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On Capacity Scaling in Arbitrary Wireless Networks

Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract

In recent work,Ozgiir, Levéque, and Tse (2007) obtained a completenscaharacterization of throughput
scaling for random extended wireless networks (henodes are placed uniformly at random in a square region of
arean). They showed that for small path-loss exponenmts (2, 3] cooperative communication is order optimal,
and for large path-loss exponents> 3 multi-hop communication is order optimal. However, thessults (both
the communication scheme and the proof technique) areg@yralependent on the regularity induced with high
probability by the random node placement.

In this paper, we consider the problem of characterizingthineughput scaling in extended wireless networks
with arbitrary node placement. As a main result, we proposeoae general novel cooperative communication
scheme that works for arbitrarily placed nodes. For smah-@ss exponenta € (2, 3], we show that our scheme
is order optimal for all node placements, and achieves Bx#w same throughput scaling as@zgiir et al. This
shows that the regularity of the node placement does nottatffe scaling of the achievable rates forc (2, 3].

The situation is, however, markedly different for largelphiss exponenta > 3. We show that in this regime the
scaling of the achievable per-node rates depends cruocialtiie regularity of the node placement. We then present a
family of schemes that smoothly “interpolate” between irlndtp and cooperative communication, depending upon
the level of regularity in the node placement. We establigteo optimality of these schemes under adversarial
node placement fotw > 3.

Index Terms

Arbitrary node placement, capacity scaling, cooperatamamunication, hierarchical relaying, multi-hop com-
munication, wireless networks.

. INTRODUCTION

Consider a wireless network with nodes placed o0, /n]* (usually referred to as aextended
network, with each node being the source for onenofource-destination pairs and the destination for
another pair. The performance of this network is capture@*py), the largest uniformly achievable rate
of communication between these source-destination p¥itsle the scaling behavior op*(n) as the
number of nodes goes to infinity is by now well understood for random node ehaent, little is known
for the case of arbitrary node placements. In this paper,r@énderested in analyzing the impact of such
arbitrary node placement on the scalingotn).

A. Related Work

The problem of determining the scaling pf(n) was first analyzed by Gupta and Kumar in [1]. They
show that, under random placement of nodes in the regiotinenodels of communication motivated
by current technology, and random source-destinationnggithe maximum achievable per-node rate
p*(n) can scale at most a8(n~'/2). Moreover, it was shown that multi-hop communication cahiece
essentially the same order of scaling.

Since [1], the problem has received a considerable amouatteftion. One stream of work [2]-[8] has
progressively broadened the conditions on the channel haodiethe communication model, under which
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multi-hop communication is order optimal. Specificallythve power loss of-— for signals sent over
distancer, it has been established that untagh signal attenuation > 3 and random node placement, the
best achievable per-node ratgn) for random source-destination pairing scales essentik#yo (n /%)
and that this scaling is achievable with multi-hop commatian.

Another stream of work [8]-[12] has proposed progressivefined multi-user cooperative schemes,
which have been shown to significantly out-perform multplowmmunication in certain environments. In
an exciting recent workQzgur et al. [8] have shown that with nodes placed uniforatlygandom, and with
low signal attenuatiorv € (2, 3], a cooperative communication scheme can perform signtfichetter
than multi-hop communication. More precisely, they shoat flor o € (2, 3], the best achievable per-node
rate for random source-destination pairing scales*as) = O(n!~%/?*<) and cooperative communication
achieves a per-node rate@fn'~*/>=¢) (here,c > 0 is an arbitrary but fixed constant). That is, cooperative
communication is essentially order optimal in the atteimmategimea € (2, 3].

In summary, for random extended networks with random sedestination pairing, the optimal commu-
nication scheme exhibits the following threshold behavior « € (2, 3] the cooperative communication
scheme is order optimal, while fer > 3 the multi-hop communication scheme is order optimal.

B. Our Contributions

The characterization of the scaling pf(n) as a function of the path-loss exponentmentioned in
the last paragraph depends critically on the regularityiced with high probability by placing the nodes
uniformly at random. However, a wireless network encowttén practice might not exhibit this amount
of regularity. Our interest is therefore in understanding tmpact of the node placement on the scaling
of p*(n). To this end, we consider wireless networks with arbitrang.,(deterministic) node placement
(with minimum-separation constraint).

The impact of this arbitrary node placement depends ciyaia the path-loss exponent For small
path-loss exponenta < (2,3], we show that for random source-destination pairing, the of the
best communication scheme is upper boundeg*as) = O(log®(n)n'~/?). We then present a novel
cooperative communication scheme that achieves for arylpas exponentv > 2 a per-node rate of
pHR(n) > n'=/2=2() Thus, our cooperative communication scheme is essgntedier optimal for any
such arbitrary network witlw € (2, 3]. In other words, in the small path-loss regime, the scaliihg*on)
is the same irrespective of the regularity of the node placgm

The situation is, however, quite different for large patkd exponents: > 3. We show that in this
regime the scaling op*(n) depends crucially on the regularity of the node placememd, multi-hop
communication may not be order optimal for any valuecofin fact, for less regular networks we
need more complicated cooperative communication schemeslttieve optimal network performance.
Towards that end, we present a family of communication s@sethat smoothly “interpolate” between
cooperative communication and multi-hop communicatiow, i@ which nodes communicate at scales that
vary smoothly from local to global. The amount of “interpida” between the cooperative and multi-hop
schemes depends on the level of regularity of the underiyoue placement. We establish the optimality
of this family of schemes for allv > 3 under adversarial node placement.

In summary, fora € (2, 3] the regularity of the node placement has no impact on thénscaf p*(n).
Cooperative communication is order optimal in this regimd achieves the same scaling as in the case
of random node placement. Faer> 3 the regularity of the node placement strongly impacts tladirsg of
p*(n), and a communication scheme “interpolating” between nhdp and cooperative communication
depending on the regularity of the node placement is ordemap (under adversarial node placement).
In particular, simple multi-hop communication may not beeroptimal for anya > 3. This contrasts
with the case of random node placement where multi-hop camwation is order optimal for aldv > 3.

C. Organization

The remainder of this paper is organized as follows. Seffialescribes in detail the communication
model. Sectio_1ll provides formal statements of our resufectiond IV and_V describe our new



cooperative communication scheme (for the (2, 3] regime) and “interpolation” scheme (for the> 3
regime) for arbitrary wireless networks. Sectidng VI thghdiX] contain proofs. Finally, Sectioris XII
and[XIl contain discussions and concluding remarks.

II. MODEL

In this section, we introduce some notational conventiomsdescribe in detail the network and channel
models.

We use the following conventiong; for differenti denote strictly positive finite constants independent
of n. Vectors and matrices are denoted by boldface wheneveetttenor matrix structure is of importance.
We denote by(-)” and (-)' transpose and conjugate transpose, respectively. To iinmgitation, we
assume, when necessary, that fractions are integers arid -grand |- | operators.

Consider the square
A(n) £ [0,vn)?
(

)
of arean, and letV (n) C A(n) be a set ofV/(n)| = n nodes ob A(n). We say that/(n) hasminimum-
separationry, if 7, > i, for all u,v € V(n), wherer, , is the Euclidean distance between nodes
andv. We use the same channel model as in [8]. Namely, the (sajnpedived signal at node is

Yo [t] = Z hu,v[t]xu [t] + 2y [t] (1)
u€V (n)\{v}

for all v € V'(n), and where{z,[t]}... are the (sampled) signals sent by the nodes (n). Here{z,[t]}..
are independent and identically distributed (i.i.d.) witistribution N¢(0, 1) (i.e., circularly symmetric
complex Gaussian with mednand variancel), and

huo[t] = r;g/z exp(vV—10,,[t]),

for path-loss exponent > 2. We assume that for eache N, the phased#, ,[t]}.. are i.i.d with
uniform distribution on0, 27). We either assume that for eaghv € V' (n) the random proces@,, ,[t]}:
is stationary ergodic i, which is calledfast fadingin the following, or that for each,v € V' (n) the
random proces$d,, ,[t]}: is constant irt, which is calledslow fadingin the following. In either case, we
assume full channel state information (CSI) is availablallodes, i.e., each node knows &, ,[t]}...
at time t. While the full CSI assumption is quite strong, it can be shadat availability of a2-bit
quantizedversion of{#, ,[t]}.. at all nodes is sufficient for the achievable schemes preddmre (see
SectionXII-A for the details). We also impose an average groeonstraint ofl on the signalx,[t|}
for every nodeu € V' (n).

Each node: € V' (n) wants to transmit information at uniform ratén) to some other node € V'(n).
We callu the sourceandw the destinationnode of this communication pair. The set of all communicatio
pairs can be described byteaffic matrix A(n) € {0,1}"*", where the entry im\(n) corresponding to
(u,w) is equal tol if nodew is a source for node. We say that\(n) is apermutation traffic matrixf it is
a permutation matrix (i.e., every node is a source for eyamie communication pair and a destination for
exactly one communication pair). For a traffic matki¢.), let p*(n) be the highest rate of communication
that is uniformly achievable for each source-destinatiaim. ff-or a permutation traffic matrix(n), p*(n)
can also be understood as the maximal achievable per-ntele ra

1The setting considered here withnodes placed on a square of areds called anextendednhetwork. If then nodes are placed on a
square of unit area, we speak oflansenetwork. While dense networks are not treated in detail i paper, we briefly discuss implications
of the results for the dense setting in Secfion XlI-C.

2It is worth pointing out that recent work [13] suggests thaiger certain assumptions on scattering elementsy for(2, 3), and for very
large values ofn, the i.i.d. phase assumption as a functionuob € V'(n) used here is too optimistic. However, subsequent work by the
same authors [14] shows that under different assumptiontherscatterers, the channel model used here is still vakd éor o« € (2, 3),
and for very large values of. This indicates that the question of channel modeling fay Varge networks in the low path-loss regime is
somewhat delicate and requires further investigation. Wiatput that fora > 3 this issue does not arise.



Il. M AIN RESULTS

This section presents the formal statement of our resuties résults are divided into two parts. In Section
[M-A] we consider low path-loss exponents, i.e.,€ (2,3]. We present a cooperative communication
scheme for arbitrary node placement and for either fastaw §ding. We show that this communication
scheme is order optimal for all node placements whea (2,3]. In SectionII[-B, we consider high
path-loss exponents, i.ey, > 3. We present a communication scheme that “interpolatesidsat the
cooperative and the multi-hop communication schemes,riipeg on the regularity of the node placement.
We show that this communication scheme is order optimal uadieersarial node placement with regularity
constraint whenv > 3.

A. Low Path Loss Regime € (2, 3]

The first result proposes a novel communication schemesdaiérarchical relayingin the following,
and bounds the per-node rgi8?(n) that it achieves. This provides a lower boundptdn), the largest
achievable per-node rate. The hierarchical relaying sehemables cooperative communication on the
scale of the network size. In the random node placement thisecooperation could be enabled in a
cluster around the source node (cooperatively transmjttamd in a cluster around its destination node
(cooperatively receiving). With arbitrary node placemenich an approach does no longer work, as both
the source as well as the destination nodes may be isolabedhi€rarchical relaying scheme circumvents
this issue by relaying data between each source-destinptis over a densely populated region in the
network. A detailed description of this scheme is providedSection[1V, the proof of Theoref 1 is
contained in Section VIII.

Theorem 1. Under fast fading, for anyx > 2, r,;,, € (0,1), andd € (0,1/2), there exists
by(n) > n=0 e 2)

such that for anyn, node placement’(n) with minimum separation,,;,,, and permutation traffic matrix
A(n), we have
p*(n) = p"R(n) > by(n)n' =72,

The same conclusion holds for slow fading with probabilityemast

1 o eXp < o 29(10g1/2+(5(n))> — 1 _ O(l)
asn — oQ.

TheorenL shows that the per-node raf&(n) achievable by the hierarchical relaying scheme is at
leastn'~*/>=8() where the “loss” terms(n) converges to zero as — oo at a rate arbitrarily close to
O(log‘l/z(n)) (by choosing small). The performance of the hierarchical relaying sobean intuitively
be understood as follows. As mentioned before, the schemewvas cooperation on a global scale. This
leads to a multi-antenna gain of order On the other hand, communication is over a distance of order
n1/2,/leading to a power loss of order*/2. Combining these two factors results in a per-node rate of
nl—a 2.

We note that Theoreril 1 remains valid under somewhat weakedit@ns than having minimum
separation,,;, € (0, 1). Specifically, we show that the result ©gir et al. [8] can be recovered through
Theorentll as the random node placement satisfies these veeskktions. We discuss this in more detail
in Section XII-D.

The next theorem establishes optimality of the hierardhiglaying scheme in the range afe (2, 3]
for arbitrary node placement. The proof of the theorem isgméed in Sectiop VIII.
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Theorem 2. Under either fast or slow fading, for any € (2,3], rmim € (0,1), there existdy(n) =
O(log’(n)) such that for anyn, node placement/(n) with minimum separatiof,,;,, and for A(n)
chosen uniformly at random from the set of all permutatiaific matrices, we have

p(n) < by(m)n /%
with probability 1 — o(1) asn — co.

Note that Theoreril2 holds only with probability— o(1) for different reasons for the slow and fast
fading case. For fast fading, this is due to the randomnett®iselection of the permutation traffic matrix.
In other words, for fast fading, with high probability we eel a traffic matrix for which the theorem
holds. For the slow fading case, there is additional rancessrdue to the fading realization. Here, with
high probability we select a traffic matrix and we experieaciding for which the theorem hold.

