nℓ+1) splits its message intonℓ+1 equal length parts. Partj at every node
u ∈ U(nℓ+1) is to be relayed over thej-th node inV (nℓ+1). Each part is separately encoded at the source
and separately decoded at the destination. After the sourcenodes are done transmitting their messages, the
nodes in the relay squarelet quantize their (sampled) observations corresponding to partj and communicate
the quantized values to thej-th node in the relay squarelet. This node then decodes thej-th message
parts of all source nodes. Note that this induces a uniform traffic pattern between the nodes in the relay
squarelet, i.e., every node needs to transmit quantized observations to every other node. While this traffic
pattern does not correspond to a permutation traffic matrix,it can be written as a sum ofnℓ+1 permutation
traffic matrices. A fraction1/nℓ+1 of the traffic within the relay squarelet is transmitted according to each
of these permutation traffic matrices. This setup is depicted in Figure 2 in Section IV-A.

Assuming for the moment that we have a scheme to send the quantized observations to the dedicated
node in the relay squarelet, the traffic matrixS(1,1)(nℓ+1) betweenU(nℓ+1) andV (nℓ+1) describes then a
MAC with nℓ+1 transmitters, each with one antenna, and one receiver withnℓ+1 antennas. We call this the
MAC induced byS(1,1)(nℓ+1) in the following. Before we analyze the rate achievable overthis induced
MAC, we need an auxiliary result on quantized channels.

w f
x

y1
q1

ŷ1

x̂

ŷm
qm

ϕ ŵPx̂|ŷ

ym

Py|x

...

Fig. 5. Sketch of the quantized channel.f andϕ are the channel encoder and decoder, respectively;{qk}mk=1 are quantizers;Py|x and
Px̂|ŷ represent stationary ergodic channels with the indicated marginal distributions.

Consider the quantized channel in Figure 5. Here,f is the channel encoder,ϕ the channel decoder,
{qk}mk=1 quantizers. All these have to be chosen.Py|x andPx̂|ŷ, on the other hand, represent fixed stationary
ergodic channels with the indicated marginal distributions. We callR the rate of the channel code(f, ϕ)
and{Rk}mk=1 the rates of quantizers{qk}mk=1.

Lemma 8. If there exist distributionsPx and {Pŷk|yk}mk=1 such thatR < I(x; x̂) andRk > I(yk; ŷk), ∀k,
then

(
R, {Rk}mk=1

)
is achievable over the quantized channel.

Proof. The proof follows from a simple extension of Theorem 1 in Appendix II of [8].

Lemma 9. Let the additive noise{zv}v∈V (nℓ+1) be uncorrelated (overv). For the MAC induced by
S(1,1)(nℓ+1) with per-node average power constraintPℓ(n) ≤ n−1

ℓ+1a
α/2
ℓ , a rate of

ρMAC
ℓ (n) ≥ K4Pℓ(n)nℓ+1a

−α/2
ℓ

per source node is achievable, and the number of bits required at each relay node to quantize the
observations is at mostK5 bits pernℓ+1 total message bits5 sent by the source nodes.

Proof. The source nodes send signals with a power of (essentially)n−1
ℓ+1a

α/2
ℓ for a fractionPℓ(n)nℓ+1a

−α/2
ℓ ≤

1 of time and are silent for the remaining time. To ensure that interference is uniform, the time slots during
which the nodes send signals are chosen randomly as follows.Generate independently for each region
A(aℓ) a Bernoulli process{B[t]}t∈N with parameterPℓ(n)nℓ+1a

−α/2
ℓ /(1 + η) ≤ 1 for some smallη > 0.

The nodes inA(aℓ) are active wheneverB[t] = 1 and remain silent otherwise. Since the blocklength
of the codes used is assumed to be large, this satisfies the average power constraint ofPℓ(n) with high
probability for anyη > 0. Since we are interested only in the scaling of capacity, we ignore the additional

5Total message bits refers to the sum of all message bits transmitted by thenℓ+1 source nodes.
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1/(1 + η) term in the following to simplify notation. Clearly, we onlyneed to consider the fraction of
time during whichB[t] = 1.

Let y be the received vector at the relay squarelet,ŷ the (componentwise) quantized observations. We
use a matched filter at the relay squarelet, i.e.,

x̂u =
h†

u

‖hu‖
ŷ,

where column vectorhu = {hu,v}v∈V (nℓ+1) are the channel gains between nodeu ∈ U(nℓ+1) and the
nodes in the relay squareletV (nℓ+1). The use of a matched filter is possible since we assume full CSI is
available at all the nodes.

We now use Lemma 8 to show that we can design quantizers{qv}v∈V (nℓ+1) of constant rate and achieve
a per-node communication rate of at leastK4Pℓ(n)nℓ+1a

−α/2
ℓ . The first channel in Lemma 8 (see Figure 5)

will correspond to the wireless channel between a source node u and its relay squareletV (nℓ+1). The
second “channel” in Lemma 8 will correspond to the matched filter used at the relay squarelet. To apply
Lemma 8, we need to find a distribution forxu and for ŷv|yv. Define

r̃u , ru,A1(aℓ+1)/
√
2aℓ ≤ 1

with ru,A1(aℓ+1) as in (13), to be the normalized distance of the source nodeu ∈ U(nℓ+1) to the relay
squareletA1(aℓ+1). For eachu ∈ U(nℓ+1) let xu ∼ NC(0, r̃

α
un

−1
ℓ+1a

α/2
ℓ ) independent ofxũ for u 6= ũ,

and let ŷv = yv + z̃v for z̃v ∼ NC(0,∆
2) independent ofy and for some∆2 > 0. Note that the channel

input xu has power that depends on the normalized distancer̃u (i.e., only nodesu ∈ U(nℓ+1) that are at
maximal distance

√
2aℓ from the relay squarelet transmit at full available power).This is to ensure that

all signals are received at roughly the same strength by the relays.
We proceed by computing the mutual informationsI(yv; ŷv|{hũ,ṽ}) and I(xu; x̂u|{hũ,ṽ}) as required

in Lemma 8 (the conditioning on{hũ,ṽ} being due to the availability of full CSI). Note first that by
construction ofS(1,1)(nℓ+1) (see (14)), we have foru ∈ U(nℓ+1) andv ∈ V (nℓ+1)

ru,A1(aℓ+1) ≤ ru,v ≤ 2ru,A1(aℓ+1),

and hence
1

2
√
2aℓ

≤ r̃u
ru,v

≤ 1√
2aℓ

. (15)

From this, and since|hu,v|2 = r−α
u,v , we obtain

2−3α/2a
−α/2
ℓ ≤ |hu,v|2r̃αu ≤ 2−α/2a

−α/2
ℓ ,

2−3α/2nℓ+1a
−α/2
ℓ ≤ ‖hu‖2r̃αu ≤ 2−α/2nℓ+1a

−α/2
ℓ .

(16)

We start by computingI(yv; ŷv|{hũ,ṽ}). We have

ŷv =
∑

u∈U(nℓ+1)

hu,vxu + zv + zṽ,

and hencêyv has mean zero and variance

E(|ŷv|2) =
∑

u∈U(nℓ+1)

|hu,v|2r̃αun−1
ℓ+1a

α/2
ℓ +N0 +∆2

≤ nℓ+12
−α/2a

−α/2
ℓ n−1

ℓ+1a
α/2
ℓ +N0 +∆2

= 2−α/2 +N0 +∆2,
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where we have used (16). Hence

I(yv; ŷv|{hũ,ṽ}) = h(ŷv|{hũ,ṽ})− h(ŷv|yv, {hũ,ṽ})
≤ log

(
2πeE(|ŷv|2)

)
− log(2πe∆2)

≤ log
(
2πe(2−α/2 +N0 +∆2)

)
− log(2πe∆2)

= log
(
1 +

2−α/2 +N0

∆2

)
. (17)

We now computeI(xu; x̂u|{hũ,ṽ}). We have

x̂u = ‖hu‖xu +
∑

ũ∈U(nℓ+1)\{u}

h†
uhũ

‖hu‖
xũ +

h†
u

‖hu‖
(z + z̃).

