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Abstract— It is well-known that cross-layer scheduling which cross-layer design with noiseless limited feedback. In] [15
adapts power, rate and user allocation can achieve significagain  [19], the authors studied OFDMA cross layer design with
on system capacity. However, conventional cross-layer dgss g\ qated CSIT. However, in all these works, the CSIT obthine

all require channel state information at the base station (GIT) . = . - L
which is difficult to obtain in practice. In this paper, we focus on is either noiseless (or no delay) or the stafistics of theTCSI

cross-layer resource optimization based on ACK/NAK feedbek ~€rrors is assumed to be known [7]. However, in practice,
flows in OFDM systems without explicit CSIT. While the problem the knowledge of CSIT errors statistics such as CSIT error
can be modeled as Markov Decision Process (MDP), brute force variance and CSIT delay is needed and this is not easy to
approach by policy iteration or value iteration cannot lead to  4piain hecause it depends on the mobility of the users as well

any viable solution. Thus, we derive a simple closed-form &0 . : . . .
tion for the MDP cross-layer problem, which is asymptoticaly 25 the multipath profile. It is quite challenging to have ausib

optimal for sufficiently small target packet error rate (PER). The Cross-layer scheduling solution without the knowledge $fIC

proposed solution also has low complexity and is suitable fo error variance. On the other hand, regardless of the CStTeth
realtime implementation. It is also shown to achieve signifiant are always ACK/NAK flows between the mobiles (MS) and
performance gain compared with systems that do not utilize o pasestations (BS). A robust cross-layer schedulinglgho

the ACK/NAK feedbacks for cross-layer designs or cross-lasr . . .
systems that utilize very unreliable CSIT for adaptation with make the best use of the ACK/NAK information which is

mismatch in CSIT error statistics. Asymptotic analysis is 4o €mbedded in the protocd.
provided to obtain useful design insights. 2) Accomodation of mobiles with different receiver capa-

Index Terms—ACK, Acknowledgement, Cross-Layer, Feed- Dility: Conventional cross-layer design that utilized CSIT to
back, Scheduling, Markov Decision Process, MDP, No CSI, Paw  perform resource allocation is essentially an open-lospesy

Adaptation, Rate Adaptation because BS cannot determine if the packet is received ¢lyrrec
or not even with the knowledge of CSIT (due to decoding
I. INTRODUCTION errors). In practice, the system may have heterogeneous mix

A. Background and motivation of mo_biles with _(_jifferer_n capabilities (e.g. some has tur_bo
' decoding capability while some only has simple detection
Cross-layer scheduling has been shown to achieve a Sigpability). To accommodate the heterogeneous mixture of

nificant performance gain in wireless systems as a respigejver capability in the resource allocation, the BS has

of multiuser diversity gain. Most of the existing crossday to rely on ACK/NAK flows (because the ACK/NAK flows
designs heavily rely on either perfect CSIT [6] [13][14] ogjve information about whether a packet can be decoded

imperfect [15] [18]/ delayed CSIT [7] [19]. successfully or not). This closed loop information cannet b
1) Absence of Accurate CSIT and CSIT error statisticS:gptained in CSIT-based scheduler.

Perfect CSIT is difficult to obtain in practice, especially i  3) Heuyristic Approach in existing literatureRecognizing

FDD systems in which explicit feedback is required. Withhe jmportance of utilizing the ACK/NAK in the resource

imperfect CSIT*, systematic packet errors would result evegjocation at the BS, there are existing works that discuss

if powerful error correction codes are applied. This is hsea power control using ACK/NAK feedbacks. However, most
given the imperfect CSIT, there is uncertainty on the intan of the works either considered power control on a wire-
neous mutual information at_the base station and th_e scdaed%ss link only as well as utilizing heuristic algorithms or
data rate may exceed the instantaneous mutual mformatlgrbdy the performance by simulation. For example, a power
leading to packet errors (channel outage) despite the use,ghniation design and performance study utilizing ACK/NAK

powerful error correction coding. It has been shown [5][2Qbedbhacks for point-to-point systems have appeared i+ [21]

that packet errors cause significant degradation in c&ss-l [24]. Cross-layer scheduling utilizing ACK/NAK feedbacks

perfprmance. There are some works to take into account,pf o investigated in [9] [10][25]. In particular, power cooit

the imperfect CSIT or limited CSIT feedback in cross-layghye adaptation and user scheduling for flat fading channels

design. For example, in [16] [17], the authors studied thg,§ frequency selective channels were carried out in [9] and

There are two meanings behind "imperfect CSIT” in the litera. The [10] respectively whereas a rate adap_tatlon scheme based
first meaning of imperfect CSIT refers to partial knowledgeGsIT such 0N ACK/NAK feedbacks was proposed in [25]. The authors
as limited feedback but the partial CSIT knowledge is remgiaccurately proposed a 2-level hierarchy stochastic scheduling argnri

(without errors) or timely (no delay). On the other hand, $eeond meaning ;
of imperfect CSIT refers to inaccurate knowledge of CSITh@i with CSIT based Odeammg aUtomate(LA) for an AWGN channel by
errors or outdatedness). In this paper, the term "impe@SiT” refers to the

second meaning. 2in a similar way asouterloop power controln CDMA systems.
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rate adaptation. Although the algorithm was shown to cayever 3) Asymptotic PerformanceAs pointed out, all existing

to the true channel state values, the convergence is nogprosolutions are heuristic in nature and studied performance
to maximize the throughput which is of usual practical corpurely by simulations. This is because of the challenging
cern. Moreover, in all these works [9][10][25], the alghnt nature of the problem. In this paper, we shall derive some
designs are based on heuristic solutions and it is not clbat wasymptotic properties on the system performance so as to
the best possible performance from the ACK/NAK informationbtain some design insights.

is. Furthermore, the suboptimal solutions obtained hagé hi
complexity and is not suitable for real-time implementatio ~ Summary of Contributions
Moreover, in all these existing designs, there is no meamani

to control the per-user packet error rate PER to a given tar eWe COUS'der the dovv_nllnk of a wireless system W'th a
level. Yet, being able to control the PER of the wireles%ase station and< mobile users over frequency selective

: : ; : ing channels (OFDM). The base station shall adapt the
sessions per user is very important from the reqmrementscpfwn?ink rate pO\Ever and) user selection in an OFDM s;?stem
applications (e.g. voice and video codec). ' .

pl\ljlotivated (b ga” the reasons above Jve ropose a rObl’tl)szised on the ACK/NAK feedbacks from the mobiles. To take

y ) ' prop iNfo account of potential packet errors due to channel @jtag

ZL?SI?C?{ Ig%ﬁ;fﬁj\;\'/?g(jered;sﬁge?é dozla:tDt'r\l/lest))lzgeemsstavt\;gﬁreTI%% consider an average system goodput which measures the
P g€ . " number of bits successfully transmitted as our performance
cross-layer power allocation, user assignment as well tes rd asure. The robust cross-layer design is modelled as a
allocation are adaptive to the built-in 1-bit ACK/NAK feed'Markov becision Process (MDP) [4] [35] [36] [37] with
backs [1] [2] [3] from the selected users. Being built in a th

link layer of most wireless systems and hence, the ACK/NA@O;';/;;ie;atS% ngtousetrin?iifirt:gna\?eor!\m(eess asstetrze gggml:ﬁ&mne
feedbacks add no incremental cost to the proposed clostar P ge sy goodp

loop design. Moreover, since the cross-layer solution igedr maintaining a target PER. It is well-known that MDP-based

by the ACK/NAK feedbacks, it introduces robustness on ﬂ%robllems [26][27] alvyays. require complex valge |ter§lt|on
Fgonthms. However, in this paper, we shall derive a simple
b

cross-layer performance with respect to uncertainty at tg sed-form solution for the MDP cross-layer problem which
CSIT and propagation parameters. These robustness caanqg

obtained by utilizing explicit limited CSIT feedback. Hover, '~ 2Symptotically optimal for sufficiently small target PER
. : ) The proposed solution has low complexity and is suitable for
there are several challenges in solving the problem:

realtime implementation. It is also shown to achieve sigaiit
performance gain compared with systems that do not utilize
the ACK/NAK feedbacks for cross-layer designs or cross-
layer systems that utilize very unreliable CSIT for adadptat
1) Issues of packet errorsConventional cross-layer op-With mismatch in CSIT error statistics. Furthermore, sittoe

timization only consider sum ergodic capacity as the optRCK/NAK feedbacks are generated by the mobiles based on
mization objection. Ergodic capacity only considers tretiz CRC checking after packet detection, the proposed closed-
transmitted by the BS regardless of packet errors. As atrestfloP cross-layer scheme is very flexible in the sense that it
ergodic capacity is a reasonable performance metric ongnwhcan automatically accommodate mobiles with different irece
the packet error is negligible (which is the case with pdrfe§en3|t|V|t|e_s in the RF or variations in the baseband esiima _
CSIT and very strong coding). However, in our case witho@"d decoding algorithms. Hence, the proposed scheme achiev
CSIT, there is always systematic packet errors (due to eanfignificant goodput gain with built-in robustness agairisire
outage) and this cannot be alleviated by just using stroR Ifluctuat|oqs as wgll as variations across the capadsiliif
coding. To accommodate packet errors, we have to use sysf@fgrent mobile receivers.
goodput (b/s/Hz successfully received by the mobiles) as ou
performance metric. Note that goodput reduces to ergodic I|l. A REVIEW ON MARKOV DECISION PROCESS
capacity in the case of no errors but in general, to deal withmMDP has found applications in ecology, economics and
goodput, we need to deal with the cdf of mutual informatiofommunications engineering since 1950 [28]. MDP is a
(rather than the first order moment only) and this impose somfydeling tool which describes a sequential decision making
technique challenges to the problem. process. It is used to make tbetimal sequence of decisions
2) Issue of the MDP complexityWhile the problem be- where outcomes of the problem are partly random and partly
longs to MDP, it is well-known that there is usually no simplelepend on such decisions. The advantage of MDP is that it
solution (even numerically) using standard value-iteratind provides a systematic framework for analysis of optimality
policy-iteration solutions (see details in section Il).rAn- existence, dynamics and convergence of solutions.
stance, the MDP belongs to the class of infinite state spaceA complete description of a MDP problem involvesleci-
and brute-force approach has exponential complexity in te®n epoch a state spacea control policy, a state transition
number of time slotsi/ and hence, they could not give usefukernel as well as areward function The time line is first
solutions. Instead of brute-force solution, we exploit sondivided into decision epochs in which the controller makes
special structure of the OFDM and obtained a low complexitecisions on control actions and the system receesirds
closed-form solution, which is asymptotically optimal fomat the decision epochs. Specifically, at theh decision epoch,
sufficiently small PER target. the system occupies a statg € S whereS denotes the state

B. Technical Challenges
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space. Based on the observation on the causal state sequ  Frequency T/M, a packet slot
s1, ..., Sm, the controller takes a control actien, € A where -~
A is the set of actions. A&ontrol policy is defined to be the d=a

set of actiondor all possible state sequence. Based on the ¢
tion a,,, and the current statg,,, the system receives a rewarc
R(sm,am) and moves to the next statg,,; according to d=3
the state transition probability kerneP(s,,, aym, Sm1). The
optimization problem is to find the optimal control policy a® N
to maximize the total rewardsirg max, Zﬁf:l R(Sm, tm)-

As a result, a MDP problem can be characterized by the tuj
(S, A, P(.,.,.),R(.,.)). One reason why the MDP problem is
difficult is due to the huge dimensions of the variable, name

the entire policy space. As a result, a key step in solving the d=1 N/D
MDP is known aglivide-and-conquerSpecifically, instead of 4
optimizing for the entire problem, it can shown that the MDI D=4 ¢y
can be solved by optimization of actioms, on a per-stage T T

basis.
. . ig. 1. The channel model is represented graphically. Inftequency
There h_as been a lot of in-depth analy5|§ of MDP. [Zﬁomain, assumed = 4 frequency blocks withinV subcarriers, there are
[29] and different branches of the problem. Different asaly % subcarriers in each frequency block and have the same fieggains.
are needed for finite state space problems v.s. infinite stHiéhe time domain, channel remains unchanged withiseconds: a time slot.
- . P ._ M packets are transmitted in a time slot. Each packet consﬁfnﬂeconds:
space problems; finite horizon problems v.s. infinite hatiza, packet siot.
problems;unconstrainedviDP v.s. constrained MDPetc. By
constrained MDP, we mean that the problem has one or more
constraints on the feasible policy spaceConstrained MDP ] ) ) )
problems are closely related to communication problemg [2@F @ period of imeT" seconds and we call this a time slot.

such as power and rate control problems with an average deld}+S: the fading gains on each frequency block remain the
constraint [30]; scheduling problems involving routingdd- S&me throughout &me slot Within a time slot, we send/

hoc networks [32] or handoff problems [31]. For example, ijackets which occupy the same amount of timpaeket slat
[31], the authors optimized the occurrence of path optimizar S€conds. From now on, the names packet slot and slot are
tions for inter-switch handoffs in wireless ATM networkshg@ used interchangeably. With frequency block fading, theee a
expected total cost per call, including the switching/ tathd v frequency sub-carriers in whidh; | frequency sub-carriers
cost and signaling costs, is modeled as a infinite-horiz8@ing the same fading gains form a block and there/are
semi-Markov decision process [33] with discount rate. Thflocks in total. The fading gain represented by each frequen
expected total cost is the objective function to be minirdizeP0Ck is assumed to be independent of the other blocks. The
At each decision epoch, the decision maker can choose™@del is summarized in figure 1.

do path optimization or not which is modeled in the action Denote the number of users in the systemskhyEach user
set. Using divide-and-conquer principle, the MDP problam c & Sees a vector channg. = [hx.1, . .., hx,p] wherehy,; is

be solved usingalue iteration algorithmor policy iteration the channel power of frequency blogkof user#. Stacking
algorithm [34]. The model is then extended to have Qo&ll vector channels, we have a channel power maffix

d=2 N/D

>

a time slot T Time

constraints. - h h h
. . . . hi 1,1 1,2 1,D
This paper is outlined as follows. The channel model is - hoy oo ho b
firstly presented in section Ill. In section IV, the problem H— ha _ ’ "
formulation is given as a cross-layer optimization problem :
and a MDP problem. The conventional solutions of MDP is hx A i SO
K,1 K,2 : K,D

provided at the end of section IV. The proposed solution,

which is asymptotically optimal, is presented in section \yote that each entriy; 4 is exponentially distributed with unit
Simulation results are analyzed in the section VII. SectiQean and variance. Denote the ACK/NAK feedback from each
VIl presents the conclusion. userk during packet slotn by v ... Then,

1, ACK is received from usek in slot m;
0, NAK is received from usek in slot m.