Comparing Theorenld 1 afnd 2, we see thatdar (2, 3] the proposed hierarchical relaying scheme is
order optimal, in the sense that

lim M = lim log(p"(n)) =1-a/2.

n—00 log(n) n—00 log(n)
Moreover, the rate it achieves is the same order as is adiieevia the case of randomly placed nodes.
Hence in the low path-loss regime < (2, 3], the heterogeneity caused by the arbitrary node placement
has no effect on achievable communication rates.

B. High Path Loss Regime > 3

We now turn to the high path-loss regime> 3. In the case ofandomlyplaced nodes, multi-hop
communication achieves a per-node ratepWdf (n) = Q(n='/2) with probability 1 — o(1) and is order
optimal for oo > 3. For arbitrarily placed nodes, the situation is quite different as Thedremo8vs. The
proof of Theoreni 3 is contained in Sectionl IX.

Theorem 3. Under either fast or slow fading, for any > 3, for any n, there exists a node placement
V(n) with minimum separation /2 such that for\(n) chosen uniformly at random from the set of all
permutation traffic matrices, we have

p*<n> S 22+5ozn1—oz/27
pMH(n> < 4an—a/27
asn — oo with probability 1 — o(1).

Comparing Theorernl 3 with Theordm 1 shows that under advefserde placement with minimum-
separation constraint the hierarchical relaying schemerder optimal even whema > 3. Moreover,
Theoren B shows that there exist node placements satisflym@imum separation constraint for which
hierarchical relaying achieves a rate of at least a factardérn higher than multi-hop communication
for any o > 3. In other words, for those node placements cooperative agmuation is necessary for
order optimality also for any > 3, in stark contrast to the situation with random node placemehere
multi-hop communication is order optimal for ail > 3.

TheoreniB suggests that it is the level of regularity of thdenplacement that decides what scheme to
choose for path-loss exponent> 3. So far, we have seen two extreme cases: For random nodergate
resulting in very regular node placements with high prolitgbonly local cooperation is necessary and
multi-hop is an order-optimal communication scheme. Faeaghrial arbitrary node placement, resulting
in a very irregular node placement, global cooperation seesary and hierarchical relaying is an order-
optimal communication scheme. We now make this notion ofileegy precise, and show that, depending
on the regularity of the node placement, an appropriatefipdiation” between multi-hop and hierarchical
relaying is required fory > 3 to achieve the optimal performance. We refer to this “intéapon” scheme
as cooperative multi-hogommunication in the following.



Before we state the result, we need to introduce some nota@ionsider again a node placement
V(n) C A(n) with minimum separatiom,,;, € (0,1). Divide A(n) into squares of sidelengtl{n) < \/n,
and fix a constani: € (0,1]. We say thatl/(n) is u-regular at resolutiond(n) if every such square
contains at least.d?(n) nodes. Note that every node placement is trividHsegular at resolutior/n; a
random node placement can be shown toubegular at resolutioriog(n) with probability 1 — o(1) as
n — oo for any u < 1; and nodes that are placed on each point in the integerdatigide A(n) are
1-regular at resolution.

The cooperative multi-hop scheme enables cooperative ecomnmation on the scale of regularityn).
Neighboring squares of sidelengfly) cooperatively communicate with each other. To transmivben
a source and its destination, we use multi-hop communicatier those squares. In other words, we
use cooperative communication at small scéle), and multi-hop communication at large scgle. For
regular node placements, i.é(n) = 1, the cooperative multi-hop scheme becomes the classidéitHnop
scheme. For very irregular node placement, ién) = n'/?, the cooperative multi-hop scheme becomes
the hierarchical relaying scheme discussed in the lasiosect

The next theorem provides a lower bound on the per-nodepfdté(n) achievable with the cooperative
multi-hop scheme. The proof of the theorem can be found ini@e|.

Theorem 4. Under fast fading, for anyx > 2, r,:, € (0,1), p € (0,1), andd € (0,1/2) there exists
o) > -0 s 20)

such that for anyh, node placement’(n) with minimum separation,,;,, and permutation traffic matrix
A(n), we have
p*(n) > pCMH(n) > b3(n)d*3—a<n)n—1/27

where
d*(n) = min{h : V(n) is u regular at resolutior}.

The same conclusion holds for slow fading with probability o(1) asn — cc.

Theoren{# shows that if (n) is regular at resolutiod”(n) then a per-node rate of at leastH(n) >
d**=*(n)n"1/?-# is achievable, where, as before, the “loss” tefm) converges to zero as — oo
at a rate arbitrarily close t@(log‘l/z(n)). The performance of the cooperative multi-hop scheme can
intuitively be understood as follows. The scheme achieweperation on a scale @f(n). This leads to
a multi-antenna gain of ordef(n). On the other hand, communication is over a distance of af(ey,
leading to a power loss of order*(n). Moreover, each source-destination pair at a distance agror
n'/? must transmit their data over ordet/?d—'(n) many hops, leading to a multi-hop lossof'/2d(n).
Combining these three factors results in a per-node rat&of(n)n /2.

The next theorem shows that TheorEm 4 is tight under advarserde placement under a constraint
on the regularity. The proof of the theorem is presented ictiGeXIl

Theorem 5. Under either fast or slow fading, for any > 3, there existd,(n) = O(log®(n)), such that
for anyn, andd*(n), there exists a node placeméritn) with minimum separation/2 and 1/2-regular
at resolutiond*(n) such that forA(n) chosen uniformly at random from the set of all permutatiaific
matrices, we have

p"(n) < ba(n)d™* = (n)n~Y2,

with probability 1 — o(1) asn — oo.
As an example, assume that
d*(n) =n"
for somen > 0. Then Theoreml4 shows that for any node placement of reguldrin) anda > 3,
pCMH<n> > pB-e)n=1/2-5(n)

)



where 5(n) converges to zero as — oo at a rate arbitrarily close t@(log_l/z(n)). In other words

o 108 ()

R ) >B3—a)n—1/2.

Moreover, by Theorern]5 there exist node placements with sagudarity such that for random permu-
tation traffic with high probabilityp*(n) is (essentially) of the same order, in the sense that

o 108(2° ()

lim PSR <@ an-1/2

In particular, forn = 0 (i.e., regular node placement), and fpe= loglog(n)/log(n) (i.e., random node
placement), we obtain the order'/? scaling as expected. Fgr= 1/2 (i.e., completely irregular node
placement), we obtain the ordet=*/? scaling as in Theorenis 1 ahd 3.

IV. HIERARCHICAL RELAYING SCHEME

This section describes the architecture of our hierarthieaying scheme. On a high level, the
construction of this scheme is as follows. ConsidetodesV (n) placed arbitrarily on the square region
A(n) with a minimum separation,,;,. Divide A(n) into squarelets of equal size. Call a squareietse
if it contains a number of nodes proportional to its area. &mrh source-destination pair, choose such a
dense squarelet asralay, over which it will transmit information (see Figuié 1).

Fig. 1. Sketch of one level of the hierarchical relaying soheHere{(u;,w;)};-, are three source-destination pairs. Groups of source-
destination pairs relay their traffic over dense squareletéch contain a number of nodes proportional to their astaded). We time
share between the different dense squarelets used as. fédlags all these relay squarelets the scheme is used iigelygo enable joint
decoding and encoding at each relay.

Consider now one such relay squarelet and the nodes thataastitting information over it. If we
assume for the moment that all the nodes within the same sejagrelet could cooperate then we would
have a multiple access channel (MAC) between the sourcesnaa the relay squarelet, where each of
the source nodes has one transmit antenna, and the relaglksgacting as one node) has many receive
antennas. Between the relay squarelet and the destinatt@snwe would have a broadcast channel (BC),
where each destination node has one receive antenna, aneldliesquarelet (acting again as one node)
has many transmit antennas. The cooperation gain from dliagind of scheme arises from the use of
multiple antennas for these multiple access and broadbasinels.

To actually enable this kind of cooperation at the relay sejes local communication within the relay
squarelets is necessary. It can be shown that this local coneation problem is actually the same as
the original problem, but at a smaller scale. Hence we carthessame scheme recursively to solve this



subproblem. We terminate the recursion after severaltitgrs, at which point we use simple TDMA to
bootstrap the scheme.

The construction of the hierarchical relaying scheme isgmeed in detail in Sectidn TVAA. A back-of-
the-envelope calculation of the per-node rate it achiesggasented in Sectign TVIB. A detailed analysis
of the hierarchical relaying scheme is presented in Sesfidrand[VII.

A. Construction
Recall that

A(b) £ [0, VO]

is the square region of aréa The scheme described here assumes:thabdes are placed arbitrarily in
A(n) with minimum separation,;, € (0,1). We want to find some rate, say, that can be supported
for all n source-destination pairs of a given permutation trafficrmat(n). The scheme that is described
below is “recursive” (and hence hierarchical) in the follog/ sense. In order to achieve ratg for n
nodes inA(n), it will use as a building block a scheme for supporting ratdor a network of

nodes overA(a;) (square of area;) with

for any permutation traffic matrix(n;) of n; nodes. Here théranching factor(n) is a function such
that v(n) — oo asn — oo. We will optimize over the choice of(n) later. The same construction is
used for the scheme ovet(a,), and so on. In general, our scheme does the following at leveD of
the hierarchy (or recursion). In order to achieve ratdor any permutation traffic matrix(n,) over

n = n
T 2w
nodes inA(a,), with
a N
YY)

use a scheme achieving ratg; overn,,; nodes inA(a,,1) for any permutation traffic matrix(n,.1).
The recursion is terminated at some levgh) to be chosen later.

We now describe how the hierarchy is constructed betweegldévand ¢ + 1 for 0 < ¢ < L(n).
Each source-destination pair chooses some squarelet ésyaouer which it transmits its message. This
relaying of messages takes place in two phases — a multipesa@hase and a broadcast phase. We first
describe the selection of relay squarelets, then the aperaf the network during the multiple access
and broadcast phases, and finally the termination of theutaleical construction.

1) Setting up RelaysGivenn, nodes inA(a,), divide the square regioA(a,) into v(n) equal sized
squarelets. Denote them Ky, (api1) g;"f Call a squareletiensef it contains at leasti;/2v(n) = nq
nodes. In other words, a dense squarelet contains a numbede$ of at least &/2°+* fraction of its area.
We show that since the nodes it{a,) have constant minimum separatiog;,, a squarelet can contain
at mostO(as.1) (i.e. O(ae/v(n))) nodes, and hence that there are at |€4&“y(n)) dense squarelets.
Each source-destination pair chooses a dense squareletrmatdooth the source and the destination are
at a distancé2(,/a,1) from it. We call this dense squarelet theday of this source-destination pair. We
show that the relays can be chosen such that each relay Ejuaae at most,,; communication pairs
that use it as relay, and we assume this worst case in theviotjodiscussion.

9



2) Multiple Access PhaseSource nodes that are assigned to the same (dense) relaglstjisand their
messages simultaneously to that relay. We time share betthe® (2-‘y(n)) different relay squarelets.
If the nodes in the relay squarelet could cooperate, we wbealdealing with a MAC with at most,. ;
transmitters, each with one antenna, and one receiver widastn,,; antennas. In order to achieve this
cooperation, we use a hierarchical (i.e., recursive) cao8bn. For this recursive construction, assume
that we have access to a communication scheme to transraitdedrding to a permutation traffic matrix
A(ngy1) betweenn,,; nodes located in a square of area;. We now show how this scheme at scale
a1 can be used to construct a scheme for sealesee Figuré12).
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Fig. 2. Description of the multiple access phase at Iéviel the hierarchy withm £ n,,,. The first system block represents the wireless
channel, connecting source nodes }.“1* with relay nodes{v; },“*. The second system block are quantizgys},“T* used at the relay
nodes. The third system block represents using; times the communication scheme at leve} 1 (organized amgﬂ permutation traffic
matrices{\x (ne+1)},o") to “transpose” the matrix of quantized observatidiis; Z’j“l In other words, before the third system block,
nodewv; has access t¢y:; }J“ll, and after the third system block, node has access ti:1},—;'. The fourth system block are matched
filters used at the relay nodes.

Suppose there ang, source nodes,, ..., u,,,, (located anywhere inl(a,)) that relay their message
over then,,, relay nodesy, ..., v, , (located in the same dense squarelet of area). Each source
nodew; divides its message bits intg_; parts of equal length. Denote hy; the encoded part of the
message bits of nodeg (z;; is really a large sequence of channel symbols; to simpliéyekposition, we
shall, however, assume it is only a single symbol). The nyEsgarts corresponding o, }.“1" will be
relayed over node;, as will become clear in the following. Sourcés; }'“1*, transmit{z;; }.“}" at time
jforje{l,...ng.}

Let y;; be the observed channel output at relayat time j. Note thaty;; depends only on channel
inputs {z;;}7“". In order to decode the message parts corresponding:{d.;" at relay nodev;, it
needs to obtaln the observatiofig;}*}" from all other relay nodes. In other words, all relays need to
exchange information. For this, each relayquantizes its observatlo{(a,/k]}”‘+1 at an appropriate rat&
independent of to obtaln{yk]}”‘+1 Quantized observatiofy,; is to be sent from relay, to relay v;.
Thus, each of they,,, relay nodes now has a message of dizdor every other relay node.