Conditioned on{hũ}ũ∈U(nℓ+1),

‖hu‖xu ∼ NC

(
0, ‖hu‖2r̃αun−1

ℓ+1a
α/2
ℓ

)
,

and

E

(∣∣∣
∑

ũ∈U(nℓ+1)\{u}

h†
uhũ

‖hu‖
xũ +

h†
u

‖hu‖
(z + z̃)

∣∣∣
2∣∣∣{hũ}

)
= n−1

ℓ+1a
α/2
ℓ

∑

ũ∈U(nℓ+1)\{u}

r̃αũ
|h†

uhũ|2
‖hu‖2

+N0 +∆2,

where we have used the assumption that{zv}v∈V (nℓ+1) are uncorrelated in the second line. Using (16),
this is, in turn, upper bounded by

23α/2r̃αun
−2
ℓ+1a

α
ℓ

∑

ũ∈U(nℓ+1)\{u}

r̃αũ |h†
uhũ|2 +N0 +∆2.

Similarly, we can lower bound the received signal power as

E
(
‖hu‖2|xu|2

)
≥ 2−3α/2.

Since Gaussian noise is the worst additive noise under a power constraint [15], and applying Jensen’s
inequality to the convex functionlog(1 + 1/x), we obtain

I(xu; x̂u|{hũ,ṽ}) ≥ E

(
log

(
1 +

2−3α/2

23α/2r̃αun
−2
ℓ+1a

α
ℓ

∑
ũ∈U(nℓ+1)\{u}

r̃αũ |h†
uhũ|2 +N0 +∆2

))

≥ log

(
1 +

2−3α/2

23α/2r̃αun
−2
ℓ+1a

α
ℓ

∑
ũ∈U(nℓ+1)\{u}

r̃αũE
(
|h†

uhũ|2
)
+N0 +∆2

)
. (18)

We have foru 6= ũ,

E
(
|h†

uhũ|2
)
= E(h†

uhũh
†
ũhu)

=
∑

v∈V (nℓ+1)

|hu,v|2|hũ,v|2

=
∑

v∈V (nℓ+1)

r−α
u,vr

−α
ũ,v , (19)

and hence using (15)

E

(
r̃αu

∑

ũ∈U(nℓ+1)\{u}

r̃αũ |h†
uhũ|2

)
=

∑

ũ∈U(nℓ+1)\{u}

∑

v∈V (nℓ+1)

r̃αur
−α
u,v r̃

α
ũr

−α
ũ,v

≤ 2−αn2
ℓ+1a

−α
ℓ .
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Therefore we can continue (18) as

I(xu; x̂u|{hũ,ṽ}) ≥
1

2
log

(
1 +

2−3α/2

2α/2 +N0 +∆2

)
, K4. (20)

Using (17) and (20) in Lemma 8, and observing that we only communicate during a fraction

Pℓ(n)nℓ+1a
−α/2
ℓ ≤ 1

of time yields a per source node rateρMAC
ℓ (n) arbitrarily close to

K4Pℓ(n)nℓ+1a
−α/2
ℓ

and a quantizer of rate arbitrarily close to

log
(
1 +

2−α/2 +N0

∆2

)

bits per observation at each relay node. Since by (20) mutualinformationI(xu; x̂u|{hũ,ṽ}) is at leastK4

for everyu ∈ U(nℓ+1) during the fraction of time we actually communicate, this implies that there are
at most1/K4 observations at each relay node pernℓ+1 total message bits. Thus the number of bits per
relay node required to quantize the observations is at most

K5 ,
1

K4
log
(
1 +

2−α/2 +N0

∆2

)

bits pernℓ+1 total message bits sent by the source nodes.

C. Broadcast Phase

At the end of the MAC phase, each node in the relay squarelet received a part of the message sent
by each source node. In the BC phase, each node in the relay squarelet encodes these messages together
for nℓ+1 transmit antennas. The encoded message is then quantized and communicated to all the nodes
in the relay squarelet. These nodes then send the quantized encoded message to the destination nodes
W (nℓ+1). Note that this again induces a uniform traffic pattern between the nodes in the relay squarelet,
i.e., every node needs to transmit quantized encoded messages to every other node. While this traffic
pattern does not correspond to a permutation traffic matrix it can be written as a sum ofnℓ+1 permutation
traffic matrices. A fraction1/nℓ+1 of the traffic within the relay squarelet is transmitted according to each
of these permutation traffic matrices. This setup is depicted in Figure 3 in Section IV-A.

Assuming for the moment that we have a scheme to send the quantized encoded messages to the
corresponding nodes in the relay squarelet, the traffic matrix S̃(1,1)(nℓ+1) betweenV (nℓ+1) andW (nℓ+1)
describes then a BC with one transmitter withnℓ+1 antennas andnℓ+1 receivers, each with one antenna.
We call this theBC induced bỹS(1,1)(nℓ+1) in the following.

Lemma 10. For the BC induced bỹS(1,1)(nℓ+1) with per-node average power constraintPℓ(n) ≤ n−1
ℓ+1a

α/2
ℓ ,

a rate of
ρBC
ℓ (n) ≥ K6Pℓ(n)nℓ+1a

−α/2
ℓ

is achievable per destination node, and the number of bits required to quantize the observations is at
mostK7(ℓ + 1) log(n) bits at each relay node pernℓ+1 total message bits6 received by the destination
nodes.

Proof. Consider a nodev ∈ V (nℓ+1) in the relay squarelet, say the first one. From the MAC phase,
this node received the first part of the messages of each source nodeu ∈ U(nℓ+1). We would like to
jointly encode these message parts at the relay node using transmit beamforming, and then transmit the

6Total message bits refers to the sum of all message bits received by thenℓ+1 destination nodes.
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corresponding encoded signal using all the nodes in the relay squarelet. However, this cannot be done
directly, because at the encoding time, the future channel state at transmission time is unknown.

We circumvent this problem by reordering the signals to be transmitted at the relay nodes as follows.
Let

{θ̂v,w}v∈V (nℓ+1),w∈W (nℓ+1) ∈ {0, π/2, π, 3π/2}n2
ℓ+1.

be a “quantized” channel state. The part of the messages at node one in the relay squarelet is encoded
for nℓ+1 transmit nodes with an assumed channel gain of

ĥv,w[t] = r−α/2
v,w exp(

√
−1θ̂v,w[t]),

where the{θ̂v,w[t]}v,w,t are cycled as a function oft through all possible values in{0, π/2, π, 3π/2}n2
ℓ+1.

The components of the encoded messages are then quantized and each component sent to the corresponding
node in the relay squarelet. Once all nodes in the relay squarelet have received the encoded message,
they send in each time slot a sample of the encoded messages corresponding to the quantized channel
state closest (in Euclidean distance) to the actual channelrealization in that time slot. By ergodicity of
{θu,v[t]}t, each quantized channel state is used approximately the same number of times. More precisely,
as the message length grows to infinity, we can send samples ofthe encoded message parts a1/(1 + η)
fraction of time with probability approaching1 for anyη > 0. Since we have no constraint on the encoding
delay in our setup, we can chooseη arbitrarily small, and given that we are only interested in scaling laws,
we will ignore this term in the following to simplify notation. Note that the destination nodes can reorder
the received samples since we assume full CSI. In the following, we let{θ̂v,w}v,w be the random quantized
channel state induced by{θv,w}v,w through the above procedure. Denote by{ĥv,w}v,w the corresponding
channel gains.