We consider a downlink cross-layer scheduling problem in (2)
a frequency selective, block fading (in frequency) and guashere ACK is received when the packet is successfully
static (in time) channel. The bandwidth is divided info decoded and NAK is received when the packehas error.
frequency blocks. The fading gain in each frequency block The closed-loop cross-layer scheduler is as shown in figure
is flat. With the use of OFDM, the fading of each frequencg. There are three optimization parameters, namely the user
block is independent to other frequency blocks. Also, in theelection,,, , power leveb,,, and rater,,, . The parameters are
time domain, we assume that the channel remains quasi-stdéitermined for each packet. At the receiver sidesach userk

I1l. CHANNEL MODEL Vkom = {



IEEE TRANSACTIONS ON INFORMATION THEORY 4

101

—&— Mutual information
9k —2&— High SNR approximation in (5)

User selection, power allocation
and rate allecation for

Cross Layer | packet m in time slot n. Packet Outagd
Scheduler Dynamics
T am, pm,r_m

ARQ 1-bit feedback (ACK, NAK) v_{1.m}, .., v_{Km}

ww

Rate (bit/sec/Hz)

. . . )
5 10 15 20 25 30
Signal power in dB, (noise power=1)

Fig. 2. Closed Loop Cross-Layer Scheduler. The user, power rate
optimization at the BSs is solely based on the 1-bit feedifacin MSs. Fig. 3. Rate difference between mutual information and jpreximation
in (5). The difference is less than 2% in common operatingoregoetween

10 to 30 dB.
would decode the packet and send a 1-bit ACK/NAK feedback
vg,m to the transmitter. Inm-th packet slot, the maximum

achievable rate in bits is For example, at packet slot #; = 1, the set of real channel
NT & DPmPa.. d power gains foiXy, ; is all real number®*. A pair of power
= WZIQg?(l t=) (3 and rate(p;, ) is selected. A packet is broadcasted with
d=1 powerp; and rater;. At the end of packet slot 1, ACK/NAK
feedbacksy, ; for all usersk are receivedX, o, Vk are then
updated using (7). At the end of packet slokZ,; are updated
L, 7m < c(Pmsha,,); accordingly and so on. Note that the &t ,,,, as described in
Ukm = { 0, Tm > c(Pm,ha,,)- ) (7), would solely depend on the causal power allocatiorg rat
In high SNR environment, the maximum bits per packet SIS)#OC&IIOI’] and ACK/NAK feedbacks from the users.
in equation (3) can be approximated by

C(pma }_Lam)

where noise power is normalized to be one.
Now, we can rewrite equation (2) mathematically,

D
- NT pmham,d
c(Pm; ha,,) = DM ZlogQ(l + T)
d=1

highSN R % <XD: (10g2 (Z;V—m)) + logg(Xam)>

IV. PROBLEM FORMULATION

This section is targeted to reveal the mathematical descrip
= ¢(pm, Xa,,) (5) tioq of the _optim@z_ation problem. '_I'h_e p_roblem_ is best ex-

D ) ) . o plained by first writing down the optimization variables whi

where X, = [[,_, h This approximation significantly ; o : ;

k d=1""k.d- . Y are the power, rate and user selection policies defined in the
reduces the complexny of _the system as the D-dme_nsmq&howing_ We would then provide the mathematical expressi
channel power gain vector is replaced by_a scale_r. In flgureo?f, the system goodput which is the optimization objective
we show the difference between the maximum bits per pack®t i paper. A problem statement and its corresponding
slot and its approximation in (5). The approximation ersr iy ahematical representation are provided. A subsection is

less than 2% when the SNR_iS around 10dB. iven here to explain the transformation of the optimizatio
Define the cumulative density function (CDF) of the randorgroblem to a MDP problem

variable X}, to be

o(x) = Pr(Xx < Xx) (6)
which can be computed offline. Note th&t, is unknown to

the transmitter which updates the set of all possible vatiiesA. Problem formulation as a cross-layer optimization pevhl
X}, in each packet slotn by the feedbacky, ,,,. The set of

all possible valuesX, based on information received through For simplicity, denote the causal user assignments, rate
feedbacks before packet slot, is sequence and power sequence from slots Imto- 1 by
x - { Xk,mﬂ{Xk ;C(p"“Xk) Zrm}’ Vhom = 1; A, = (al,ag,...,am,l), R, = (7’1,7’2,...,7’m,1) and
km+1 = Xiom N AXk = ¢(prmy Xi) < T}y Uk = 0. P,, = (p1,p2,---,Pm—1) respectively. Also, denote the causal
(7) ACK/NAK feedbacks for slots 1 toen — 1 from all users by
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the matrixV,, Note that the packet error rate can be simplified as follows.
U1 V2 ottt Ulme—d Pe = Pr(c(pm; Xa,,) < Tm) (14)
Vi = : : The average system goodgki{averaged over ergodic samples
V1 UK L UKt of time slots) is given by:
" GPRA - ExlS
= | =y (8) PR A4) = Br ;““W”m
s M
Definition 1 (Power Allocation Policy)A power allocation - ler(c(pm’X“7n) > Tm)rm. (15)
policy _ "=
M In most wireless systems, a target packet error rate (PER)
P = {(pm)vm : Z D = PO} (9) is assigned due to various application requirements.cLtst
m=1 that PER. For example, the PER,is of the order ofl0~?2

is defined as the set of all power allocation at theth packet for voice applications. The relation betwep ,,, ande (5) is
slot wherem e [1, M]. The subscript notatiof.)y,, denotes 9given by
that the power allocation at the-th packet slot is a function 1—¢

= P ms Xa Z m Xa m
of the ACK/NAK feedbacks up to thém — 1)-th packet slot rlelp n) Z TmXap,m)

V. The power allocation policyP is restricted by the total = Pr(Xa, 20nXa,m) (16)
power constraint?. where
Similarly, we define the rate allocation policy and user cele N\? ..om
tion polic O = <_) 2N (17)
Definition 2 (Rate Allocation Policy)A rate allocation o
policy To conclude, the cross-layer optimization problem can be
R — {(Tm)vm r € R*} (10) formulated as

Problem 1 (Cross-layer formulation)Determine the opti-
is defined as the set of all rate allocation ratth packet mal power allocation policyP, rate allocation policyR and
slot wherem € [1,M] and R* is the set of all positive user assignment so as to maximize the average system
real numbers. The policy is determined by causal ACK/NA§oodputG (P, R,.A) subject to the target PER requirement

feedbacks up to slots: — 1. l1—e= Pr(X,,, > 0m|X,, m)and the total power constraint
Definition 3 (User Selection Policy)A user selection pol- Z%lem < P,.
icy The optimization problem above is difficult to solve due to
A={(am)v,, 1 am €{1,...,K}} (11) the huge dimension of variables involved. Yet, we shalisillu

trate below that the total system goodjgiican be expressed
[ecursively and hence, the problem above can be expressed
as a Markov Decision Problem. Defid®, (P,,, W,,—1) to be

the maximized goodput sum from slot to M (from packet

slot m to the last packet slot) subject to power constratpt

and causalpower allocations, rate allocations and feedbacks
from users i.e.

is defined as the set of all user selectionmath packet slot
wherem € [1, M]. The policy is determined by the causa
ACK/NAK feedback sequences up to slots — 1. The user
selection atm-th packet slota,, denotes the index of user
selected.

Let the feedback of user,, at packet slotn in time slotz
bev,,, .m(z). The number of packet errors in time stoéquals
to the sum of packet errors of thd packets sent within time _ M
slot z: " (1 — w4, m(2)). The total number of packet Fn(Prny Win—1) = o maz By Z Yay,ils (18)
errors inZ time slots is>°7_, "M (1 — v, m(2)). Thus, =
the packet error rate averaged over time slots is whereW,, 1 = (Vin—1, Am—1,0m-1 = (01,...,0,,_1)) and
P~ denotes the vector of power allocation frgm, to pj;.

zZ M
o 1 Similar notations apply ta,,, and a,,,. The maximization is
Pe= Jim MZ ;mz::l(l Van,m(2))- (12) subject to the PER requiremeftr(X,,, > 0,n[Xa,,m) =

. . . . ) 1 — ¢ and the total power constraidt™. p; < P,,. We first
As the channel gain remains quasi-static within a time siat aphave the following Ilaemma abo@n%fmmlf)z _1) "
mos m— .

is independent of that in other time slot, the averaged gacke Lemma 1: F, (P, Win_1) can be espressed recursively as
error rate can be written as the expectation of number ofgtack mAtmy Hmel

errors within a time slot over channel realizations. (Wepdie Fri (P, Wi 1) (29)
notation of time slotz) = maz {(1=€&rm+Ev, [Fnt1(Po — pms W)} -
Pm Tm,0m
M Proof: See subsection IX-A in appendix. [
Pe = EHM Z (1= va,,m) (13) Note that the maximization variables ag.,, 'm, am, the
m=1 power, rate and user selection in packet slat instead of

whereEg (.) denotes expectation over the random varidtfle the selections from slotn till the last slot. As a result,
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this facilitate the divide-and-conquer approach to thegiosl
optimization problem in (1).
From (15), the maximized system goodput is

M

Z En {va,, m} rm- (20)
-1

G*(P,R,A) = maz

am,Pm,I'm

By definition of F;,, in equation (18), the optimized goodput

is
G*(P,R,A) = Fi(Py,Wp) (21)
M
subject to Z pm < Ry
m=1

PT(Xam > 9m|Xam € Xamym) =1-ce¢

D
b= () 2
Pm

where W, is a empty set. As a result, the optimized system

goopdutG*(P, R, A) = Fi(P,, W) can be obtained recur-

sively from equation (19). We shall eleborate the recursive

solution in the following sections.