This communication demand within the relay squarelet camrganized as:,,; permutation traffic
matrices{\;(n.1)};=}' between they,, relay nodes. Note that these relay nodes are located in the sa
square of area,,;. In other words, we are now faced with the original problemt &t smaller scale
asy1. Therefore, usingy,,; times the assumed scheme for transmitting according torauation traffic
matrix for n,,; nodes inA(as 1), relayv; can obtain all quantized observatiof;}; ;. Now v; uses
ner1 Matched filters o g, 151" to obtain estimate$z;; }ic" of {z;;}.51". In other words, each node
comput

Ne41

i__ uz’vk lgk
i E J
Zk|huuvk

for everyi € {1,...,n.}. Using these estimates it then decodes the messages coéespto{z;; }.1".

3Note that, since we assume full CSI, nodehas access to the channel gafits,, ., [1]}:,x at any timet > 5. In particular, this is the
case at the time the matched filtering is performed.
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3) Broadcast PhaseNodes in the same relay squarelet then send their decodeshgesssimulta-
neously to the destination nodes corresponding to thig.r&l&e time share between the different relay
squarelets. If the nodes in the relay squarelet could catgewe would be dealing with a BC with one
transmitter with at least,,; antennas and with at most,; receivers, each with one antenna. In order
to achieve this cooperation, a similar hierarchical cartdion as for the MAC phase is used. As in the
MAC phase, assume that we have access to a scheme to traasandatording to a permutation traffic
matrix A(n..1) betweenn,,; nodes located in a square of arga;. We again use this scheme at scale
ae41 in the construction of the scheme for scale(see Figuré13).

Z11 Tm1 z11 Tm1 211 Tm1
0 IR I g O o N RN I o P8 ol B R B g =1 [ 1+ =L [ =

{Medie : Py|z

T1m Tmm Tim Tmm Z1m Tmm z
e 1 P e A s 8 8 v

Fig. 3. Description of the broadcast phase at Iéielthe hierarchy withn £ n,, . The first system block represents transmit beamforming
at each of the relay node;},“;'. The second system block are quantizégs},“t' used at the relay nodes. The third system block
represents using.+: times the communication scheme at lede} 1 (organized asi,41 permutation traffic matrice$>\k(n4+1)}2‘gl) to
“transpose” the matrix of quantized beamformed channelbs}si{;; }:Lﬁ“l In other words, before the third system block, nadehas
access to{#1 };-7", and after the third system block, node has access te@mlj} 41 The fourth system block is the wireless channel,

connecting relay nodegu; }-“+* with destination nodeguw;},“1*.

Suppose there ang., relay nodesy, ..., v,,,, (located in the same dense squarelet of ayeq) that
relay traffic forn,,, destination nodes,,... w,,,, (located anywhere im(a,)). Recall that at the end
of the MAC phase, each relay node has (assuming decoding was successful) access to jaftthe
message bits of all source nodes};“i'. Nodev; re-encodes these parts independently; £all};“}" the
encoded channel symbols (as before, we asstms only a single symbol to simplify exposition). Relay
nodewv; then performs transmit beamforming ¢, };“;" for the n,,; transmit antennas ofv;}, ' to
be sent at tim&’ + j (for some appropriately chosén > 0 not depending on). Call x;; the resulting
channel symbol to be sent from relay nogde Theff

Z vk wl[T_‘_]] Fo
\/Zk|hvkva T + ” ’

In order to actually send this channel symbol, relay nogeeeds to obtairx;; from nodev;. Thus,
again all relay nodes need to exchange information.

To enable local cooperation within the relay squareletheatay nodev; quantizes its beamformed
channel symbolgz;;},“" at an appropriate rat& log(n) with K mdependent of. to obtain{i,},-".
Now, quantized value;; is sent from relay; to relayv,. Thus, each of the,;, relay nodes now has
a message of siz& log(n) for every other relay node.

This communication demand within the relay squarelet camrganized as:,,; permutation traffic
matrices{\,(n.1)},-, between they., ; relay nodes. Note that these relay nodes are located in the sa
square of area,, ;. Hence, we are again faced with the original problem, butreler scalez,, ;. Using
ngyq times the assumed scheme for transmitting according toraytation traffic matrix forn,,.; nodes
in A(as11), relayv, can obtain all quantized beamformed channel symbﬁ@}?ﬁf. Now eachwv, sends
Z1; over the wireless channel at time instarice- j (with 7" chosen to account for the preceding MAC
phase and the local cooperation in the BC phase). #zathe received channel output at destination node

“Note that, since we only assume causal CS|, relay ngdes not actually have access{ta,, ..., [T+ j]}«,: at the time the beamforming
is performed. This problem can, however, be circumventéd: details are provided in the proofs (see Lenimla 10).
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w; at time instancd’ + j. Using y;;, destination nodev; can now decode pait of the message bits of
its source nodex,.

4) Spatial Re-Use and Termination of Recursiohhe scheme does appropriately weighted time-
division among different level§ < ¢ < L(n). Within any level/ > 1, multiple regions of the original
squareA(n) of arean are being operated in parallel. The details related to tfectsf of interference
between different regions operating at the same level ahthihy are discussed in the proofs.

The recursive construction terminates at some large enteygth . = L(n) (to be chosen later). At
this scale, we have:;, nodes in aread(ar). A permutation traffic matrix at this level compriseg
source-destination pairs. These transmissions are pegtbusing TDMA. Again, multiple regions in the
original square of area at level L. are active simultaneously.

B. Achievable Rates

Here we present a back-of-the-envelope calculation of #renpde ratepHR(n) achievable with the
hierarchical relaying scheme described in the previousaecThe complete proof is stated in Section
VII] We assume throughout that long block codes and cormedipg optimal decoders are used for
transmission.

Instead of computing the rate achieved by hierarchicalmetg it will be convenient to instead analyze
its inverse, i.e., the time utilized for transmission of mgteé message bit from each source to its destination
under a permutation traffic matrix(n). Using the hierarchical relaying scheme, each messageldrav
through L levels of the hierarchy. Calt,(n) the amount of time spent for the transmission of one
message bit between each of thesource-destination pairs at lewein the hierarchy. We compute(n)
recursively.

At any level? > 1, there are multiple regions of area operating at the same time. Due to the spatial
re-use, each of these regions gets to transmit a constatibfraf time. It can be shown that the addition
of interference due to this spatial re-use leads only to ateon loss in achievable rate. Hence the time
required to send one message bit is only a constant factbehitpan the one needed if regietia,) is
considered separately. Consider now one such redian). By the time sharing construction, only one of
its ©(27%y(n)) dense relay squarelets of arga, is active at any given moment. Hence the time required
to operate all relay squarelets isc§2~‘y(n)) factor higher than for just one relay squarelet separately.
Consider now one such relay squarelet, and assumesource nodes im(a,) communicate each,.
message bits to their respective destination nodes thraugiAC phase and BC phase with the help of
then,,, relay nodes in this relay squarelet of akea;.

In the MAC phase, each of the,,; sources simultaneously sends one bit to each ofnthe relay
nodes. The total time for this transmission is composed of tevms.

i) Transmission ofn,; message bits from each of the,; source nodes to those many relay nodes.
Since we time share betwe€n2-‘y(n)) relay squarelets, we can transmit with an average power
constraint of©(27%y(n)) during the time a relay squarelet is active, and still satisthe overall
average power constraint @f With this “bursty” transmission strategy, we require aataif

a/2
y

I S G L L(1—a/2) a/2—1
O <7’Lg+1 2_67(71)”“1) O(ng+14 y (n)n ) (2)

channel uses to transmit_ ; bits per source node. The terms on the left-hand sidélof (2)bea
understood as followsa,,; is the number of bits to be transmitteau;f/2 is the power loss since
most nodes communicate over a distancé&)@&i/z); 27‘y(n) is the average transmit power;
is the multiple-antenna gain, since we have that many tréresmd receive antennas.

i) We show that constant rate quantization of the receivbdeovations at the relays is sufficient.
Hence then,,; bits for all sources generate(n,.;) transmissions at level+ 1 of the hierarchy.
Therefore,

O(nps17e41(n)) 3)
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channel uses are needed to communicate all quantized alises/to their respective relay nodes.

Combining [2) and(3), accounting for the facfor«(n) loss due to time division between relay squarelets,
we obtain that the transmission time for one message bit anoh source to the relay squarelet in the
MAC phase at level is

M () = O (27 07/ mn/2 1 4 iy () ). (4)

Next, we compute the number of channel uses per messageéiNed by the destination nodes in the
BC phase. Similar to the MAC phase, each of the; relay nodes has,,; message bits out of which
one bit is to be transmitted to each of thg ; destination nodes. Since there arg, relay nodes, each
destination node receives,; message bits. As before the required transmission timeANwsdmponents.

i) Transmission of the encoded and quantized message bits éach of then,,.; relay nodes to

all other relay nodes at level+ 1 of the hierarchy. We show that each message bit results in

O((¢ + 1) logn) quantized bits. Therefore) (n,.1(¢ + 1) logn) bits need to be transmitted from
each relay node. This requires

O (g1 (£ + 1) log(n)7eq1(n)) (5)

channel uses.

i) Transmission of,,.; message bits from the relay nodes to each destination nadeefre, we use
bursty transmission with an average power constrai(@f‘y(n)) during the fractior®(2‘y~*(n))
of time each relay squarelet is active (this satisfies theadlvaverage power constraint of. Using
this bursty strategy requires

a/2

ay _ ¢ t(1—a/2) a/2-1
O (WHiQ_ZV(n)WH) O(ng+14 y (n)n ) (6)

channel uses for transmission of,; bits per destination node. As in the MAC phase,; in the
left hand side of[(6) can be understood as the number of bihettransmitteda?/z as the power

loss for communicating over distané!z(aé/z), 27%y(n) as the average transmit power, and, as

the multiple-antenna gain.

Combining [5) and{6), accounting for a factor~(n) loss due to time division between relay squarelets,
the transmission time for one message bit from the relaysath elestination node in the BC phase at
level ¢ is

TZBC(TL) _ O<2£71+Z(1—a/2)(n)na/2—1 + (E + 1) 10g(n)7'g+1(n)>. (7)
From (4) and[{I7), we obtain the following recursion
7e(n) = 7" (n) +7,%(n)

_ O<2Z,y€(1—a/2)+1(n)na/2—l + (E + 1) log(n)nﬂ(n))

= 0(259(mn"*" + Llog(n)mis1(n) ), ®)

where we have used > 2. This recursion holds for all < ¢ < L. At level L, we use TDMA among,,
nodes in region4(a;) with a permutation traffic matrid(n.). Each of then, source-destination pairs
uses the wireless channel foyn, fraction of the time at powe€(n,), satisfying the average power
constraint. Assuming the received power is less thdor all n (so that we operate in the power limited
regime), we can achieve a rate of at IeﬁStz;a/ *) between any source-destination pair. Equivalently

71.(n) = O(ay’®)
( /2 —La/2(n))

— O(n®2
= O( a/zy_L(n)). 9)

n
n
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Combining [(8) and[(9), we have
mo(n) = O(naﬂ-%(m + Llog(n)mi(n))

(o (o) 2t (L) )

=0
O(no‘/Q_1 (Llog(n))L(QLy(n) + nv_L(n))). (10)

The term ;
(Llog(n))™ (25v(n) +ny~*(n))

is the “loss” factor over the desired ordet/?~! scaling, and we now choose the branching faetor)
and the hierarchy depth = L(n) to make it small. Fix & < (0,1/2) and set

L(n) £ log"*~°(n),
y(n) & pM/EM)

With this

L(n 1/2-6
< n2 log™ (n)log log(n)7

(L(n)log(n
oLin >7( ) < plow /7 o' V/2(a)

)

ny L) () < plog’ (),

Sinced > 0, the n's""*(™ term dominates in{210), and we obtain
To(n) < i)(n)na/z_l,

where
b(n) < nOUog®/2(n))

Hence the per-node rate of the hierarchical relaying schenmver bounded as

PR (n) = 1/79(n) = b(n)n'~*/2,

with
b(n) > p—Olog” 1/2(n))

Note that to minimize the loss term, we should chodse 0 to be small.

V. COOPERATIVE MULTI-HOP SCHEME

In this section, we provide a brief description of the coapige multi-hop scheme. The details of the
construction and the analysis of its performance can bedarSectiorX.

Recall that a node placemeVit(n) is pu-regular at resolutiod(n) if every squargid(n), (i + 1)d(n)] x
[jd(n), (j+1)d(n)] for somei, j € N contains at leastd®(n) nodes. Given such a node placemgitt),
divide it into squares of sidelengtf{n). Consider four adjacent squares, combined into a biggearsqu
of sidelength2d(n). By the regularity assumption o¥i(n), this bigger square contains at ledgti*(n)
nodes. Hence we can apply the hierarchical relaying schatrmduced in the last section to support any
permutation traffic within this bigger square at a per-noate of

b(n )(dQ( )12 = b(n)d* =% (),

whereb(n) is essentially of orden—'°e" 2 ). By properly choosing the permutation traffic matrices with
every possible such bigger square of &deleri@t(lm) this creates a equivalent communication graph with
n/d?(n) nodes each corresponding to a square of sidelefg@thin A(n), and with edges between nodes
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corresponding to neighboring squares. With the above camuation procedure and appropriate spatial
re-use, each such edge has a capacity of

d*(n)b(n)d*>=*(n) = b(n)d*~*(n).

The resulting communication graph is depicted in Fiddre 4.