As in the MAC phase, the nodes in the relay squarelet send signals at a power (essentially)n−1
ℓ+1a

α/2
ℓ

a fractionPℓ(n)nℓ+1a
−α/2
ℓ ≤ 1 of time and are silent for the remaining time. To create interference at

uniform power, this is done in the same randomized manner as in the MAC phase. Generate independently
for each regionA(aℓ) a Bernoulli process{B[t]}t∈N with parameterPℓ(n)nℓ+1a

−α/2
ℓ /(1 + η) for some

smallη > 0. The nodes inA(aℓ) are active wheneverB[t] = 1 and remain silent otherwise. As before, we
ignore the additional1/(1 + η) term. Again we only need to consider the fraction of time during which
B[t] = 1.

Consider the message part at a relay node for destination node w ∈ W (nℓ+1). We encode this part
independently; call̃xw the encoded message part. The relay node then performs transmit beamforming to
construct the encoded message for all its destination nodes, i.e.,

x =
∑

w∈W (nℓ+1)

ĥ†
w

‖hw‖
x̃w,

where row vectorhw = {hv,w}v∈V (nℓ+1) contains the channel gains to nodew, and where we have
used|ĥv,w| = |hv,w|. The relay node then quantizes the vector of encoded messages componentwise and
forwards the quantized version̂x to the other nodes in the relay squarelet. These nodes then send x̂ over
the channel to the destination nodes. The received signal atdestination nodew is thus

yw = hwx̂+ zw.

With this, we have the setup considered in Lemma 8 (with different variable names). The first “channel”
in Lemma 8 (see Figure 5) will correspond to the transmit beamforming used at the relay squarelet. The
second channel in Lemma 8 will now correspond to the wirelesschannel between the relay squarelet
V (nℓ+1) and a destination nodew. To apply Lemma 8, we need to find a distribution forx̃w and for
x̂v|xv. We also need to guarantee thatx̂v satisfies the power constraint at each nodev in the relay squarelet.
For eachw ∈ W (nℓ+1) let x̃w ∼ NC(0, Kn−1

ℓ+1a
α/2
ℓ ) (for someK to be chosen later) independent ofx̃w̃
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for w 6= w̃, and letx̂v = xv + z̃v for z̃v ∼ NC(0,∆
2) independent ofx and for some∆2 > 0. We then

have

yw =
hwĥ

†
w

‖hw‖
x̃w +

∑

w̃∈W (nℓ+1)\{w}

hwĥ
†
w̃

‖hw̃‖
x̃w̃ + hwz̃ + zw.

We proceed by computing the mutual informationsI(xv; x̂v|{hũ,ṽ}) and I(x̃w; yw|{hũ,ṽ}) as required
in Lemma 8 (the conditioning in{hũ,ṽ} again being due to the availability of full CSI). Note first that by
construction ofS̃(1,1)(nℓ+1), we have for anyw ∈ W (nℓ+1)

2 min
v∈V (nℓ+1)

rv,w ≥ max
v∈V (nℓ+1)

rv,w,

and therefore
|hv,w|2
‖hw‖2

≤
(
minv∈V (nℓ+1) rv,w

)−α

nℓ+1

(
maxv∈V (nℓ+1) rv,w

)−α ≤ 2α

nℓ+1
. (21)

We start by computingI(xv; x̂v|{hũ,ṽ}). x̂v has mean zero and variance

E
(
|x̂v|2

)
=

∑

w∈W (nℓ+1)

|hv,w|2
‖hw‖2

Kn−1
ℓ+1a

α/2
ℓ +∆2

≤ nℓ+1
2α

nℓ+1
Kn−1

ℓ+1a
α/2
ℓ +∆2

≤ n−1
ℓ+1a

α/2
ℓ , (22)

for
K , 2−α(1−∆2),

which is positive for∆2 < 1, and where we have used (21) and that

n−1
ℓ+1a

α/2
ℓ ≥ 2ℓ+1γ(n) ≥ 1

by (12). Equation (22) shows thatx̂v satisfies the power constraint of nodev in the relay squareletV (nℓ+1).
Moreover, we obtain

I(xv; x̂v|{hũ,ṽ}) = h(x̂v|{hũ,ṽ})− h(x̂v|xv, {hũ,ṽ})
≤ log

(
2πeE

(
|x̂v|2

))
− log(2πe∆2)

≤ log

(
n−1
ℓ+1a

α/2
ℓ

∆2

)
. (23)

It remains to computeI(x̃w; yw|{hũ,ṽ}). Note that the encoding procedure guarantees that

cos(π/4)2‖hw‖4 ≤ |hwĥ
†
w|2 ≤ ‖hw‖4.

Moreover, forw 6= w̃,

E
(
|hwĥ

†
w̃|2
)
= E(hwĥ

†
w̃ĥw̃h

†
w)

=
∑

v∈V (nℓ+1)

E
(
|hvw|2|ĥvw̃|2

)

=
∑

v∈V (nℓ+1)

E
(
|hvw|2|hvw̃|2

)

= E
(
|hwh

†
w̃|2
)
.
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From this, we get by a similar argument as in Lemma 9 that

I(x̃w; yw|{hũ,ṽ}) ≥ K6. (24)

Using (23) and (24) in Lemma 8, and observing that we only communicate during a fraction

Pℓ(n)nℓ+1a
−α/2
ℓ

of time, yields a per destination node rateρBC
ℓ (n) arbitrarily close to

K6Pℓ(n)nℓ+1a
−α/2
ℓ

bits per channel use and a quantizer rate arbitrarily close to

log
(n−1

ℓ+1a
α/2
ℓ

∆2

)

bits per encoded sample. Since by (24) mutual informationI(x̃w; yw|{hũ,ṽ}) is at leastK6 for every
w ∈ W (nℓ+1) during the fraction of time we actually communicate, this implies that there are at most
1/K6 encoded message samples for each relay node pernℓ+1 total message bits received by the destination
nodesW (nℓ+1). Thus the number of bits required at each relay node to quantize the encoded message
samples is at most

1

K6
log
(n−1

ℓ+1a
α/2
ℓ

∆2

)
=

1

K6
log
( 1

∆2
2ℓ+1γ1+ℓ(1−α/2)(n)nα/2−1

)

≤ 1

K6
log
( 1

∆2
2ℓ+1nα/2

)

≤ K7(ℓ+ 1) log(n)

bits pernℓ+1 total message bits received by the destination nodes, and where we have usedγ(n) ≤ n by
(12).

VII. PROOF OFTHEOREM 1

The proof of Theorem 1 is split into two parts. In Section VII-A we prove the theorem for fast fading,
and in Section VII-B for slow fading.

A. Fast Fading

In this section, we prove Theorem 1 under fast fading, i.e.,{θu,v[t]}t is stationary and ergodic int.
We first prove that the assumptions on the power constraint and the interference made in Section VI (see
Lemmas 9 and 10) during the analysis of one level of the hierarchical relaying scheme are valid. We then
use the results proved there to analyze the behavior of the entire hierarchy, yielding a lower bound on the
per-node rate achievable with hierarchical relaying.

We first argue that the constraintPℓ(n) ≤ n−1
ℓ+1a

α/2
ℓ needed in Lemmas 9 and 10 is satisfied. Consider

the hierarchical relaying scheme as described in Section IVand fix a levelℓ, 0 ≤ ℓ < L = L(n) in this
hierarchy. At levelℓ we have a square of areaaℓ = n/γℓ(n), with nℓ = n/2ℓγℓ(n) source-destination
pairs. Since we are time sharing betweenK22

−ℓγ(n) relay squarelets at this level, we have an average
power constraint of

Pℓ(n) , K22
−ℓγ(n)
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during the time any particular relay squarelet is active. Since α > 2 and sincenγ−L(n)(n) → ∞ as
n → ∞, we have, forn large enough (independent ofℓ), that

Pℓ(n) = K22
−ℓγ(n)

≤ 2−ℓγ(n)
( n

γL(n)(n)

)α/2−1

≤ 2ℓ+1γ(n)
( n

γℓ(n)

)α/2−1

= n−1
ℓ+1a

α/2
ℓ .