B. Problem Formulation as a Markov Decision Process

As explained in Section Il, a MDP problem is character-

ized by the tuple(T, S, A, P(s,«,s’), R(s,a)). In our case,
the decision epochs of the base statn= {1,2,..., M}
corresponds to the scheduling slots. In the following, wallsh
discuss the association of our cross-layer optimizatioblem
with the MDP tuple, namely the state spaeaction space,
state transition kernel as well as the per-stage rewardiumc

Based on that, we shall formally recast the problem into an

MDP.

« State Space AssociatiokVith ©,,, = [01,...,0,,], define
U(©n,v") and L(©,,, ;") to be the upper bound and

lower bound of CSI which is some information gathered *

by the ACK/NAK feedbacks;* andé,, in equation (17).
The state spacs, is a collection of the following vectors
S.

s = (L(emvﬁl’rcn)aU(vaﬁl’;n)?emvpmvémaE(ACK)vg(NAK))

B B (22)
where P,,, is the remaining powerR,, is the sumrate
from slotm to M, 54CK) ands{NAK) are thepointersto
the states if ACKy,,, = 1 and NAK: v,,, = 0 respectively.

The CSI can take all possible real values and therefore

make the state spaé&einfinite. However, as illustrated in

an example in the following subsection, the decision tree
built by state transitions in our problem is a lot smaller

in size.

« Action Space and Policy AssociatiornThe action taken
at each states consists of the selection of power,,
transmission rater,,,, and the user selectiom,,,. The
set of possible actiona at every states is independent
of decision epoch m and it is given by:

A= As.,m = {(pmarmvam) S (23)
{peRT:p< P} xR x{1,...,K}}.

State Transition Kernel Association The transition
probability P(s, «, s’) is a real value function which maps
{S x A xS} to [0,1]. In our case, the probability of
going from states to states’ by actiona € A is time
invariant.

In each decision epochy, a selection of actionsy,,,
takes place, meaning that the base station selects the
power p,, and the transmission rate, to usera,,.
After every userk receives the packet, each of them
would decode the packet header and transmit a 1-bit
feedback to base station, ,,,. This 1-bit feedback carries
the information of ACK (1) or NAK (0). The transition
probability captures the probability of such ACK (1) or
NAK (0) and would take the system to a different state.
For instance, the current state is denotedsbyhe state
after receiving ACKs?; the state after receiving NAK
s™. The probability of receiving ACK isP, and that of
NAK is 1 — P,. The action taken is. We have

P(s,,8%) = Pq; (24)
P(s,a,8") =1—P,. (25)
And
> P(s,a,8) =1 (26)
s’eS
The state transition probability is described in equation
(31)

in which ¢’ is the third element i’ and @ is the third
elementins. The upper and lower bound of CSI would be
modified according to the ACK/NAK feedbacks received.
After updating the bounds, the probability of ACK, which
is equal to the probability of the event that the channel
power X lies between the lower bound and stétehas

to equall —e, as dictated by the error constraint. Evaluate
the probability, we have equation (32).

Per-stage RewardTo decide which actions i& should

be carried out, we would need a decision rdlg. The
decision ruled,,, is a history-dependent function. Define
the historyd,, to be a vector of past states, actions and
feedbacks.

Om = [S1,Q1, -y Sm—1, ®m—1, Sm)] (27)
The recursive relation is therefore

Im = [Om—1, ¥m—1, Sm]- (28)
Denote the set of all histories bY,,. Note that

Ay = S (29)

Ay = SxAxS

A, = SxAx---xS
= A1 XxAXS
The history dependent rulg,, mapsA,, to A.

A control policy is a plan specified by a sequence of
decision rules. A control policy is

F:(dl,dg,...,d]\/[), d;ieN;,i=1,...,M (30)
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€,

Pr(Xy > 0| X, > L(©p, 00"), Xi < U(O,, 07)) = €

P(s,o,8") = P(Omg1 =0'|0m =0, 0y =) = ¢ 1 —¢, Pr(Xp > 0'|X; > L(Op, 07"), Xi, < U(Op, 07")) =1 —¢
0 otherwise.
(31)
€, P(Omr1 =0") = (1 = €)p(U(Om, ")) + €d(L(Om, v"))
P(s,a,8") = q1—¢ ¢Oni1=0)=epU(On, ;") + (1 — €)d(L(Onm, v7")) (32)
0 otherwise.
P(sm, o, smi1) = {1 =€, ¢(0ms1) = €d(U(Om, 07")) + (1 — €)¢(L(Onm, U})) (33)
0 otherwise.
The per-stage reward function is C. A State Transition Example
R | P(sm, 0, 8m41,0)Tm  if vm =15 To illustrate the state transition of a MDP, a state traositi
($m, @m) = 0 if vm = 0; diagram assigned with an initial state is given in figure 4 by
(34) only drawing transition branches corresponding to theesipl

where s,, 1 , denotes the state at slot + 1 if s, is
reached at slotn and actiona,,, is taken.

Problem 2 (The MDP formulation)The MDP problem is
defined as a maximization problem of the reward function,
our case, the system goodplt( Py, Wy). Thus, the problem
statement is, with slightly abuse of notation

g

such thatvm = 1,..., M, 5, 8ma1 €S, am € A, 1, € RT
and equation (33) is satisfied.

M

Z R(Sm,am)

m=1

(35)

Fig. 4. A state transition diagram example. With only 2 polesbutcomes
at each state (node), the state space (the number of nodesases expo-
nentially, hence the problem size.

of scheduled action and the corresponding non-zero transit
probability. Note that this diagram only shows a fragment
of the whole decision tree because there are more than one
possible initial state.

The decision tree ha®(|0,,])® x 2™ elements, wher#,,, |
is the number of value8,,, can take. In other words,

S| = 0(18:1)*). (36)
There ard#,,,| possible values of the lower boudd®,,,, 7}").
For exampleL (O, o) € {y1,- -, yj0,. } Wherey, < ypi1.
For each value of lower boungd, there ared,,,| —b—1 values
of U(O,,,u;") and 6,,. Thus, the total number of possible
states is12 + 22 + ... + |0,,]% = O(|0.m]?).

With either positive or negative feedbacks, each state can
only branch to 2 possible next states. Assume that we start on
one of these states. The number of possildscendentsould
be equal to the sum of the serieg-2+22+23 .. +2M-1
which is 2*. Thus, the total number of nodes in the tree is
O(|0m])? x 2M.

Denote the elements in the state sp&day

S = {s, {50, 81}, {90,501 10 MY [g0—1 }} (37)
whereq),;_1 denotes any possible binary sequence of length
M — 1. The binary sequence represents the causal ACK or
NAK feedbacks received. For example, staté represents
that 2 NAKs have been received and stat® represents that
the first and the third transmission are correct and the skcon
transmission or guess is incorrect. The stefteis at thei-th
level of the tree which means tfig+1)-th packet transmission
(with the root being the zeroth level). In the diagram, only
transitions with non-zero probability are drawn. The tiaos
probability corresponding to actiod,, € A from states? to
states%:°], meaning that a NAK is received @it+1)-th packet
transmission, is denoted by the probability(s®, A, , s:%).