T T T T T T T
1 I | | 1 | 1
| | | | | | |
“rg|cr|cr | T T T r
1 1 1 1 1 1 1
I I I I I I I
“r|-r|-r|-r| |- r
1 1 1 1 1 1 1
| | | | | | |
“rg|cr|cr | T T T r
1 1 1 1 1 1 1
I I I I I I I
- -r|-rQ|-r|-r|-—r|-—r|1-r—~—
1 1 1 1 1 1 1
| | | | | | |
“rg|cr|cr| | T T T r
1 1 1 1 1 1 1
I I I I I I I
-rg|-r|-r|-r|-r|Tr-r
1 1 1 1 1 1 1
| | | | | | |
“rg|cr|cr| | T T T r
1 | 1 | 1 | 1
I I I I I I I

Fig. 4. Communication graph (in bold) resulting from the sioaction of the cooperative multi-hop scheme. The entiteage has sidelength
\/n, and the dashed squares have sideledgth. Each (bold) edge in the communication graph correspondsitg the hierarchical relaying
scheme between the nodes in the adjacent squares of sitfet&ng.

Now, to send a message from a source nodg (in) to its destination node, we first locate the squares
of sidelengthd(n) they are located in. We then route the message over the eéfigles communication
graph constructed above in a multi-hop fashion. By the cansbn of the communication graph, each
such edge is implemented using the hierarchical relayitgrse. In other words, we perform multi-
hop communication over distanggn with hop lengthd(n), and each such hop is implemented using
hierarchical relaying over distane&n). Since each edge in the communication graph has a capacity of
b(n)d*~*(n) and has to support roughly'/2d(n) source-destination pairs, we obtain a per-node rate of

p™MM(n) = b(n)d" " (n)n 2 (n)
= b(n)d* *(n)n"1/?

per source-destination pair.

VI. ANALYSIS OF THE HIERARCHICAL RELAYING SCHEME

In this section, we analyze in detail the hierarchical rielgyscheme. Throughout Sectiohs VI-A to
we consider communication at levél0 < ¢ < L = L(n), of the hierarchy. All constant&’; are
independent of.

Recall that at level, we have a square regiofi(a,) of area

containing

>
S

ng=———
277 (n)

nodesV (n,). We divide A(a,) into v(n) squarelets of area,. ;. Recall that a squarelet of area,; in
level ¢ of the hierarchy is called dense if it contains at least; nodes. We impose a power constraint of
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Py(n) = ©(27%y(n)) during the time any particular relay squarelet is activac8iwe time share between
O(27%y(n)) relay squarelets, this satisfies the overall average powestint (by choosing constants
appropriately).

Since other regions of area are active at the same time as the one under consideratiohaveeto
deal with interference. To this end, we consider a slightlyrengeneral noise model that includes the
experienced interference at the relay squarelets. Moreigelg, we assume that, for all € V'(n,), the
additive noise term{z,[t]}: is independent of the signdlz,[t]}; and of the channel gaingh, .[t]}..+;
that the noise term is stationary and ergodic across tinhet with arbitrary dependence across nodgs
and that the noise has zero mean and bounded pdweéndependent of.. Note that we do not require
the additive noise term to be Gaussian. In the abd¥geaccounts for both noise (which has powein
the original model), as well as interference. We show in iBad¥Ilthat these assumptions are valid.

Recall the following choice ofy(n) and L(n):

L(n) £ log"*~*(n),
v(n) & pt/ L)+
with § € (0,1/2) independent of.. This choice satisfies
vy <) i n<i,
FEM(n) < n for all n, (12)
27 EM~(n) - 00 asn — oo,

(11)

The first condition in[(I2) implies that the number of squet®l(n) we divide A(n) into increases in
n. The second condition implies the squarelet argg, at the last level of the hierarchy is bigger than
1. As we shall see, the third condition implies that the numifedense squarelets at the last level (and
hence at every level) grows unboundednas> oo (see Lemma&l6 below).

Throughout Sectioi_VI, we consider the fast fading channedeh Slow fading is discussed in
Section[VII-B.

A. Setting up Relays

The first lemma states that the minimum-separation reqe@nem,;, € (0,1) implies that a constant
fraction of squarelets must be dense. We point out that thike only consequence of the minimum-
separation requirement used to prove Thedrém 1. Thus TimdBreemains valid if we just assume that
Lemmal6 below holds directly. See also Secfion XlI-D for ert details.

Lemma 6. For any V'(n,) C A(as) with [V (n,)| > n, and with minimum separation,;, € (0,1), each
of its squarelets of area,,; contains at mos&’,a,/v(n) nodes, and there are at leasf,2-“y(n) dense
squarelets.

Proof. Put a circle of radius,;,/2 around each node. By the minimum-separation requirembaset
circles do not intersect. Each node covers an arear§f /4. Increasing the sidelength of each squarelet
by r.in, this provides a total area of

(\/ ag/’y(n) + Tmin)Q S %(1 + rmin)z
in which the circles around these nodes are packed. Here we Us®d that/™!(n) < n by (12), and
therefore

v(n) < n/y(n) = ap.
Hence there can be at mokta,/~v(n) nodes per squarelet with
(1 + Tmin)z

2

min

K, 24
m™r
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Note that, since,,;, < 1, we havek; > 1.

Let d(n,) be the number of dense squareletsdifu,), and thereforey(n) — d(n,) is the number of
squarelets that are not dense. By the argument in the |leagagoh, each dense squarelet contains at most
Kia./~v(n) nodes, and those squarelets that are not dense contairhéess,1; nodes by the definition
of dense squarelets. Hendén,) must satisfy

d(ne) Krae/y(n) + (v(n) — d(ne))nesr > |V (ne)| = ng.
Thus, usinga, = 2°ny, ne1 = ny/27v(n), we have
d(ne) K12° + (v(n) — d(ne)) /2 > v(n).
As K,2¢ > 1, this yields

1— 1/2 2t —
D — > = K52
with e L
79K,

0

ConsiderV (n;) C A(a,) with |V (n,)|, and choose arbitrark,2~“v(n) dense squarelets of area, ;
(as guaranteed by Lemma 6). Call those squargléigas1)}. K22 ") For each sour-destination pair,
we now select one such dense squarelet to relay traffic oaeavd‘d bottlenecks, this selection has to be
done such that all relay squarelets carry approximatelg#mee amount of traffic. Moreover, for technical
reasons, the distances from the source and the destinatibie trelay squarelet cannot be too small.

Formally, the selection of relay squarelets can be destriiyethe schedulesS € {0, 1}’“4”{22 “(n)
with s, = 1 if source nodeu relays traffic over dense squarelet and S ¢ {0, 1}122" fy)xne ith
5kw = 1 If destination nodew receives traffic from dense squareletWith slight abuse of notation, let
Tu,Ax(ar,,) 0€ the distance between nodes V' (n,) and the closest point ir(a,1), i.e.,

A .
Tu,Ap(ags1) — - f{?(lgﬂ) Y- (23)

Define the sets
S(ng) 2 {5 € {0, 1)K
0< > Sukz < g1 VE,
0 < ZK22 PY Su,k S 1 vuu

Suk = 1 IMplies 7, 4, (a,,,) = /20011 Y, k} (24)

and N N [ N
S(ne) £ {5 € {0,132 xne . ST € S(ny) }.

The setsS(n,) and S(n,) are the collection of schedules satisfying the conditiomhtioned in the last
paragraph. More precisely, the first condition [n](14) easuhat at most,,; source-destination pairs
relay over the same dense squarelet, the second condisonesthat each source-destination pair chooses
at most one relay squarelet, and the third condition endimassources and destinations are at least at
distance,/2a,,, from the chosen relay squarelet.

Next, we prove that any node placement that satisfies Ledimibo@safor a decomposition of any
permutation traffic matrix\(n,) into a small number of schedules belongingto:,) and S(ny).
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Lemma 7. There exist{; such that for alln large enough (independ?nt@f and every permut[atiorltrafﬁc
maitrix \(ng) € {0,1}"*™ we can findK32¢ schedules S (n,) 2 © S(ny), {9 (ne)} 532 € S(ny)

satisfying
K32°

=Y 8D (ng) S (ny).

Proof. Pick an arbitrary source-destination pairifn,), and consider the squarelets containing the source
and the destination node. Since each squarelet has sidi lgfag,;, there are at most0 squarelets at
distance less thak/2a,,; from either of those two squarelets. As“"~(n) — oo asn — oo by (12),
there existsk' (independent of) such that forn > K we have50 < K,2-“"'~(n). Since there are at
least K»,2~“y(n) dense squarelets by Lemih 6, there must exist at l§a&t‘~!v(n) dense squarelets
that are at distance at leagfa,,; from both the squarelets containing the source and thendistn
node.

In order to construct a decomposition bfr,), we use the following procedure. Sequentially, each of
the n, source-destination pairs chooses one of the (at le&sg2) “~!v(n) dense squarelets at distance
at least,/2a,,; that has not already been chosenihy; other pairs. If any source-destination pair can
not select such a squarelet, then stop the procedure anchessoutirce-destination pairs matched with
dense squarelets so far to define matris€s(n,) and SM(n,). Now, remove all the matched source-
destination pairs, forget that dense squarelets were ®@tth any source-destination pair and redo the
above procedure, going through the remaining sourceraggin pairs.

Let

Ks 2 4/K,.

We claim that by repeating this process of generating nestrit (n,) and S (n,), we can match
all source-destination pairs to some dense squarelet withast ;2 such matrices. Indeed, a new
pair of matrices is generated only when a source-destimgigr can not be matched to any of its
available (at least),2~“~'v(n) dense squarelets. If this happens, all these dense sqeastematched
by nep1 = ne/27v(n) pairs. Hence at leadt,2~*~?n, source-destination pairs are matched in each “round”.
Since there arey, total pairs, we need at most

——— = K32
K22_£_27’Lg s
matricesS® (n,) and S (n,). O
For a permutation traffic matriX(n,), communication proceeds as follows. Write
K32°

A(ng) = Z S(i)(ne)g(i)(ne)
=1
as in Lemmd7. Split time intd<32¢ equal length time slots. In slat we useS® (n,)S®(n,) as our
traffic matrix. Consider without loss of generality= 1 in the following. Write
K227 %y(n)

S® (ny) S Z S SR (),

where S©R) (n,, 1) SER) (n,, 1) is the traffic relayed over the dense squarelgta,.,). We time share
between the schedules fore {1, ..., K,27%y(n)}. Consider now any such. In the worst case, there are
exactlyn,,; communication pairs to be relayed ovéf(a,. 1), and the relay squarelet; (a,, ;) contains
exactlyn,.; nodes. We shall assume this worst case in the following.

We focus on the transmission according to the traffic matfix) (n.1) SV (ne.). LetV(ng) be the
nodes inA, (a,.,), and letU (n,,,) andWW (n.,) be the source and destination nodes 6 (n,,1)S"Y (ng1),
respectively. In other words, the source nodés,,;) communicate to their respective destination nodes
W (ney1) using the node% (n,1) as relays.
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B. Multiple Access Phase

Each source node iV (n,.,) splits its message inta,.; equal length parts. Payt at every node
u € U(nyyq) is to be relayed over thgth node inV (n,, ). Each part is separately encoded at the source
and separately decoded at the destination. After the sow@es are done transmitting their messages, the
nodes in the relay squarelet quantize their (sampled) vatens corresponding to pgrand communicate
the quantized values to thgth node in the relay squarelet. This node then decodeg-themessage
parts of all source nodes. Note that this induces a unifoaffidrpattern between the nodes in the relay
squarelet, i.e., every node needs to transmit quantizeehaditsons to every other node. While this traffic
pattern does not correspond to a permutation traffic matrogn be written as a sum ef,; permutation
traffic matrices. A fractionl /n,,; of the traffic within the relay squarelet is transmitted adatg to each
of these permutation traffic matrices. This setup is degiateFigure[2 in Section TV-A.

Assuming for the moment that we have a scheme to send theizgmbservations to the dedicated
node in the relay squarelet, the traffic matf%") (n,,,) betweenU(n..,) andV (n..,) describes then a
MAC with n,,; transmitters, each with one antenna, and one receivernwithantennas. We call this the
MAC induced byS®Y(n,, ;) in the following. Before we analyze the rate achievable dhés induced
MAC, we need an auxiliary result on quantized channels.

e IV o (Y9 [ T P

Fig. 5. Sketch of the quantized channgland ¢ are the channel encoder and decoder, respectifely;., are quantizersp,, and
P; 5 represent stationary ergodic channels with the indicatadyimal distributions.

Consider the quantized channel in Figlie 5. Hetds the channel encodeg; the channel decoder,
{ax}7, quantizers. All these have to be chos&y, andP; 4, on the other hand, represent fixed stationary
ergodic channels with the indicated marginal distributiowe call R the rate of the channel cod¢, ¢)
and { Ry}, the rates of quantizergy, }7- ;.

Lemma 8. If there exist distributions”, and { P, ,, }7-, such thatR < I(z;2) and R, > I(yx; k), Yk,
then (R, { R, };,) is achievable over the quantized channel.

Proof. The proof follows from a simple extension of Theorem 1 in Apgie Il of [8]. O

Lemma 9. Let the additive nois€{z,}vev(n,,,) D€ uncorrelated (ovew). For the MAC induced by
-1 «/2

S (ne) with per-node average power constraift(n) < n, ' q;’", a rate of
PC(n) > KiPy(n)ngpaa;, "

per source node is achievable, and the number of bits reduite each relay node to quantize the
observations is at mogt; bits pern,,, total message blfssent by the source nodes.