Therefore the power constraint in Lemmas 9 and 10 is satisfied.
We continue by analyzing the interference caused by spatialre-use. Recall that the MAC and BC phases

at level ℓ induce permutation traffic within the dense squarelets at level ℓ + 1. The permutation traffic
within those dense squarelets at levelℓ+1 is transmitted in parallel with spatial re-use. We now describe
in detail how this spatial re-use is performed. Partition the squarelets of areaaℓ+1 (i.e., at levelℓ + 1)
into four subsets such that in each subset all squarelets areat distance at least

√
aℓ+1 from each other.

The traffic that the MAC and BC phases at levelℓ induce in each of the relay squarelets at levelℓ+ 1 is
transmitted simultaneously within all relay squarelets inthe same subset. Consider now one such subset.
We show that at any relay squarelet the interference from other relay squarelets in the same subset is
stationary and ergodic within each phase, additive (i.e., independent of the signals and channel gains in
this relay squarelet), and of bounded powerN0 − 1 independent ofn.

We first argue that the interference is stationary and ergodic within each phase. Note first that on
any level ℓ + 1 in the hierarchy, all relay squarelets are either simultaneously in the MAC phase or
simultaneously in the BC phase. Furthermore, all relay squarelets are also synchronized for transmissions
within each of these phases (recall that the induced traffic in levelℓ+1 is uniform and is sent sequentially
as permutation traffic). Hence it suffices to show that the interference generated by either the MAC or
BC induced by some permutation traffic matrix is stationary and ergodic. Since all codebooks for either
of these cases are generated as i.i.d. Gaussian multiplied by a Bernoulli process, and in the BC phase
beamformed for stationary and ergodic fading, this is indeed the case.

The additivity of the interference follows easily for the MAC phase, since codebooks are generated
independently of the channel realization in this case. Moreover, since the channel gains are independent
from each other and all codebooks are generated as independent zero mean processes, the interference
in the MAC phase is also uncorrelated (over space) within each relay squarelet. For the BC phase,
the codebook depends only on the channel gains within each relay squarelet at levelℓ + 1. Since the
channel gains within relay squarelets are independent of the channel gains between relay squarelets, this
interference is additive as well.

We now bound the interference power. Note that by the randomized time-sharing construction within
the MAC and BC phases (see Lemmas 9 and 10), in each relay squarelet, at mostnℓ+1 nodes transmit at
an average power of1. In the MAC phase, all nodes use independently generated codebooks with power
at most1, and thus the received interference power from another relay squarelet at distancei

√
aℓ+1 is at

most

nℓ+1i
−αa

−α/2
ℓ+1 = i−α2−(ℓ+1)

( n

γℓ+1(n)

)1−α/2

≤ i−α,

by (12). In the BC phase, the nodes in each active relay squarelet use beamforming to transmit to nodes
within their own squarelet. Since the channel gains within arelay squarelet are independent of the channel
gains between relay squarelets, the same calculation as in (19) shows that we can upper bound the received
interference power from another relay squarelet at distance i

√
aℓ+1 by

nℓ+1i
−αa

−α/2
ℓ+1 ≤ i−α,

in the BC phase as well.
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Now, by the way in which we perform spatial re-use, every active relay squarelet has at most8i active
relay squarelets at distance at leasti

√
aℓ+1. Hence the total interference power received at an active relay

squarelet is at most
∞∑

i=1

8i2αi−α , N0 − 1 < ∞

sinceα > 2. With this, we have shown that the interference term has the properties required for Lemmas 9
and 10 to apply.

We now apply those two lemmas to obtain a lower bound on the rate achievable with hierarchical
relaying. Callτℓ(n) the number of channel uses to transmit one bit from each ofnℓ source nodes to the
corresponding destination nodes at levelℓ. Lemma 7 states that forn large enough (independent ofℓ),
we relay over each dense squarelet at mostK32

ℓ times. Combining this with Lemma 9, we see that to
transmit one bit from each source to its destination at this level we need at most

4K32
ℓK22

−ℓγ(n)
1

K4Pℓ(n)
n−1
ℓ+1a

α/2
ℓ =

K32
2ℓ+3

K4

nα/2−1γ1+ℓ(1−α/2)(n)

channel uses for the MAC phase. Here, the factor4 accounts for the spatial re-use,K32
ℓ accounts for

relaying over the same relay squarelets multiple times,K22
−ℓγ(n) accounts for time sharing between the

relay squarelets, and the last term accounts for the time required to communicate over the MAC. Similarly,
combining Lemmas 7 and 10, we need at most

K32
2ℓ+3

K6

nα/2−1γ1+ℓ(1−α/2)(n)

channel uses for the BC phase. Moreover, at levelℓ + 1 in the hierarchy this induces a per-node traffic
demand of at mostK5 bits from the MAC phase, and at mostK7(ℓ+1) log(n) from the BC phase. Thus
we obtain the following recursion

τℓ(n) ≤ 8K3

( 1

K4
+

1

K6

)
nα/2−1γ(n)

(
4γ1−α/2(n)

)ℓ
+ (K5 +K7(ℓ+ 1) log(n))τℓ+1(n)

≤ K̃nα/2−1γ(n)4ℓ +K(ℓ+ 1) log(n)τℓ+1(n)

≤ K̃nα/2−1γ(n)4L +KL log(n)τℓ+1(n) (25)

for positive constantsK, K̃ independent ofn and ℓ.
We use TDMA at scaleaL with nL nodes and source-destination pairs. Time sharing between all source-

destination pairs, we have (during the time we communicate for each node) an average power constraint
of nL. Since at this level we communicate over a distance of at most2a

1/2
L , we have

τL(n) ≤ nL log
−1

(
1 +

nL

2αN0a
α/2
L

)
. (26)

Since
nLa

−α/2
L ≤ nLa

−1
L = 2−L → 0

asn → ∞, we can upper bound (26) as

τL(n) ≤ K ′a
α/2
L

= K ′nα/2γ−Lα/2(n)

≤ K ′nα/2γ−L(n) (27)

for some constantK ′.
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Now, using the recursion (25)L times, and combining with (27), we obtain

τ0(n) ≤ K̃nα/2−1γ(n)4L +KL log(n)τ1(n)

≤ . . .

≤ K̃nα/2−1γ(n)4L
( L−1∑

ℓ=0

(
KL log(n)

)ℓ
)

+
(
KL log(n)

)L
τL(n)

≤ nα/2−1
(
KL log(n)

)L(
K̃4Lγ(n) +K ′nγ−L(n)

)
. (28)

Using the definition ofγ(n) andL = L(n) in (11), we have forn large enough
(
KL(n) log(n)

)L(n) ≤ n2 log−1/2−δ(n) log log(n),

4L(n)γ(n) ≤ n2 log−1/2−δ(n)+logδ−1/2(n),

nγ−L(n)(n) ≤ nlogδ−1/2(n).

Sinceδ > 0, thenlogδ−1/2(n) term dominates in (28), and we obtain

τ0(n) ≤ b̃(n)nα/2−1,

where
b̃(n) ≤ nO(logδ−1/2(n)),

asn → ∞. Therefore
ρ∗(n) ≥ ρHR(n) = 1/τ0(n) ≥ b(n)n1−α/2,

with
b(n) ≥ n−O(logδ−1/2(n)),

concluding the proof for the fast fading case.

B. Slow Fading

In this section, we prove Theorem 1 under slow fading, i.e.,{θu,v[t]}t is constant as a function oft.
We sketch the necessary modifications for the scheme described in Section IV to achieve a per-node rate
of at leastb(n)n1−α/2 in the slow fading case.

Consider levelℓ, 0 ≤ ℓ < L(n) in the hierarchy. Instead of relaying the message of a source-destination
pair over one relay squarelet as in the scheme described in Section IV, we relay the message over many
dense squarelets that are at least at distance

√
2aℓ+1 from both the source and the destination nodes. We

time share between the different relays. The idea here is that the wireless channel between any node
and its relay squarelet might be in a bad state due to the slow fading, making communication over this
relay squarelet impossible. Averaged over many relay squarelets, however, we get essentially the same
performance as in the fast fading case.

