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Abstract

Consider communication over a binary-input memoryless output-
symmetric channel with low density parity check (LDPC) codes and
maximum a posteriori (MAP) decoding. The replica method of spin
glass theory allows to conjecture an analytic formula for the average
input-output conditional entropy per bit in the infinite block length
limit. Montanari proved a lower bound for this entropy, in the case of
LDPC ensembles with convex check degree polynomial, which matches
the replica formula. Here we extend this lower bound to any irregular
LDPC ensemble. The new feature of our work is an analysis of the
second derivative of the conditional input-output entropy with respect
to noise. A close relation arises between this second derivative and
correlation or mutual information of codebits. This allows us to extend
the realm of the “interpolation method”, in particular we show how
channel symmetry allows to control the fluctuations of the “overlap
parameters”.
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1 Introduction and Main Results

Linear codes based on sparse random graphs have emerged as a major chap-
ter of coding theory [1]. While the belief propagation (BP) decoding algo-
rithm and density evolution method have been explored in detail because of
their low algorithmic complexity and good performance, much remains to be
understood about the optimal (MAP) performance bounds of sparse graph
codes. Recent theoretical progress on the binary erasure channel (BEC) has
convincingly shown that BP and MAP decoding have intimate relationships
(see [1] and in particular [4]), but understanding this relationship for other
channels is still a largely open problem. In fact, the replica and/or cavity
methods of statistical mechanics of dilute spin glass models allow to conjec-
ture an analytic formula forHn(X|Y ), the entropy of the transmitted message
X = (X1, ..., Xn) conditional to the received message Y = (Y1, ..., Yn) in the
large block length limit n → +∞. The replica formula expresses the condi-
tional entropy as the solution of a variational problem whose critical points
are given by the density evolution fixed point equation (see [2], [3]). If one
is to solve the fixed point equation iteratively, the choice of initial conditions
is not necessarily the one given by channel outputs (as in standard density
evolution) but the one which yields the maximum conditional entropy. Note
that a byproduct of the replica formula is the determination of the maximum
a posteriori (MAP) noise threshold, above which reliable communication is
not possible whatever the decoding algorithm.

The proof of the replica formulas is, in general, an open problem1. In the
context of communication they have been proven for a class of low density
parity check codes (LDPC) codes on the BEC [11], [12] (see also [13] for
recent work going beyond the BEC) and for low density generator codes
(LDGM) on a class of channels [14].

A promising approach towards a general proof of the replica formulas
seems to be the use of the so-called interpolation method first developped
in the context of the SK model [15], [16], [17]. Consider an LDPC(n,Λ, P )
ensemble where Λ(x) =

∑

d Λdx
d, P (x) =

∑

k Pkx
k are the variable and

check degree distributions from the node perspective. We will always assume
that the maximal degrees are finite. Montanari [7] (see also the related

1In a few spin glass models the replica formulas have been fully demonstrated. Re-
markably Talagrand [5] has proven the Parisi formula with full symmetry breaking [6] for
the Sherrington-Kirkpatrick (SK) model. In [10] it is shown that the replica symmetric
formula holds for a complete p-spin model with gauge symmetry.
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work of Franz-Leone [8] and Talagrand- Pachenko [9]) has developped the
interpolation method for such a system and has derived a lower bound for
the conditional entropy for ensembles with any polynomial Λ(x) but P (x)
restricted to be convex for −e ≤ x ≤ e (in particular if the check degree
is constant this means it has to be even). An important fact is that these
lower bounds match the replica solution, and are thus believed to be tight.
Since Fano’s inequality tells us that the block error probability for a code
having length n and rate r is lower bounded by 1

rn
Hn(X|Y ), an immediate

application of the lower bound is the numerical computation of a rigorous
upper bound on the MAP threshold.

In the present paper we drop the convexity requirement for P (x) in the
cases of the BEC, BIAWGNC with any noise level an in the case of general
binary memoryless (BMS) channels in a high noise regime. In other words we
prove the lower bound for any standard regular (so odd degrees are allowed)
or irregular code ensemble.

Besides the main result itself, we introduce a new tool in the form of a
relationship between the second derivative of the conditional entropy with
respect to the noise and correlations functions of codebits. These correlation
functions are shown to be intimately related to the mutual information be-
tween two codebits. The formulas are somewhat similar to those for GEXIT
functions [1] which relate the first derivative of conditional entropy to soft
bit estimates. By combining these relations with the interpolation method
we are able to control the fluctuations of the so-called overlap parameters.
This part of our analysis is crucial for proving the general lower bound on
the conditional entropy and relies heavily on channel symmetry.

A preliminary summary of the present work has appeared in [20].

1.1 Variational bound on the conditional entropy

Let pY |X(y|x) be the transition probability of a BMS(ǫ) channel where ǫ is
the noise parameter (understood to vary in the appropriate range). We will
work in terms of both the likelihood

l = ln

[

pY |X(y|0)
pY |X(y|1)

]

and difference

t = pY |X(y|0)− pY |X(y|1) = tanh
l

2
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variables. It will be convenient to use the notation cL(l) and cD(t) for the
distributions of l and t, assuming that the all zero codeword is transmitted
(that is to say that cL(l)dl = cD(t)dt = pY |X(y|0)dy).

Let V be some random variable with an arbitrary density dV (v) satisfying
the symmetry condition dV (v) = evdV (−v). Also let

U = tanh−1

[k−1
∏

i=1

tanhVi

]

(1)

where Vi are i.i.d copies of V and k is the (random) degree of a check node.
We denote by Uc, c = 1, ..., d i.i.d copies of U where d is the (random)
degree of variable nodes. Notice that in the belief propagation (BP) decoding
algorithm U appears as the check to variable node message and V appears
as the variable to check node message. Define the functional2 (we view it as
a functional of the probability distribution dV )

hRS [dV ; Λ, P ] =El,d,Uc

[

ln

(

e
l
2

d
∏

c=1

(1 + tanhUc) + e−
l
2

d
∏

c=1

(1− tanhUc)

)]

+
Λ′(1)

P ′(1)
Ek,Vi

[

ln(1 +

k
∏

i=1

tanhVi)

]

− Λ′(1)EV,U

[

ln(1 + tanhV tanhU)

]

− Λ′(1)

P ′(1)
ln 2

Our main result is about the conditional entropy per bit, averaged over the
code ensemble C = LDPC(n,Λ, P ).

EC[hn] =
1

n
EC[Hn(X|Y )]

Definition H. We define the parameters (p an integer)

m
(2p)
0 = E[t2p], m

(2p)
1 =

d

dǫ
E[t2p], m

(2p)
2 =

d2

dǫ2
E[t2p] (2)

2The subscript RS stands for “replica symmetric” because this functional has been
obtained from the replica symmetric ansatz for an appropriate spin glass, see for example
[3], [2]
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and say that a BMS(ǫ) channel is in the high noise regime if the following
series expansions

∑

p

(p+ 1)m
(2p)
0

∑

p

(5

2

)2p|m(2p)
1 |

∑

p

|m(2p)
2 |

2p(2p− 1)
(3)

are convergent and if

(
√
2− 1)

(5

2

)2|m(2)
1 | >

∑

p≥2

(5

2

)2p|m(2p)
1 |

For example the BSC(ǫ) certainly satisfies H if the crossover noise pa-
rameter is close enough to 1

2
, because E[t2p] = (1 − 2ǫ)2p. More generaly

any channel with bounded likehood variables satisfies H for a regime of suf-
ficiently high noise. For channels with unbounded likehoods the condition
will be satisfied if cL(l) has sufficiently good decay properties. But note that
the BEC(ǫ) which has mass at l = +∞ does not satisfy this condition since
E[t2p] = 1− ǫ. However as we will see for the BEC(ǫ) and the BIAWGNC(ǫ)
we do not need condition H . For these two channels our analysis can be
made fully non-perturbative, and holds for all noise levels.