Proof. The source nodes send signals with a power of (essentigllyy;’” for a fraction?, (n)n,a;, "> <

1 of time and are silent for the remaining time. To ensure thigrference is uniform, the time slots during
which the nodes send signals are chosen randomly as follGeserate independently for each region
A(a,) a Bernoulli procesg Blt] }en With parameterPg(n)ngHa;a/z/(1 +n) < 1 for some smalb) > 0.
The nodes inA(a,) are active wheneveB[t] = 1 and remain silent otherwise. Since the blocklength
of the codes used is assumed to be large, this satisfies th@gavpower constraint aP,(n) with high
probability for anyn > 0. Since we are interested only in the scaling of capacity,gmeiie the additional

Total message bits refers to the sum of all message bitsnitied by then,,; source nodes.
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1/(1 + n) term in the following to simplify notation. Clearly, we onlyeed to consider the fraction of
time during whichB([t] = 1.

Let y be the received vector at the relay squarejethe (componentwise) quantized observations. We
use a matched filter at the relay squarelet, i.e.,

ht

- u

Loy = —Qv
[l

where column vectoh, = {h,.}vevn,,,) are the channel gains between nades U(n,,,) and the
nodes in the relay squarel€t(n,. ;). The use of a matched filter is possible since we assume fuli<CS
available at all the nodes.

We now use Lemmil 8 to show that we can design quantizgiscy (. ,) of constant rate and achieve

a per-node communication rate of at Iea’sltPg(n)ngHa;“/?. The first channel in Lemnid 8 (see Figlte 5)
will correspond to the wireless channel between a source moand its relay squarelét’ (n,.1). The
second “channel” in Lemmld 8 will correspond to the matcheadrfilsed at the relay squarelet. To apply
Lemmal8, we need to find a distribution for, and fory,|y,. Define

fu £ Tu,Al((l(+1)/\/ 20/[ < 1

With 7, 4, (a,,,) @S in [IB), to be the normalized distance of the source nodel(n,.,) to the relay
squareletA;(a,. ;). For eachu € U(ngq) let z, ~ /\/C(O,fgn;jla?/z) independent ofr; for u # 4,
and lety, = y, + 2, for z, ~ Nc(0, A?) independent ofy and for someA? > 0. Note that the channel
input z,, has power that depends on the normalized distapdge., only nodes: € U(n,y,) that are at
maximal distance/2a, from the relay squarelet transmit at full available pow@iis is to ensure that
all signals are received at roughly the same strength byelags.

We proceed by computing the mutual informatiaf(g,; ,|{ha:}) and I(z,; Z,|{has}) as required
in Lemmal8 (the conditioning okh; s} being due to the availability of full CSI). Note first that by
construction ofS™"Y (n,, ) (see [I#)), we have for € U(n,,) andv € V(ng)

Tu, A1 (agiq) < Tuw < 2ru,A1(ag+1)7

and hence _
L < v < L (15)
2v2a; ~ Tuw ~ V2a0
From this, and sincéh,, ,|? = 7.9, We obtain
9=3a/2q /2 < B 272 < 2_a/2a_a/2,
y4 — ‘ s | u — J4 (16)

2_30‘/271“1%_0‘/2 < |y |27 < 2_0‘/2ng+1a;a/2.
We start by computind (y,; 9,|{ha5}). We have
gv = Z hu,vxu + 2y + 23,
uel(ney1)
and hencej, has mean zero and variance
E(g) = D Ihaolronghal” + No+ A2
u€l(neq1)

< ng+12_a/2a;a/2né_ﬁ1a?/2 + Ny + A?
=272 L Ny + A%,
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where we have used (16). Hence
I(yv; l{has}) = M(Gul{has}) — R(Gulye, {has})
< log (2meE(|g.]%)) — log(2meA?)
< log (27?6(2_0‘/2 + No + A?)) — log(2meA?)

272 4 N,
— log (1 + TO) 17)
We now compute (z,; z,|{has}). We have
A hiha hL 3
By = |hollze+ ) » (2 + 2).
T T
€U (ng1)\{u}
Conditioned on{h; }acu(ng, )
Il ~ Ne (0, ||l *Fongiag"),
and
hiha , hl INE o2 o |l
(’ZuGU (neg1)\{u} ||h || ||hu|| (Z + Z)‘ ‘{hﬂ}) = né+1az Z T ||hu||2 + Ny + A27

ael (ney1)\{u}

where we have used the assumption that},cv,,.,) are uncorrelated in the second line. Usiag] (16),
this is, in turn, upper bounded by

2225, 2ay Y i|hlhal? + No+ A%
€U (ng1)\{u}
Similarly, we can lower bound the received signal power as
E([|hul?la,[?) > 2722,

Since Gaussian noise is the worst additive noise under arpoavestraint [15], and applying Jensen’s
inequality to the convex functiotvg(1 + 1/x), we obtain

2 3a/2
I(Zlfu,i’u|{ha75 ) 2E<10g <1+ ~ ~ ))

2—304/2 )
>log | 1+ . 18

weU (ngy1)

We have foru # 1,
E(|hlh;|?) = E(hlh;hlh,)

- Z |hu,v|2|hﬂ,v|2

vEV (ney1)

= Z TuoTaws (19)

veV (ngq1)

and hence using _(115)

(X maE) = Yy
@€l (neq1)\{u} ﬂEU(nHl)\{u} veV (ngq1)

<27}, a"
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Therefore we can continug_(18) as

. 1 2—3a/2 A
](Iu,quhﬂ’f}}) Z 5 log (1 + 20{/2 T NO I A2) = K4. (20)

Using [I7) and[(20) in Lemmia 8, and observing that we only camioate during a fraction
Pg(n)ngﬂa;a/z <1
of time yields a per source node rgi"“(n) arbitrarily close to
K4Pe(”)né+1az_a/2
and a quantizer of rate arbitrarily close to

2-/2 1 N,
)
bits per observation at each relay node. Sincelby (20) minémimation I (x.,; z,|{has}) is at leastK,

for everyu € U(nyyq) during the fraction of time we actually communicate, thigli@s that there are
at mostl/K, observations at each relay node per; total message bits. Thus the number of bits per
relay node required to quantize the observations is at most

log (1 +

1 2722 4 N,
Ko 2 tog (14 200

bits pern,,, total message bits sent by the source nodes. O

C. Broadcast Phase

At the end of the MAC phase, each node in the relay squareteived a part of the message sent
by each source node. In the BC phase, each node in the relayetefuencodes these messages together
for ny,.q transmit antennas. The encoded message is then quantidecbarmunicated to all the nodes
in the relay squarelet. These nodes then send the quantiwedied message to the destination nodes
W (ney1). Note that this again induces a uniform traffic pattern betwthe nodes in the relay squarelet,
i.e., every node needs to transmit quantized encoded messsagevery other node. While this traffic
pattern does not correspond to a permutation traffic matean be written as a sum af..; permutation
traffic matrices. A fractionl /n,,; of the traffic within the relay squarelet is transmitted adarg to each
of these permutation traffic matrices. This setup is degiateFigure[B in Section TV-A.

Assuming for the moment that we have a scheme to send theizgréncoded messages to the
corresponding nodes in the relay squarelet, the trafficimatt-!) (n,, ;) betweenV (n.,.,) and W (n,.,)
describes then a BC with one transmitter with., antennas and,, receivers, each with one antenna.
We call this theBC induced byS(n,, ) in the following.

Lemma 10. For the BC induced b)) (n,.,) with per-node average power constraifin) < n;!,a;’*,

a rate of
—a/2
pi<(n) > KePy(n)nea, /

is achievable per destination node, and the number of bigired to quantize the observations is at
most K7(¢ + 1) log(n) bits at each relay node pet,,; total message blfsreceived by the destination
nodes.

Proof. Consider a node € V(n,.1) in the relay squarelet, say the first one. From the MAC phase,
this node received the first part of the messages of eachesmwdeu € U(ny1). We would like to
jointly encode these message parts at the relay node usingntit beamforming, and then transmit the

Total message bits refers to the sum of all message bitsveetély then,,; destination nodes.
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corresponding encoded signal using all the nodes in thg sHaarelet. However, this cannot be done
directly, because at the encoding time, the future chartag st transmission time is unknown.

We circumvent this problem by reordering the signals to bedmitted at the relay nodes as follows.
Let

. 2
{000 }oev (nesr)wew (neyr) € 10, m/2, 7, 3w/ 2} 041,

be a “guantized” channel state. The part of the messagesdat oiwe in the relay squarelet is encoded
for ny,; transmit nodes with an assumed channel gain of

howlt] = 752/ exp(vV—10, ., [t]),

where the{d, .,[t]}.... are cycled as a function afthrough all possible values if0, /2, 7, 37 /2} "1,
The components of the encoded messages are then quantizedamcomponent sent to the corresponding
node in the relay squarelet. Once all nodes in the relay stptaihave received the encoded message,
they send in each time slot a sample of the encoded messagespmnding to the quantized channel
state closest (in Euclidean distance) to the actual chamadization in that time slot. By ergodicity of
{0..,[t]}+, each quantized channel state is used approximately the samber of times. More precisely,
as the message length grows to infinity, we can send samplie afncoded message parts /a1 + n)
fraction of time with probability approachingfor anyn > 0. Since we have no constraint on the encoding
delay in our setup, we can choosarbitrarily small, and given that we are only interesteddalisg laws,
we will ignore this term in the following to simplify notatio Note that the destination nodes can reorder
the received samples since we assume full CSI. In the fatigye let{6, ., }.., be the random quantized
channel state induced by, ., }.»., through the above procedure. Denote{liww}v,w the corresponding
channel gains.

As in the MAC phase, the nodes in the relay squarelet sendlsigt a power (essentialI\‘@gj}lcﬁ/2

a fraction Pg(n)ng_;,_la,g_a/Q < 1 of time and are silent for the remaining time. To create fetence at
uniform power, this is done in the same randomized manner teiMAC phase. Generate independently
for each regionA(a,) a Bernoulli procesq Blt|}icn With parameterPg(n)ngHa;a/z/(1 + n) for some
smalln > 0. The nodes iM(a,) are active wheneveB[t] = 1 and remain silent otherwise. As before, we
ignore the additional /(1 + 1) term. Again we only need to consider the fraction of time dgrivhich
B[t] = 1.

Consider the message part at a relay node for destinatioa mod W (n,.1). We encode this part
independently; calk,, the encoded message part. The relay node then performaitdreamforming to
construct the encoded message for all its destination noges

i,
r = Lo,
2 Th

wEW (ng4q

where row vectorh,, = {hyw}vevn,,,) CONtains the channel gains to node and where we have
used\i}v,w\ = |h,.»|. The relay node then quantizes the vector of encoded messaggponentwise and
forwards the quantized versianto the other nodes in the relay squarelet. These nodes tineinzsever
the channel to the destination nodes. The received sigragsiination nodev is thus

Y = Ry + 2.

With this, we have the setup considered in Leniha 8 (with difievariable names). The first “channel”
in Lemmal8 (see Figurg 5) will correspond to the transmit Heaming used at the relay squarelet. The
second channel in Lemnid 8 will now correspond to the wiretdsmnel between the relay squarelet
V(ney1) and a destination node. To apply Lemmd8, we need to find a distribution foy and for
Z,|x,. We also need to guarantee thatsatisfies the power constraint at each nodie the relay squarelet.
For eachw € W (ngy1) let z,, ~ NC(O,KnZJrlla?/Q) (for some K to be chosen later) independent f
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for w # w, and letz, = z, + z, for z, ~ Nc(0, A?) independent ofc and for someA? > 0. We then
have

~ ~

h,h! h, hT
Yo = T T + E &+ hwZ + 2.
1Rl H ) [hall H
BEW (ngy1)\{w}

We proceed by computing the mutual informatiaf{s.,; 2, |{has}) and I(Z.; yw|{has}) as required
in Lemmal8 (the conditioning ifh;; } again being due to the availability of full CSI). Note firsathy
construction ofS™(n,, 1), we have for anyw € W (n,)

2 min 7y, > MmMax Ty,
UGV(TL[+1) ’UGV(TL[+1)
and therefore .
|hv7w|2 ( mlnvev(nf‘Fl) ,rv7w) 2a

< : (21)

|l — WH(maxveV(mﬂ) rv’w)_o‘ Ngy1

We start by computind (z,; ,|{has}). £, has mean zero and variance

A 12) ‘hv,w|2 -1 a/2 2
IE‘(|$v| ) - Z R ||2Kne+1 A
weW (ngy1) w

2% 1 a2
< e — Kn“ll ag? + A2

< "z+1 ?/27 (22)

for
K £27%(1— A%,
which is positive forA? < 1, and where we have used {21) and that
”z+1a?/2 > 2y (n) > 1

by (12). Equation[(22) shows that satisfies the power constraint of node the relay squarelét (n, ;).
Moreover, we obtain

I(wy; ol{has}) = Mo [{has}) — h(Zo|2e, {has})
< log (27T6E(|Zi'v|2)) — log(2meA?)

a/2
< log (”@1‘;@ ) (23)

It remains to computé (Z.,; y.|{has}). Note that the encoding procedure guarantees that
cos(m/4)?[[hul|* < [huhl[* < [l

Moreover, forw # w,

~

:‘>

E(|h,hL[?) = E(h hl)

whihg
Z E (|| v )
Z E (| 2l 0a?)
( hl; )
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From this, we get by a similar argument as in Lenirma 9 that
(& Yol {has}) = Ke. (24)
Using (23) and[(24) in Lemmld 8, and observing that we only campate during a fraction
Py(n)nga, o
of time, yields a per destination node raf§ (n) arbitrarily close to
KePy(n)ngsra, "

bits per channel use and a quantizer rate arbitrarily close t
-1

n aa/2
log< ZJZQZ )
bits per encoded sample. Since lpy](24) mutual informafion,; v.,|{has}) is at leastKs for every
w € W(ngy1) during the fraction of time we actually communicate, thigli@s that there are at most
1/ K encoded message samples for each relay node,petotal message bits received by the destination
nodesW (n,1). Thus the number of bits required at each relay node to qgeatiie encoded message
samples is at most

1 "e_jla?m 1 L Do 14+0—a)2) a/2—-1
Ko log( A2 ): K, o8 <A22 7 (n)n )
1 1 0+1, /2
< 7 log (732 "'n”)

< K7(€ + 1) log(n)

bits pern,,; total message bits received by the destination nodes, aedewhe have used(n) < n by

12). ]

VIl. PROOF OFTHEOREM[

The proof of Theorerfil1 is split into two parts. In Section ¥Wiwe prove the theorem for fast fading,
and in Sectiol VII-B for slow fading.

