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Abstract

Source and channel coding over multiuser channels in whéckivers have access to correlated
source side information is considered. For several mdtiechannel models necessary and sufficient
conditions for optimal separation of the source and chaow@és are obtained. In particular, the multiple
access channel, the compound multiple access channetténierence channel and the two-way channel
with correlated sources and correlated receiver side nmdtion are considered, and the optimality of
separation is shown to hold for certain source and sidenmdtion structures. Interestingly, the optimal
separate source and channel codes identified for these snadehot necessarily the optimal codes for
the underlying source coding or the channel coding prohlémsther words, while separation of the
source and channel codes is optimal, the nature of thesmalptodes is impacted by the joint design

criterion.

. INTRODUCTION

Shannon’s source-channel separation theorem statesithpgint-to-point communication

systems, a source can be reliably transmitted over a ch@raed only if the minimum source
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coding rate is below the channel capacity [1]. This meansdrample comparison of the rates
of the optimal source and channel codes for the underlyingcgoand channel distributions,
respectively, suffices to conclude whether reliable trassion is possible or not. Furthermore,
the separation theorem dictates that the source and chemohet can be designed independently
without loss of optimality. This theoretical optimality efiodularity has reinforced the notion
of network layers, leading to the separate development ofceoand channel coding aspects
of a communication system. The separation theorem holdstégronary and ergodic sources
and channels under the usual information theoretic assongoof infinite delay and complexity
(see [2] for more general conditions under which separdtmds). However, Shannon’s source-
channel separation theorem does not generalize to multnefe/orks.

Suboptimality of separation for multiuser systems was §tgiwn by Shannon in [3], where
an example of correlated source transmission over the tayp-ahannel was provided. Later, a
similar observation was made for transmitting correlatedrses over multiple access channels
(MACSs) in [4]. The example provided in [4] reveals that compan of the Slepian-Wolf source
coding region [5] with the capacity region of the underlyiftAC is not sufficient to decide
whether reliable transmission can be realized.

In general communication networks have multiple sourceslae at the network nodes,
where the source data must be transmitted to its destinatiariossless or lossy fashion. Some
(potentially all) of the nodes can transmit while some (pa#dly all) of the nodes can receive
noisy observations of the transmitted signals. The comoatioin channel is characterized by
a probability transition matrix from the inputs of the tramtting terminals to the outputs of
the receiving terminals. We assume that all the transmisssbare a common communications
medium; special cases such as orthogonal transmission eapdxified through the channel
transition matrix. The sources come from an arbitrary jaistribution, that is, they might be
correlated. For this general model, the problem we addeess determine whether the sources
can be transmitted losslessly or within the required figeid their destinations for a given
number of channel uses per source sample (cupss), whicHimseddo be thesource-channel
rate of the joint source channel code. Equivalently, we might warfind the minimum source-
channel rate that can be achieved either reliably (for ésssteconstruction) or with the required
reconstruction fidelity (for lossy reconstruction).

The problem of jointly optimizing source coding along witieet multiuser channel coding
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in this very general setting is extremely complicated. & thannels are assumed to be noise-
free finite capacity links, the problem reduces to a muhiieal source coding problem [1];
alternatively, if the sources are independent, then we fingtthe capacity region of a general
communication network. Furthermore, considering that wendt have a separation result for
source and channel coding even in the case of very simpleoneiwthe hope for solving this
problem in the general setting is slight.

Given the difficulty of obtaining a general solution for drbry networks, our goal here
is to analyze in detail simple, yet fundamental, buildingdis of a larger network, such as
the multiple access channel, the broadcast channel, tedgdrénce channel and the two-way
channel. Our focus in this work is on lossless transmissiwh @ur goal is to characterize the
set of achievable source-channel rates for these canaretabrks. Four fundamental questions

that need to be addressed for each model can be stated assfollo

1) Is it possible to characterize the optimal source-chirate of the network (i.e., the mini-
mum number of channel uses per source sample (cupss) redoiir®ssless transmission)
in a computable way?

2) Is it possible to achieve the optimum source-channelatatistically independent source
and channel codes? By statistical independent source amhehcodes, we mean that the
source and the channel codes are designed solely based disttfileutions of the source
and the channel distributions, respectively. In genehasé¢ codes need not be the optimal
codes for the underlying sources or the channel.

3) Can we determine the optimal source-channel rate by giogshparing the source coding
rate region with the capacity region?

4) If the comparison of these canonical regions is not seffiicto obtain the optimal source-
channel rate, can we identify alternative finite dimensi@oarce and channel rate regions
pertaining to the source and channel distributions, ragfeyg, whose comparison provides
us the necessary and sufficient conditions for the achibtyabf a source-channel rate?

If the answer to question (3) is affirmative for a given sethfs would maintain the optimality

of the layered approach described earlier, and would qooresto the multiuser version of Shan-
non’s source-channel separation theorem. However, evam \is classical layered approach

is suboptimal, we can still obtain modularity in the systeasign, if the answer to question
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(2) is affirmative, in which case the optimal source-chamat# can be achieved by statistically
independent source and channel codes, without taking thedastribution into account.

In the point-to-point setting, the answer to question (3affrmative, that is, the minimum
source-channel rate is simply the ratio of the source ewnttopthe channel capacity; hence
these two numbers are all we need to identify the necessatysafficient conditions for the
achievability of a source-channel rate. Therefore, a euare that meets the entropy bound
when used with a capacity achieving channel code resulthanbest source-channel rate. In
multiuser scenarios, we need to compare more than two n@rbeslassical Shannon separation,
it is required that the intersection of the source coding ragion for the given sources and the
capacity region of the underlying multiuser channel is nopgy. This would definitely lead to
modular source and channel code design without sacrificptgnality. However, we show in
this work that, in various multiuser scenarios, even if thisot the case for the canonical source
coding rate region and the capacity region, it might stilldessible to identify alternative finite
dimensional rate regions for the sources and the chanrgecévely, such that comparison
of these rate regions provide the necessary and sufficiendittans for the achievability of a
source-channel rate. Hence, the answer to question (4) eaffibomative even if the answer to
guestion (3) is negative. Furthermore, we show that in tliases we also have an affirmative
answer to question (2), that is, statistically independentrce and channel codes are optimal.

Following [6], we will use the following definitions to diffentiate between the two types of
source-channel separatidnformational separatiomefers to classical separation in the Shannon
sense, in which concatenating optimal source and chanradscéor the underlying source
and channel distributions result in the optimal sourcencleh coding rate. Equivalently, in
informational separation, comparison of the underlyingrse coding rate region and the channel
capacity region is sufficient to find the optimal source-ctedrate and the answer to question
(3) is affirmative.Operational separationon the other hand, refers to statistically independent
source and channel codes that are not necessarily the émtimies for the underlying source
or the channel. Optimality of operational separation afictlve comparison of more general
source and channel rate regions to provide necessary aficiesufconditions for achievability
of a source-channel rate, which suggests an affirmative @nswquestion (4). These source
and channel rate regions are required to be dependent smiethe source and the channel

distributions, respectively; however, these regions neetl be the canonical source coding
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rate region or the channel capacity region. Hence, the soaincl channel codes that achieve
different points of these two regions will be statisticalhdependent, providing an affirmative
answer to question (2), while individually they may not be thptimal source or channel codes
for the underlying source compression and channel codiopl@ms. Note that the class of
codes satisfying operational separation is larger thansi#sfying informational separation. We
should remark here that we are not providing precise mattieahalefinitions for operational
and information separation. Our goal is to point out the tiidons of the classical separation
approach based on the direct comparison of source codinglaarthel capacity regions.

This paper provides answers to the four fundamental questbout source-channel coding
posed above for some special multiuser networks and sotrcegtges. In particular, we consider
correlated sources available at multiple transmitters mamicating with receivers that have
correlated side information. Our contributions can be sanmad as follows.

« In a multiple access channel we show that informational rsgjpa holds if the sources
are independent given the receiver side information. Téiglifferent from the previous
separation results [7]- [9] in that we show the optimality s#paration for an arbitrary
multiple access channel under a special source structueaal¥d prove that the optimality
of informational separation continue to hold for indepemtdsources in the presence of
correlated side information at the receiver, given whioh sources are correlated.

« We characterize an achievable source-channel rate for @angpomultiple access channels
with side information, which is shown to be optimal for sorpeaal scenarios. In particular,
optimality holds either when each user’s source is indepenttom the other source and
one of the side information sequences, or when there is ntipleubccess interference at
the receivers. For these cases we argue that operatioralatep is optimal. We further
show the optimality of informational separation when the sources are independent given
the side information common to both receivers. Note thatabmpound multiple access
channel model combines both the multiple access chann#iscairelated sources and the
broadcast channels with correlated side information atéceivers.

. For an interference channel with correlated side inforomtiwe first define thestrong
source-channel interferenanditions, which provide a generalization of the usuabrsgr
interference conditions [10]. Our results show the optityaif operational separation under

strong source-channel interference conditions for aergaurce structures.
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« We consider a two-way channel with correlated sources. Theegable scheme for com-
pound MAC can also be used as an achievable coding schemeich wie users do not
exploit their channel outputs for channel encoding (‘ies#d encoders’). We generalize

Shannon’s outer bound for two-way channels to correlatences.