Theorem 1 (Variational Bound). Assume communication using a stan-
dard irregular C = LDPC(n,Λ, P ) code ensemble, through a BEC(ǫ) or
BIAWGNC(ǫ) with any noise level or a BMS(ǫ) channel satisfying H. For
all ǫ in the above ranges we have,

lim inf
n→+∞

EC[hn] ≥ sup
dV

hRS [dV ; Λ, P ]

Let us note that this theorem already appears in [18] for the special case
of the BIAWGNC for a Poissonnian Λ(x). We stress again that a formal
calculation using the replica method yields

lim
n→+∞

EC [hn] = sup
dV

hRS[dV ; Λ, P ]

For this reason it is strongly suspected that the converse inequality holds as
well, but so far no progress has been made except in a limited number of
situations alluded to before.
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1.2 Derivatives of the conditional entropy

Our proof of the variational bound uses integral formulas for the first and sec-
ond derivatives of EC[hn] with respect to the noise parameter. The ensemble
formulas follow from slightly more general ones that are valid for any fixed
linear code. To give the formulation for a fixed linear code it is convenient
to introduce a noise vector ǫ = (ǫ1, ..., ǫn) and a BMS(ǫ) channel with noise
level ǫi when bit xi is sent. When all noise levels are set to the same value
ǫ the channel is denoted BMS(ǫ). The distributions of the likelihood li or
difference domain ti representations of the channel outputs now depend on
ǫi. In order to keep the notation simpler we do not explicitely indicate the
ǫi dependence and still denote them as cL(li) and cD(ti) respectively.

We introduce the soft MAP estimates of bit Xi

Li = ln

[

pXi|Y (0|y)
pXi|Y (1|y)

]

, Ti = pXi|Y (0|y)− pXi|Y (1|y) = tanh
Li

2

and the soft estimate for the modulo 2 sum Xi ⊕Xj,

Lij = ln

[

pXi⊕Xj |Y (0|y)
pXi⊕Xj |Y (1|y)

]

, Tij = pXi⊕Xj |Y (0|y)− pXi⊕Xj |Y (1|y) = tanh
Lij

2

In the sequel the notations v∼i (resp. v∼ij) means that component vi (resp.
vi and vj) are omitted from the vector v. The following is known [1] but we
state it for completeness. A derivation in the spirit of the present paper can
also be found in [19].

Proposition 1 (GEXIT formula). For any BMS(ǫ) channel and any fixed
linear code we have

∂

∂ǫi
Hn(X | Y ) =

∫ +1

−1

dti
∂cD(ti)

∂ǫi
g1(ti)

where

g1(ti) = −Et∼i

[

ln

(

1− tiTi
1− ti

)]

This formula will be used for an ensemble that is symmetric under per-
mutation of bits and a BMS(ǫ) channel. Using

d

dǫ
Hn(X | Y ) =

n
∑

i=1

∂

∂ǫi
Hn(X | Y )

∣

∣

∣

∣

ǫi=ǫ
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and averaging over the code ensemble C we get for the average entropy per
bit,

d

dǫ
EC[hn] =

∫ +1

−1

dt1
∂cD(t1)

∂ǫ
EC [g1(t1)]

There are two channels where these general formulas take a simpler form.
For the BEC3

∂

∂ ln ǫi
Hn(X | Y ) = ln 2(1− Et[Ti]) (4)

and
d

d ln ǫ
EC[hn] = ln 2(1− EC,t[T1]) (5)

Similarly on the BIAWGNC,

∂

∂ǫ−2
i

Hn(X | Y ) = −1

2
(1− EC,l[Ti]) (6)

and
d

dǫ−2
EC[hn] = −1

2
(1− EC,t[T1]) (7)

We will prove

Proposition 2 (Correlation formula). For any BMS(ǫ) channel and any
fixed linear code we have

∂2

∂ǫi∂ǫj
Hn(X | Y ) =δij

∫ +1

−1

dti
∂2cD(t1)

∂ǫ2i
g1(ti)

+ (1− δij)

∫ +1

−1

∫ +1

−1

dtidtj
∂cD(ti)

∂ǫi

∂cD(tj)

∂ǫj
g2(ti, tj)

with

g2(ti, tj) = Et∼ij

[

ln

(

1− tiTi − tjTj + titjTij
1− tiTi − tjTj + titjTiTj

)]

3In this case the ratio in the logarithm may take the ambiguous value 0

0
but the formula

is to be interpreted as (4). We will see in section 2 that in terms of extrinsic soft bit
estimates there is an analogous expresion that is unambiguous.
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Again, for the case of interest later on, we have a BMS(ǫ) channel and a
linear code ensemble that is symmetric under permutations of bits, thus

d2

dǫ2
EC [hn] =

∫ +1

−1

dt1
∂2cD(t1)

∂ǫ2
EC[g1(t1)] (8)

+
∑

i 6=1

∫ +1

−1

∫ +1

−1

dt1dti
∂cD(t1)

∂ǫ

∂cD(ti)

∂ǫ
EC [g2(t1, ti)]

For the BEC4 these formulas simplify

∂2

∂ ln ǫi∂ ln ǫj
Hn(X | Y ) = (1− δij) ln 2Et

[

Tij − TiTj ]

and

d2

(d ln ǫ)2
EC[hn] = ln 2

n
∑

i 6=1

EC,t

[

T1i − T1Ti] (9)

For the BIAWGNC

∂2

∂ǫ−2
i ∂ǫ−2

j

Hn(X | Y ) = 1

2
Et[
(

Tij − TiTj
)2
], (10)

and

d2

(dǫ−2)2
EC[hn] =

1

2

n
∑

i=1

EC,t[
(

T1i − T1Ti
)2
] (11)

Formulas (9) and (11) involve the “correlation” (Tij − TiTj) for bits Xi and
Xj. The general formula (8) can also be recast in terms of powers of such
correlations by expanding the logarithm (see section 3). Loosely speaking,
in the infinite block length limit n → +∞, the second derivative will be
well defined only if the correlations have sufficient decay with respect to the
graph distance (the minimal length among all paths joining i and j on the
Tanner graph). Thus we expect good decay properties for all noise levels
except at the phase transition thresholds where, in the limit n → +∞, the
first derivative generally has bounded discontinuities, and thus the second
derivative cannot be uniformly bounded in n.

4The same remark than before applies here.
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1.3 Relation to mutual information

The correlation Tij − TiTj is basicaly a measure of the independence of two
codebits, thus it is natural to expect that it should be related to the mutual
information I(Xi;Xj | Y ). We do not pursue this issue in all details because
it is not used in the rest of the paper, but wish to briefly state the main
relations which follow naturaly form the previous formulas.