We first state a (somewhat weaker) version of Lemma 7, appropriate for this setup. Consider again
the collection of schedulesS(nℓ) and S̃(nℓ) satisfying the conditions that no relay squarelet is selected
by more thannℓ+1 source-destination pairs and that all sources and destinations are at least at distance√
2aℓ+1 from their relay squarelet (see Section VI-A for the formal definition). The next lemma shows

that for each source-destination pair, we can findK22
−ℓ−1γ(n) distinct relay squarelets satisfying the

above conditions (the requirement that these relay squarelets are distinct is expressed by the orthogonality
condition of the schedules in Lemma 11 below).
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Lemma 11. For everyn large enough (independent ofℓ) and every permutation traffic matrixλ(nℓ) ∈
{0, 1}nℓ×nℓ there are schedules{S(i)(nℓ)}K22−ℓγ2(n)

i=1 ⊂ S(nℓ), {S̃(i)(nℓ)}
K22−ℓγ2(n)

i=1 ⊂ S̃(nℓ) satisfying

λ(nℓ) =
1

K22−ℓ−1γ(n)

K22−ℓγ2(n)∑

i=1

S(i)(nℓ)S̃
(i)(nℓ),

where{S(i)(nℓ)}i, {S̃(i)(nℓ)}i are collections of orthogonal matrices in the sense that fori 6= i′,
∑

u,k

s
(i)
u,ks

(i′)
u,k = 0,

∑

k,u

s̃
(i)
k,us̃

(i′)
k,u = 0.

(29)

Proof. The proof is similar to that of Lemma 7. In order to construct{S(i)(nℓ)} and{S̃(i)(nℓ)}, consider
the sequential pass over alln source-destination pairs (assumen is large enough for Lemma 7 to hold). As
before, for each source-destination pair, there areK22

−ℓ−1γ(n) dense relay squarelets that are at distance
at least

√
2aℓ+1. Each pair chooses all of theseK22

−ℓ−1γ(n) squarelets, instead of just one as before.
Stop one round of this procedure as soon as any of the relay squarelets is chosen bynℓ+1 pairs. Since by
the end of one round at least one relay squarelet is matched bynℓ+1 source-destination pairs, there are at
mostnℓ/nℓ+1 = 2γ(n) such rounds.

Consider now the result of one such round. We constructK22
−ℓ−1γ(n) matricesS(i)(nℓ) and S̃(i)(nℓ),

with the i-th pair of matrices describing communication over thei-th relay squarelets chosen by source-
destination pairs matched in this round. Thus, this processproduces a total of2γ(n)K22

−ℓ−1γ(n) =
K22

−ℓγ2(n) such matrices. The orthogonality property follows since each source-destination pair relays
over the same relay squarelet only once.

Given a decomposition of the scaled traffic matrixK22
−ℓ−1γ(n)λ(n) into K22

−ℓγ2(n) matrices, each
source-destination pair tries to relay overK22

−ℓ−1γ(n) dense squarelets. We time share between these
relay squarelets. Since each source-destination pair relays only a(K22

−ℓ−1γ(n))−1 fraction of traffic over
any of its relay squarelets, the loss due to this time sharingis now

K22
−ℓγ2(n)

K22−ℓ−1γ(n)
= 2γ(n)

as opposed toK32
ℓ in Lemma 7. In other words, the loss is at most a factor2γ(n) more than in Lemma 7.

Using the definition ofγ(n) in (11), we have

γ(n) ≤ n− logδ−1/2(n) ≤ b−1(n).

In other words, this additional loss is small.
Consider now a specific relay squarelet. If a source-destination pair can communicate over this relay

squarelet at a rate at least1/64-th of the rate achievable in the fast fading case (given by Lemmas 9
and 10), it sends information over this relay. Otherwise it does not send anything during the period of
time it is assigned this relay. We now show that, with probability 1− o(1) asn → ∞, for every source-
destination pair on every level of the hierarchy at least onequarter of its relay squarelets can support this
rate. As we only communicate over a quarter of the relay squarelets, this implies that we can achieve at
least1/256-th of the per-node rate for the fast fading case (see SectionVII-A), i.e., that b(n)n1−α/2 is
achievable with probability1− o(1) asn → ∞.

Assume we have for each source-destination pair(u, w) picked K22
−ℓ−1γ(n) dense squarelets over

which it can relay; call those relay squarelets{Au,w,k}K22−ℓ−1γ(n)
k=1 . Consider the eventBu,w,k that source

nodeu can communicate at the desired rate to destination nodew over relay squareletsAu,w,k (assuming,
as before, that we can solve the communication problem within this squarelet).
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Let {B(i)
u,w,k}4i=1 be the events that the interference due to matched filtering in the MAC phase, the

interference from spatial re-use in the MAC phase, the interference due to beamforming in the BC phase,
and the interference from spatial re-use in the BC phase, areless than8 times the one for fast fading,
respectively. From the proof of Lemmas 9, 10, and of Theorem 1for the fast fading case in SectionVII-A,
we see that

4⋂

i=1

B
(i)
u,w,k ⊂ Bu,w,k.

Due to spatial re-use, multiple relay squarelets will be active in parallel. LetH̃ denote the set of channel
gains between active relay squarelets. Using essentially the same arguments as for the fast fading case
(see Lemmas 9, 10, and Section VII-A) and from Markov’s inequality, we haveP(B(i)

u,w,k|H̃) ≥ 7/8 for
all i ∈ {1, . . . , 4} and henceP(Bu,w,k|H̃) ≥ 1/2.

We now argue that the events {
∩4
i=1 B

(i)
u,w,k

}K22−ℓ−1γ(n)

k=1
(30)

are independent conditioned oñH, by showing that these events depend on disjoint sets of channel gains
and codebooks. Assuming the codebooks are generated new foreach communication round, then they are
all independent. Thus we only have to consider the dependence on the channel gains. LetUk andWk be
the source and destination nodes communicating over relay squareletAu,w,k in roundk, and letVk be the
nodes inAu,w,k. Let Ũk, W̃k be the source and destination nodes that are communicating at the same time
as (u, w) due to spatial re-use. Let̃Vk be the relay nodes of̃Uk andW̃k. Now, B(1)

u,w,k andB(2)
u,w,k depend

(for fixed H̃) on the channel gains betweenUk andVk. B(3)
u,w,k depends on the channel gains betweenVk

andWk. B(4)
u,w,k depends (again for fixed̃H) on the channel gains betweeñVk and W̃k. Since these sets

are disjoint for differentk by the orthogonality of the schedules (see (29)), conditional independence of
the events in (30) follows.

To summarize, conditioned on the channel gainsH̃ between active relay squarelets, the random variables
{11Bu,w,k

}k are independent and have expected valueE(11Bu,w,k
|H̃) ≥ 1/2. The sum

K22−ℓ−1γ(n)∑

k=1

11Bu,w,k

is the number of relay squarelets over which the source-destination pair(u, w) successfully relays traffic.
We now show that with high probability at least one quarter ofthese relay squarelets allow successful
transmission. Applying the Chernoff bound yields that

P

(∑
k11Bu,w,k

< K22
−ℓ−3γ(n)

∣∣∣H̃
)
≤ P

(∑
k11Bu,w,k

< K22
−ℓ−2γ(n)P(Bu,w,k|H̃)

∣∣∣H̃
)

≤ exp
(
− 2K2−ℓγ(n)P(Bu,w,k|H̃)

)

≤ exp
(
−K2−ℓγ(n)

)

for some constantK > 0. Since the right-hand side is the same for allH̃, this implies

P

(∑
k11Bu,w,k

< K22
−ℓ−3γ(n)

)
≤ exp

(
−K2−ℓγ(n)

)
.

