Abstract:
We explore the degrees of freedom of M times N user wireless X networks, i.e., networks of M transmitters and N receivers where every transmitter has an independent messa...Show MoreMetadata
Abstract:
We explore the degrees of freedom of M times N user wireless X networks, i.e., networks of M transmitters and N receivers where every transmitter has an independent message for every receiver. We derive a general outer bound on the degrees of freedom region of these networks. When all nodes have a single antenna and all channel coefficients vary in time or frequency, we show that the total number of degrees of freedom of the X network is equal to [(MN)/(M+N-1)] per orthogonal time and frequency dimension. Achievability is proved by constructing interference alignment schemes for X networks that can come arbitrarily close to the outer bound on degrees of freedom. For the case where either M=2 or N=2 we find that the degrees of freedom characterization also provides a capacity approximation that is accurate to within O(1) . For these cases the degrees of freedom outer bound is exactly achievable.
Published in: IEEE Transactions on Information Theory ( Volume: 55, Issue: 9, September 2009)