Overall, our results characterize the necessary and surficonditions for reliable transmis-
sion of correlated sources over various multiuser netwonksce answering question (1) for
those scenarios. In these cases, the optimal performarahisved by statistically independent
source and channel codes (by either informational or ojpera@t separation), thus promising
a level of modularity even when simply concatenating optis@urce and channel codes is
suboptimal. Hence, for the cases where we provide the opimace-channel rate, we answer
guestions (2), (3) and (4) as well.

The remainder of the paper is organized as follows. We rettenprior work on joint source-
channel coding for multiuser systems in Secfidn Il, and thiations and the technical tools that
will be used throughout the paper in Section Ill. In Secfi®df we introduce the system model
and the definitions. The next four sections are dedicatetiéanalysis of special cases of the
general system model. In particular, we consider multigleeas channel model in Sectibn V,
compound multiple access channel model in Sedfidn VI, fetence channel model in Section
Villand finally the two-way channel model in Section VIIl. Ogonclusions can be found in
Section IX followed by the Appendix.

[I. PRIOR WORK

The existing literature provides limited answers to therfquestions stated in Sectidh | in
specific settings. For the MAC with correlated sources, digtter sufficient conditions for
achievability of a source-channel rate are given in [4] inattlempt to resolve the first problem;
however, these conditions are later shown not to be negebgabueck [11]. Thecorrelation
preserving mappingechnique of [4] used for achievability is later extendedstmrce coding
with side information via multiple access channels in [28]broadcast channels with correlated
sources in [13], and to interference channels in [14]. I1},[[5%5] a graph theoretic framework was
used to achieve improved source-channel rates for tramsgitorrelated sources over multiple

access and broadcast channels, respectively. A new datesgsing inequality was proved in [17]
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that is used to derive new necessary conditions for relitdalesmission of correlated sources
over MACs.

Various special classes of source-channel pairs have heédied in the literature in an effort
to resolve the third question above, looking for the mostegainclass of sources for which the
comparison of the underlying source coding rate region &edcapacity region is sufficient to
determine the achievability of a source-channel rate. rigdity of separation in this classical
sense is proved for a network of independent, non-interjechannels in [7]. A special class of
the MAC, called the asymmetric MAC, in which one of the sosriseavailable at both encoders,
is considered in [8] and the classical source-channel agparoptimality is shown to hold with
or without causal perfect feedback at either or both of taegmitters. In [9], it is shown that for
the class of MACs for which the capacity region cannot bergeld by considering correlated
channel inputs, classical separation is optimal. Note #ailadvf these results hold for a special
class of MACs and arbitrary source correlations.

There have also been results for joint source-channel dadesadcast channels. Specifically,
in [6], Tuncel finds the optimal source-channel rate for bdiczesting a common source to multiple
receivers having access to different correlated sidenmmétion sequences, thus answering the first
guestion. This work also shows that the comparison of thadwast channel capacity region and
the minimum source coding rate region is not sufficient todkeevhether reliable transmission
is possible. Therefore, the classical informational setaigannel separation, as stated in the
third question, does not hold in this setup. Tuncel also ansthe second and fourth questions,
and suggests that we can achieve the optimal source-cheatedby source and channel codes
that are statistically independent, and that, for the aeligity of a source-channel rate the
intersection of two regions, one solely depending on thecsodistributions, and a second one
solely depending on the channel distributions, is necgssad sufficient. The codes proposed
in [6] consist of a source encoder that does not use the atecekide information, and a joint
source-channel decoder; hence they are not stand-alomeesand channel cocﬁsThus the

techniques in [6] require the design of new codes apprapfiat joint decoding with the side

'Here we note that the joint source-channel decoder propogétlincel in [6] can also be implemented by separate source
and channel decoders in which the channel decoder is a sdée [19] that outputs a list of possible channel inputsweler,
by stand-alone source and channel codes, we mean uniqudetdedbat produce a single codeword output, as it is undefsto

in the classical source-channel separation theorem ofrfaiman
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information; however, it is shown in [18] that the same perfance can be achieved by using
separate source and channel codes with a specific messagjagpasechanism between the
source/channel encoders/decoders. Therefore we can issé@gxear-optimal codes to achieve
the theoretical bound.

Broadcast channel in the presence of receiver message rémienation, i.e., messages at
the transmitter known partially or totally at one of the rgees, is also studied from the
perspective of achievable rate regions in [20] - [23]. Thebtem of broadcasting with receiver

side information is also encountered in the two-way relagnetel problem studied in [24], [25].

[1l. PRELIMINARIES
A. Notation

In the rest of the paper we adopt the following notationamemtions. Random variables will
be denoted by capital letters while their realizations W@l denoted by the respective lower
case letters. The alphabet of a scalar random varidbleill be denoted by the corresponding
calligraphic letterX’, and the alphabet of the-length vectors over the-fold Cartesian product
by X™. The cardinality of se&’ will be denoted byX’|. The random vectofXy, ..., X,,) will be
denoted byX" while the vector(X;, X;.1,...,X,) by X, and their realizations, respectively,

by (zi,...,z,) or 2™ and (z;, z;11, ..., T,) O z}.

B. Types and Typical Sequences

Here, we briefly review the notions of types and strong tylgicahat will be used in the
paper. Given a distributiopy, the typeP,. of ann-tuple 2™ is the empirical distribution

1
Pxn == _N "
N (ala")

where N (a|z™) is the number of occurances of the lettein 2. The set of alln-tuplesx”
with type @ is called the type clas§ and denoted by7;. The set ofé-strongly typicaln-tuples

according toPy is denoted byl}, and is defined by
1
Tx), = {x SR A ’EN(a‘xn) — Px(a)| < 6Va € X and N(a|z") = 0 wheneverPx(x) = 0} _

The definitions of type and strong typicality can be extentte¢bint and conditional distri-

butions in a similar manner [1]. The following results comireg typical sets will be used in
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Fig. 1. The general system model for transmitting correlamurces over multiuser channels with correlated siderimdtion.
In the MAC scenario, we have only one receilex;; in the compound MAC scenario, we have two receivers whichtwa
receive both sources, while in the interference channelast® we have two receivers, each of which wants to receilg its

own source. The compound MAC model reduces to the “restfidi®o-way channel model whei;” = S;"* for i =1, 2.

the sequel. We have

0
<
|

for sufficiently largen. Given a joint distributionPyy, if (z;,y;) is drawn independent and

identically distributed (i.i.d.) withPx Py for i = 1,...,n, where Py and P are the marginals,

1
~log |Tiy, | — H(X) (1)

then
Pr{([)j'n’ yn) -~ ﬂ}Y]g} S 2_"(I(X;Y)_36)‘ (2)

Finally, for a joint distribution Pxy 2, if (x;,v;, 2;) is drawn i.i.d. with Px Py P, for i =

1,...,n, where Py, Py and P, are the marginals, then

PI‘{(I‘” yn Zn) c T[g(YZ} } < 2—n(I(X;Y,Z)+I(Y;X,Z)+I(Z;Y,X)—45) (3)
PR sJ > .

V. SYSTEM MODEL

We introduce the most general system model here. Througheytaper we consider various
special cases, where the restrictions are stated explfoitleach case.

We consider a network of two transmitt€fs; and Tx,, and two receiver®ix; and Rx,.
Fori =1, 2, the transmittefl'x; observes the output of a discrete memoryless (DM) sofyce

while the receiveRx; observes DM side informatioil/;. We assume that the source and the
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side information sequence$S, ., Sox, Wik, Way}i, are ii.d. and are drawn according to a
joint probability mass function (p.m.fy(s1, s2, w1, wy) over a finite alphabe$; x Sy x W) x W.
The transmitters and the receivers all know this joint pnfit have no direct access to each
other’s information source or the side information.

The transmittefl'x; encodes its source vectsf” = (S; 1, ..., S;.,) into a channel codeword

X" = (X;1,...,Xin) using the encoding function

)

fomm . gmo_y xn, (4)

(2

for i = 1,2. These codewords are transmitted over a DM channel to tledvers, each of which
observes the output vectd)* = (Y;,...,Y;,). The input and output alphabets and)); are all
finite. The DM channel is characterized by the conditionatribution Py, v, x, x, (y1, y2|21, 22).
Each receiver is interested in one or both of the sourcesdigpg on the scenario. Let receiver
Rx; form the estimates of the source vect6f® and S}*, denoted b Aﬁ and Sg”2 based on its
received signal’;* and the side information vectd?¥;” = (W, ,..., W, ) using the decoding

function
g™ LY X W ST x Sy (5)

Due to the reliable transmission requirement, the recoostm alphabets are the same as the
source alphabets. In the MAC scenario, there is only onevwecBx;, which wants to receive
both of the sources; andS;. In the compound MAC scenario, both receivers want to receiv
both sources, while in the interference channel scenaaith eeceiver wants to receive only its
own transmitter’s source. The two-way channel scenarima@ibe obtained as a special case of
the above general model, as the received channel outputhtuser can be used to generate
channel inputs. On the other hand, a “restricted” two-wagnctel model, in which the past
channel outputs are only used for decoding, is a special @aege above compound channel
model withW/™ = S™ for i = 1, 2. Based on the decoding requirements, the error probability
the systemP™™ will be defined separately for each model. Next, we define tluecg-channel
rate of the system.