The BEC(ǫ). Take i 6= j. The chain rule implies Hn(X | Y ) = H(XiXj |
Y ) + H(X∼ij | XiXjY ). Also H(X∼ij | XiXjY ) = H(X∼ij | XiXjY

∼ij).
Since H(X∼ij | XiXjY

∼ij) does not depend on ǫi, ǫj we have

∂2

∂ǫi∂ǫj
Hn(X | Y ) = ∂2

∂ǫi∂ǫj
H(XiXj | Y )

The conditional entropy on the r.h.s is explicitly ǫiǫjH(XiXj |Y ∼ij) + ǫi(1−
ǫj)H(Xi|XjY

∼ij) + (1 − ǫi)ǫjH(Xj|XiY
∼ij). In this expression the three

conditional entropies are independent of the channel parameters ǫi and ǫj .
Thus

∂2

∂ǫi∂ǫj
Hn(X | Y ) = H(XiXj | Y ∼ij)−H(Xi | XjY

∼ij)−H(Xj | XiY
∼ij)

= H(Xj | Y ∼ij)−H(Xj | XiY
∼ij)

= I(Xi;Xj | Y ∼ij) =
1

ǫiǫj
I(Xi;Xj | Y )

Summarizing, we have obtained for i 6= j,

∂2

∂ ln ǫi∂ ln ǫj
Hn(X | Y ) = I(Xi;Xj | Y ) = Et[Tij − TiTj]

The BIAWGNC(ǫ). Take i 6= j. We note that

Tij = pXiXj |Y (00 | y) + pXiXj |Y (11 | y)− pXiXj |Y (01 | y)− pXiXj |Y (10 | y)

from which it follows

(Tij − TiTj)
2 ≤ 4

∑

xi,xj

∣

∣

∣

∣

pXiXj |Y (xixj | y)− pXi|Y (xi | y)pXj |Y (xj | y)
∣

∣

∣

∣

2
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Applying the inequality

1

2

∑

x

|P (x)−Q(x)|2 ≤ D(P‖Q)

for the Kullback-Leibler divergence of the two distributions P = pXiXj |y and
Q = pXi|Y pXj |y, we get for i 6= j

(Tij − TiTj)
2 ≤ 8I(Xi;Xj | y)

Averaging over the outputs we get

∂2

∂ǫ−2
i ∂ǫ−2

j

Hn(X | Y ) = Et[(Tij − TiTj)
2] ≤ 8I(Xi;Xj | Y )

Highly noisy BMS channels. From the high noise expansion (see section
3 and the above remarks, we can derive an inequality like the preceding one,
which holds in the high noise regime for general BMS channels. The number
8 gets replaced by some suitable factor which depends on the channel noise.

1.4 Organisation of the paper

The statistical mechanics formulation is very convenient to perform many of
the necessary calculations, but also the interpolation method is best formu-
lated in that framework. Thus we briefly recall it in section 2 as well as a few
connections to the information theoretic language. Section 3 contains the
derivation of the correlation formula (proposition 2) and other useful mate-
rial. The interpolation method that is used to prove the variational bound
(theorem 1) is presented in section 4. The main new ingredient of the proof
is an estimate (see proposition 3 in section 4) on the fluctuations of over-
lap parameters. The proof of proposition 3 is the object of section 5. The
appendices contain technical calculations involved in the proofs.

2 Statistical Mechanics Formulation

Consider a fixed code belonging to the ensemble C = LDPC(n,Λ, P ). The
posterior distribution pX|Y (x|y) used in MAP decoding can be viewed as the

10



Gibbs measure of a particular random spin system. For this it is convenient
to use the usual mapping of bits onto spins σi = (−1)xi . Given any set
A ⊂ {1, ..., n}, we use the notation σA =

∏

i∈ σi. Thus σA = (−1)⊕i∈Axi. It
will be clear from the context if the subscript is a set or a single bit. For a
uniform prior over the code words and a BMS channel, Bayes rule implies
pX|Y (x|y) = µ(σ) with

µ(σ) =
1

Z

∏

c

1

2
(1 + σ∂c)

n
∏

i=1

e
li
2
σi

where
∏

c is a product over all check nodes of the given code, and σ∂c =
∏

i∈∂c σi is the product of the spins (mod 2 sum of the bits) attached to the
variable nodes i that are connected to a check c. Z is the normalization
factor or “partition function” and lnZ is the “pressure” associated to the
Gibbs measure µ(σ). It is related to the conditional entropy by

Hn(X|Y ) = El[lnZ]−
n
∑

i=1

∫ +∞

−∞

dlicL(li)
li
2

(12)

Expectations with respect to µ(σ) for a fixed graph and a fixed channel
output are denoted by the bracket 〈−〉. More precisely for any A ⊂ {1, ..., n},

〈σA〉 =
∑

σn

σAµ(σ
n), σA =

∏

i∈A

σi

More details on the above formalism can be found for example in [18].
The soft estimate of the bit Xi is (in the difference domain)

Ti = 〈σi〉 (13)

We will also need soft estimates forXi⊕Xj , i 6= j. In the statistical mechanics
formalism they are simply expressed as

Tij = 〈σiσj〉 (14)

In particular the correlation between bits Xi and Xj becomes Tij − TiTj =
〈σiσj〉 − 〈σi〉〈σj〉, which is the usual notion of spin-spin correlation in statis-
tical mechanics.

In section 3 (and appendices B, C) the algebraic manipulations are best
performed in terms of “extrinsic” soft bit estimates. We will need many
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variants, the simplest one being the estimate of Xi when observation yi is
not available

T∼i
i = tanh

L∼i
i

2
= pXi|Y

∼i(0|y∼i)− pXi|Y
∼i(1|y∼i)

The second is the estimate of Xi when both yi and yj are not available

T∼ij
i = tanh

L∼ij
i

2
= pXi|Y

∼ij (0|y∼ij)− pXi|Y
∼ij (1|y∼ij)

Finally we will also need the extrinsic estimate of the mod 2 sum Xi ⊕ Xj

when both yi and yj are not available,

T∼ij
ij = tanh

L∼ij
ij

2
= pXi⊕Xj |Y

∼ij (0|y∼ij)− pXi⊕Xj |Y
∼ij(1|y∼ij)

It is practical to work in terms of a modified Gibbs average 〈σA〉∼i which
means that li = 0 , in other words yi is not available. Similarly we introduce
the averages 〈σX〉∼ij, in other words both yi and yj are unavailable. One has

T∼i
i = 〈σi〉∼i, T∼ij

i = 〈σi〉∼ij, T∼ij
ij = 〈σiσj〉∼ij

The extrinsic brackets 〈−〉∼i and 〈−〉∼ij are related to the usual ones 〈−〉 by
the following formulas derived in appendix A,

〈σi〉∼i =
〈σi〉 − ti
1− 〈σi〉ti

(15)

and

〈σi〉∼ij =
〈σi〉 − ti − 〈σiσj〉tj + titj〈σj〉
1− 〈σi〉ti − 〈σj〉tj + 〈σiσj〉titj

(16)

〈σiσj〉∼ij =
〈σiσj〉 − ti〈σj〉 − 〈σi〉tj + titj
1− 〈σi〉ti − 〈σj〉tj + 〈σiσj〉titj

(17)

3 The Correlation Formula

A derivation of propositon 1 and of (4), (6) within the formalism outlined in
section 2 can be found in [19].
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3.1 Proof of proposition 2

For any BMS(ǫ) channel and linear code we have from (12)

∂

∂ǫi
Hn(X | Y ) = El∼j

[
∫ +∞

−∞

dlj
∂cL(lj)

∂ǫj
(lnZ − lj

2
)

]

The second equality follows by permutation symmetry of code bits. Differ-
entiating once more, we get

∂2

∂ǫi∂ǫj
Hn(X | Y ) = δijS1 + (1− δij)S2 (18)

where

S1 = El∼i

[
∫ +∞

−∞

dli
∂2cL(li)

∂ǫ2i
(lnZ − li

2
)

]

(19)

and

S2 = El∼ij

[
∫ +∞

−∞

dlidlj
∂cL(li)