In each of theL(n) levels of the hierarchy there are at mostn2 source-destination pairs, and hence by
the union bound with probability at least

1− L(n)n2 exp
(
−K2−L(n)γ(n)

)
,
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for every source-destination pair on every level of the hierarchy at least one quarter of its relay squarelets
can support the desired rate. By the choices ofγ(n) andL(n) in (11), this probability is at least

1− L(n)n2 exp
(
−K2−L(n)γ(n)

)
≥ 1− n3 exp

(
−K2−L(n)2log(n)/2L(n)

)

≥ 1− exp
(
K̃2log log(n) −K2

1

2
log1/2+δ(n)−log1/2−δ(n)

)

≥ 1− exp
(
− 2Ω(log1/2+δ(n))

)

≥ 1− o(1)

asn → ∞, and for some constant̃K. This proves that the same order rate as in the fast fading case can
be achieved with high probability for all levels0 ≤ ℓ < L(n).

It remains to argue that the same holds for levelℓ = L(n). Note that since we assume phase fading
only, the received signal power is only a function of distance and not of the fading realization. Since at
level L(n) we use simple TDMA, this implies that we can always achieve the same rate at levelL(n) as
in the fast fading case.

Hence with probability1− o(1) asn → ∞, we achieve the same order rate at each level0 ≤ ℓ ≤ L(n)
as for fast fading, proving Theorem 1 for the slow fading case.

VIII. PROOF OFTHEOREM 2

Here, we provide a generalization and sharpening of the converse in [8]. Most of the arguments follow
[8, Theorem 5.2]. We start by proving a lemma upper bounding the MIMO capacity.

Consider two subsetsS1, S2 ⊂ V (n) such thatS1 ∩S2 = ∅. Assume we allow the nodes withinS1 and
S2 to cooperate without any restriction. The maximum achievable sum rate between the nodes inS1 and
S2 is given by the MIMO capacityC(S1, S2) between them. The next lemma upper boundsC(S1, S2) in
terms of the node distances between the two sets and thenormalized channel gains

h̃u,v ,
hu,v√∑
ṽ∈S2

r−α
u,ṽ

.

Lemma 12. Under either fast or slow fading, for everyα > 2, S1, S2 ⊂ V (n) with S1 ∩S2 = ∅, we have

C(S1, S2) ≤ 4

(
max

{
1,max

v∈S2

∑

u∈S1

|h̃u,v|2
})∑

u∈S1

∑

v∈S2

r−α
u,v .

Proof. Let

H , {hu,v}u∈S1,v∈S2
,

H̃ , {h̃u,v}u∈S1,v∈S2
,

be the matrix of (normalized) channel gains between the nodes in S1 andS2. Consider first fast fading.
Under this assumption, we have

C(S1, S2) , max
Q(H)≥0:

E(qu,u)≤1 ∀u∈S1

E

(
log det

(
I +H†Q(H)H

))
.

Define
PS1,S2

,
∑

u∈S1

∑

v∈S2

r−α
u,v

as the total received power inS2 from S1, and set

Pu,S2
, P{u},S2
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with slight abuse of notation. Then

C(S1, S2) = max
Q(H)≥0:

E(qu,u)≤Pu,S2
∀u∈S1

E

(
log det

(
I + H̃†Q(H)H̃

))

≤ max
Q(H)≥0:

E(trQ(H))≤PS1,S2

E

(
log det

(
I + H̃†Q(H)H̃

))
. (31)

Define the event
B ,

{
‖H̃‖2 > b

}

for someb and where‖H̃‖ denotes the largest singular value of̃H. In words,B is the event that the
channel gains betweenS1 andS2 are “good”. We argue that, for appropriately chosenb, the eventB has
probability zero (i.e., the channel can not be too “good”). By Markov’s inequality

P(B) ≤ b−m
E(‖H̃‖2m), (32)

for anym. We continue by upper boundingE(‖H̃‖2m). We have

‖H̃‖2k ≤ tr
(
(H̃H̃†)k

)

for any k, and hence
E(‖H̃‖2m) ≤ E

((
tr
(
(H̃H̃†)k

))m/k
)
. (33)

Now, for anyk ≥ m, we have by Jensen’s inequality

E

((
tr
(
(H̃H̃†)k

))m/k
)
≤
(
Etr
(
(H̃H̃†)k

))m/k

. (34)

Combining (32), (33), and (34) yields

P(B) ≤ b−m
(
Etr
(
(H̃H̃†)k

))m/k

(35)

for any k ≥ m.
Now, the arguments in [8, Lemma 5.3] show that

E
(
tr
(
(H̃H̃†)k

))
≤ tkn

(
max

{
1,max

v∈S2

∑

u∈S1

|h̃u,v|2
})k

,

wheretk is thek-th Catalan number. Combining with (35), this yields

P(B) ≤
(
b−1t

1/k
k n1/k

(
max

{
1,max

v∈S2

∑

u∈S1

|h̃u,v|2
}))m

.

Taking the limit ask → ∞ and using thatt1/kk → 4 yields

P(B) ≤
(
b−14

(
max

{
1,max

v∈S2

∑

u∈S1

|h̃u,v|2
}))m

.

Assume
b > 4

(
max

{
1,max

v∈S2

∑

u∈S1

|h̃u,v|2
})

, (36)

then taking the limit asm → ∞ shows that

P(B) = 0.
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Using this, we can upper bound (31) as

C(S1, S2) ≤ max
Q(H)≥0:

E(trQ(H))≤PS1,S2

E

(
tr
(
H̃†Q(H)H̃

))

= max
Q(H)≥0:

E(trQ(H))≤PS1,S2

E

(
11Bctr

(
H̃†Q(H)H̃

))

≤ max
Q(H)≥0:

E(trQ(H))≤PS1,S2

E

(
11Bc‖H̃‖2trQ(H)

)

≤ bPS1,S2
.

Since this is true for allb satisfying (36), we obtain the lemma for the fast fading case.
Under slow fading

C(S1, S2) , max
Q≥0:

qu,u≤P ∀u∈S1

log det
(
I +H†QH

)
,

and the lemma can be obtained by the same steps.

We now proceed to the proof of Theorem 2. Consider a vertical cut dividing the network into two
parts. By the minimum-separation requirement, an area of size o(n) can contain at mosto(n) nodes, and
hence we can find a cut such that each part is of sizeΘ(n) and containsΘ(n) nodes. Call the left part of
the cutS. Since there areΘ(n) nodes inS and inSc, there areΘ(n) sources inS with their destination
in Sc with probability 1 − o(1). For technical reasons we add a node inside each square inV (n) of the
form [id, (i+ 1)d]× [jd, (j + 1)d] for somei, j ∈ N, whered ,

√
2 log(n). These additional nodes have

no traffic demands on their own, and simply help with the transmission. This can clearly only increase
achievable rates. Moreover, this increases the number of nodes inV by less than a factor2. We now show
that

C(S, Sc) = O
(
log6(n)n2−α/2

)
, (37)

and hence by the cut-set bound, and since there areΘ(n) sources inS with their destination inSc, we
have

ρ∗(n) = O
(
log6(n)n1−α/2

)
.

We prove (37) using Lemma 12. To this end, we need to upper bound

max
v∈Sc

∑

u∈S

|h̃u,v|2.

The proof of [8, Lemma 5.3] shows that if
1) there are less thanlog(n) nodes inside[i, i+ 1]× [j, j + 1] for any i, j ∈ {0, . . . ,√n− 1},
2) there is at least one node inside[id, (i+ 1)d]× [jd, (j + 1)d] for any i, j, whered ,

√
2 logn,

then
max
v∈Sc

∑

u∈S

|h̃u,v|2 ≤ K log3(n), (38)

and forα ∈ (2, 3] ∑

u∈S

∑

v∈Sc

r−α
u,v ≤ K̃ log3(n)n2−α/2, (39)

for constantsK, K̃. For arbitrary node placement with minimum separation, thefirst requirement is
satisfied forn large enough, since only a constant number of nodes can be contained in each area of
constant size. By our addition of nodes intoV (n) described above, the second condition is also satisfied.
Using Lemma 12 with (38) and (39) yields (37), concluding theproof of Theorem 2.
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IX. PROOF OFTHEOREM 3

Consider a node placement withn/2 nodes located uniformly on[0,
√
n/4] × [0,

√
n] andn/2 nodes

located on[
√
n/2,

√
n]× [0,

√
n] with minimum separationrmin = 1/2. A random traffic matrixλ(n) is

such that at leastn/4 communication pairs have their sources in the left cluster and destinations in the
right cluster with probability1− o(1). Assume we are dealing with such aλ(n) in the following.