Definition 4.1: We say that source-channel rates achievablef, for every e > 0, there exist
positive integersn and n with n/m = b for which we have encoder™" and ™™, and
decoders) ™™ and¢{™"™ with decoder outputSr, Sm) = g,(Y;", W), such thatP(mm) < ¢,

1,19 M,
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V. MULTIPLE ACCESSCHANNEL

We first consider the multiple access channel, in which wdrdegested in the reconstruction
at receiverRx, only. For encoderg™™ and a decodeg\™ ™, the probability of error for the

MAC is defined as follows:

Pomn) 2 pr(sm, simy £ (S, §))

= Y. p(st sy P{(sT, 81) # (s1', s5")|(ST", 55°) = (s, s5") -

(s ST EST XS
Note that this model is more general than that of [4] as it mhers the availability of correlated
side information at the receiver [29]. We first generalize #thievability scheme of [4] to our
model by using the correlation preserving mapping techmiqgti[4], and limiting the source-
channel raté to 1. Extension to other rates is possible as in Theorem 4 of [4].
Theorem 5.1:Consider arbitrarily correlated sourcés and S, over the DM MAC with
receiver side informatioM’;. Source-channel ratie= 1 is achievable if

H(S1|S2, W) < I(Xy;Y1]Xs, S, Wh, Q),
H(S,]81,Wh) < I(Xa;Y1]Xy, 51, W1, Q),
H(Sy, S|U, W) < I(Xy, Xo; Y1|U, Wi, Q),
and
H(S1,5[W1) < I(Xy, Xo; Y1[Wh),
for some joint distribution
p(q, 51, 82, W1, 21, T2, Y1) = p(q)p(s1, 82, w1)p(w1]q, s1)p(x2lq, s2)p(Y1|71, T2)
and
U= f(51)=9(5)
is the common part of; and S; in the sense of Gacs and Korner [26]. We can bound the
cardinality of Q@ by min{|X,| - |X,], ||}
We do not give a proof here as it closely resembles the ong.ilNgte that correlation among

the sources and the side information both condenses thiedett side of the above inequalities,
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and enlarges their right hand side, compared to transiftidependent sources. While the
reduction in entropies on the left hand side is due to SlefVaif source coding, the increase in
the right hand side is mainly due to the possibility of getingacorrelated channel codewords
at the transmitters. Applying distributed source codingpieed by MAC channel coding, while
reducing the redundancy, would also lead to the loss of plessbrrelation among the channel
codewords. However, whef; — W; — S5 form a Markov chain, that is, the two sources are
independent given the side information at the receiver,rédueiver already has access to the
correlated part of the sources and it is not clear whetheitiaddl channel correlation would
help. The following theorem suggests that channel coroglgtreservation is not necessary in
this case and source-channel separation in the infornatsmnse is optimal.

Theorem 5.2:Consider transmission of arbitrarily correlated sour§esand S, over the DM
MAC with receiver side informatioiV;, for which the Markov relationS; — W; — S, holds.

Informational separation is optimal for this setup, andsbarce-channel rateis achievable if

H(S:[Wh) < b-1(X1; Y1 Xs, Q), (6a)
H(S:[Wh) < b-I(X; 1| X1, Q), (6b)
and
H(S{|Wy) + H(S2|Wh) < b 1(Xy, X2; Y1]Q), (6c)
for some joint distribution
p(q; 1, 22, y1) = p(Q)p(21|)p(22] Q)P (Y171, 72), (7)

with |Q| < 4.
Conversely, if the source-channel rdtés achievable, then the inequalities [d (6) hold with
< replaced by< for some joint distribution of the form given inl(7).

Proof: We start with the proof of the direct part. We use SlepianfVdalurce coding
followed by multiple access channel coding as the achiétyalsicheme; however, the error
probability analysis needs to be outlined carefully sinoe the rates within the rate region
characterized by the right-hand side (6) we can achiebd#trarily small average error
probability rather than thenaximum error probabilit [1]. We briefly outline the code generation

and encoding/decoding steps.
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Consider a rate paifR;, R>) satisfying

H(S;|[Wy) < Ry <b-I(X;Y1]X5,Q), (8a)
H(S,|Wh) < Ry <b-1(Xy:Y1|X1,Q), (8b)

and
H(Si|Wh) + H(S:|Wh) < Ri+ Ry <b-I(Xy, X9, Y1|Q). (8c)

Code generationAt transmitterk, k£ = 1,2, independently assign evegy* € S to one of
the 2™ bins with uniform distribution. Denote the bin index gf by i, (s7*) € {1,...,2m%}.
This constitutes the Slepian-Wolf source code.

Fix p(q), p(z1|q) and p(z2]q) such that the conditions ifl(6) are satisfied. Genegatdy
choosingy; independently fronp(q) fori = 1, ..., n. For each source bin indéx = 1,. .., 2m%
of transmitterk, k = 1,2, generate a channel codewarf{i;) by choosingzy; (i) independently
from p(zx|q;). This constitutes the MAC code.

Encoders:We use the above separate source and the channel codes ddiregncrhe source
encoderk finds the bin index o&}" using the Slepian-Wolf source code, and forwards it to the
channel encoder. The channel encoder transmits the codesocorresponding to the source
bin index using the MAC code.

Decoder: We use separate source and channel decoders. Upon recgjvirtge channel
decoder tries to find the indicés), ;) such that the corresponding channel codewords satisfy
(¢",27(1h), 23 (1)) € Tihx, x,vy,- If ONE such pair is found, call iti}, 7). If no or more than
one such pair is found, declare an error.

Then these indices are provided to the source decoder. &Sdegoder tries to findy, such
thati(s}') = v, and (8", Wi") € T(§ y,),- If one such pair is found, it is declared as the output.
Otherwise, an error is declared.

Probability of error analysis:For brevity of the expressions, we defie= (s7*,s5"), S =
(S, S5*) and s = (87", 57,). The indices corresponding to the sources are denotedl by

(11(s7"),i2(sh")), and the indices estimated at the channel decoder are debpté = (i}, }).
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The average probability of error can be written as follows:
P 237 P{s £ 5IS = s}p(s)

= Z [P{s #sli=1,S=s}p(i=1|S=s)+ P{s#s|li#1,S=s}pi#1|S =s)]p(s)

S

< Z[P{é;«és\i:i’ S =s}+p(i#1[S=s)p(s)
— ZP{s#sh—l S =s}p(s +Zp # 1[S = s)p(s) ©)

Now, in (@) the first summation is the average error probghigiven the fact that the receiver
knows the indices correctly. This can be made arbitrarilglémith increasingn, which follows
from the Slepian-Wolf theorem. The second term[ih (9) is therage error probability for the

indices averaged over all source pairs. This can also béewrés

S0 A0S = s)us) = Tl £ 1T
—Zp i1 =1i)pI =)

R1+R2 Zp I = l) (10)

where [(10) follows from the uniform assignment of the biniged in the creation of the source
code. Note thaf (10) is the average error probability exgioesfor the MAC code, and we know
that it can also be made arbitrarily small with increasingand n under the conditions of the
theorem [1].

We note here that fob = 1 the direct part can also be obtained from Theotem 5.1. Fer thi
we ignore the common part of the sources and choose the dhiaypogs independent of the

source distributions, that is, we choose a joint distrimutof the form

p(q, 51, 82, w1, T1, T, Y1) = p(q)p(s1, 52, w1)p(w1]q)p(22|@)P(Y1 |71, T2).

From the conditional independence of the sources givendbeiver side information, both the
left and the right hand sides of the conditions in Thedrermcari be simplified to the sufficiency
conditions of Theorerh 5.2.

We next prove the converse. We assuig"™ — 0 for a sequence of encode_lfém’")

(i = 1,2) and decoderg™™ asn,m — oo with a fixed rateb = n/m. We will use Fano’s
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inequality, which states
H(Sy, S5S7, S75) < 1+ mP™Mlog|S; x Sy,
£ ma(Pmm), (11)
whered(z) is a non-negative function that approaches zere as 0. We also obtain
H(ST, Sy|Sm, Sy) > H(SP|ST, S), (12)
> H(ST'|Y!", W), (13)

where the first inequality follows from the chain rule of ey and the nonnegativity of the
entropy function for discrete sources, and the second adaggdollows from the data processing
inequality. Then we have, far= 1, 2,

H(SPY7, W) < ma(Pm), (14)
We have
LIOGRYIX ) 2 LIS W XS, (15)
= L[H(STIWY,XG) — H(SPIYY WXL (16)
= L[H(ST W) — H(SPIYE WL X)) (17)
> L[H(STIWT) — HSTYT W) (18)
> %[H(sl\wl)—a(Pgmm)], (19)

where (15) follows from the Markov relationS]* — X7 — Y;* given (X3, W"); ([I4) from the
Markov relationXy — W™ — S7*; (18) from the fact that conditioning reduces entropy; &fé)
from the memoryless source assumption and friom (11) whiels #ano’s inequality.
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On the other hand, we also have

X7 Y [XE, W) = HOY XS, W) — H(Y XY, XS, W), (20)

NE

= HY|IX3, W) = Y H(Y[Yi L X7 X3, W), (21)

1

-
I

NE

1

-
I

H (Y2 | Xoi, W) = > H (Y14 X, Xoi, W), (23)

1 =1

IN

7

Il

Il
i

[(Xlz';Yl,z'|X2uW1m), (24)

2

where [21) follows from the chain ruld;_(22) from the memesd channel assumption; and](23)
from the chain rule and the fact that conditioning reducesogsy.