∂ǫi

∂cL(lj)

∂ǫj
(lnZ − li

2
)

]

First we consider S1. Let

Z∼i =
∑

σ

∏

c∈C

1

2
(1 + σ∂c)

∏

k 6=i

e
lk
2
σk

be the partition function for the Gibbs measure 〈−〉∼i introduced in section
2 and consider

ln
Z

Z∼i
= ln〈e

li
2
σi〉∼i

Using the identity

e
li
2
σi = e

li
2

1 + tiσi
1 + ti

(20)

we get

lnZ − li
2
= lnZ∼i + ln

(

1 + ti〈σi〉∼i

1 + ti

)

When we replace this expression in the integral (19) we see that the con-
tribution of lnZ∼i vanishes because this later quantity is independent of li.
Indeed

∫ +∞

−∞

dli
∂2cL(li)

∂ǫ2i
lnZ∼i = lnZ∼i

∂2

∂ǫ2i

∫ +∞

−∞

dl1cL(li) = 0

13



since cL(li) is a normalized probability distribution. Then, using (15) leads
to

S1 =

∫ +1

−1

dti
∂2cD(ti)

∂ǫ2i
Et∼i

[

ln

(

1 + ti〈σi〉∼i

1 + ti

)]

(21)

= −
∫ +1

−1

dti
∂2cD(ti)

∂ǫ2i
Et∼i

[

ln

(

1− ti〈σi〉
1− ti

)]

(22)

which (because of (13)) coincides with the first term in the correlation for-
mula.

Now we consider the term S2. Notice that
∫ +∞

−∞

dlidlj
∂cL(li)

∂ǫi

∂cL(lj)

∂ǫj

lj
2
=

∫ +∞

−∞

dlj
∂cL(lj)

∂ǫj

lj
2

∂

∂ǫi

∫ +∞

−∞

dlicL(li) = 0

Thus we can rewrite S2 as

S2 = El∼ij

[
∫ +∞

−∞

dlidlj
∂cL(li)

∂ǫi

∂cL(lj)

∂ǫj
(lnZ − li

2
− lj

2
)

]

Let Z∼ij =
∑

σ

∏

c∈C
1
2
(1 + σ∂c)

∏

k 6=i,j e
lk
2
σk be the partition function for the

Gibbs measure 〈·〉∼ij, and consider

ln
Z

Z∼ij
= ln〈e

li
2
σi+

lj
2
σj〉∼ij

Using again (20) we get

lnZ − li
2
− lj

2
= lnZ∼ij + ln

(

1 + ti〈σi〉∼ij + tj〈σj〉∼ij + titj〈σiσj〉∼ij

1 + ti + tj + titj

)

As before the contribution of lnZ∼ij vanishes because it is independent of li,
lj. Similarly we have
∫ +∞

−∞

dlidlj
∂cL(li)

∂ǫi

∂cL(lj)

∂ǫj
ln(1 + ti〈σi〉∼ij) = same with i and j exchanged

= 0

∫ +∞

−∞

dlidlj
∂c(li)

∂ǫi

∂c(lj)

∂ǫj
ln(1 + ti) = same with i and j exchanged

= 0
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Using these four identities then leads to

S2 =El∼ij

[
∫ +1

−1

dtidtj
∂cD(ti)

∂ǫi

∂cD(tj)

∂ǫj
(23)

× ln

(

1 + ti〈σi〉∼ij + tj〈σj〉∼ij + titj〈σiσj〉∼ij

1 + ti〈σi〉∼ij + tj〈σj〉∼ij + titj〈σi〉∼ij〈σj〉∼ij

)]

To get the formulas in terms of usual averages we use the relations (16), (17).
Hence

S2 = El∼ij

[
∫ +1

−1

dtidtj
∂cD(ti)

∂ǫi

∂cD(tj)

∂ǫj
ln

(

1− ti〈σi〉 − tj〈σj〉+ titj〈σiσj〉
1− ti〈σi〉 − tj〈σj〉+ titj〈σi〉〈σj〉

)]

(24)

Because of (13) and (14) this coincides with the second term in the correlation
formula. The proposition now follows from (18), (22) and (24).

3.2 Expressions in terms of the spin-spin correlation

The BEC. From cD(t) = (1 − ǫ)δ(t − 1) + ǫδ(t), the second derivative in
terms of extrinsic quantities (formulas (21) and (23)) reduces to

∂2

∂ǫi∂ǫj
Hn(X | Y ) = (1− δij)Et∼ij

[

ln

(

1 + 〈σi〉∼ij + 〈σj〉∼ij + 〈σiσj〉∼ij

1 + 〈σi〉∼ij + 〈σj〉∼ij + 〈σi〉∼ij〈σj〉∼ij

)]

There are various ways to see that for the BEC any Gibbs average 〈σA〉 or
〈σA〉∼ij takes values in {0, 1}. A heuristic explanation is that bits (or their
mod 2 sums) are either perfectly known or erased. A more formal explanation
follows from a Nishimori identity5 combined with the Griffith-Kelly-Sherman
(GKS) correlation inequality [18]. For example, E[〈σA〉2] = E[〈σA〉] (Nishi-
mori) and 〈σA〉 ≥ 0 (GKS). Thus 〈σA〉(1−〈σA〉) is a positive random variable
with zero expectation and is therefore equal to 0 with probability one. These
remarks imply that

∂2

∂ǫi∂ǫj
Hn(X | Y ) = 1

ǫiǫj
(1− δij)Et

[

ln

(

1 + 〈σi〉+ 〈σj〉+ 〈σiσj〉
1 + 〈σi〉+ 〈σj〉+ 〈σi〉〈σj〉

)]

5We will use various such identities. A proof of their most general form can be found
in [18]. A general reference is [21].
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Note that in deriving the last expression we used the fact that li = ∞ (lj =
∞) implies that σi = +1 (σj = +1) which makes the logarithm term equal
to zero. From the previous remarks we also have

ln
(

1 + 〈σi〉+ 〈σj〉+ 〈σiσj〉
)

=(ln 2)
(

〈σi〉+ 〈σj〉+ 〈σiσj〉
)

+ (ln 3− 2 ln 2)
(

〈σi〉〈σj〉+ 〈σi〉〈σiσj〉+ 〈σj〉〈σiσj〉
)

+ (5 ln 2− 3 ln 3)〈σi〉〈σj〉〈σiσj〉

and

ln
(

1 + 〈σi〉+ 〈σj〉+ 〈σi〉〈σj〉
)

= (ln 2)
(

〈σi〉+ 〈σj〉
)

The difference of the two logarithms is simplified using the following four
Nishimori identities,

Et[〈σi〉〈σj〉] = Et[〈σi〉〈σiσj〉] = Et[〈σj〉〈σiσj〉] = Et[〈σiσj〉〈σi〉〈σj〉]

Finaly we obtain the simple expression

∂2

∂ǫi∂ǫj
Hn(X | Y ) = ln 2

ǫiǫj
(1− δij)Et

[

〈σiσj〉 − 〈σi〉〈σj〉
]

=
ln 2

ǫiǫj
(1− δij)Et

[

Tij − TiTj
]

Let us point out that the second GKS inequality (for the BEC) implies that
〈σiσj〉− 〈σi〉〈σj〉 ≥ 0, thus the correlation takes values in {0, 1} and we have
Et

[

Tij − TiTj
]

= Et

[

(Tij − TiTj)
2
]

.