At each states?, there are two possible transition branches
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Algorithm 2 Conventional Online State Evolution Algorithm
1. Setm = 1 and start state

ACK : (38) s = (0,00, 0, Py, R, §(ACK)7§'(NAK))
(Aqi,P (sqi,Aqi,s[q“”)) = ((Pi+1,7i415 i1), L —€) where R,,, is the maximum among the nodes with=
NAK : (39) 0,U = 0.

2: If m = M + 1, stop, otherwise go to step 3.
Transmit packets as prescribed by decision wjgd,,)
computed in algorithm 1.

D. Conventional Solutions of MDP 4: Receive an ACK/NAK feedback;, ., from each usek.
Update the upper and lower bound of CSI.
L=0,1if vg,m=1

(Aqiap (Sqi,Aqu[q“o])) = ((pi+1,7ig1, Gig1),€) -

w

A conventional solution to a MDP consists of backward®
and forward recursions. The backward recursions set up a ,
huge searching tree/ table which would involves dynamie pro U =0 if Va,m =0 .
gramming. In the forward recursions, the system statessevol 6: E\Q%I\;(e) E(()Ng%t state according to the bounds of CSI
through the tree. Here we adopted the Finite Horizon-Policy * '8 and feedbacksy, i, k.
Evaluation Algorithm in [28] for the backward recursion. /- ™+ 1< m, go to step 2.

Algorithm 1 Conventional Finite Horizon- Policy Evaluation

Algorithm Online EnvolutionUnlike conventional solution for MDP, we
1 Each node in the tree consists of following fielggProposed a simple closed-form solution which is asymptoti-
(L, U, 0, Py, Rip, §ACK) §NAK)), cally optimal for sufficiently small PER. The proposed st

only has complexityO(M), which is in big contrast with

2: Initialization: m < M, VL, U, par, Oas /
brute-force complexity) (exp(M)).

Fy(pam, 0n) = dm(%CC)PT(C(pM, Orr) > rar)rm
M\OM
3: if m = 1, stop. Otherwise, go to step 4.

4 m m =1, s, pmy B, L, U A. Optimal State Evolution

Evaluate F% (Pn,0m) = maz {P(Sm,® Smi1)rm We illustrate _how to combine the target PERWith_the
. _ dm(Om) knowledge obtained from feedbacks to generate estimates of
+P(Sm; @ $my1)Fp i1 (P = pmsOmlVan.m = 1) channel powe#d,,. Note thatd,, in equation (17) is always

(L= P(sm, e, 3m+1)_)F5§_+1(Pm —.pm,5m|vam,m = 0)} eithersup Xj, ., or inf X;, ,, as equation (7) can be rewritten
such that the constraints in equation (33) are satisfied aggd

P(Sm, 0, Sme1) =1 —¢€

5 (Pm, @m,Tm) are given byd,, (5,,) obtained in step 4. Xpmi1 = { Ko WXk s Xpp 20}, vpm =15

6: R,, = F (P, 6,) which is the accumulated rate of this Xpom WXk : X <Om}, vem =0.
node and its descendents. The lower bound and upper bound Xf, ,,,; are

. 2ACK 2NAK i
7.3 , 8 are computed in (33) L(Om, o) = max {6; s vps = 1, 1 <i < m} (41)
U(Onm, ;') =min{b; :vp; =0, 1 <i<m}.(42)

(40)

After building up a table in backward recursion using
algorithm 1, fromm = M — 1, we established a large Combine (16) with the knowledge obtained from feedbacks:
binary tree with each node represents a particular estinfate —m —m
Pr(Xi > Ome1|Xe > L(Om, 0, X < U(On, =1-
channel power and each branch corresponds to an ACK/NAKT( b Z Om| Xy 2 L o), Xie < U( o)) (43)6

feedback. Each path_from the root to the Ieaves_ correspo arranging the terms in equation (43), we have the dynamics
to a sequence of estimates and the corresponding feedba

In Onhr(;e Evolut|(zjn(algor|trr1]m|2), we IrEeaorI] this lfe‘f’ from th? Lemma 2: At each packet slotn, the estimate of channel
root and traverse down to the leaves. Each packet is traesini ower X, is computed by the causal feedbaaké ! and

with parameters marked in that node and a new node is reac éi lower and uppwer bound of

according to the ACK/NAK feedbacks. am
Note that the drawback of such algorithm is that the)(0,,) = €d(U(Om—1,7." ")) + (1 — €)p(L(Op—1,05" 1))
requirement of memory is huge as there are numerous possible (44)
states. In our problem, the state space is infinite. Even if wéere¢(6,,) is the cdf of X, (6).
discretize the state space as an approximation, the coityplex  Proof: see section IX-B in appendix. [
of the brute-force approach has exponential complexity/in
and hence, could not give viable solutions. B. User Selection
Evaluate the expectation ifi,, (P,,, W,,_1) defined in (19),
V. PROPOSEDSOLUTIONS we obtain equation (45). Solving equation (45), a stochasti

The MDP can be solved by a backward recursion followgatogramming tree would be needed. Yet, eass small for
by a forward recursion. In this section, we shall first el@ber practice, the decision tree is reduced to equation (46).
the backward recursive solution, namely tBptimal State  The complexity of the problem is reduced from exponential
Evolution followed by the forward recursion, namely theo linearity with m.
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Fr(PryWio1) = max {(1 —)rm + (1 = ) Fms1(Prm — Py Win|Vayp,.m = 1) + €Fri1 (P — Dy Win|Va,, m = O)}

PmTm,0m

(45)
(P Wi1) = ) maz {(1 —€)rm + (1 — ) Fnt1 (P — Py Win|Va,, ,m = 1)} . (46)
Epm NT DPm D —m—1
A (0n) = (pm =71z A= Tm = Haf log, (W) Om |, am = arginaxL((am,l, v, ) 47
Lemma 3:The optimal user selection strategy | Start: P= Ry m=1
No
am = argmax L(®m—17 T}]Znil) (48)
k Cmsb—thyeﬁrisglleflglieri 777777777777777777777777777777777777777
Of (46) |S 3 User Selection: |
Proof: See subsection IX-C in appendix. [ ! am = argmazeL(On, 0"™) ‘
\
[
! v
C. Power Allocation ! = argmazyL(O1, 77")
. . O = ©7 (e®u, (U(Omr, 7 1)) + (1= €@ (L(Or, 75 71)))
Lemma 4:The power allocation policy « ([’ " ‘ ’
T—(1—e)™
- EPm 49 i Tm = %quz ((”T)D O m) !
pm— 1—(1—6)M7m+1 ( ) 3 P=P—pn 3 m=m+1
whereP,, = Py — 5.7 p; is the remaining power at time S
’ ) m _ 0 - =1 .p’L . g p . ACK/NAK dynamics: -
m, is an optimal policy with respect to optimization problem v ={ ) E’Hf
’ c(pm, i T
(46) R . ) Packet error dynamics L Vams - s VKms Om
Proof: See subsection 1X-D in appendix. [ | el Attt !
| Evolution of parameters !
! K = { Kiem O iXk X > 31 Vg = 1 !
i ST X N { Xk X <O} Vg =0 i
D. Rate Allocation ‘ L3P e (6 omg = 11 €5 <} |
. . | U (O, 07") = min {0, : vy = 0,1 < i < m} !
Given the causal feedback, power and rate informaltion i —
and the channel estimate/state valdgsin (59) at each slot s LOnti) UOm o). k=1, K

m, the rate allocation is computed by the following

NT Pm\P
S (_) O 50
'm = D ( N ) (50)
tends to infinity. In other words, there is zero steady-state
E. Online Evolution error in the recursive solution. To prove such claim, we wloul

With new information, v, arrives in each slotm, need the following four theorems. _
we proceed on the decision tree according to the updated-€8Mmma 5:At packet slotm, the users selection sé,,
upper and lower bounds of CSI and the feedbacks. THenotes the set of users who have the largest potential ehann
set X, ,, is modified to contain only the possible value§OWer gains.
of the channel power gain based on the causal ACK/NAK . —m, —m, '
feedbacks X, — {1 L(Op, 01") < # < U (G, o)} The  om = R L(Om 0 > L(Owvif), vk ¢ Kon) - (51)
transmission parameters according to the decision rulénareThe users selection s&,, at slot m is a subset df,,,_1.
equation (47).