A. Fast Fading

In this section, we prove Theorel 1 under fast fading, £&,,[t]}: is stationary and ergodic in
We first prove that the assumptions on the power constraihtlam interference made in Section VI (see
Lemmad® and10) during the analysis of one level of the tibieal relaying scheme are valid. We then
use the results proved there to analyze the behavior of ttie drmerarchy, yielding a lower bound on the
per-node rate achievable with hierarchical relaying.

We first argue that the constraift(n) < ngjla?/Q needed in Lemmdd 9 and]10 is satisfied. Consider
the hierarchical relaying scheme as described in SeCliban¥ fix a leveld, 0 < ¢ < L = L(n) in this
hierarchy. At level/ we have a square of area = n/v*(n), with n, = n/2’y%(n) source-destination
pairs. Since we are time sharing betwe€mR~‘~(n) relay squarelets at this level, we have an average
power constraint of

Py(n) & K,27%(n)
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during the time any particular relay squarelet is activanc8io > 2 and sinceny ™ (n) — oo as
n — oo, we have, fom large enough (independent 6, that

Py(n) = K22_47(n)
< 2750) (g5 (n))a/ _

,}/L(n)

< 2é+17(n)<
= né_-i}la?/z
Therefore the power constraint in Lemnids 9 10 is satisfied

We continue by analyzing the interference caused by spatiate. Recall that the MAC and BC phases
at level / induce permutation traffic within the dense squarelets &llé+ 1. The permutation traffic
within those dense squarelets at level 1 is transmitted in parallel with spatial re-use. We now dibscr
in detail how this spatial re-use is performed. Partitioa Hyuarelets of area., (i.e., at level/ + 1)
into four subsets such that in each subset all squareletatatistance at leasy/a,;; from each other.
The traffic that the MAC and BC phases at levehduce in each of the relay squarelets at ledel1 is
transmitted simultaneously within all relay squareletsha same subset. Consider now one such subset.
We show that at any relay squarelet the interference froreratblay squarelets in the same subset is
stationary and ergodic within each phase, additive (irelependent of the signals and channel gains in
this relay squarelet), and of bounded powér— 1 independent ofa.

We first argue that the interference is stationary and ecgedihin each phase. Note first that on
any level ¢ + 1 in the hierarchy, all relay squarelets are either simubbast/ in the MAC phase or
simultaneously in the BC phase. Furthermore, all relay s#eis are also synchronized for transmissions
within each of these phases (recall that the induced traffievel /+ 1 is uniform and is sent sequentially
as permutation traffic). Hence it suffices to show that therfetence generated by either the MAC or
BC induced by some permutation traffic matrix is stationamg argodic. Since all codebooks for either
of these cases are generated as i.i.d. Gaussian multipfied Bernoulli process, and in the BC phase
beamformed for stationary and ergodic fading, this is inldée case.

The additivity of the interference follows easily for the MAphase, since codebooks are generated
independently of the channel realization in this case. Mage since the channel gains are independent
from each other and all codebooks are generated as indegierel® mean processes, the interference
in the MAC phase is also uncorrelated (over space) withimeatay squarelet. For the BC phase,
the codebook depends only on the channel gains within edaki sguarelet at levef + 1. Since the
channel gains within relay squarelets are independenteotiiannel gains between relay squarelets, this
interference is additive as well.

We now bound the interference power. Note that by the ranziedniime-sharing construction within
the MAC and BC phases (see Lemnas 9 land 10), in each relayesepiat most,,; nodes transmit at
an average power df. In the MAC phase, all nodes use independently generateebowtts with power
at mostl, and thus the received interference power from anothey isaarelet at distancg/a,;; is at
most

n \e/2-1
vf(n)>

o —a)2 e n 1—a/2 o
T+11 ae+1/ =27 <75+1(n)> =i,
by (12). In the BC phase, the nodes in each active relay slgiaree beamforming to transmit to nodes
within their own squarelet. Since the channel gains withialay squarelet are independent of the channel
gains between relay squarelets, the same calculation @8)rsiiows that we can upper bound the received
interference power from another relay squarelet at distap@,,; by

—a/2

o o
Nep1l "y g <1

)

in the BC phase as well.
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Now, by the way in which we perform spatial re-use, everyvactelay squarelet has at m@stactive
relay squarelets at distance at leagt, ;. Hence the total interference power received at an actieg re
squarelet is at most

D 8i2% & Ny — 1< 00

i=1
sincea > 2. With this, we have shown that the interference term has tbpguties required for Lemmas 9
and[10 to apply.

We now apply those two lemmas to obtain a lower bound on the aahievable with hierarchical
relaying. Callr,(n) the number of channel uses to transmit one bit from each, gfource nodes to the
corresponding destination nodes at le¢eLemmalY states that for large enough (independent 6,
we relay over each dense squarelet at miog2’ times. Combining this with Lemmi@ 9, we see that to
transmit one bit from each source to its destination at #wellwe need at most

1 n—l aa/Q _ K3226+3
K4Pg(ﬂ) 04+1¢ K4
channel uses for the MAC phase. Here, the fadt@ccounts for the spatial re-us&z2° accounts for
relaying over the same relay squarelets multiple tintfé2~‘y(n) accounts for time sharing between the
relay squarelets, and the last term accounts for the tim@érestjito communicate over the MAC. Similarly,
combining Lemmagl]7 arld 110, we need at most
K3226+3
Ke
channel uses for the BC phase. Moreover, at lévell in the hierarchy this induces a per-node traffic

demand of at mosk; bits from the MAC phase, and at mao&t (¢ + 1) log(n) from the BC phase. Thus
we obtain the following recursion
1 1
To(n) < 8K3<F + F)naﬂ_l’y(n) (47 =2(n))" + (K5 + K7(€ + 1) log(n))res: (n)
_ 4 6
< Kn®?* ty(n)4" + K(£ + 1) log(n) 74 (n)

< Kn**7'y(n)4" + K Llog(n)7p41(n) (25)

4K32€K22_67(n) na/2—171+€(1—a/2) (n)

na/2—1,}/1+é(1—a/2) (n)

for positive constantg(, K independent of, and /.

We use TDMA at scale; with n; nodes and source-destination pairs. Time sharing betwksousace-
destination pairs, we have (during the time we communicatee&ch node) an average power constraint
of n,. Since at this level we communicate over a distance of at mgst, we have

_ nr
7.(n) < nglog 1(1—1—7). (26)
( ) 20N0a2/2

Since

nLa;a/Q <npa;'=2"t—=0

asn — oo, we can upper bound(26) as

Tr(n) < K’az/2

_ K/na/2,y—La/2 (’fl)
< K'n®?y7(n) (27)

for some constani”.
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Now, using the recursio_(25) times, and combining witH (27), we obtain
70(n) < Kn®?'y(n)4* + K Llog(n)7(n)
<...

L—1
< Kn®? 1y 4L<Z K Llog(n )

+(KLlog(n)) 71(n)
< n®21 (K Llog(n) )L<K4L )+ K'ny~L(n )) (28)

Using the definition ofy(n) and L = L(n) in (), we have fom large enough
(KL(n) 1og(n))L(") < p2log” ! /*70(m) loglog(n)

4L(n),y(n) < n2 log='/2=%(n)+log®~1/2(n)

n,y—L(n) (n) < nlog‘;*l/Q(n).

Y

Sinced > 0, the n's""*( term dominates in{28), and we obtain
To(n) < i)(n)na/z_l,

where

b(n) < nOUes” 2(m)

asn — oo. Therefore
p*(n) = p™(n) = 1/79(n) > b(n)n'~"?,

with
b(n) > n—OUog’~/2(n))

9

concluding the proof for the fast fading case.

B. Slow Fading

In this section, we prove Theorelmh 1 under slow fading, ié,,[t]}: is constant as a function df
We sketch the necessary modifications for the scheme deddrbSection IV to achieve a per-node rate
of at leasth(n)n'~*/? in the slow fading case.

Consider level, 0 < ¢ < L(n) in the hierarchy. Instead of relaying the message of a sedgstnation
pair over one relay squarelet as in the scheme describedciio88V], we relay the message over many
dense squarelets that are at least at distgfize,; from both the source and the destination nodes. We
time share between the different relays. The idea here isthigawireless channel between any node
and its relay squarelet might be in a bad state due to the d€ldimmd, making communication over this
relay squarelet impossible. Averaged over many relay sigt@; however, we get essentially the same
performance as in the fast fading case.

We first state a (somewhat weaker) version of Lenitha 7, apiatepfor this setup. Consider again
the collection of scheduleS(n,) and S(n,) satisfying the conditions that no relay squarelet is setéct
by more thamn,,; source-destination pairs and that all sources and destsaare at least at distance
V2a.41 from their relay squarelet (see Section VI-A for the formafidition). The next lemma shows
that for each source-destination pair, we can fiigk—‘~1~(n) distinct relay squarelets satisfying the
above conditions (the requirement that these relay scptarate distinct is expressed by the orthogonality
condition of the schedules in Lemrhal 11 below).
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Lemma 11. For everyn large enough (independent éf and every permutation traffic matrix(n,) €

{0, 1177 there are scheduleS® (n)}<*> ™ = S(ny), 15O ()" "™  S(ny) satistying
1 K227 %42 (n)
- - (@) q(i)
)‘(né) K22_£_1’)/(7’L) Z S (nf)S (nf)v

=1

where {S®(n,)};, {S@(n,)}, are collections of orthogonal matrices in the sense thatifgri/,
Z Si(j,)ksz(j,llz = 07
u,k

S0 =0

k,u

(29)

Proof. The proof is similar to that of Lemnid 7. In order to constr{ist” (n,)} and {S® (n,)}, consider
the sequential pass over allsource-destination pairs (assumés large enough for Lemnid 7 to hold). As
before, for each source-destination pair, therefgs2‘~1~(n) dense relay squarelets that are at distance
at leasty/2a,,;. Each pair chooses all of theg€,2-“~!v(n) squarelets, instead of just one as before.
Stop one round of this procedure as soon as any of the relayelgts is chosen by, pairs. Since by
the end of one round at least one relay squarelet is matched,hysource-destination pairs, there are at
mostn,/n,1 = 2v(n) such rounds. B

Consider now the result of one such round. We constii@‘~'~(n) matricesS (n,) and S®(n,),
with the i-th pair of matrices describing communication over tké relay squarelets chosen by source-
destination pairs matched in this round. Thus, this progessluces a total oRy(n)K,2=*"1y(n) =
K»27%4%(n) such matrices. The orthogonality property follows sincehesource-destination pair relays
over the same relay squarelet only once. O

Given a decomposition of the scaled traffic matfix2=‘~'~(n)A(n) into K,2-%y%(n) matrices, each
source-destination pair tries to relay ovEs2-“"1v(n) dense squarelets. We time share between these
relay squarelets. Since each source-destination pairsrelaly a(K,2-*"1~(n))~! fraction of traffic over
any of its relay squarelets, the loss due to this time shasnpw

K527%42%(n)

Ky2=1y(n)
as opposed td;2° in Lemma[T. In other words, the loss is at most a fa@tgin) more than in Lemm@l 7.
Using the definition ofy(n) in (I1), we have

() < n7los 0 < i),

= 27(n)

In other words, this additional loss is small.

Consider now a specific relay squarelet. If a source-ddgimaair can communicate over this relay
squarelet at a rate at leakt64-th of the rate achievable in the fast fading case (given bmrnas[9
and[10), it sends information over this relay. Otherwisedésl not send anything during the period of
time it is assigned this relay. We now show that, with proligbil — o(1) asn — oo, for every source-
destination pair on every level of the hierarchy at least qurter of its relay squarelets can support this
rate. As we only communicate over a quarter of the relay sdets; this implies that we can achieve at
least1/256-th of the per-node rate for the fast fading case (see Se®iBA), i.e., that b(n)n'~*/2 is
achievable with probability — o(1) asn — occ.

Assume we have for each source-destination paintv) picked K,2-“"1~(n) dense squarelets over
which it can relay; call those relay squareldts, ., ,}~22 7™ Consider the evenB,.,  that source
nodew can communicate at the desired rate to destination modeer relay squareletd,, ,, , (assuming,
as before, that we can solve the communication problem nvithis squarelet).
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Let ~{J}3S’)w7,€}»§:1 be the events that the interference due to matched filtennthe MAC phase, the
interference from spatial re-use in the MAC phase, the fiatence due to beamforming in the BC phase,
and the interference from spatial re-use in the BC phaselearethans times the one for fast fading,
respectively. From the proof of Lemmas9] 10, and of Thedrdor the fast fading case in SectionVII-A,
we see that

uwkCBuwk

||Du>

Due to spatial re-use, multiple relay squarelets will bevadn parallel. LetH denote the set of channel
gains between active relay squarelets. Using essentlalysame arguments as for the fast fading case
(see Lemmak]9, 10, and Section VII-A) and from Markov’s iredify, we haveIP(ijwk\H) > 7/8 for
all i e {1,...,4} and hence?(B, ., ,|H) > 1/2.