In this setup, with multi-hop at least one hop has to cross thegap between the left and the right cluster.
Thus, even without any interference from other nodes, we canobtain at most

ρMH(n) ≤ 4αn−α/2.

Moreover, considering a cut between the two clusters (say,S andSc), and applying Lemma 12 yields
that

ρ∗(n) ≤ 16n−1

(
max

{
1,max

v∈Sc

∑

u∈S

|h̃u,v|2
})∑

u∈S

∑

v∈Sc

r−α
u,v . (40)

Now note that for anyu ∈ S, v ∈ Sc, we have

1

4

√
n ≤ ru,v ≤ 2

√
n.

Hence ∑

u∈S

|h̃u,v|2 =
∑

u∈S

r−α
u,v∑

ṽ∈Sc r
−α
u,ṽ

≤ 23α,

and ∑

u∈S

∑

v∈Sc

r−α
u,v ≤ 4α−1n2−α/2.

Combining this with (40) yields
ρ∗(n) ≤ 22+5αn1−α/2

for all α > 2.

X. PROOF OFTHEOREM 4

We construct a cooperative multi-hop communication schemeand lower bound the per-node rate
ρCMH(n) it achieves. We use the hierarchical relaying scheme as building block. Assume the node
placementV (n) is µ-regular at resolutiond(n) for all n ≥ 1. We show that this implies that we can
achieve a per-node rate of at leastd3−α(n)n−1/2−β(n) as n → ∞. Taking the smallest suchd(n) then
yields the result.

We consider three cases for the value ofd(n) (namely,d(n) = Θ(
√
n), d(n) ≥ no(1), andd(n) ≤ no(1)).

First, if d(n) = Θ(
√
n) as n → ∞ then the result follows directly from Theorem 1. Considering a

subsequence if necessary, we can therefore assume without loss of generality thatd(n) = o(
√
n) in the

following.
Second, considerd(n) satisfying

d(n) ≥ n
1

2+α
logδ−1/2(n). (41)

Divide A(n) into squares of sidelengthd(n). Sinced(n) = o(
√
n), the number of such squares grows

unbounded asn → ∞. We now show that we can use multi-hop communication with a hop length ofd(n)
where each hops is implemented by squares cooperatively sending information to a neighboring square.
In other words, we perform cooperative communication at local scaled(n) and multi-hop communication
at global scale

√
n.

SinceV (n) is µ-regular at resolutiond(n), each such square contains at leastµd2(n) nodes. Pick the
top left most square and construct the square of sidelength2d(n) consisting of it together with its3
neighbors. Continue in the same fashion, partitioning all of A(n) into squares of sidelength2d(n). Note
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that each such bigger square contains at least4µd2(n) nodes by the definition ofd(n). We assume this
worst case in the following. PartitionA(n) into 4 subsets of those bigger squares such that within each
such subset each square is at distance at least2d(n) from any other square (see Figure 6). We time share
between those4 subsets. Consider in the following one such subset. For every bigger square, we construct
two permutation traffic matricesλ1(4µd

2(n)) and λ2(4µd
2(n)). In λ1 the nodes in the top two squares

have as destinations the nodes in the bottom two squares and the nodes in the bottom two squares have as
destinations the nodes in the top two squares (see Figure 6).Similarly, λ2 contains communication pairs
between left and right squares. We time share betweenλ1 andλ2.

Fig. 6. Sketch of the construction of the cooperative multi-hop scheme in the proof of Theorem 4. The dashed squares have sidelength
d(n). The gray area is one of the4 subsets of bigger squares that communicate simultaneously. The arrows indicate the traffic matrixλ1.

Communication according toλi within bigger squares in the same subset occurs simultaneously. We
are going to use hierarchical relaying within each bigger square. This is possible since each such square
contains at least4µd2(n) nodes. We have to show that the additional interference frombigger squares in
the same subset is such that Theorem 1 still applies. In particular, we need to show that the interference
has bounded power, sayK. Using the same arguments as in the proof of Theorem 1 in Section VII yields
that this is indeed the case (the interference from other bigger squares here behaves the same way as
the interference due to spatial re-use from other active relay squarelets there). With this, we are now
dealing with a hierarchical relaying scheme with area4d2(n), 4µd2(n) nodes, and additive noise with
power1 +K. Both the lower number of nodes and the higher noise power will decrease the achievable
per-node rate by only some constant factor, and hence Theorem 1 shows that under fast fading we can
achieve a per-node rate of at least

b1
(
d2(n)

)
(d2(n))1−α/2 ≥ b1(n)d

2−α(n),

asn → ∞, where

b1(n) ≥ n−O
(
logδ−1/2(n)

)
.

Moreover, the same rate is achievable under slow fading withprobability 1− b2(d
2(n)), where

b2(n) ≤ exp
(
− 2Ω

(
log1/2+δ(n)

))
.

The setup is the same for all bigger squares within each of the4 subsets.
We now “shift” the way we defined the bigger squares byd(n) to the right and to the bottom. With this,

each new bigger square intersects with4 bigger squares as defined before. We use the same communication
scheme within these new bigger squares and time share between the two ways of defining bigger squares.
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Construct now a graph where each vertex corresponds to a square of sidelengthd(n) and where two
vertices are connected by an edge if they are adjacent in either the same old or new bigger square. This
graph is depicted in Figure 4 in Section V.

With the above construction, we can communicate along each edge of this graph simultaneously at a
per-node rate of

b1(n)

16
d2−α(n)

in the fast fading case. In the slow fading case, this statement holds with probability at least

1− n

d2(n)
b2(d

2(n)) = 1− n

d2(n)
exp

(
− 2Ω

(
log1/2+δ(d2(n))

))

≥ 1− exp
(
K ′2log log(n) − 2

eK log1/2+δ(d(n))
)

for constantsK ′, K̃. By assumption (41),

log1/2+δ
(
d(n)

)
≥
( 1

2 + α
log1/2+δ(n)

)1/2+δ

,

and hence
1− n

d2(n)
b2(d

2(n)) ≥ 1− o(1)

asn → ∞, showing that with high probability we achieve the same order rate under slow fading as under
fast fading.

The communication graph constructed forms a grid withn/d2(n) nodes. Using that each bigger square
can contain at mostK1d

2(n) nodes by the minimum-separation requirement, standard arguments for
routing over grid graphs (see [16]) show that in the fast fading case we can achieve a per-node rate of

ρCMH(n) ≥ b̃(n)d2−α(n)
d(n)√

n
≥ b̃(n)d3−α(n)n−1/2,

where
b̃(n) = n−O

(
logδ−1/2(n)

)
.

Moreover, the same statement holds in the slow fading case with probability1− o(1).
Finally, considerd(n) such that

d(n) ≤ n
1

2+α
logδ−1/2(n). (42)

Construct the same communication graph as before, but this time we use simple multi-hop communication
between adjacent squares of sidelengthd(n). By time sharing between the at mostK1d

2(n) nodes in each
square, and since we communicate over a distance of at most3d(n), we achieve under either fast of slow
fading a per-node rate between the squares of at least

K ′′d−2−α(n) ≥ K ′′n− logδ−1/2(n)

for some constantK ′′, and where we have used (42). Using the analysis of grid graphs as before, we can
achieve a per-node rate of at least

ρCMH(n) ≥ K ′′n− logδ−1/2(n)d(n)√
n

≥ b̃(n)d3−α(n)n−1/2,

for either the fast or slow fading case.
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XI. PROOF OFTHEOREM 5

ConsiderV (n) with n/2 nodes located uniformly on[0, (
√
n − d∗(n))/2] × [0,

√
n] and n/2 nodes

located uniformly on[
√
n/2,

√
n]× [0,

√
n] such thatrmin = 1/2. This node placement is1/2-regular at

resolutiond∗(n). A random traffic matrixλ(n) is such thatΘ(n) communication pairs have their sources
in the left cluster and destinations in the right cluster with probability1 − o(1). Assume we are dealing
with such aλ(n) in the following.