User a,, is selected such that she contains the largest Ko C K1 (52)
possible channel power gain. As proved before, the POWEE . humber of elements iK
allocation is static and solely depends on the total powdr an
the target error probability constraint. The data rate epaeld
according to channel estimattg, and feedbacks,, .,—1. The
online scheduling policy is illustrated in figure 5.

Fig. 5. Structure and implementation of the proposed swmiuti

m IS |K,,| which decreases with

Proof: See subsection IX-E in appendix. [ ]
Lemma 6:For all usersk in user selection seX,,, at each
slot m, the channel power gain&; have lower bounds and
upper boundd(0,,, ;") andU(O,,, 7}").

Proof: See subsection IX-F in appendix. [ ]

This section is devoted to prove that the goodput achievedLemma 7:Define the gap between the upper and lower
in a packet slot would be equal to the instantaneous mutbaiunds of channel power gains to be, = U(©,, 7] ) —
information of the slot as if they were perfect CSIT when thé(©,,,7;" ). w,, monotonically decreases with.
number of transmissions or number of packet transmissions Proof: See subsection IX-G in appendix. [ ]

VI. ASYMPTOTIC ANALYSIS
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Fig. 6. Average system goodput vs number of independentasulsbwith Fig. 7. Average system goodput vs Average SNR wih= 24W, K =
transmit SNR=30dBPy = 24W, K = 3, M = 30, PER = 0.05. 3,D =3,M = 30, PER = 0.05. The proposed solution has the same slope
as the upper bound (with perfect CSIT).

Lemma 8:When number of transmissions goes to infinity, ) _ _
the scheduled rate,, achieves capacity of the system irP respectively. Compared with baseline 2 (RR), the proposed
perfect CSIT case. In the other words, the scheduledstate Solution achieved very significant 500 % goodput gain. This
is equal to the capacity achieved by selecting userwhiodasgi\)"UStrated the importance of utilizing the 1-bit ACK/NAK

highest capacity and using perfect CSIT. Or mathematicallylows in the resource allocation. _
Note that the goodput upper bound (baseline 1) decreases

lim r,, = lim r logs (p_m)D Om | = c(pm, X, ).  With D in figure 6 l_)eca_use the system did not take advgntage
m_’g’ ; g_“’o bM . IXNH . di of the frequency diversity as the selected user has to triansm
foof: See subsection IX-H in appendix. on every frequency channels. When the number of independent
channels increases, the capacity function, being conaave i
In this section, we would discuss the simulation results
with the following simulation settings. The bandwidth okth g Effects of Transmit SNR
systems is 20 MHz which is divided into 64 subcarriers

.(N:64)' Throughout these supcarr|ers,jhere Brgroup of channels. With transmission of 30 data packets in a time slot
independent subbands. The time slot= 0.1 sec and we . .
. . . 1e system goodput of the proposed solution achieves 60% and
compared our proposed solution with two baselines. Speciji: . :
. : 9% of the performance upper bound (baseline 1) in low and
cally, in baseline 1, we assume the BS has perfect CSIT ahd . . . :
: : Igh SNR scenarios respectively. Compared with baseline 2
performs standard power adaptation and hence, it serves ! L R
; : ), the proposed solution has significant 400% gain in high
a goodput upper bound. In baseline 2, we consider rou R regime
robin scheduling which does not utilize any CSIT informatio gime.
and hence, has very robust performance against CSIT errors.
Note that the performance of baseline 1 is obtained under Effects of Number of Users
perfect CSIT assumption and therefore is not achievable. ByFigure 8 illustrates the system goodput vs number of users
comparing with baseline 1, we can guage hoptimal the for D = 3, M = 30, SNR = 30dB, Py, = 24W. Similarly,
proposed solution could achieve. Similarly, by comparirithw the proposed scheme achieved 93 % and 85 % of the per-
baseline 2 (which is a common approach in the absencefofmance upperbound (baseline 1) with 1 user and 9 users
CSIT), we could guage the potential performance advantaggpectively. Compared with baseline 2 (RR), the proposed
that can be captured by utilizing the built-in ACK/NAK scheme achieved 400% goodput gain.
feedback flows.

In figure 7, there are 3 users and each user has 3 independent

D. Effects of Target PER

A. Effects of Number of Independent Subbands Figure 9 illustrates the system goodput vs target PER for
In figure 6, the sum of goodput in 30 packets transmitted 8N R = 30dB, Py = 24W,K = 3,M = 30 and D = 3.
plotted against the number of independent subbandsith We observe that when the target PER is low, the proposed
Py =24W,SNR = 30dB, K = 3 and targetPER = 0.05. solution will be more conservative in determining the traits
Note that our proposed solution achieved 85% and 91% a#ta rate in order to avoid packet errors due to channel sutag
the performance upper bound (baseline 1) whier= 1 and On the other hand, when the target PER is high, the proposed
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P =24W,D =3, M = 30, PER = 0.05.: Capacity increases with number users have i.i.d. random speed (uniformly distributed frOmo fg a2z

of users because of multi-user diversity, so as the propsskdion. throughout the simulationPy = 24W, K = 4,D = 3, M = 30,SNR =
30dB, PER = 0.1

11

0.9
104 I
0.8 n [ , 7
9r 4 I "\ oy,
@ 071 PV N ﬁ/a\a_.e.i
T 8 —o&— Proposed Scheme * g - -k ‘*// Al Ay = Y
Ei —A— Gooput upper bound (baseline 1) "5 0.6 g
é as —*— Round Robin b *g
et g o5 1
o 1 s
=]
8 2 04 i
O 5 ] g
FcJ 0.3 ]
ar 1 g
e
ol | O oo —— Ol (¢=0.05)
—5— 0, (0.08)
2 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 0.1 — - — - Channel power product
0.01 002 003 004 005 006 007 008 009 01 011 — — — conventional converge curvel
Packet Error Rate oLl
0 5 10 15 20 25 30
Packet Slots

Fig. 9. Average system goodput v.s. target PER with tran§NiR=30dB,
K =3,D = 3, M = 30: With small target PER (e.g. errors sensitive appli-_. . . . .
cations), the proposed solution is conservative and aeteiess throughput. .F'g' .11' Value of chanpel gains estimae W't.h D'ffe”?”t. PER targets
With high PER, the proposed solution may be over-optimistic channel in Different Eacket SIOtTQ" T_he propos_,ed solution max'm'mdpl!t a_nd
quality. In medium PER, the proposed solution gives the pegbrmance. therefore avoids over-estimating (re_:sultlng an NAK), het’r[e non-oscillating

curve. A less target PER, which is more conservative, may prolong the
convergence speed.

solution becomes more aggressive in transmitting datahaut t

goodput will be limited by high channel outage probabilig. mobility of 50 Hz, which corresponds to 22.5 km/hr at 2GHz

a result, there is an optimal target PER, if one is interesiedfrequency. This robustness is due to the closed-loop feddba
optimize the system goodput. Note that the performanceruppgechanism in the proposed solution.

bound of baseline 1 and the baseline 2 goodput performance

is insensitive to the target PER. E. Dynamics of Strategies

- 1) Tradeoff between Convergence Speed and Target PER:
E. Effects of Mobility An example of the procedure of the algorithm is given in
To study the robustness of the proposed scheme wfigures 11 to 14.

mobility, we assume the users have i.i.d. random speed (withFigure 11 plots the channel power gain estiméiein a
Doppler frequency uniformly distributed from O tfy ,...). particular channel realization v.s. time epoeh ACK'’s are
Figure 10 illustrates the average system goodpuif¥s.. received untiln < 25 andm < 16 for the curves PER = 0.5
with SNR = 30dB, Py = 24W, K = 4 and D = 3. Observe and 0.8 respectively. The upper bound of the is updated
that the proposed solution is quite robust even up to moeleratith NAK and 6, converges to the true channel power gain

Am
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product. The convergence time is shorter with high PER. It
because large PER provides larger flexibility for estinatio ! \

Yet, the throughput yield from large PER may be lower tha 05r
that of small PER.