For the joint mutual information we can write the followingt<f inequalities:

LI RIS S5, (25)
= [H(ST, SYIWE) — H(SY, Sy 1Yy W) (26)
= L[H(ST W) + H(SPIWE) ~ H(S SV WL (@)
> L[H(STIW) + HSFIW) — H(ST, 57157 87).  (28)
> M us ) + HSo W) = 6P| (29)

b
where (25) follows from the Markov relation{S7", S5") — (X7, XI') — Y* given W™; (24) from
the Markov relationSy* — W — St (28) from the fact tha( .S, S7) — (Y, W) — (S, Sm)
form a Markov chain; and29) from the memoryless source assumption and from (11) which
uses Fano’s inequality.
By following similar arguments as i (R0)-(24) above, we edso show that

I(XT, X35 Y W) <0 ) (X, X Yig W), (30)

i=1

Now, we introduce a time-sharing random variablendependent of all other random vari-
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ables. We have) = i with probability 1/n, i € {1,2,...,n}. Then we can write

1 12

E](X{LSYng»Wlm) < EZ](XM;HAX%W?% (31)
i=1

1 _

= D I(Xig Ygl Xog, W', Q = ), (32)
i=1

= I(X,0; Y| Xog, W™, Q), (33)

= I(XI;Y‘X%Q)v (34)

where X; £ X 5, Xo £ X5, Y £ Yg, andQ = (W™, Q). SinceS;" and S1*, and therefore

X;; and Xy;, are independent givel ", for ¢ = (w}",7) we have

PriX, =2, Xo=1|Q=q} = Pr{Xy=m1,Xy=n|W"=uwl"Q =i}
= Pri{Xy=x|W" =w]",Q =i} Pr{Xy = m|W" = w",Q =i}
= Pr{Xi|Q = ¢} - Pr{Xo|Q = q}.

Hence, the probability distribution is of the form given ilm&orenT5.R.

On combining the inequalities above we can obtain

H(S1[Wh) = 6(PI™M) < bI(X1; Y[ X5, Q), (35)
H(So|W1) — 6(P™™) < bI(Xo; Y[X1, Q), (36)

and
H(S1[Wh) + H(Se|Wh) — 8(P™™) < bI (X1, X2; Y[Q). (37)

Finally, taking the limit asm,n — oo and letting P™™ — 0 leads to the conditions of the
theorem. [ |

To the best of our knowledge, this result constitutes thé dixample in which the underlying
source structure leads to the optimality of (informatigrs@lurce-channel separation independent
of the channel. We can also interpret this result as follolWe side information provided to the
receiver satisfies a special Markov chain condition, whithbtes the optimality of informational
source-channel separation. We can also observe from Tihebrg that the optimal source-
channel rate in this setup is determined by identifying timaltest scaling factob of the MAC
capacity region such that the poit (S;|1;), H(S2, W;)) falls into the scaled region. This

answers question (3) affirmatively in this setup.
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A natural question to ask at this point is whether providitogne side information to the
receiver can break the optimality of source-channel séiparéan the case of independent mes-
sages. In the next theorem, we show that this is not the caddaha optimality of informational
separation continues to hold.

Theorem 5.3:Consider independent sourcés and S; to be transmitted over the DM MAC
with correlated receiver side informatidir;. If the joint distribution satisfie®(s1, so, wy) =

p(s1)p(s2)p(ws]s1, s2), then the source-channel rdtés achievable if

H(51]82, Wh) < b-I(X1;Y1[ X5, Q), (38)

H(S|S0, Wh) < b-I(Xs: Yi| X1, Q) (39)
and

H(S1, Sa[Wi) < b-I(X1, X9 111|Q), (40)

for some input distribution

p(q, 1,2, 11) = p(q)p(@1|q)p(22]q)p(y1 |21, 22), (41)

with |Q| < 4.

Conversely, if the source-channel rates achievable, ther (88)-(40) hold with replaced by
< for some joint distribution of the form given ih_(41). Infoational separation is optimal for
this setup.

Proof: The proof is given in Appendii I. [ |

Next, we illustrate the results of this section with somenepkes. Consider binary sources

and side information, i.e$; = So = W, = {1, 2}, with the following joint distribution:
Ps,s,w, {51 =0,9% =0,W; =0} = Ps,5,w, {S1=1,5=1,W; =1} =1/3
and
Ps, 5w, {51 =0,9 =1, W; =0} = Ps,5,w, {51 =0,5 =1,W; =1} =1/6.

As the underlying multiple access channel, we consider arpimput adder channel, in which
X=X, ={0,1}, Y ={0,1,2} and

Y =X+ Xo.
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H(S2|51)

0.5
H(So|[Wi)| - »
(0.46,0.46)

H(S1|W1) 0.5 H(S1|S2) 1 1.5 1.58

Fig. 2. Capacity region of the binary adder MAC and the sowading rate regions in the example.

Note that, when the side informatid#; is not available at the receiver, this model is the same
as the example considered in [4], which was used to show thepsunality of separate source
and channel codes over the MAC.

When the receiver does not have access to side inform@tiQrwe can identify the separate
source and channel coding rate regions using the conditemieopies. These regions are shown
in Fig. [@. The minimum source-channel rate is foundbas 1.58/1.5 = 1.05 cupss in the
case of separate source and channel codes. On the otherihandasy to see that uncoded
transmission is optimal in this setup which requires a sewitannel rate of = 1 cupss. Now,
if we consider the availability of the side informatid; at the receiver, we havH (S;|W;) =
H(S;|W;) = 0.46. In this case, using Theorem 5.2, the minimum required seahannel rate
is found to beb = 0.92 cupss, which is lower than the one achieved by uncoded tigsgm.

Theorem[5.B states that, if the two sources are independdatmational source-channel
separation is optimal even if the receiver has side infalenagiven which independence of the
sources no longer holds. Consider, for example, the sansybadder channel in our example.
We now consider two independent binary sources with unifdistribution, i.e.,P(S; = 0) =
P(Sy = 0) = 1/2. Assume that the side information at the receiver is now rgibg W, =

X, & X,, where® denotes the binary xor operation. For these sources andhidnenel, the
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minimum source-channel rate without the side informatibthe receiver is found as= 1.33
cupss. WhenV is available at the receiver, the minimum required soufwoel rate reduces
to b = 0.67 cupss, which can still be achieved by separate source amtheheoding.

Next, we consider the case when the receiver side informasi@also provided to the trans-
mitters. From the source coding perspective, i.e., whenutigerlying MAC is composed of
orthogonal finite capacity links, it is known that having thide information at the transmitters
would not help. However, it is not clear in general, from tlairge-channel rate perspective,
whether providing the receiver side information to the s$raitters would improve the perfor-
mance.

If S;—W;—.S, form a Markov chain, it is easy to see that the results in Té@d5.2 continue
to hold even wher¥; is provided to the transmitters. Leét = (S;, W;) be the new sources
for which S; — W; — S, holds. Then, we have the same necessary and sufficient worsdits
before, hence providing the receiver side information ® tlansmitters would not help in this
setup.

Now, let .S; and .S, be two independent binary random variables, &id= S; & S,. In this
setup, providing the receiver side informatidn to the transmitters means that the transmitters
can learn each other’s source, and hence can fully coopgrdtansmit both sources. In this

case, source-channel rdtaés achievable if
H(S1, Sa|Wh) < bI(Xq, Xo;Y7) (42)

for some input distribution(z;, x2), and if source-channel rateis achievable theri (42) holds
with < for somep(zy,z2). On the other hand, ifV; is not available at the transmitters, we
can find from Theorerh 5.3 that the input distribution [inl(42h @nly bep(z1)p(x2). Thus, in
this setup, providing receiver side information to the sraitters potentially leads to a smaller
source-channel rate as this additional information maylkeneooperation over the MAC, which
is not possible without the side information. In our exampiendependent binary sources, the
total transmission rate that can be achieved by total cadiper of the transmitters i$.58 bits
per channel use. Hence, the minimum source-channel ratedhabe achieved when the side
information ¥; is available at both the transmitters and the receiver isddio be0.63 cupss.
This is lower than).67 cupps that can be achieved when the side information is ordiladle

at the receiver.
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We conclude that, as opposed to the pure lossless souraggcaminario, having side informa-

tion at the transmitters might improve the achievable ssgttannel rate in multiuser systems.