The BIAWGNC. From the explicit form

cL(l) =
1√

2πǫ−2
exp

(

−(l − ǫ−2)2

2ǫ−2

)

one can show that the correlation formula reduces to

∂2

∂ǫ−2
i ∂ǫ−2

j

Hn(X | Y ) = Et[(〈σiσj〉 − 〈σi〉〈σj〉)2]

= Et

[(

Tij − TiTj
)2]
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Otherwise diffrentiating (12) thanks to

d2cL(l)

(dǫ−2)2
=

(

− ∂

∂l
+
∂2

∂l2

)2

cL(l)

and using integration by parts also leads to this simpler form. This route is
much simpler and the details can be found in [18].

Highly noisy BMS channels. We use the extrinsic form of the correlation
formula given by (21) and (23). First we expand the logarithms in S1 and S2

in powers of ti and tj and then use various Nishimori identities. After some
tedious algebra (see Appendices B and C) we can organize the expansion in
powers of the channel parameters (2). In the high noise regime this expansion
is absolutely convergent. To lowest order we have

∂2

∂ǫi∂ǫj
Hn(X | Y ) = δijS1 + (1− δij)S2

≈ 1

2
δijm2

(2)(El[〈σi〉2]− 1) +
1

2
(1− δij)[m1

(2)]2El

[

(

〈σiσj〉 − 〈σi〉〈σj〉
)2
]

+ . . .

=
1

2
δijm2

(2)(Et[T
2
i ]− 1) +

1

2
(1− δij)[m1

(2)]2Et

[

(

Tij − TiTj
)2
]

+ . . . (25)

The second derivative of the conditional entropy is directly related to the
average square of the code-bit or spin-spin correlation.

4 The Interpolation Method

We use the interpolation method in the form developed by Montanari. As
explained in [7] it is difficult to establish directly the bounds for the stan-
dard ensembles. Rather, one introduces a “multi-Poisson” ensemble which
approximates the standard ensemble. Once the bounds are derived for the
multi-Poisson ensemble they are extended to the standard ensemble by a
limiting procedure. The interpolation construction is fairly complicated so
that it helpful to briefly review the simpler pure Poisson case.

4.1 Poisson ensemble

We introduce the ensemble Poisson-LDPC(n, 1 − r, P ) = P where n is the
block length, r the rate and P (x) =

∑

k Pkx
k the check degree distribution.
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A bipartite graph from the Poisson ensemble is constructed as follows. The
graph has n variable nodes. For any k choose a Poisson number mk of check
nodes with mean n(1 − r)Pk. Thus graph has a total of m =

∑

kmk check
nodes which is also a Poisson variable with mean n(1 − r). For each check
node c of degree k, choose k variable nodes uniformly at random and connect
them to c. One can show that the left degree distribution concentrates around
a Poisson distribution ΛP(x) = eP

′(1)(1−r)(x−1). In other words the fraction
Λl of variable nodes with degree l is Poisson with mean P ′(1)(1− r).

The main idea behind the interpolation technique is to recursively remove
the check node constraints and compensate them with extra observations U
distributed as (1) where dV is a trial distribution to be optimized in the
final inequality. One can interpret these extra observations as coming from a
repetition code whose rate is tuned in a such a way that the total design rate
r remains fixed. More precisely let s ∈ [0, 1] be an interpolating parameter.
At “time” s we have a Poisson-LDPC(n, (1 − r)s, P ) = Ps code. Besides
the usual channel outputs li, each node i receives ei extra i.i.d observations
U i
a, a = 1, ..., ei, where ei is Poisson with mean n(1 − r)(1− s) (so the total

effective rate is fixed to r). The interpolating Gibbs measure is

µs(σ) =
1

Zs

∏

c

1

2
(1 + σ∂c)

n
∏

i=1

e(
li
2
+

Pei
a=1

U i
a)σi (26)

Here
∏

c is a product over checks of a given graph in the ensemble Ps. At
s = 1 one recovers the original measure while at s = 0 (no checks) we
have a simple product measure (corresponding to a repetition code) which
is tailored to yield the replica symmetric entropy hRS[dV ; ΛP , P ] (up to an
extra constant).

The central result of [7] is the sum rule

EP [hn] = hRS[dV ; ΛP , P ] +

∫ 1

0

Rn(s)ds (27)

Let us explain the notation. The first term on the right hand side hRS,P [dV ; ΛP , P ]
is the replica symmetric functional of section 1 evaluated for the Poisson en-
semble. The remainder term Rn(s) is

Rn(s) =

∞
∑

p=1

1

2p(2p− 1)
Es

[

〈

P (Q2p)− P ′(q2p)(Q2p − q2p)− P (q2p)
〉

2p,s

]

18



with q2p = EV [(tanhV )2p] and Q2p the overlap parameters

Q2p =
1

n

n
∑

i=1

σ
(1)
i σ

(2)
i · · ·σ(2p)

i (28)

Here σ
(α)
i , α = 1, 2, . . . , 2p are 2p independent copies (replicas) of the spin σi

and 〈−〉2p,s is the Gibbs bracket associated to the product measure (replica
measure)

2p
∏

α=1

µs(σ
(α))

4.2 Multi-Poisson ensemble

The multi-Poisson-LDPC(n,Λ, P, γ) = MP ensemble, is a more elaborate
construction which allows to approximate a target LDPC(n,Λ, P ) ensemble.
Its parameters are the block length n, the target variable and check node
degree distributions Λ(x) and P (x) and the real number γ which controls
the closeness to the standard ensemble. We recall that variable and check
node degrees have finite maximum degrees. The construction of a bipartite
graph from the multi-Poisson ensemble proceeds via rounds: the process
starts with a high rate code and at each round one adds a very small number
of check nodes till one ends up with a code

with almost the desired rate and degree distribution. A graph process Gt

is defined for discrete times t = 0, ..., tmax, tmax = ⌊Λ′(1)/γ⌋ − 1 as follows.
For t = 0, G0 has no check nodes and has n variable nodes. The set of
variable nodes is partitioned into the subsets Vl of cardinality nΛl for every l
and every node i ∈ Vl is decorated with l free sockets. The number di(t) keeps
track of the number of free sockets on node i once round t is completed. So
for t = 0, G0 has no check nodes and each variable node i ∈ Vl has di(0) = l
free sockets. At round t, Gt is constructed from Gt−1 as follows. For all k,
choose a Poisson number mt

k of check nodes with mean nγPk/P
′(1). Connect

each outgoing edge of these new degree k check nodes (added at time t) to

variable node i according to the probability wi(t) = di(t−1)
P

i di(t−1)
. This is the

fraction of free sockets at node i after round t − 1 was completed. Once
all new check nodes are connected, update the number of free sockets for
each variable node di(t) = di(t − 1) − ∆i(t). where ∆i(t) is the number
of times the variable node i was chosen during the round t. For n → ∞
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this construction yields graphs with variable degree distributions Λγ(x) (the
check degree distribution remains P (x)). The variational distance between
Λγ(x) and P (x) tends to zero as γ → 0.

The interpolating ensemble now uses two parameters (t∗, s) where t∗ ∈
{0, ..., tmax} and 0 ≤ s ≤ γ. For rounds 0, ..., t∗ − 1 one proceeds exactly
as before to obtain a graph Gt∗−1. At the next round t∗, one proceeds as
before but with γ replaced by s. The rate loss is compensated by adding ei
extra observations for each node i, where ei is a Poisson integer with mean
n(γ − s)wi(t∗). The round is ended by updating the number of free sockets
di(t∗) = di(t∗−1)−∆i(t∗)−ei(t∗). Finally, for rounds after t∗+1, ..., tmax no
new check node is added but for each variable node i, ei external observations
are added, where ei is a Poisson integer with mean nγwi(t∗). Moreover the
free socket counter is updated as di(t) = di(t − 1) − ei(t). Recall that the
external observations are i.i.d copies of the random variable U (see (1)).