Moreover, conventional convergence curves would quick
climb close to the channel power gain product, overshot
oscillate and then converge, as plotted in figure 11. The cc

ACK (1) / NAK (0) from users
o
o (5] =
o <
o <
L L 4 L

vergence curve of our scheduling scheme would not oscille O 5 10 15 20 25 30

because any additional overshoot would waste power, tirde ¢ -

the potential data transmission. Thus, our schedulingrsehe 05r \

increases steadily, overshoots once and converges. 0% L m & & & =
2) Power Allocation Strategies for Different Outage Target e ‘ ‘ ‘

The power allocation of system withy = 24W, K =3, D = 05l \

3, M = 30,SNR = 30dB, is plotted in figure 12. Note that ‘ N

the power allocation strategies depend on the target PER 0 5 o 15 20 25 30

jective i imi ; ket S
The objective is to maximize the goodput sum in all packec . Packet Slots

slots which .Can be §eparated Into C.ur.rent goodput and fut fe 14. Acknowledgements from Different Users, top (usgrsécond one
goodput as in equation (46). To maximize the goodput sum Qfm the top (user 2) and so on

large PER, more power should be allocated at the early slots

to have as much successful transmission as possible . Notice

that, as PER decreases, the power allocation converges to th

power allocation for perfect CSIT, equal power allocatitin.
is because at the extreme case of zero PER, the probabili
of getting outage is zero, meaning that we have perfect C
(baseline 1).

3) Rate Allocation Strategies for Different PER Target:
Assume Py = 24W,SNR = 30dB,D = 3,K = 3,M =
30. The rate allocation curves with different PER target are 4) Acknowledgements Reveal CSIW figure 14, the ac-
plotted in figure 13. Note that the area under the curve is tkeowledgements from user 1 (from the top) to user 4 (from
throughput. The data rate achieved by baseline 1 is plottde: bottom) are plotted whereas 1 denotes positive acknowl-
with a dotted line. Notice that the area achieved by small PEBdgement (ACK) and O denotes negative acknowledgement
0.01, is small and the area increases by increasing the PERAK). After each transmission, each user decodes the packe
However, area decreases after PER 0.07 which is the optirhabder and feedback to transmitter. If a useeports NAK at
PER in the current system assumption. An over-conservatslet m, userk would have a channel power gain less than the
PER target would yield too little goodput as thg  is under channel power gain estimate at slaf 6,,. Thus, we know
estimated. An over-optimistic PER target would also yield thatf; < X; < 63, 011 < X4 < 012 < X3 < 613. Since NAK
low goodput as outage occurs whip, is over estimated. are received at slot 25 and 26, we know that < X5 < 0a7.

t he allocated rater,, increases with the increment of

owledge of the channel power gain in figure 13. Then
decreases after slot 10 because the scheduler has speot half
the total power in the first 10 slots. Less rate is resultechfro
smaller power remained for these 20 slots.
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VIIl. CONCLUSIONS C. Optimal User Selection

In this paper, we considered the OFDM resource opti- This section is to prove that the user selection =
mization problem based on ACK/NAK feedbacks from thergmaxL(©,,_1,;" ") maximizesE,, (P, W,—1) in (46).
mobiles without explicit CSIT at the base station. We de&ve D pur ~
simple closed-form solution for the MDP cross-layer prable Substitutet,,, = gp]:;) 2°NT" 10 Fyp(Pr, Wi—1) and we
which is asymptotically optimal for sufficiently small taig obtain equation (66).

PER. The proposed solution also has low complexity andFurther expand (66), we obtatin (67)

is suitable for realtime implementation. Simulation résul As we assumewv,,,...,vyy = 1, we haved,, =
revealed that the system goodput performance of the prdpoé®,,,, " ., ) and therefore

solution achieved 89% of the performance upper bound (per-

fect CSIT performance) and has over 400% gain compare 1 m

to round robin scheduling. Due to the built in cIosed—Ioopdom+1 =¢ (E¢(U(@m’vam+l))+ (1 _e)d)(em))' (57)
feedback mechanism, the proposed scheme is shown to hawey(,,) is the CDF off,,, ¢(6,,) is monotonic increasing
robust performance against CSIT errors and different mgbil \ith ¢,,,, so asp—*. Thus,6,,, 1 increases witf,,,. According

Asymptotic analysis is also provided to obtain useful desigo equation (67).F (P, Wp_1) increases withd,,,. What

insights. remains to prove is that,, = argmax L(©,,_1,7" ")
k

maximizesé,,. We prove by contradiction. Let* # a,,,

IX. APPENDIX we haveL(O,—1,77 ") < L(On_1,77~") by definition,

A. Recursive Property of Goodput and U (©,—1, 0727 ") < L(Op-1,07 1) S U(Op—1, 07 1)

Recall from equation (19). Expectation over the channBY characteristics. Denotg,, by W(k) wheref is the user
power H is the same as the iterative expectatiop E ;. selection in slotm. According to equation (57)}1’(_6271<
where V,, is the feedbacks from users from slot to M. W(am) Vk 7 am. Therefore a, :_arg,?lax L(Om-1,5)
Recall V,,,, defined in (8) is the causal feedbacks from slohaximizest,,, and therefore,, (P, Wi,—1).

1 tom — 1. CombiningV,, andV,, gives the whole history:

(Vins Vm) =Vu. D. Optimal Power selection
At the base case, we would like to maximize the goodput
_ M in the last slot)/ which is to solve
Fo(Pr,Wi1) = max Ey, EH\V Z Va; il
pm_’rm_’am m m 4 ’ _
= (53) FJS)(PM, Wai-1) = p?}%if(l —€)rm. (58)
Evaluating the expectation yields And givenWy,_4, 0, can be solved by taking an inverse of
- M the functiong,,, (.) in equation (44)
Fo(PyyWh—1) = maz Eg Pr(c(pi, Xa,) > ri)7ri ¢ B . .
PrnsTom @ ¥ ; Om = ¢ (€d(U(Om-1,0"") + (1 = €)p(L(On—1,0;"7 1))
(54) , (9
Separate the instantaneous goodput at stotfrom the aq the relation of power and rate #; = A) o AL
pM !

goodput sum from slotn + 1 to M. Take an iterative

expectation and obtain equation (63). B
Since the first term does not depend &}, nor v,,, it Py = Py )

simplifies to (64). | _ ) rar = 3 logy (5 ) + B 10g(0ar)
Note that the second term is the expectatiodgf; 1 (P, —

Pm, W) OVerv,, according to equation (54). Equation (65)'I'.herefore,rm can be solely expressed By, andp,,. Recur-
can be obtained. sively developF; (FP,), we have

the optimal solution at the base case is

(60)

Fl(l)(POaWO) = mazx {A-erm+--+01- E)MT‘M}
1,71

B. Dynamics of),, (61)
Denote the evenk; > L(@m_l,ﬂ,’f’l) by £ and X;, < With some mathematic manupulation, we obtain equation (68)

U(©,,—1,57" ") by U respectively. Employ the theorem of As we have assumed,, = 1, 6, can be computed for
conditional probability on equation (43). m =1to M. Note thatp,,+1,...,rn are of the form

PT(Xk > Gm,E,L{) Pm+1 = al(pm _pm)
=1-—c¢ (55) _
PT(‘Ca Z/{) Pm+2 = a2 (Pm — Pm — perl) (62)
Recall the cdf ofX}, ¢, in (6), (55) can be rewritten as :
¢(U(®m—la ,Dzn—l)) - (b(@m) —1_¢ (56) P = al\'f—m(l - aM—m—l) e (1 - al)(pm _pm)
—m—1 ~m—1
AU (Om—1,9")) = d(L(Om-1,7"7)) Therefore, the closed form of optimal power allocation is

Rearranging the terms and equation (43) can be obtained.obtained. Note that the objective function in (68) is corcawv
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Foo(Pp,Win1) = max By Ey