VI. CoMPOUND MAC WITH CORRELATED SOURCES

Next, we consider a compound multiple access channel, irctwhivo transmitters wish
to transmit their correlated sources reliably to two reeesvsimultaneously [29]. The error

probability of this system is given as follows:

lI>

pmm) PT{ U (s1,85") # (SAZH,S’ZE)}
k

= Z p(“’Jlnv Sgnﬂj{ U (‘églv ‘§Z,L2) 7£ (Sgn7 Sgn)‘( T? Sgn) = (Sgn7 S?)} .

(87, sT)EST X ST k=12

The capacity region of the compound MAC is shown to be thersetdion of the two MAC
capacity regions in [27] in the case of independent souroelsn® receiver side information.
However, necessary and sufficient conditions for losslesssimission in the case of correlated
sources are not known in general. Note that, when there & isidrmation at the receivers,
finding the achievable source-channel rate for the compd®AE is not a simple extension
of the capacity region in the case of independent sources.tBuifferent side information at
the receivers, each transmitter should send a differentgdats source to different receivers.
Hence, in this case we can consider the compound MAC both asndination of two MACs,
and as a combination of two broadcast channels. We remaekthat even in the case of single
source broadcasting with receiver side information, imfational separation is not optimal, but
the optimal source-channel rate can be achieved by opeahtse@paration as is shown in [6].

We first state an achievability result for raie= 1, which extends the achievability scheme
proposed in [4] to the compound MAC with correlated side iinfation. The extension to other
rates is possible by considering blocks of sources and &isas superletters similar to Theorem
4 in [4].

Theorem 6.1:Consider lossless transmission of arbitrarily correlatedrces(S;, S;) over a

DM compound MAC with side informatiofi¥;, 175) at the receivers as in Figl. 1. Source-channel
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rate 1 is achievable if, fork = 1, 2,
H(S1]82,Wy) < I(Xy;Yi|Xo, S, Wi, Q),
H(S|S1, Wi) < I(Xg; Y3l X1, S1, Wi, Q),
H(Sy, S|U W) < I(Xy, Xo; ViU, Wi, Q),
and
H(Sy, So|Wy) < I(X1, Xg; Yi|[W3),

for some joint distribution of the form

p(Qv S1, 82,w1,w2,$1,$2,y17y2) = p(Q)p(Sl, 327w17w2)p(x1|Qa Sl)p(x2|% 52)p(y1>y2|$1,$2)

and
U= f(S1) = g(52)

is the common part of; and S, in the sense of Gacs and Korner.
Proof: The proof follows by using the correlation preserving magpscheme of [4], and

is thus omitted for the sake of brevity. [ |

In the next theorem, we provide sufficient conditions for dehievability of a source-channel
rate b. The achievability scheme is based on operational separathere the source and the
channel codebooks are generated independently of each bthmarticular, the typical source
outputs are matched to the channel inputs without any ekjblicning at the encoders. At the
receiver, a joint source-channel decoder is used, whichbeanonsidered as a concatenation
of a list decoder as the channel decoder, and a source deitadesearches among the list for
the source codeword that is also jointly typical with theesidformation. However, there are
no explicit source and channel codes that can be indepdypdesgd either for compressing the
sources or for independent data transmission over the iyimtecompound MAC. An alternative
coding scheme composed of explicit source and channel €dlat interact with each other is
proposed in [18]. However, the channel code in this lattéieste is not the channel code for
the underlying multiuser channel either.

Theorem 6.2:Consider lossless transmission of arbitrarily correlatedrcesS; and S, over

a DM compound MAC with side informatioll/; and W, at the receivers. Source-channel rate
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b is achievable if, fork = 1, 2,

H(S51]Ss, W) < bI(Xq; Yi| Xo, Q), (43)

H(S5|S1, Wy) < bI(Xs; Y| X1, Q), (44)
and

H(S1, So|Wy) < bI(Xy, Xo; Yi|@), (45)

for some|Q| < 4 and input distribution of the form(q, z1, z2) = p(q) p(x1|q)p(x2|q).

Remark 6.1:The achievability part of Theorem 6.2 can be obtained from ahhievability
of Theorem[6.Il. Here, we constrain the channel input didiobs to be independent of the
source distributions as opposed to the conditional digtiol used in Theoreiin_8.1. We provide
the proof of the achievability of Theorem 6.2 below to ilkagé the nature of the operational
separation scheme that is used.

Proof: Fix ¢, > 0 and~, > 0 for k = 1,2, and Py, and Px,. Forb =n/m andk = 1,2,
at transmitterk, we generatelf, = 2mHS+</2 jjd. lengthm source codewords and i.i.d.
length+» channel codewords using probability distributioffs, and Px,, respectively. These
codewords are indexed and revealed to the receivers asandllare denoted by}’ (i) andz}(7)
for 1 <i < M,.

Encoder:Each source outcome is directly mapped to a channel codeagfdllows: Given
a source outcomé;" at transmitterm, we find the smallest, such thatS;* = s7*(ix), and
transmit the codeword; (ix). An error occurs if no such, is found at either of the transmitters
k=1,2.

Decoder:At receiverk, we find the unique paifif, i) that simultaneously satisfies
(27 (1), 25 (15), V) € T vy,
and

(s7°(1), s5(35), W) € Ty, -

)

s is the set of weakly-typical sequences. An error is declared if thig %) pair is

(n
where T}y

not uniquely determined.
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Probability of error: We define the following events:
By = {Sy" # 570 (1), Vi}
B = {(s7(in), 55 (i2), W) & T oy, )
Ef = {(@} (1), 75(02), Vi) & Ty, )

and

E§ (1, 2) = {(s7° (). 85 (72). Wi") € Ty gy, @0 (27 (). 25 (32). V7)€ T(¢ . )

Here, E; denotes the error event in which either of the encoders fail§ind a unique
source codeword in its codebook that corresponds to itegtigource outcome. When such
a codeword can be found;5 denotes the error event in which the souré&sand S;* and the
side informationi¥, at receiverk are not jointly typical. On the other hand;} denotes the
error event in which channel codewords that match the cus@urce realizations are not jointly
typical with the channel output at receivér Finally E%(j;,j.) is the event that the source
codewords corresponding to the indicgsand j, are jointly typical with the side information
W, and simultaneously that the channel codewords correspgrtdi the indicesj; and j, are
jointly typical with the channel outpui’,.

Define 2™ £ Pr{(Sp, S5) # (Sp, Siw)}. Then Pmm < 5, 1, PI™™. Again, from the
union bound, we have
P{™ <Pr{Ef} + Pr{E;} + Pr{E{} + 3° EfGio) + X EfGj) + > EiGij),

o s g
(46)

wherei; andi, are the correct indices. We have

Ef(j1, j2) = Pr{(s1'(j1), 55'(j2), Wi") € T s iy, Pr{@i () @5 (72), Vi) € T xavigs, |

(47)
In [6] it is shown that, for any\ > 0 and sulfficiently largen,
Pr{Ef} = (1 - Pr{S" = sy"(1)})™"
< exp‘T"[H(S’“”WMk
= expﬂn[giw . (48)
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We choose\ < <

-5, and obtainPr{£,} — 0 asm — oo.

Similarly, we can also prove thdtr(E;(k)) — 0 for i = 2,3 andk = 1,2 asm,n — o
using standard techniques. We can also obtain
> Pr{(s1'(71). 55 (j2), Wi") € TG, Pr{(«(j1), 25(j2), Yi) € T},
(s Ue)s s2-UJ2)s Wy 151,52, Wiy, S+ 1 (\F1U1)s T2(J2), T [X1,X2,Yi]s,
J17i1,
J2=i2

< 9mlH(S1)+5]=mlI(S1;592,Wi) =M —n[l(X1;Y}| X2) -] (49)

— 2—m[H(Sl\Sg,Wk)—bI(Xl;Yk\XQ)—(b-i-l))\—%}

— 2—m[%—(b+1))\} (50)

where in [49) we used(1) andl (2); aid](50) holds if the coadgiin the theorem hold.
A similar bound can be found for the second summatiori_in (B6}.the third one, we have
the following bound.
_; Pr{(s7'(j1), 55 (j2)s W) € Ti6 s, i, } Pr @R () 25(32), Y3 € T xvy, |
J1F,
JaFiz
S 2m[H(Sl)+6/2]+m[H(Sg)+E/2}2—m[I(Sl;SQ,Wk)+I(SQ;Sl,Wk)—I(Sl;52\Wk)]—)\]2—n[I(X1,X2;Yk)—)\] (51)

< 9—m[H(S1]S2,Wy)+H (S2]51,Wg)—bl (X1,X2;Yk) = (b+1)A—¢]

_ g-mle=(b+1) (52)