The interpolating Gibbs measure µt∗,s(σ) has the same form than (26)
with the appropriate products over checks and extra observations. Let hn,γ
the conditional entropy of the multi-Poisson ensemble MP (corresponding
to t∗ = tmax and s = γ). Again, the central result of [7] is the sum rule

EMP [hn,γ] = hRS [dV ; Λγ, P ] +

tmax−1
∑

t∗=0

∫ γ

0

Rn(t∗, s)ds+ on(1) (29)

Explanations on the notation are in order. The first term hRS,γ[dV ; Λγ, P ] is
the replica symmetric functional of 1 evaluated for the multi-Poisson ensem-
ble. The remainder term Rn(t∗, s) is given by

Rn(t∗, s) =

∞
∑

p=1

1

(2p)(2p− 1)
Es

[

〈

P (Q2p)− P ′(q2p)(Q2p − q2p)− P (q2p)
〉

2p,t∗,s

]

(30)

where q2p = EV [(tanhV )
2p] as before and Q2p are modified overlap parame-

ters

Q2p =

n
∑

i=1

wi(t∗)Xi(t∗)σ
(1)
i σ

(2)
i · · ·σ(2p)

i (31)

Here as before σ
(α)
i , α = 1, 2, . . . , 2p are 2p independent copies (replicas) of

the spin σi and 〈−〉2p,t∗,s is the Gibbs bracket associated to the product
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measure
2p
∏

α=1

µt∗,s(σ
(α))

The overlap parameter is now more complicated than in the Poisson case
because of the (positive) terms wi(t∗) and Xi(t∗). Here Xi(t∗) are new i.i.d
random variables whose precise description is quite technical and can be
found in [7]. The reader may think of the terms wi(t∗)Xi(t∗) as behaving
like the 1

n
factor of the pure Poisson ensemble overlap parameter (28). More

precisely the only properties (see Appendix E in [7]) that we need are

n
∑

i=1

wi(t∗) = 1, P
[

wi(t∗) ≤
A

n

]

≥ 1− e−Bn (32)

and
0 ≤ Xi(t∗) ≤ x, E[xk] ≤ Ak (33)

for any finite k and finite positive constants A, B, Ak independent of n
(they may depend on some of the other parameters but this turns out to be
unimportant). Finaly we use the shorthand Es[−] for the expectation with
respect to all random variables involved in the interpolation measure. The
subscript s is here to remind us that this expectation depends on s, afact
that is important to keep in mind because the remainder involves an intgral
over s. When we use E (without the subscript s; as in (33) for example) it
means that the quantity does not depend on s. In the sequel the replcated
Gibbs bracket 〈−〉2p,t∗,s is simply denoted by 〈−〉s. There will be no risk of
confusion because the only property that we us is its linearity.

In [7] it is shown that

EC [hn] = EMP [hn,γ] +O(γb) + on(1) (34)

where O(γb) is uniform in n (b > 0 a numerical constant) and on(1) (depends
on γ) tends to 0 as n→ +∞.

In the next paragraph we prove the variational bound on the conditional
entropy of the multi-Poisson ensemble, namely

lim inf
n→+∞

EMP [hn,γ] ≥ hRS[dV ; Λγ, P ] (35)
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Note that here on(1) again depends on γ. By combining this bound with
(34) and taking limits

lim inf
n→+∞

EC[hn] = lim
γ→0

lim inf
n→+∞

EMP [hn,γ] ≥ lim
γ→0

hRS[dV ; Λγ, P ] = hRS [dV ; Λ, P ]

(36)
The main theorem 1 then follows by maximizing the right hand side over dV .

4.3 Proof of the Variational Bound (35)

In view of the sum rule (29) it is sufficient to prove that lim infn→+∞Rn(t∗, s) ≥
0. In the case of a convex P considered in [7] this is immediate because con-
vexity is equivalent to

P (Q2p)− P (q2p) ≥ P ′(q2p)(Q2p − q2p)

Note that P (x) =
∑

k Pkx
k is anyway convex for x ≥ 0 since all Pk ≥ 0. So

if do not assume convexity of the check node degree distribution we have to
circumvent the fact that Q2p can be negative. But note

〈Q2p〉 =
n
∑

i=1

wi(t∗)Xi(t∗)〈σ(1)
i σ

(2)
i · · ·σ(2p)

i 〉

=

n
∑

i=1

wi(t∗)Xi(t∗)〈σ(1)
i 〉〈σ(2)

i 〉 · · · 〈σ(2p)
i 〉

=

n
∑

i=1

wi(t∗)Xi(t∗)〈σi〉2p ≥ 0

Therefore we are assured that for any P (i.e not necessarily convex for x ∈ R)
we have

P (〈Q2p〉)− P (q2p) ≥ P ′(q2p)(〈Q2p〉 − q2p) (37)

and the proof will follow if we can show that with high probability

P (Q2p) ≈ P (〈Q2p〉)
The following concentration estimate will suffice and is proven in section 5.

Proposition 3. Fix any δ < 1
4
. On the BEC(ǫ) and BIAWGNC(ǫ) for a.e

ǫ, or on general BMS(ǫ) satisfying H, we have for a.e ǫ,

lim
n→∞

∫ γ

0

dsPs

[

|P (Q2p)− P (〈Q2p〉s)| >
2p

nδ

]

= 0 (38)
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Here Ps(X) is the probability distribution Es〈IX〉s.
This proposition can presumably be strengthened in two directions. First

we conjecture that hypothesis H is not needed (this is indeed the case for the
BEC and BIAWGNC). Secondly the statement should hold for all ǫ except
at a finite set of threshold values of ǫ where the conditional entropy is not
differentiable, and its first derivative is expected to have jumps (except for
cycle codes where higher order derivatives are singular). Since we are unable
to control the locations of theses jumps our proof only works for Lebesgue
almost every ǫ.

We are now ready to complete the proof of the variational bound (35).

End of Proof of (35). From (31) and (33)

|Q2p| ≤
n
∑

i=1

wi(t∗)Xi(t∗) ≤ x (39)

and

Es[〈Qk
2p〉s] ≤ Ak (40)

Combined with q2p ≤ 1, this implies (since the maximal degree of P is finite)
that

Es[〈P (Q2p)− P ′(q2p)(Q2p − q2p)− P (q2p)〉s] ≤ C1 (41)

for some positive constant C1. The only crucial feature here is that this
constant does not depend on n and on the number of replicas 2p (a more
detailed analysis shows that it depends only on the degree of P (x)).