Pm Cm,am m

M
1]V {Pr‘(c(pm,Xam) > T )Tm + Z Pr(c(pi, Xa;) > Ti)ri} . (63)
1=m-+1

M
Z Pr(c(pi; Xa;) > rilWi—1)ri

Fo(PyyWi—1) =  mazx {Pr(c(pm,Xam > )| Win—1)"m + Evy,, {E

Pm ,Im,am ‘zn+1|vM
1=m-+1
(64)
Fm(pman—l) = max {PT(C(pmaXam) > rm|Wm—l)7‘m+Evam+l(pm _pmawm)} . (65)
Pm rm,am
p NT pm\ P _ B
Fo(PryWin—1) = %m.{%M {(1 —¢€) DM log, ((W) Hm) + (1 — &) Fnt1 (P — Dms Win|vm = 1)} (66)
Pimsee s P M T T M
> o NT Pm\ P M—m+1 NT pm\P
B (B W) = maz {(1 ~ 9D 1082 ((W) 9’”) oot d-e paroee (7)o
Pimsee s PN TM T M
(67)
_ NT DPm _ M
(1) — 21— £m _ O M-m £M
FD (P W) = maz { (1= [logy (B2) + -+ (1 - M log, (B )] (68)

D= loma0) 4+ (1= 9™ o, (0an)

pm. Substitute equation (62) tﬁﬁ)(Pm, Win—1) in equation

68) and differentiate it and set it to zero. We obtain
(68) ~ UOp—1,0" ") < L(Opm-1,00 ) VK €Kt (71)

- ePp, 69 Proof: Assume3dk ¢ K,,_1. Recall equation (41),

o . _ _ U(Opm—1,7" ) =min{f; : v, =0,1 <i <m—1}
which is solely depending om and P,, but nothing else. _
The solutions obtained here is a lower bound of the originhere exist a packet slgi 1 < ¢ <m —1, such thawy,, =

solution as the objective is solving the problem in only on@ and v, = 1, which can be described mathematically in

direction which assumes all positive feedbacks and cooressp equation (77).

to the all positive routes in the decision tree. From definition, 6, > L(©,-1,v{, ") and L(©,,v},) =
max {eq,L(@q_l,ugfl)m,,q = 1}. Thus, L(0,,v%,) = 6,
E. Shrinking User Selection SEt,, if vy ¢ = 1. Thus, continuing from equation (77)
I_Sefore proving this lemma, we need to introduce t\ivo prop- U(Op_1,0" ") (72)
erties of the lower bound of channel pow&y,, L(©,,, ;). . iy 1 -
1) Monotonic Increasing Lower Bound of Real Channel = min {L(@q,vk,),U(Gq,l,vk ), U(Om—1, 7 )}
Power: = L(0,7)

Lemma 9:The lower bound of the channel power gains

: . . < L(Oy_q, 07t
L(0©,,,7;") increases monotonically with: . < LOm-10p)

Proof: The last inequality is proved by lemma 9. ]
L(Om, 7 (70) We are going to prove this lemma by contradiction. Assume
— max{0; i ves = 1,1 < <m) Jk € K, andk ¢ K,,_;. At slot m, V&' € K,,_1,k &

K,., by lemma 9, the lower bound of channel power gain is

monotonically increasing withn.

_ max {0m, {0; tvk; =1,1<i<m—1}} if vgm =1,
- max{0; :vg; =1,1<i<m—1} if vg,m = 0.

—m ~-m—1

 (max (B, LOmn 57D} v = 1, L(Om, vi) 2 L(Om-—1,017) (73)

L(®m—1,0;"") if vkm = 0. Also, by lemma 10, all users outside the user selection set
> L(Opm_1, 7Y have upper bound less than or equal to that of users inside the
- user selection setk ¢ K,,_1,k' € K,,,_1

[ ]
2) Lower Bound of Channel Power of Selected User Larger U©m—1,0""") < L(Om-1,7p0 ") (74)
tLrJ?:rst-he upper bound of channel power of the Remaininggo.ouses € Ko, k' ¢ K,,, we have

Lemma 10:Assumedk ¢ K,,_;. L(©y, 7)) > L(Opm, T}1). (75)
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U©Om-1,00"") = min{f,,{fi:vr; =0,1<i<q—1,g+1<i<m—1}} (76)
= min {0, U(©, 1,5 ), U(©n 1,50}

Thus, we have Thus, we haverk € K, (N {k : vg,q+1 = 0}
L(Om, vy") (77) L(Ogs1, 0811 < Xj SU(Ogrr, o0, (89)
ms O Vk € K, k' & K, .

> (O, T )m L (Vk € ¢ ) Let Kg+1 = Ky {k: vkq+1 =0} which completes the

> L(®p-1,7 ) (by lemma 7 proof.

> ( m—1, 'Uk 1) (Vk/ e K1,k Q/ Km—l)
which leads to a contradiction. Thugk € K,,, k € K,,,_1. G. Monotonic Decreasing Gap between Upper and Lower

Bounds

F. Channel Estimate of Selected User between Upper andThe difference of the gaps at slot andm — 1 is
Lower Bound
Wy — Wm—1 (90)

We are going to prove this claim by mathematical induction.
{U(vaﬁgz ) - L(@ma 1—)3’;)}

In the base casen = 0, before any transmission, we have

initialization ~{UOn-r, )~ L(Om, 007}
L =0 (78) L@, ) — L(O,,, 0 ) i =1,
U = oo (79) T\ U®On, ) — U (O, oY) if 5 =0.
Xy € [L,U] VkeK (80) o .
_ ( m—1,0 o 11)_9m if ’Uamzl,
whereK, = {1,..., K}. Oy — U(Op_1,0 _glmill) if 97 =0.
Assume the statement is true for = ¢q. We obtain < 0VYm
-4 -4
Xk € [L(8g, ), U(8q, 7)), ¥k € Ky (81) The last inequality is due to the fact tha{®,,_1,v]" ") <
Whenm = ¢ + 1, before the(q + 1)-th transmission, Om < U(Om—1,0,"7")
L(B4,7}) < 0g41 <U(Og,7}), Vk € K, (82)

Scheduled Rate Achieves Capacity
After (¢ + 1)-th transmission, there are two cases, either ACK

or NAK. If an ACK is received then we have By lemma 5, whenm — oo, the user selection set
degenerates to a single user whose has the largest lowed boun
Tq1 < c(Dgt1, Xk) (83) of the channel power gain&,, = k where L(0,,, ") >
NT Pgt+1\ P L(©,,,7;7) andk # k’. Using lemma 6 and 7, we have
" i loe <( &) "qﬂ)

m — 00, L(Om, v, ) = U(Om, v, ) = X
N D m
log (pq+1) Xk
= Dar 082 N Thus, we have

m — 00, K,y = a,, = k, WhereX, > Xy, k#EK (92)

(91)

Am

or Ogy1 < X

The updates of the bounds are
Also by lemma 7, we have

L(®q+17@g+1) = max{L(Oy, 7)), 0441} (84)
— 9 m — 00, O = L(0p, 0" ) = U(Om, v, ) = Xa,, (93)
= q+1 m
andU(0,41,70") = U(O,,)). (85) Thus, we have the scheduled rate at sigt
. — D
Thus, we haverk € Ky () {k : vg,q4+1 = 1} lim r,, = lim NT l0gs ((p_m) 9m) (94)
_g+1 a+1 m— o0 m—o0 DM N
L(Gq-‘rlvvk ) < Xi < U(®q+1vvk ) (86) D
= lim logo (p_m) X
Let Ky+1 = Ky {k: vkq+1 =1} which completes the m—ro0 DM N
proof. Similarly, if NAK is received, X, < 6,4:. The updates = c(pm, Xi)

of the bounds are

1 . where usek has the largest channel power gains. The quantity
L(O©gt1,0; ) L(©qg,v;) (87) c(pm, X) is the capacity achieved by the system with perfect
U(Ogi1,7) = 411 (88) CSIT.
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