)

where [51) follows from[(I1) and [3); anfd_(52) holds if the cibimhs in the theorem hold.
Choosing\ < min {ﬁ, 2(6—11)} we can make sure that all terms of the summation_ih (46) also
vanish asnm,n — oo. Any rate pair in the convex hull can be achieved by time stgarhence
the time-sharing random variabtg. The cardinality bound or) follows from the classical
arguments. n
We next prove that the conditions in Theoréml 6.2 are alsossecg to achieve a source-
channel rate ob for some special settings, hence, answering question fignafively for these
cases. We first consider the case in whighis independent ofS,, 17;) and S, is independent
of (51, W) . This might model a scenario in whidkix; (Rxs) andTx, (Tx;) are located close
to each other, thus having correlated observations, whéewo transmitters are far away from
each other (see Figl 3).
Theorem 6.3:Consider lossless transmission of arbitrarily correlatedrcesS; and S, over
a DM compound MAC with side informatiod/; andW,, whereS; is independent ofS,, 1)
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—éﬁ—b iFXl )(? iééi/ TFXl <£2L-
W R,X2 A/YZTL }/lek RXl 4—‘4/—17n
L 1
(Sghasgé) QSZH>STE>

Fig. 3. Compound multiple access channel in which the tréttesind (2) and receiver 2 (1) are located close to each o¢met,
hence have correlated observations, independent of tkee p#ir, i.e.,S; is independent ofS2, W1) and S, is independent of
(S1, Wa) .

and S, is independent of S}, W,) . Separation (in the operational sense) is optimal for this

setup, and the source-channel ratis achievable if, for(k,m) € {(1,2),(2,1)},

H(Sy) < bI(Xy; Yi| X, Q), (53)
H(Sp|Wk) < bI(X,; Yi| Xk, Q), (54)

and
H(Sg) + H(Sm|Wi) < bI(Xp, Xon: Y| Q), (55)

for some|Q| < 4 and input distribution of the form

p(q, z1, 22) = p(@)p(x1]q)p(w2|q). (56)

Conversely, if source-channel ratigs achievable, ther (53)-(65) hold with replaced by<
for an input probability distribution of the form given in@h
Proof: Achievability follows from Theorernh 612, and the converseqdiis given in Appendix
(] |
Next, we consider the case in which there is no multiple acasterference at the receivers

(see Fig[¥). We let), = (Y14, Yar) k = 1,2, where the memoryless channel is characterized

by
p(yl,la Y2,1, Y1,2, y2,2|$1, 932) = P(yl,b y172|9:1)p(y2,1, y2,2|$2)- (57)

On the other hand, we allow arbitrary correlation among th&rces and the side information.

However, since there is no multiple access interferencaguke source correlation to create
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N - v .
11— Txy Ly p<y1,17y1,2|x1) > Rxy —>(5T175{nz)
§ o vy .

Sy Txy 2 p(Y2,1, Yo,2|T2) > Rx, — (551, 535)

Y2

!

Wy

Fig. 4. Compound multiple access channel with correlatadces and correlated side information with no multiple asce

interference.

correlated channel codewords does not enlarge the ratenredithe channel. We also remark

that this model is not equivalent to two independent brosidchannels with side information.

The two encoders interact with each other through the adrogl among their sources.
Theorem 6.4:Consider lossless transmission of arbitrarily correlatedrcesS; and S, over

a DM compound MAC with no multiple access interference ctirazed by [(57) and receiver

side informationi¥; and W, (see Fig[}4). Separation (in the operational sense) is aptian

this setup, and the source-channel riais achievable if, for(k, m) = {(1,2),(2,1)}

H(Sk|Sm, Wi) < bI(Xy; Yik), (58)
H(Sm| S, Wi) < BI(Xoms Yink), (59)

and
H(Sk, Sm|Wi) < bI(Xk; Yer) + 1(Xm; Yor)], (60)

for an input distribution of the form

p(q, x1, 22) = p(q)p(z1]q)p(w2|q). (61)

Conversely, if the source-channel rates achievable, ther _(53)-(55) hold with replaced by
< for an input probability distribution of the form given ih@h
Proof: The achievability follows from Theorein 6.2 by lettig be constant and taking

into consideration the characteristics of the channel,revti&’;, Y7 ;,Y; ) is independent of
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(X2,Ya1,Ys2). The converse can be proven similarly to Theotem 6.3, andb&ilomitted for
the sake of brevity. [ |

Note that the model considered in Theorleni 6.4 is a genetializaf the model in [30] (which
is a special case of the more general network studied in ¢7fddre than one receiver. Theorem
considers correlated receiver side information whiah be incorporated into the model
of [30] by considering an additional transmitter sending thide information over an infinite
capacity link. In this case, using [30], we observe that rimfational source-channel separation
is optimal. However, Theorein 6.4 argues that this is no longes when the number of sink
nodes is greater than one even when there is no receiverrdmienation.

The model in Theorem 6.4 is also considered in [31] in theigpease of no side information
at the receivers. In the achievability scheme of [31], tnaitters first randomly bin their correlated
sources, and then match the bins to channel codewords. &thE@d shows that we can achieve
the same optimal performance without explicit binning eugrthe case of correlated receiver
side information.

In both Theoreni 613 and Theorem 16.4, we provide the optimalcgechannel matching
conditions for lossless transmission. While general matcltonditions are not known for
compound MACs, the reason we are able to resolve the prohtethese two cases is the
lack of multiple access interference from users with catesl sources. In the first setup the
two sources are independent, hence it is not possible torgieneorrelated channel inputs,
while in the second setup, there is no multiple access erente, and thus there is no need
to generate correlated channel inputs. We note here thabphimal source-channel rate in
both cases is achieved by operational separation answeotigquestion (2) and question (4)
affirmatively. The supoptimality of informational sepaoat in these models follows from [6],
since the broadcast channel model studied in [6] is a speasd of the compound MAC model
we consider. We refer to the example provided in [31] for thboptimality of informational
separation for the setup of Theoréml6.4 even without sidernmétion at the receives.

Finally, we consider the special case in which the two ressivshare common side infor-
mation, i.e.,W; = Wy = W, in which caseS; — W — S; form a Markov chain. For example
this models the scenario in which the two receivers are dlosach other, hence they have the
same side information. The following theorem proves theénaglity of informational separation

under these conditions.
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Theorem 6.5:Consider lossless transmission of correlated soufieand S, over a DM
compound MAC with common receiver side informatidn = W, = W satisfyingS; — W —.S;.
Separation (in the informational sense) is optimal in tleup, and the source-channel rates

achievable if, fork = 1 and2,
H(Si|W) < b 1(Xy; Y| Xe,Q), (62)
H(S[W) < b I(Xg; Vi X3, Q),
and
H(Si(W) + H(So|W) < b-1(X1, Xo; Y2|Q),

for some joint distributiorp(q, z1, x2, y) = p(q)p(x1|q) p(xa|q)p(y|z1, 22), With |Q| < 4.
Conversely, if the source-channel rates achievable, ther (62)-(63) hold with replaced by
< for an input probability distribution of the form given abav
Proof: The achievability follows from informational source-cimah separation, i.e, Slepian-
Wolf compression conditioned on the receiver side inforamefollowed by an optimal compound
MAC coding. The proof of the converse follows similarly tcetiproof of Theorenmh 512, and is

omitted for brevity. [ |

VII. I NTERFERENCE CHANNEL WITH CORRELATED SOURCES

In this section, we consider the interference channel (I@h worrelated sources and side
information. In the IC each transmitter wishes to commuieicanly with its corresponding
receiver, while the two simultaneous transmissions ieterfwith each other. Even when the
sources and the side information are all independent, thacty region of the IC is in general
not known. The best achievable scheme is given in [32]. Thadaty region can be characterized
in the strong interference case [36], [10], where it coiesidvith the capacity region of the
compound multiple access channel, i.e., it is optimal fer tbceivers to decode both messages.
The interference channel has gained recent interest duts foractical value in cellular and
cognitive radio systems. See [33] - [35] and referencesethdor recent results relating to the

capacity region of various interference channel scenarios
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For encoders’™™ and decoderg!"™", the probability of error for the interference channel

is given as
pmm & prdo ) S #£ S
k=1,2
- > (st Sgn)P{ Skw 7 Sk ‘ (57", 55 )}
(s, 85 )EST X Sg k=1,2

In the case of correlated sources and receiver side infavmasufficient conditions for the
compound MAC model given in Theordm 6.1 and Theorerm 6.2 ses\vaufficient conditions for
the IC as well, since we can constrain both receivers to oltasless reconstruction of both
sources. Our goal here is to characterize the conditionsruntlich we can provide a converse
and achieve either informational or operational sepanaimilar to the results of Sectién MI. In
order to extend the necessary conditions of Thedrein 6.3 Ardréni 6.5 to ICs, we will define
the ‘strong source-channel interference’ conditions.eNtbiat the interference channel version
of Theoren{ 6.4 is trivial since the two transmissions do nt¢rfere with each other.

The regular strong interference conditions given in [36fespond to the case in which, for all
input distributions at transmittérx;, the rate of information flow to receivétx, is higher than
the information flow to the intended receivRk;. A similar condition holds for transmittérx,
as well. Hence there is no rate loss if both receivers dedoglentessages of both transmitters.
Consequently, under strong interference conditions, dpadcity region of the IC is equivalent to
the capacity region of the compound MAC. However, in thetjsurce-channel coding scenario,
the receivers have access to correlated side informatibas Tvhile calculating the total rate
of information flow to a particular receiver, we should notyononsider the information flow
through the channel, but also the mutual information thegaaly exists between the source and
the receiver side information.