Now we split the sum (30) into terms with 1 ≤ p ≤ nδ (call this contri-
bution RA) and terms with p ≥ nδ (call this contribution RB), where δ > 0
is the constant of proposition 3. For the second contribution (41) implies

RB ≤ C1

∑

p≥nδ

1

2p(2p− 1)
= O(n−δ) (42)

For the first contribution we write

RA =
∑

p≤nδ

1

2p(2p− 1)
Es[〈P (Q2p)〉s − P (〈Q2p〉s)]

+
∑

p≤nδ

1

2p(2p− 1)
E[P (〈Q2p)〉s)− P ′(q2p)(〈Q2p)〉s − q2p)− P (q2p)]
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In this equation, the second sum is positive due to (37). Thus we find

Rn(t∗, s) = RA +RB

≥
∑

p≤nδ

1

2p(2p− 1)
E[〈P (Q2p)〉s − P (〈Q2p〉s)]−O(n−δ)

Below we use proposition 3 to show that for almost every ǫ in the appropriate
range

lim
n→+∞

∫ γ

0

ds
∑

p≤nδ

1

2p(2p− 1)
Es[〈P (Q2p)〉s − P (〈Q2p〉s)] = 0 (43)

which implies by Fatou’s lemma

lim inf
n→+∞

tmax−1
∑

t∗=0

∫ γ

0

Rn(t∗, s)ds ≥ 0

and thus proves (35) for almost every ǫ in the appropriate range. A general
convexity argument allows to extend this result to all ǫ in the same range.
Indeed convexity arguments imply that both sides of the inequality (35) are
continuous functions of ǫ6. To show continuity of the left hand side we use
inequality (56) in Appendix C: it implies that there exists a positive number ρ
(independent of ǫ and n) such that d2

dǫ2
Es[hn,γ] ≥ −ρ. Therefore Es[hn,γ]+

ρ
2
ǫ2

is convex in ǫ; so the lim infn→+∞ is also convex and thus continuous on any
open ǫ set. To show continuity of the right hand side we first note that for
each dV , hRS is a linear functional of the channel distribution cL(l); thus
the supdV

is a convex functional of cL(l); thus it is continuous in any open
ǫ where cL(l) varies smoothly in ǫ (this last point can be made more precise
using tools from functional analysis).

Let us now prove (43). First we set

F2p =
∣

∣〈P (Q2p)〉s − P (〈Q2p〉s)
∣

∣

6At this point one could use arguments involving physical degradation if BMS(ǫ) is
degraded as a function of ǫ. But we take a more direct route that does not assume
physical degraddation as a function of ǫ
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and use Cauchy-Schwarz and then (40) to obtain

E[F2p] = Es

[

F2pIF2p≤
2p

nδ

]

+ Es

[

F2pIF2p≥
2p

nδ

]

≤ 2p

nδ
+ Es

[

F 2
2p

]1/2
Ps

[

F2p ≥
2p

nδ

]1/2

≤ 2p

nδ
+ C2Ps

[

F2p ≥
2p

nδ

]1/2

for some positive constant C2 independent of n and p (depending only on the
degree of P (x)). Thus

∫ γ

0

ds
∑

p≤nδ

1

2p(2p− 1)
E[F2p]

≤ 1

nδ

∑

p≤nδ

1

2p− 1
+ C2

∫ γ

0

ds
∑

p≤nδ

1

2p(2p− 1)
Ps

[

F2p ≥
2p

nδ

]1/2

≤ O
( lnnδ

nδ

)

+ C2

∑

p≤nδ

√
γ

2p(2p− 1)

(
∫ γ

0

dsPs

[

F2p ≥
2p

nδ

]

)1/2

In the second inequality we have permuted the integral with a finite sum and
used Cauchy-Schwarz. Finaly we can apply proposition 3 and Lebesgue’s
dominated convergence theorem to the last sum over p, to conclude that (43)
holds.

5 Fluctuations of overlap parameters

In this section we prove proposition 3. The proofs are done directly for
the multi-Poisson ensemble. We start by a relation between the overlap
fluctuation and the spin-spin correlation.

Lemma 1. For any BMS(ǫ) channel there exists a finite constant C3 inde-
pendent of n and p (dpending only on the maximal check degree) such that

Ps

[

∣

∣P (Q2p)−P (〈Q2p〉s)
∣

∣ ≥ 2p

nδ

]

≤ C3

p2n2δ− 1

2

( n
∑

i=1

Es

[

(〈σ1σi〉s−〈σ1〉s〈σi〉s)2
]

)1/2

(44)
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Proof. Using the identity

Qk
2p − 〈Q2p〉ks = (Q2p − 〈Q2p〉s)

k−1
∑

l=0

Qk−l−1
2p 〈Q2p〉ls (45)

and (33) we get

|P (Q2p)− 〈P (Q2p〉s| = |Q2p − 〈Q2p〉s||
∑

k

Pk

k−1
∑

l=0

Qk−l−1
2p 〈Q2p〉ls|

≤ |Q2p − 〈Q2p〉s|
∑

k

kPkx
k−1

≤ P ′(x)|Q2p − 〈Q2p〉|

Here x is the bound in (39). Therefore applying the Chebycheff inequality

Ps

[

|P (Q2p)− P (〈Q2p〉s)| ≥
2p

nδ

]

≤ n2δ

4p2
Es

[

P ′(x)2
(

〈Q2
2p〉s − 〈Q2p〉2s

)

]

(46)

From the definition of the overlap parameters it follows that

〈Q2
2p〉s − 〈Q2p〉2s =

n
∑

i,j=1

wi(t∗)wj(t∗)Xi(t∗)Xj(t∗)
(

〈σiσj〉2ps − 〈σi〉2ps 〈σj〉2ps
)

≤ 2p

n
∑

i,j=1

x2wi(t∗)wj(t∗)
(

〈σiσj〉 − 〈σi〉〈σj〉
)

Substituting in (46) and applying Cauchy-Schwarz to
∑

i,j Es[−] we get

Ps

[

|P (Q2p)− P (〈Q2p〉s)| ≥
2p

nδ

]

≤n
2δ

2p

( n
∑

i,j=1

Es[x
4P ′(x)4wi(t∗)

2wj(t∗)
2]

)1/2

×
( n
∑

i,j=1

Es[(〈σiσj〉s − 〈σi〉s〈σj〉s)2]
)1/2

From (32), (33) it is easy to see that for any i, j

Es[x
4P ′(x)4wi(t∗)

2wj(t∗)
2] ≤ C2

3

n4
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where C3 is independent of n. It follows that

Ps

[

|P (Q2p)− P (〈Q2p〉s)| ≥
2p

nδ

]

≤ n2δ−1

2p
C3

( n
∑

i,j=1

Es[(〈σiσj〉s − 〈σi〉s〈σj〉s)2]
)1/2

=
n2δ− 1

2

2p
C3

( n
∑

i=1

Es[(〈σiσ1〉s − 〈σi〉s〈σ1〉s)2]
)1/2

(47)

In the last equality we have used the symmetry of the ensemble with respect
to variable node permutations.

Denote by hn,γ(t∗, s) the entropy of the µt∗,s interpolating measure. Note
that this should not be confused with the multi-Poisson ensemble entropy
hn,γ (which corresponds to t∗ = tmax and s = γ).

Lemma 2. For the BEC and BIAWGNC with any noise value and for general
BMS(ǫ) channels satisfying H we have

n
∑

i=1

Es[(〈σ1σi〉s − 〈σ1〉s〈σi〉s)2] ≤ F (ǫ) +G(ǫ)
d2

dǫ2
Es[hn,γ(t∗, s)] (48)

where F (ǫ) and G(ǫ) are two finite constants depending only on the channel
parameter.

The proof of lemma 2 is based on the correlation formula of section 1.
These are true for any linear code ensemble so they are in particular true for
the interpolating (t∗, s) ensemble7. For the BEC and BIAWGNC we have
already shown the two equalities (9) and (11): thus the inequality (48) is
in fact an equality for appropriate values of F and G. The case of general
(but highly noisy) BMS channels is presented in appendix C. A converse
inequality can also be proven by the methods of appendices B and C.