We now argue that the events

(e, 50

u,w,k

K227 15(n)
} (30)

k=1

are independent conditioned ah, by showing that these events depend on disjoint sets ofnehaains
and codebooks. Assuming the codebooks are generated n@adiorcommunication round, then they are
all independent. Thus we only have to consider the deperdendhe channel gains. Lét, and W, be
the source and destination nodes communicating over rejagresletA, ., . in roundk, and letV, be the

nodes inA, ,, ;. Let Uy, W,. be the source and destination nodes that are communicatthg aame time
as (u,w) due to spatial re-use. L% be the relay nodes dﬂk and Wk Now, B(l) " and B(2 . depend

(for fixed H) on the channel gains betweép andV;. B,’, , depends on the channel galns betwégn

and . B . depends (again for flxeﬂ{) on the channel gains betweéh and IV,.. Since these sets
are d|310|nt for different: by the orthogonality of the schedules (skel (29)), condifiamdependence of
the events in[(30) follows. B

To summarize, conditioned on the channel gdinbetween active relay squarelets, the random variables
{1z, . }x are independent and have expected v@l(gp, ,, |H) > 1/2. The sum

K22~ = 1y(n)

: : HBu,w,k

k=1

is the number of relay squarelets over which the sourcerdetn pair(u, w) successfully relays traffic.
We now show that with high probability at least one quartethase relay squarelets allow successful
transmission. Applying the Chernoff bound yields that

P(Sllp, . < K22 y(n)|[H) SP(S4ln, ., < Ka2 2y ()P (Bl H)| 1)
< exp (= 2K27 Y(n)P(By x| H))
< exp (- K27%(n))
for some constani’ > 0. Since the right-hand side is the same for Il this implies
P(ZkﬂBu,w,k < K22_£_37(n)> <exp (— K279(n)).

In each of theL(n) levels of the hierarchy there are at mastsource-destination pairs, and hence by
the union bound with probability at least

1— L(n)n*exp ( — K27y (n)),
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for every source-destination pair on every level of thedrehny at least one quarter of its relay squarelets
can support the desired rate. By the choices (@f) and L(n) in ({I1), this probability is at least

1— L(n)n2 exp ( . K2_L(")7(n)) >1— n3 exp ( . K2—L(n)2log(n)/2L(n)>
>1—exp (f(zl‘)gbg(m — K3le" 2*“<n>—log”“‘*5<n>>

>1—exp ( - QQ(log”QH(n)))
>1-o0(1)

asn — oo, and for some constarit’. This proves that the same order rate as in the fast fading cas
be achieved with high probability for all levels< ¢ < L(n).

It remains to argue that the same holds for lefet L(n). Note that since we assume phase fading
only, the received signal power is only a function of diseand not of the fading realization. Since at
level L(n) we use simple TDMA, this implies that we can always achiewegame rate at levdl(n) as
in the fast fading case.

Hence with probabilityl —o(1) asn — oo, we achieve the same order rate at each levell < L(n)
as for fast fading, proving Theorelm 1 for the slow fading case

VIIl. PROOF OFTHEOREM[2

Here, we provide a generalization and sharpening of theazsevin [8]. Most of the arguments follow
[8, Theorem 5.2]. We start by proving a lemma upper boundiegMIMO capacity.

Consider two subsetS;, S, C V(n) such thatS; NS, = (). Assume we allow the nodes withify and
S, to cooperate without any restriction. The maximum achievalbm rate between the nodesSnand
Sy is given by the MIMO capacity’'(S;, S2) between them. The next lemma upper bouads;, S,) in
terms of the node distances between the two sets andaimealized channel gains

hu,v
—Q
26652 Tu,f)

Lemma 12. Under either fast or slow fading, for every > 2, S}, S, C V(n) with SN .Sy, = (), we have

C(Sl,SQ) S 4<max{1,51é%>2( ZVNZ“’UP}) Z Z T;g.

u€eSy u€S1 vES?

7 A
hu,v -

Proof. Let

H 2 {h,,}ues, vesy,

H 2 (b hues, ves,,
be the matrix of (normalized) channel gains between the aadé; and.S,. Consider first fast fading.
Under this assumption, we have

C(S1,8,) = ol E(logdet (I+ HTQ(H)H)).
E(qu.n)<1 Vues:

A —
P51752 = E § Tuw

u€eS1 vESY

Define

as the total received power i, from S;, and set

Pu,Sg = P{u},Sg
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with slight abuse of notation. Then

_ ot o
C(S1,9:) = Ql(%%}z(o; E(log det (I +H Q(H)H))
E(Q’u,u)SPu,SQV’U«ESl
< H H) .
< Jmex E ( logdet (I + H Q(H)H)) (31)

E(trQ(H))<Ps, s,

Define the event .
B £ {||H|* > b}

for someb and where||ﬁ|| denotes the largest singular value HF. In words, B is the event that the
channel gains betweety and S, are “good”. We argue that, for appropriately chosethe eventB has
probability zero (i.e., the channel can not be too “good’y. Barkov’s inequality

P(B) < b "E(| H|I™"), (32)
for any m. We continue by upper boundid@(||ﬁ||2m). We have
|H|I* < r((HH")

for any k, and hence

B(|H ™) < E((tr((HH)))™"). (33)
Now, for any% > m, we have by Jensen’s inequality
B((w((EHEN))"") < (Ber(EHEN))" (34)
Combining [32), [3B), and(84) yields
P(B) < b~ (Eu((ffﬁ*)’f))m/k (35)

for any k > m.
Now, the arguments in [8, Lemma 5.3] show that

k
NNT k 7 2
E(tr((HH")¥)) gtm(max{l,%gglhm }) )

wheret, is the k-th Catalan number. Combining with (35), this yields

p5) < (572500 e {1 e 3 )
( )_(b t,/"n max ’{,%%}2(;| wol

Taking the limit ask — oo and using that,’* — 4 yields

P(B) < (b_14(max {1, max z; |;Luv|2}))m

uES1
Assume )
2
b>4<max{1,£}ré%>2(;|hu,v| }), (36)
u€Sy

then taking the limit agn — oo shows that
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Using this, we can upper bound{31) as
C(S1,5;) < max E(tr(ﬁ%}(ﬂ)ﬁ))

Q(H)>0:
E(trQ(H))<Ps, s,

= max E(ﬂBctr<ﬁTQ(H)ﬁ))

Q(H)>0:
E(trQ(H))<Ps, s,

< max E (]1 Be
Q(H)>0:
E(trQ(H))<Ps, s,

S bPSl,SQ.

H|*:Q(H))

Since this is true for alb satisfying [36), we obtain the lemma for the fast fading case
Under slow fading
C(51,8) =2 max logdet (I + HQH),

Q=>0:
qu,u<P YueSy

and the lemma can be obtained by the same steps. O

We now proceed to the proof of Theordh 2. Consider a vertinaldividing the network into two
parts. By the minimum-separation requirement, an areazef«$h) can contain at mosi(n) nodes, and
hence we can find a cut such that each part is of Gize) and contain®(n) nodes. Call the left part of
the cutS. Since there ar®(n) nodes inS and in S¢, there are9(n) sources inS with their destination
in S¢ with probability 1 — o(1). For technical reasons we add a node inside each squaré¢ninof the
form [id, (i + 1)d] x [jd, (j + 1)d] for somei, j € N, whered = /21og(n). These additional nodes have
no traffic demands on their own, and simply help with the tnaission. This can clearly only increase
achievable rates. Moreover, this increases the numberdgsiml” by less than a factat. We now show
that

C(S, 5 = O(logﬁ(n)n2_°‘/2), (37)

and hence by the cut-set bound, and since there&#rg sources inS with their destination inS¢, we

have
p*(n) = O(log®(n)n'=/?).

We prove [(3V) using Lemnfal2. To this end, we need to upperdoun
7 2
gré%§;|hu,v| -
The proof of [8, Lemma 5.3] shows that if
1) there are less thaog(n) nodes insid€i, i + 1] x [j, j + 1] for any i, j € {0,. \f 1},
2) there is at least one node insifé, (i + 1)d| x [jd, (j + 1)d] for any 1, j, whered V2logn,
then

7 2 3
max Y | < K log*(n). (38)
u€esS
and fora € (2, 3]
> e < K log?(n)n?=/2, (39)
ueS vese

for constantsk, K. For arbitrary node placement with minimum separation, fir&t requirement is
satisfied forn large enough, since only a constant number of nodes can laimed in each area of
constant size. By our addition of nodes iritgn) described above, the second condition is also satisfied.
Using Lemmd_1R with[(38) and (B9) yields {37), concluding geof of Theorem 2.
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IX. PROOF OFTHEOREM[3

Consider a node placement witlY2 nodes located uniformly of0, \/n/4] x [0,1/n] andn/2 nodes
located on[y/n/2,/n] x [0, /n] with minimum separation,;, = 1/2. A random traffic matrix\(n) is
such that at least/4 communication pairs have their sources in the left clustel @estinations in the
right cluster with probabilityl — o(1). Assume we are dealing with such\én) in the following.

In this setup, with multi-hop at least one hop has to crosg#pebetween the left and the right cluster.
Thus, even without any interference from other nodes, weatdain at most

pMH(n) < 4ocn—a/2‘
Moreover, considering a cut between the two clusters (Saand S¢), and applying LemmB~12 yields

that
* -1 7 2 -
p’(n) < 16n (max{l,%Q |0 }) > > e (40)

u€es ueS vese

Now note that for any, € S, v € S¢, we have

1
Z\/ﬁ < Tuw < Qﬁ
Hence
S el = Y- gt < 5
u,v - ~ —a =
ues ues ZT)ESC T“’% ’
and
Z Z ree < go—1p2-a/2
ueS vese

Combining this with [(4D) yields
p*(n) S 22+5an1—a/2

for all a > 2.

X. PROOF OFTHEOREM[]

We construct a cooperative multi-hop communication schemeé lower bound the per-node rate
pMH(n) it achieves. We use the hierarchical relaying scheme aglibgilblock. Assume the node
placementV (n) is p-regular at resolutioni(n) for all n > 1. We show that this implies that we can
achieve a per-node rate of at leat(n)n='/2=%(") asn — oo. Taking the smallest sucti(n) then
yields the result.

We consider three cases for the valuelof) (namely,d(n) = O(y/n), d(n) > n°Y, andd(n) < n°W).
First, if d(n) = ©(y/n) asn — oo then the result follows directly from Theoreim 1. Considgria
subsequence if necessary, we can therefore assume witigsubi generality thai(n) = o(y/n) in the
following.

Second, considet(n) satisfying

d(n) > naralos’ ) (41)

Divide A(n) into squares of sidelengtf(n). Sinced(n) = o(y/n), the number of such squares grows
unbounded as — oo. We now show that we can use multi-hop communication with@leagth ofd(n)
where each hops is implemented by squares cooperativetiingemformation to a neighboring square.
In other words, we perform cooperative communication agéllecaled(n) and multi-hop communication
at global scale/n.

SinceV (n) is p-regular at resolutionl(n), each such square contains at leaé¢t(n) nodes. Pick the
top left most square and construct the square of sideledgth) consisting of it together with it$
neighbors. Continue in the same fashion, partitioning &llon) into squares of sidelengthi(n). Note
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that each such bigger square contains at léagt(n) nodes by the definition of(n). We assume this
worst case in the following. PartitioA(n) into 4 subsets of those bigger squares such that within each
such subset each square is at distance at #ist from any other square (see Figlile 6). We time share
between thosé subsets. Consider in the following one such subset. Foydigger square, we construct
two permutation traffic matriced; (4ud?(n)) and \y(4d*(n)). In A\, the nodes in the top two squares
have as destinations the nodes in the bottom two squaresanmtbtles in the bottom two squares have as
destinations the nodes in the top two squares (see Higuir@jlarly, A, contains communication pairs
between left and right squares. We time share betwgesnd ).

Fig. 6. Sketch of the construction of the cooperative mutfp- scheme in the proof of Theordth 4. The dashed squares himlength
d(n). The gray area is one of thesubsets of bigger squares that communicate simultanedtstyarrows indicate the traffic matrix; .

Communication according ta; within bigger squares in the same subset occurs simultahedie
are going to use hierarchical relaying within each biggerasg. This is possible since each such square
contains at leastud?(n) nodes. We have to show that the additional interference fsigger squares in
the same subset is such that Theotém 1 still applies. Incpéati we need to show that the interference
has bounded power, sdy. Using the same arguments as in the proof of Theddem 1 in@®é¥ll yields
that this is indeed the case (the interference from othegesigquares here behaves the same way as
the interference due to spatial re-use from other activayrsfuarelets there). With this, we are now
dealing with a hierarchical relaying scheme with aveld(n), 4ud*(n) nodes, and additive noise with
power1 + K. Both the lower number of nodes and the higher noise powdrdedrease the achievable
per-node rate by only some constant factor, and hence Tind@irehows that under fast fading we can
achieve a per-node rate of at least

b1 (d?(n)) (d*(n))' =" > by (n)d* =" (n),

asn — oo, where
bl(n> Z n—O(logJ—l/Z(n)).

Moreover, the same rate is achievable under slow fading prithability 1 — b, (d?(n)), where
b2 (n) < exp < o 29(1031/2+6(n)) ) )

The setup is the same for all bigger squares within each of thabsets.