We first focus on the scenario of Theoréml6.3 in which the sohcis independent of
(Sa, W) and S, is independent of Sy, W7).

Definition 7.1: For the interference channel in which is independent of Sy, ;) and S,
is independent of S,, W), we say that thestrong source-channel interference conditicare

satisfied for a source-channel rditéf,

b-I(X1;Y1|Xs) < b-I(Xy; Y| Xo) 4+ 1(S1; Wa), (63)
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and
b-I(Xo; Yo |Xy) < b-I(Xo; V1| Xy) 4 1(So; W), (64)

for all distributions of the formp(wy, ws, s1, s2, 1, x2) = p(wy, wa, s1, S2)p(x1|s1)p(T2|52).

For an IC satisfying these conditions, we next prove theotailhg theorem.

Theorem 7.1:Consider lossless transmissiongfand.S, over a DM IC with side information
W, andW,, whereS; is independent of Sy, W;) and .S, is independent of Sy, W;). Assuming
that the strong source-channel interference condition®efinition [7.1 are satisfied fob,
separation (in the informational sense) is optimal. Thes®ghannel raté is achievable if, the
conditions [(4B){(45) in Theorem 6.2 hold. Conversely, teriais achievable, then the conditions
in Theoren 6.2 hold with< replaced by<.

Before we proceed with the proof of the theorem, we first pribnefollowing lemma.

Lemma 7.2:1f (5, Ws) is independent ofS,, 17;) and the strong source-channel interference
conditions [(6B){(64) hold, then we have

I(X3; Y XT) < I(Xgs Y| XT) + 1055 W), (65)
and
I(XT Y X) < I(XTS Y5 | X9) + 1(ST Wa), (66)

for all m andn satisfyingn/m = b.

Proof: To prove the lemma, we follow the techniques in [10]. Comudit{64) implies

I(X2;Y2|X17U) - I(Xz;Yl‘XlaU) < I(Sz;W1) (67)

S =

for all U satisfyingU — (X1, X») — (Y1, Y3).
Then as in [10], we can obtain

I(X3; Y XT) = I(X3; Y XT) =1(Xan; Yan| X7, Y5 1) — 1(Xon; Yia| X7, Y51
+ I(X5 Y XY, Yin) — (XL Y HXT, Yia)
=1(Xop; You| X15) — 1(Xon; Yin| X1n)
IO YR — 1O

= Z[I(Xm; Yzz'|X1i) - ](Xzz'; Y1i|X1i)]-
i=1
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Using the hypothesis (64) of the theorem, we obtain

n n n n n n n
I(X2513|X1)_I(X27Y |X) g (Sz;Wl)

1S5 W),

Eqn. [66) follows similarly. [ |
Proof: (of Theoreni_7]1Achievability follows by having each receiver decode bsthand
S,, and then using Theorem 6.1. We next prove the converse. f38p98), we have

IO YTX) 2 4 [H(S) — SR (69
We can also obtain
LK YEIXG) > [ YK — 18T ) (69)
= S {H(S) — ()] =~ E(S7 W), (70)
= S[H(S,Ws) — 6(P)], (1)

in which (69) follows from [66), and_(70) froni_(68).

Finally for the joint mutual information, we have

1 n n n 1 n n n n n
EI(X17X2§Y1 ) :_[I(Xﬁyi)‘i‘f(Xz%Yi |X1)]7

> L[S YE) + TOX Y 1XD) — 1S3 W)L (72
> (ST YY) + 1S3 V3XD) — TS5 W), 73)
= [H(ST) ~ H(STY?) + H(SYIXY) ~ H(SP VS, X7)

+H(SPIWE) — H(SP))
> L[H(SY) ~ H(SYIY?) — H(SIYY) + H(SP W)L (74)
= [H(SY) — H(SPY?, W) — H(SPIYEL W) + H(SPIWE), (79)
>4 (H(S:) + H(S:lIW2) — 20(P), (76)

for any ¢ > 0 and large enoughn and n, where (72) follows from the data processing
inequality and [(65);([73) follows from the data processing inequality sing — X' — Y;"

form a Markov chain giverX7{; (74) follows from the independence of] and.S;* and the fact

DRAFT



33

X Two-way Xy

m - <
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Fig. 5. The two-way channel model with correlated sources.

that conditioning reduces entropfZ5) follows from the fact thatS; is independent ofS,, W)
and S, is independent of S,, W;); and (76) follows from Fano’s inequality. The rest of the
proof closely resembles that of Theoréml|6.3. [ |

Next, we consider the IC version of the case in Theotem 6.5yhich the two receivers
have access to the same side informatibhand with this side information the sources are
independent. While we still have correlation between theces and the common receiver side
information, the amount of mutual information arising frahis correlation is equivalent at both
receivers sincél; = W,. This suggests that the usual strong interference chammalittons
suffice to obtain the converse result. We have the followhreptem for this case.

Theorem 7.3:Consider lossless transmission of correlated sousgeand S; over the strong
IC with common receiver side informatidi; = Wy = W satisfyingS; — W — S,. Separation
(in the informational sense) is optimal in this setup, arel shurce-channel rateis achievable
if and only if the conditions in Theoref 6.5 hold.

Proof: The proof follows from arguments similar to those in the grobTheorem 6.6 and

results in [28], where we incorporate the strong interfeeeoonditions. [ ]

VIII. T wo-WAY CHANNEL WITH CORRELATED SOURCES

In this section, we consider the two-way channel scenarib worrelated source sequences
(see FigLh). The two-way channel model was introduced byn&bra [3] who gave inner and
outer bounds on the capacity region. Shannon showed thatrigs bound is indeed the capacity
region of the “restricted” two-way channel, in which the ohal inputs of the users depend only
on the messages (not on the previous channel outputs).gb@waroved outer bounds are given
in [37]-[39] using the “dependence-balance bounds” preddsy Hekstra and Willems.
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In [3] Shannon also considered the case of correlated ssueicel showed by an example that
by exploiting the correlation structure of the sources wghhiachieve rate pairs given by the
outer bound. Here we consider arbitrarily correlated sesiiand provide an achievability result
using the coding scheme for the compound MAC model in Sefirit is possible to extend
the results to the scenario where each user also has sideatfon correlated with the sources.

In the general two-way channel model, the encoders obséegast channel outputs and
hence they can use these observations for encoding futareehinput symbols. The encoding

function at user at time instantj is given by
fij: S % yij_l — &, (77)

for ¢« = 1, 2. The probability of error for the two-way channel is given as

peer 2 el U s ]

k=12
= > plst s?)P{ U sy # spl(sy, s = (7, s?)} :
(s ) €S < Y k=12
Note that, if we only consider restricted encoders at thesilgan the system model is equivalent
to the compound MAC model of Figl 1 with[" = S7* and W3 = S7*. From Theoreni 6]1 we
obtain the following corollary.
Corollary 8.1: In lossless transmission of arbitrarily correlated sosircg, S;) over a DM

two-way channel, the source-channel rate 1 is achievable if
H(Sl‘SQ) < I(Xl; Yé‘Xg, SQ, Q) and
H(S:|S1) < I(X2;Y31]X1,51,Q),

for some joint distribution of the form

p(q, 51,52, %1, T2, y1,Y2) = p(q)p(s1, s2)p(x1]q, 51)p(@2|q, 52)P (Y1, Yo|T1, T2).
Note that here we use the source correlation rather thandhrelation that can be created

through the inherent feedback available in the two-way nkanThis correlation among the
channel codewords potentially helps us achieve sourcenehaates that cannot be achieved
by independent inputs. Shannon’s outer bound can also eaded to the case of correlated

sources to obtain a lower bound on the achievable souramehaate as follows.
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Proposition 8.2:In lossless transmission of arbitrarily correlated sosifcg, S;) over a DM

two-way channel, if the source-channel rates achievable, then
H(S51]52) < bI(Xy;Ys|Xs) and
H(Sg|51) < b[(Xg,Y”Xl),

for some joint distribution of the form

p(Sh 52,561,5627%73/2) :p<317 82)p($17xz)p(y17y2\$17$2)-
Proof: We have

H(S7"[85") = I(ST"; Y3'[55") + H(S1"[55", ¥5") (78)
I(S7";Yy']S5") + md(P™™) (79)
= H(Y;'|Sy") — H(Y3'|ST", 55") + ma(P™™) (80)

H(Yail Sy, Y3 ™1) = H(Yail ST, 85", Y3 ™1) +ma(P™™) (81)

I

@
Il
—

H(Yai| Sy, Vo™ X3) — H(Yau| ST, S5, Yo YiTh, Xog) + md(P™™) (82)

IN

s
I
—_

<N H(Yoi| Xog) — H(Yas| ST, S5, Yo L Vi Xy, Xog) + mS(PI™™) (83)
1=1

<N H(Yoi| Xoi) — H(Yai| X1, X)) + mo (P (84)
=1

< Z I( X155 Yos| Xo;) + mo (P (85)

.
Il
—

where [(19) follows from Fano’s inequality; _(82) follows s X} is a deterministic function

of (S7,Y;~!) and the fact that conditioning reduces entropy: (83) fotlcsimilarly asX? is

a deterministic function ofS7”, Yy~!) and the fact that conditioning reduces entropy; dnd (84)
follows sinceYy; — (X1, Xo;) — (ST, S5, Yo~ 1 Yi~1) form a Markov chain.