Considering a cut between the two clusters and applying Lemma 12 (slightly adapting the arguments
in Section VIII), yields that

ρ∗(n) = O
(
log6(n)d∗3−α(n)n−1/2

)

for α > 3.

XII. D ISCUSSION

We briefly discuss several aspects of the proposed hierarchical relaying scheme. Section XII-A comments
on the full CSI assumption and Section XII-B on the use of bursty communication. Sections XII-C and
XII-D outline how the results obtained here can be extended to the case of dense networks and networks
without minimum separation between nodes. Section XII-E compares our hierarchical relaying scheme to
the hierarchical cooperation scheme presented in [8].

A. Full CSI Assumption

Throughout our analysis, we have made a full CSI assumption.In other words, we assumed that the
phase shifts{θu,v[t]}u,v are available at timet at all nodes in the network. As this assumption is quite
strong, it is worth commenting on. First, we make the full CSIassumption in all the converse results in
this paper. This implies that all the converses also hold under weaker assumptions on the CSI, and hence
are valid as well under a wide variety of more realistic assumptions on the availability of side information.
Second, all achievability results can be shown to hold underweaker assumptions on the availability of
CSI. In fact, in all cases, a2-bit quantization of the channel state{θu,v[t]}u,v available at all nodes at time
t is sufficient to obtain the same scaling behavior. This follows by an argument similar to the one used
in the analysis of the BC phase in Section VI-C, where it is shown that beamforming using a quantized
channel state results only in a constant factor rate loss.

B. Burstiness of Hierarchical Relaying Scheme

The hierarchical relaying scheme presented here is bursty in the sense that nodes communicate at high
power during a small fraction of time. This leads to high peak-to-average power ratio, which is undesirable
in practice. We chose burstiness in the time domain to simplify the exposition. The same bursty behavior
could be achieved in a more practical manner by using CDMA with several orthogonal signatures or by
using OFDM with many sub-carriers. Each approach leads to many parallel channels out of which only
few are used with higher power. This avoids the issue of high peak-to-average power ratio in the time
domain.

C. Dense Networks

Throughout this paper, we have only consideredextendednetworks, i.e,n nodes placed on a square
region of arean with a minimum separation ofru,v ≥ rmin. The results can, however, be recast fordense
networks, wheren nodes are arbitrarily placed on a square region of unit area with a minimum separation
of ru,v ≥ rmin/

√
n. It suffices to notice that by rescaling power by a factorn−α/2 a dense network can

essentially be transformed into an extended network with path-loss exponentα (see also [8]). Hence the
same result for dense networks can be obtained from the result for extended networks by considering the
limit α → 2. Applying this to Theorem 1, yields a linear per-node rate scaling of the hierarchical relaying
scheme.
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D. Minimum-Separation Requirement

The minimum-separation requirementrmin ∈ (0, 1) on the node placement is sufficient but not necessary
for Theorem 1 to hold. A weaker sufficient condition is that a constant fraction of squarelets are dense, as
shown in Lemma 6 to be a consequence of the minimum-separation requirement. It is straightforward to
show that this weaker condition is satisfied with high probability for nodes placed uniformly at random
on [0,

√
n]2. This yields a different proof of Theorem 5.1 in [8].

E. Comparison with [8]

Both, the hierarchical relaying scheme presented here and the hierarchical scheme presented in [8],
share that they use virtual multiple-antenna communication and a hierarchical architecture to achieve
essentially global cooperation in the network. The schemesdiffer, however, in several key aspects, which
we point out here.

First, we note that we obtain a slightly better scaling law. Namely

b1(n)n
1−α/2 ≤ ρ∗(n) ≤ b2(n)n

1−α/2

with

b1(n) ≥ n−O
(
logδ−1/2(n)

)
,

b2(n) = O
(
log6(n)

)
,

for any δ ∈ (0, 1/2) obtained here, compared to

b̃1(n)n
1−α/2 ≤ ρ∗(n) ≤ b̃2(n)n

1−α/2

with

b̃1(n) = Ω
(
n−ε
)
,

b̃2(n) = O
(
nε
)
,

for any ε > 0 in [8]. For the lower bound (i.e., achievability), this is because the hierarchy here is not
of fixed depthL as in [8], but rather of depthL(n) = log1/2−δ(n) (for some constantδ ∈ (0, 1/2)), i.e.,
changing withn. For the upper bound (i.e., converse), this is due to a sharpening of the arguments in [8].

Second, note that the multi-user decoding at the relay squarelets during the MAC phase and the multi-
user encoding during the BC phase are very simple in our setup. In fact, using matched filter receivers
and transmit beamforming, we convert the multi-user encoding and decoding problems into several single-
user decoding and encoding problems. This differs from the approach in [8], in which joint decoding of a
number of users on the order of the network size is performed.Our results thus imply that these simpler
transmitter and receiver structures provide the same scaling as the more complicated joint decoding in [8].
We note that the scheme proposed in [8] can be modified to also use matched filter receivers as suggested
here.

Third, and probably most important, the schemes differ in how they achieve the throughput gain from
using multiple antennas. In [8], the nodes are located almost regularly with high probability. This allowed
the use of a scheme in which a source squarelet directly communicates with a destination squarelet. In
other words, the multiple-antenna gain comes from setting up a virtual MIMO channel between the source
and the destination. In our setup, the arbitrary location ofnodes prevents such an approach. Instead, we use
that at least some fixed fraction of squarelets is almost regular (we called them dense squarelets). Source-
destination pairs relay their traffic over such a dense squarelet. In other words, the multiple-antenna gain
comes from setting up a virtual multiple-antenna MAC and BC.Thus, the hierarchical relaying scheme
presented here shows that considerably less structure on the node locations than assumed in [8] suffices to
achieve a multiple-antenna gain essentially on the order ofthe network size. Note also that the additional
degree of freedom offered by the choice of relay squarelet for a given source-destination pair makes it
possible to extend the result to hold also for slow fading channels.
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XIII. C ONCLUSIONS

We considered the problem of the scaling of achievable ratesin arbitrary extended wireless networks. We
generalized the hierarchical cooperative communication scheme presented in [8] for a fast fading channel
model and with random node placements. We proposed a different hierarchical cooperative communication
scheme, which also works for arbitrary node placement (witha minimum-separation requirement) and for
either fast or slow fading.

For small path-loss exponentα ∈ (2, 3], we showed that our scheme is order optimal and achieves the
same rate irrespective of the node placement. In particular, this rate is equal to the one achievable under
random node placement. In other words, the regularity of thenode placement has no impact on achievable
rates for small path-loss exponent.

The situation is, however, quite different for large path-loss exponentα > 3. We argued that in
this regime the regularity of the node placement directly impacts the scaling of achievable rates. We
then presented a cooperative communication scheme that smoothly “interpolates” between multi-hop and
hierarchical cooperative communication depending on the regularity of the node placement. We showed
that this scheme is order optimal for allα > 3 under adversarial node placement with regularity constraint.
This contrasts with the situation for more regular networks(like the ones obtained with high probability
through random node placement), in which multi-hop communication is order optimal for allα > 3.
Thus, for less regular networks, the use of more complicatedcooperative communication schemes can be
necessary for optimal operation of the network.
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[3] A. Jovičić, P. Viswanath, and S. R. Kulkarni. Upper bounds on transport capacity of wireless networks.IEEE Transactions on

Information Theory, 50(11):2555– 2565, November 2004.
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