We now “shift” the way we defined the bigger squaresiby) to the right and to the bottom. With this,
each new bigger square intersects withigger squares as defined before. We use the same commanicati
scheme within these new bigger squares and time share bethedwo ways of defining bigger squares.
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Construct now a graph where each vertex corresponds to aesqtiaidelengthi(n) and where two
vertices are connected by an edge if they are adjacent iarditle same old or new bigger square. This
graph is depicted in Figuffd 4 in Sectibn V.

With the above construction, we can communicate along edgk ef this graph simultaneously at a
per-node rate of

bi(n)

16
in the fast fading case. In the slow fading case, this statémelds with probability at least

1- mfb(dz(n)) = 1= Fy P ( _ 90(log/20(a (n)>)>

>1—exp (K’21°g10g(n) — 21~(10g1/2+5(d(n))>

d*="(n)

for constantsk”, K. By assumption[(41),

1/2+46
1/2+6 o 1/246
log*™ (d(n)) > (2+alog n)) :
and hence n
1= d2(n) ba(d*(n)) > 1 —o(1)

asn — oo, showing that with high probability we achieve the same prde&e under slow fading as under
fast fading.

The communication graph constructed forms a grid with?(n) nodes. Using that each bigger square
can contain at mosf,d?(n) nodes by the minimum-separation requirement, standardneegts for
routing over grid graphs (see [16]) show that in the fastrfgdiase we can achieve a per-node rate of

d(n)

CMH (. b2 (n) Y
p(n) = b(n)d ()\/ﬁ

> b(n)d*>=*(n)n"1/?,
where
b(n) = n-0 (e 2m).

Moreover, the same statement holds in the slow fading catie psobability 1 — o(1).
Finally, considerd(n) such that

d(n) < nralos’ ) (42)

Construct the same communication graph as before, butitiéswe use simple multi-hop communication
between adjacent squares of sidelen{jth). By time sharing between the at mdstd?(n) nodes in each
square, and since we communicate over a distance of at3wps}, we achieve under either fast of slow
fading a per-node rate between the squares of at least

K//d—Q—a(n) > K'n~ log®=1/2(n)

for some constank™, and where we have usdd [42). Using the analysis of grid graptbefore, we can
achieve a per-node rate of at least

~—

pCMH(n) > K'n~ log5*1/2(n)d(n > l~)(n)d3_°‘(n)n_1/2,

n

for either the fast or slow fading case.
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Xl. PROOF OFTHEOREM[E

ConsiderV (n) with n/2 nodes located uniformly of, (v/n — d*(n))/2] x [0,+/n] and n/2 nodes
located uniformly on[y/n/2,/n| x [0, /n] such that-,;, = 1/2. This node placement is/2-regular at
resolutiond*(n). A random traffic matrix\(n) is such thatd(n) communication pairs have their sources
in the left cluster and destinations in the right clusterrwprobability 1 — o(1). Assume we are dealing
with such a\(n) in the following.

Considering a cut between the two clusters and applying Lefbh(slightly adapting the arguments
in Section[ V), yields that

g (n) = O(log®(n)d™* = (n)n™"/?)

for o > 3.

XIl. DISCUSSION

We briefly discuss several aspects of the proposed hiecalaleiaying scheme. Sectibn XIIFA comments
on the full CSI assumption and Sectibn XII-B on the use of tyjuc®mmunication. Sectioris XIC and
XII-Dloutline how the results obtained here can be extendeithé case of dense networks and networks
without minimum separation between nodes. Sedtion XII-Eagares our hierarchical relaying scheme to
the hierarchical cooperation scheme presented in [8].

A. Full CSI Assumption

Throughout our analysis, we have made a full CSI assumplioother words, we assumed that the
phase shiftd,.,[t]}.., are available at time at all nodes in the network. As this assumption is quite
strong, it is worth commenting on. First, we make the full @Ssumption in all the converse results in
this paper. This implies that all the converses also holceumeeaker assumptions on the CSI, and hence
are valid as well under a wide variety of more realistic agstions on the availability of side information.
Second, all achievability results can be shown to hold undsaker assumptions on the availability of
CSl. In fact, in all cases, 2-bit quantization of the channel sta§é, ,[t]}.., available at all nodes at time
t is sufficient to obtain the same scaling behavior. This fedy an argument similar to the one used
in the analysis of the BC phase in Sectlon VI-C, where it isnghthat beamforming using a quantized
channel state results only in a constant factor rate loss.

B. Burstiness of Hierarchical Relaying Scheme

The hierarchical relaying scheme presented here is burdtyei sense that nodes communicate at high
power during a small fraction of time. This leads to high péafaverage power ratio, which is undesirable
in practice. We chose burstiness in the time domain to sfintiie exposition. The same bursty behavior
could be achieved in a more practical manner by using CDMA wéveral orthogonal signatures or by
using OFDM with many sub-carriers. Each approach leads toyrparallel channels out of which only
few are used with higher power. This avoids the issue of highkgo-average power ratio in the time
domain.

C. Dense Networks

Throughout this paper, we have only consideextendednetworks, i.e,n nodes placed on a square
region of arean with a minimum separation of, , > r..;,. The results can, however, be recastdense
networks, where: nodes are arbitrarily placed on a square region of unit aifaasminimum separation
of r,, > mmin/+/n. It suffices to notice that by rescaling power by a factor/? a dense network can
essentially be transformed into an extended network with-fiss exponent (see also [8]). Hence the
same result for dense networks can be obtained from thet feswdxtended networks by considering the
limit o« — 2. Applying this to Theorerhll, yields a linear per-node ratiag of the hierarchical relaying

scheme.
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D. Minimum-Separation Requirement

The minimum-separation requiremenf,, € (0, 1) on the node placement is sufficient but not necessary
for Theorentll to hold. A weaker sufficient condition is thatomstant fraction of squarelets are dense, as
shown in Lemma]6 to be a consequence of the minimum-sepanauirement. It is straightforward to
show that this weaker condition is satisfied with high proligifor nodes placed uniformly at random
on [0, v/n]?. This yields a different proof of Theorem 5.1 in [8].

E. Comparison with [8]

Both, the hierarchical relaying scheme presented here laaditerarchical scheme presented in [8],
share that they use virtual multiple-antenna communinaéiod a hierarchical architecture to achieve
essentially global cooperation in the network. The schedifésr, however, in several key aspects, which
we point out here.

First, we note that we obtain a slightly better scaling lavanily

by (n)n'=%"% < p*(n) < by(n)n'=e/?
with
by (n) > =0 (1" 2)
b2(n) = O(log"(n)),
for any ¢ € (0,1/2) obtained here, compared to
by (n)n'=%2 < p*(n) < by(n)n=*/2

9

with

bi(n) = Q(n™7),

bg(n) = O(?’La),
for anye > 0 in [8]. For the lower bound (i.e., achievability), this isdaeise the hierarchy here is not
of fixed depthL as in [8], but rather of deptlf(n) = log"/?>~°(n) (for some constani € (0,1/2)), i.e.,
changing withn. For the upper bound (i.e., converse), this is due to a shargef the arguments in [8].

Second, note that the multi-user decoding at the relay stptarduring the MAC phase and the multi-
user encoding during the BC phase are very simple in our sétufact, using matched filter receivers
and transmit beamforming, we convert the multi-user enpdnd decoding problems into several single-
user decoding and encoding problems. This differs from gpgaach in [8], in which joint decoding of a
number of users on the order of the network size is perforr@en.results thus imply that these simpler
transmitter and receiver structures provide the samengcab the more complicated joint decoding in [8].
We note that the scheme proposed in [8] can be modified to alsanatched filter receivers as suggested
here.

Third, and probably most important, the schemes differ iw llmey achieve the throughput gain from
using multiple antennas. In [8], the nodes are located alnegsilarly with high probability. This allowed
the use of a scheme in which a source squarelet directly conwates with a destination squarelet. In
other words, the multiple-antenna gain comes from settmg virtual MIMO channel between the source
and the destination. In our setup, the arbitrary locationaafes prevents such an approach. Instead, we use
that at least some fixed fraction of squarelets is almostlaegwe called them dense squarelets). Source-
destination pairs relay their traffic over such a dense sdetarin other words, the multiple-antenna gain
comes from setting up a virtual multiple-antenna MAC and B@us, the hierarchical relaying scheme
presented here shows that considerably less structureeamotle locations than assumed in [8] suffices to
achieve a multiple-antenna gain essentially on the ordéneohetwork size. Note also that the additional
degree of freedom offered by the choice of relay squareletfgiven source-destination pair makes it
possible to extend the result to hold also for slow fadingncieds.
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XIll. CONCLUSIONS

We considered the problem of the scaling of achievable ratabitrary extended wireless networks. We
generalized the hierarchical cooperative communicatohreisie presented in [8] for a fast fading channel
model and with random node placements. We proposed a differerarchical cooperative communication
scheme, which also works for arbitrary node placement (aithinimum-separation requirement) and for
either fast or slow fading.

For small path-loss exponente (2, 3], we showed that our scheme is order optimal and achieves the
same rate irrespective of the node placement. In partictlar rate is equal to the one achievable under
random node placement. In other words, the regularity ohtiwe placement has no impact on achievable
rates for small path-loss exponent.

The situation is, however, quite different for large paikd exponentv > 3. We argued that in
this regime the regularity of the node placement directlpacts the scaling of achievable rates. We
then presented a cooperative communication scheme thatlsipdinterpolates” between multi-hop and
hierarchical cooperative communication depending on #geilarity of the node placement. We showed
that this scheme is order optimal for all> 3 under adversarial node placement with regularity constrai
This contrasts with the situation for more regular netwdikse the ones obtained with high probability
through random node placement), in which multi-hop commation is order optimal for alby > 3.
Thus, for less regular networks, the use of more complicategherative communication schemes can be
necessary for optimal operation of the network.

XIV. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers aedAissociate Editor Gerhard Kramer
for their comments. We would also like to acknowledge helgfacussions with Olivier Léveque, Ayfer
Ozgir, and Greg Wornell.

REFERENCES

[1] P. Gupta and P. R. Kumar. The capacity of wireless netaidikEE Transactions on Information Theq®6(2):388-404, March 2000.
[2] L. Xie and P. R. Kumar. A network information theory for ieless communication: Scaling laws and optimal operatitBEE
Transactions on Information Theqr$0(5):748-767, May 2004.
[3] A. Jovicic, P. Viswanath, and S. R. Kulkarni. Upper bois on transport capacity of wireless networkiEEE Transactions on
Information Theory 50(11):2555— 2565, November 2004.
[4] O. Léeveque and. E. Telatar. Information-theoretic upper bounds on thpacity of large extended ad hoc wireless networl&EE
Transactions on Information Theqr$1(3):858-865, March 2005.
[5] F. Xue, L. Xie, and P. R. Kumar. The transport capacity afeless networks over fading channelEEE Transactions on Information
Theory 51(3):834-847, March 2005.
[6] L. Xie and P. R. Kumar. On the path-loss attenuation regiior positive cost and linear scaling of transport capatityvireless
networks. IEEE Transactions on Information Theor§2(6):2313-2328, June 2006.
[7] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran. @tp#iie gap in the capacity of wireless networks via percafatheory.IEEE
Transactions on Information Theqr$3(3):1009-1018, March 2007.
[8] A. Ozgir, O. Léveque, and D. Tse. Hierarchical cooperaticiieves optimal capacity scaling in ad hoc netwoik£E Transactions
on Information Theory53(10):3549-3572, October 2007.
[9] P. Gupta and P. R. Kumar. Towards an information theorjlaofe networks: An achievable rate regiofEEE Transactions on
Information Theory 49(8):1877-1894, August 2003.
[10] L. Xie and P. R. Kumar. An achievable rate for the muklifidvel relay channelEEE Transactions on Information Theoryl(4):1348—
1358, April 2005.
[11] G. Kramer, M. Gastpar, and P. Gupta. Cooperative gimséeand capacity theorems for relay networkdEEE Transactions on
Information Theory 51(9):3037-3063, September 2005.
[12] S. Aeron and V. Saligrama. Wireless ad hoc networksat8gies and scaling laws for the fixed SNR regirteEE Transactions on
Information Theory 53(6):2044—2059, June 2007.
[13] M. Franceschetti, M. D. Migliore, and P. Minero. The eajty of wireless networks: Information-theoretic and giogl limits. In
Allerton Conference on Communication, Control, and CornmgtSeptember 2007.
[14] M. Franceschetti, M. D. Migliore, and P. Minero. The degs of freedom of wireless networks: Information thecretid physical
limits. In Allerton Conference on Communication, Control, and ConmgritSeptember 2008.
[15] S. Ihara. On the capacity of channels with additive @aussian noiselnformation and Contrgl 37(1):34-39, April 1978.
[16] S. R. Kulkarni and P. Viswanath. A deterministic apmroo throughput scaling in wireless networkSEE Transactions on Information
Theory 50(6):1041-1049, June 2004.



	Introduction
	Related Work
	Our Contributions
	Organization

	Model
	Main Results
	Low Path Loss Regime (2,3]
	High Path Loss Regime > 3

	Hierarchical Relaying Scheme
	Construction
	Setting up Relays
	Multiple Access Phase
	Broadcast Phase
	Spatial Re-Use and Termination of Recursion

	Achievable Rates

	Cooperative Multi-Hop Scheme
	Analysis of the Hierarchical Relaying Scheme
	Setting up Relays
	Multiple Access Phase
	Broadcast Phase

	Proof of Theorem 1
	Fast Fading
	Slow Fading

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Discussion
	Full CSI Assumption
	Burstiness of Hierarchical Relaying Scheme
	Dense Networks
	Minimum-Separation Requirement
	Comparison with ozg

	Conclusions
	Acknowledgments
	References