Similarly, we can show that
H(S3'S7) < i (X35 Yail X1) + mo(PI™™). (86)
From convexity arguments and Iet_tmng, n — oo, wWe obtain
H(51|52) < bI(Xq; Yo Xa), (87)
H(S3]S1) < bI(Xy; Y1 X1), (88)
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for some joint distributiorp(zy, z5). [ ]

Remark 8.1:Note that the lower bound of Proposition8.2 allows all polkesjoint distributions
for the channel inputs. This lets us express the lower boardseparable form, since the source
correlation becomes useless to introduce any additiomattsre to the transmitted channel
codewords. In general, not all joint channel input disttidais can be achieved at the two users,
and tighter bounds can be obtained by limiting the set of iptesgoint distributions as in [37]-
[39].

However, if the existing source correlation allows the sse&r generate the optimal joint
channel input distribution, then the achievable regioregivn Corollary[8.l might meet the
upper bound without the need to exploit the feedback to geedurther correlation. This has
been illustrated by an example in [3]. Shannon considerectleded binary sourceS; and .S,
such that

P s,(S1=0,8 =1) = Pg,5,(S1 =1,5, = 0) = 0.275

and
P5152(51 - 1, Sg == 1) == 045,

and a binary multiplier two-way channel, in which
X=X, =) =),=1{0,1}

and
Yi=Y, =X Xs.

Using Propositiol 812, we can set a lower bound ef 1 on the achievable source-channel rate.
On the other hand, the source-channel raté cdn be achieved simply by uncoded transmission.
Hence, in this example, the correlated source structurblenahe transmitter to achieve the
optimal joint distribution for the channel inputs withoutpoiting the inherent feedback in the
two-way channel. Note that the Shannon outer bound is na¢eable in the case of independent
sources in a binary multiplier two-way channel [37], and #ohievable rates can be improved

by using channel inputs dependent on the previous chantglisu
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IX. CONCLUSIONS

We have considered source and channel coding over multhaanels with correlated receiver
side information. Due to the lack of a general source-chlasegaration theorem for multiuser
channels, optimal performance in general requires joint@channel coding. Given the dif-
ficulty of finding the optimal source-channel rate in a gehsedting, we have analyzed some
fundamental building-blocks of the general setting in ewhseparation optimality. Specifically,
we have characterized the necessary and sufficient conslifior lossless transmission over
various fundamental multiuser channels, such as multipteess, compound multiple access,
interference and two-way channels for certain source+fodladistributions and structures. In
particular, we have considered transmitting correlatadas over the MAC with receiver side
information given which the sources are independent, antsinitting independent sources over
the MAC with receiver side information given which the sasgare correlated. For the compound
MAC, we have provided an achievability result, which hasrbskeown to be tight i) when each
source is independent of the other source and one of the rsidiemiation sequences, ii) when
the sources and the side information are arbitrarily cateel but there is no multiple access
interference at the receivers, iii) when the sources anelated and the receivers have access to
the same side information given which the two sources arepeddent. We have then showed
that for cases (i) and (iii), the conditions provided for tt@mpound MAC are also necessary
for interference channels under some strong source-chaonditions. We have also provided
a lower bound on the achievable source-channel rate fomthemMay channel.

For the cases analyzed in this paper, we have proven the ajtirof designing source and
channel codes that are statistically independent of edwdr,dience resulting in a modular system
design without losing the end-to-end optimality. We havevah that, in some scenarios, this
modularity can be different from the classical Shannon sgearation, called the ‘informational
separation’, in which comparison of the source coding ratgion and the channel capacity
region provides the necessary and sufficient conditionshi@rachievability of a source-channel
rate. In other words, informational separation requires separate codes used at the source
and the channel coders to be the optimal source and the dheodes, respectively, for the
underlying model. However, following [6], we have shown éndor a number of multiuser

systems that a more general notion of ‘operational separatan hold even in cases for which
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informational separation fails to achieve the optimal setchannel rate. Operational separation
requires statistically independent source and channescadhich are not necessarily the optimal
codes for the underlying sources or the channel. In the daggenational separation, comparison
of two rate regions (not necessarily the compression radetla® capacity regions) that depend
only on the source and channel distributions, respectiyelyvides the necessary and sufficient
conditions for lossless transmission of the sources. Thesdts help us to obtain insights into

source and channel coding for larger multiuser networkd,@entially would lead to improved

design principles for practical implementations.

APPENDIX |

PROOF OFTHEOREM[G.3

Proof: The achievability again follows from separate source armhobl coding. We first
use Slepian-Wolf compression of the sources conditionetheneceiver side information, then
transmit the compressed messages using an optimal mudiipless channel code.

An alternative approach for the achievability is possibfecbnsideringi¥; as the output of a
parallel channel fronf,, S, to the receiver. Note that this parallel channel is usetimes for
n uses of the main channel. The achievable rates are themebtttllowing the arguments for
the standard MAC:

mH(S)) < I(ST", X7 Y\, W' Xy, Sy, Q) (89)
= I(S7; WSy + (X7 V' X5, Q) (90)
= mlI(S;; W1|Ss) +nl(Xy; Y1 X5, Q), (91)

and using the fact thai(sy, so, w1) = p(s1)p(s2)p(ws]|s1, s2) we obtain [(38) (similarly for[(39)
and [40)). Note that, this approach provides achievablecsechannel rates for general joint
distributions ofS;, S, and ;.
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For the converse, we use Fano’s inequality giveriin (11) Bd). We have

LI YIXG) > I(spvIXg), (92)
= (ST YYIXE), (93)
> Lrgspvrixg w,
> L[H(STISE, WY') — ma(P)) (94)
> SIH(Si]S2, W) = 6(PI™),

where (92) follows from the Markov relatior57* — X7 — Y}" given X7; (©3) from the Markov
relation W™ — (X7, S1") — Y;"; and (©@4) from Fano’s inequality[(14).
We also have
1 n
- Z I(X1; Y1, Xo) >

i=1

I(XT, X35 Y(")

vV
Sl I

[H (Sy|Sa, W) — (P,

Similarly, we have

n

1
- Z I( X9 Y11 X)) >

i=1

1
E[H(S2|51= Wi) — &(Prmm)],

and

n

S I Xy, Xop Vi) >

i=1

[H (S1, So|Wy) — (P,

S|

S

As usual, we letP™™ — 0, and introduce the time sharing random variatleuniformly
distributed over1,2,...,n} and independent of all the other random variables. Then \iieale
X; 2 X0, Xo & Xpg andY; £ Yig. Note thatPr{X, = 11, Xy = 15|Q = ¢} = Pr{X,|Q =
q} - Pr{X;|@Q = ¢} since the two sources, and hence the channel codewordsydependent

of each other conditioned of. Thus, we obtain[(38)-(40) for a joint distribution of therifo
(41). n
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APPENDIX Il

PROOF OFTHEOREM[6.3

We have
LK Yy IXg) 2 1S YR, (95)
—H(STIXD) — H(STIVY.X3) (%6)
>~[H(S?) - H(STIY) ©7)
> % [H(S1) = 8(P)] (98)

for any e > 0 and sufficiently largen and n, where (95) follows from the conditional data
processing inequality since* — X7 — Y;* forms a Markov chain giverX?; (97) from the
independence of}* and X' and the fact that conditioning reduces entropy; &@ from the
memoryless source assumption, and from Fano’s inequality.

For the joint mutual information, we can write the followisgt of inequalities:

LI XY 2 L IST SE YY), (99)
= %I(S{”, Sy W Y, (100)
> SIS, SpS YT, (101)
_ %[H(S{”, SE W) — H(SY, S|y, Wi,

= C[H(ST) + H(SFIW") — H(ST, 7V, W), (102)
> % H(S)) + H(S| W) — 6(Pmm) |, (103)

for any e > 0 and sufficiently largen and n, where (Q9) follows from the data processing
inequality since(S7", S5") — (X7, X¥) — Y{* form a Markov chain;([100) from the Markov
relation ;™ — (57", S3*) — Y{"; (101) from the chain rule and the non-negativity of the mutual
information;([102) from the independence of™ and (S5, W{"); and([103) from the memoryless
source assumption and Fano’s inequality.

It is also possible to show that

D I( Xy Yii Xoi) > I(XT5 Y XD, (104)

i=1
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and similarly for other mutual information terms. Then,ngsthe above set of inequalities and

letting (™™ — 0, we obtain

1 12
EH(SQ < EZI(XM;YMX%),

=1

1 12
EH(S2|W1) < gZI(X2i;}/ii‘Xli)a

.
I
—

and

n

1 1
E(H(Sl) + H(S:|W1)) < EZI(XM,X%YM),
i1

for any product distribution o/t x X,. We can write similar expressions for the second receiver
as well. Then the necessity of the conditions of Thedreh &r2lie argued simply by inserting

the time-sharing random variab{g.
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