Proof of proposition 3. Note that for all points of the parameter space (ǫ, s)
such that the second derivative of the average conditional entropy is bounded
uniformly in n the proof immediately follows from (47), (48) (and the last

7in fact one has to check that the addition of
∑

ei

a=1
U i

a
to li does not change the

derivation and the final formulas. For this it sufices to follow the calculation of section 3
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inequality before that one) by choosing δ < 1
4
. However, in the large block

length limit n → +∞, genericaly the first derivative of the average condi-
tional entropy has jumps for some threshold values of ǫ (these values depend
on the interpolation parameter s). This means that for these threshold values
the second derivative cannot be bounded uniformly in n. Since we cannot
control these locations we introduce a test function ψ(ǫ): non negative, in-
finitely differentiable and with small enough bounded support included in
the range of ǫ satisfying H . We consider the averaged quantity

Q =

∫

dǫψ(ǫ)

∫ γ

0

dsPs

[

|P (Q2p)− P (〈Q2p〉)| ≥
2p

nδ

]

(49)

Writing ψ(ǫ) =
√

ψ(ǫ)
√

ψ(ǫ) Cauchy-Schwarz implies

Q ≤
∫ γ

0

ds

(
∫

dǫψ(ǫ)Ps

[

|P (Q2p)− P (〈Q2p〉)| ≥
2p

nδ

]2)1/2

Combining this inequality with (47) and (48) we get

Q ≤ n2δ− 1

2

2p
C3

∫ γ

0

ds

(
∫

dǫψ(ǫ)
(

F (ǫ) +G(ǫ)
d2

dǫ2
Es[hn,γ(t∗, s)]

)

)1/2

=
n2δ− 1

2

2p
C3

∫ γ

0

ds

(
∫

dǫψ(ǫ)F (ǫ)−
∫

dǫ
d

dǫ

(

ψ(ǫ)G(ǫ)
) d

dǫ
Es[hn,γ(t∗, s)]

)1/2

Note that from the bounds in appendix C F (ǫ), G(ǫ) and G′(ǫ) are integrable
except possibly at the edge of the ǫ range defined by H . This is not a
problem because we can take the support of ψ(ǫ) away from such points
or alternatively take a ψ(ǫ) which vanishes sufficiently fast at these points.
Moreover the first derivative of the average conditional entropy is bounded
uniformly in n and s (see appendix D) by a constant k(ǫ) that has at most a
power singularity at ǫ = 0, and again this is not a problem. Thus by choosing
0 < δ < 1

4
we obtain

lim
n→+∞

Q = 0

Applying Lebesgue’s dominated convergence theorem to convergent subse-
quences (of the integrand of

∫

dǫψ(ǫ) in (49)) we deduce that

∫

dǫψ(ǫ) lim
nk→+∞

∫ γ

0

dsPs[|P (Q2p)− P (〈Q2p〉s)| ≥
2p

nδ
k

] = 0
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which implies that along any convergent subsequences, for almost all ǫ

lim
nk→+∞

∫ γ

0

dsPs

[

|P (Q2p)− P (〈Q2p〉s)| ≥
2p

nδ
k

]

= 0 (50)

as long as δ ≤ 1
4
. Now we apply this last statement to two subsequences that

attain the lim inf and the lim sup (on the intersection of the two measure one
ǫ sets). This proves that the limn→+∞ exists and vanishes.

6 Conclusion

The main new tool introduced in this paper are relationships between the
second derivative of the conditional entropy and correlation functions or mu-
tual information between code bits. This allowed us to estimate the overlap
fluctuations in order to get a better handle on the remainder. Some aspects of
our analysis bear some similarity with techniques introduced by Talagrand
[17] but is independent. One difference is that we use specific symmetry
properties of the communications problem.

We expect that the technique developped here can be extended to re-
move the restriction to high noise (condition H). Indeed the only place in
the analysis where we need this restriction is lemma 2. For the BEC and BI-
AWGNC the lemma is trivialy satisfied for any noise level (with appropriate
constants). Another issue that would be worthwhile investigating is whether
the related inequalities of paragraph 1.3 and the converse of lemma 2 can be
derived irrespective of the noise level.

The next obvious problem is to prove the converse of the variational
bound (theorem 1).

For this one should show that the remainder vanishes when dV is replaced
by the maximizing distribution of hRS[dV ; Λ, P ]. This program has been
carried out explicitely in the case of the BEC and the Poisson ensemble [12].
It would be desirable to extend this to more general ensembles and channels
but the problem becomes quite hard. However a similar program has been
succesfuly carried out for a p-spin model with gauge symmetry8 (see [10]). A
solution of these problems would allow for a rigorous determination of MAP
thresholds and would extend our understanding of the intimate relationship
between BP and MAP decoding.

8In the present context gauge symmetry and channel symmetry are equivalent
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A Appendix A

We prove the identities (15), (16) , (17). By definition

〈σie−
li
2
σi〉 = 1

Z

∑

σ

σi
∏

c

1

2
(1 + σ∂c)

∏

j 6=i

e
li
2
σi

and

〈e−
li
2
σi〉 = 1

Z

∑

σ

∏

c

1

2
(1 + σ∂c)

∏

j 6=i

e
li
2
σi

Thus

〈σi〉∼i =
〈σie−

li
2
σi〉

〈e− li
2
σi〉

and plugging the identity

e−
li
2
σi = e−

li
2

1− σiti
1− ti

in the brackets immediately leads to (15). For the second and third identities
we proceed similarly. Namely,

〈σi〉∼ij =
〈σie−

li
2
σie−

lj
2
σj〉

〈e− li
2
σie−

lj
2
σj〉

and

〈σiσj〉∼ij =
〈σiσje−

li
2
σie−

lj
2
σj〉

〈e− li
2
σie−

lj
2
σj〉

Plugging

e−
li
2
σie−

lj
2
σj = e

li+lj
2

1− σiti − σjtj + σiσjtitj
1− ti − tj + titj

in the brackets, leads immediately to (16) and (17).
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B Appendix B

We indicate the main steps of the derivation of the full high noise expansion
for

∂2

∂ǫi∂ǫj
Hn(X | Y ) = δijS1 + (1− δij)S2

The expansion for S1 is given by (51) and that for S2 by (54). They are
derived in a form that is suitable to prove lemma 2 of section 5 (see appendix
C). For this later proof we need to extract a square correlation at each order
as in (54). This is achieved here through the use of appropriate remarquable
Nishimori identities, and in order to use these we take the extrinsic forms
(21) and (23) of S1 and S2.

Let us start with S1 which is simple. Using the power series expansion of
ln(1 + x) we have

ln

(

1 + ti〈σi〉∼i

1 + ti

)

=

+∞
∑

p=1

(−1)p+1

p
tp1(〈σi〉p∼i − 1)

This yields an infinite series for S1 which we will now simplify. Because of
the Nishimori identities

E[t2p−1
i ] = E[t2pi ], Et∼i[〈σi〉2p−1

∼i ] = Et∼i[〈σ∼i〉2p1 ]

we can combine odd and even terms and get

S1 =
+∞
∑

p=1

m
(2p)
2

2p(2p− 1)

(

Et∼i [〈σi〉2p∼i]− 1
)

(51)

This series is absolutely convergent as long as

+∞
∑

p=1

m
(2p)
2

2p(2p− 1)
< +∞

which is true for channels satisfying H .
In the rest of the appendix we deal with S2 which is considerably more

complicated. However the general idea is the same as above. First we use
the expansion of ln(1 + x) to get

ln

(

1 + 〈σi〉∼ijti + 〈σj〉∼ijtj + 〈σiσj〉∼ijtitj
1 + 〈σi〉∼ijti + 〈σj〉∼ijtj + 〈σi〉∼ij〈σj〉∼ijtitj

)

= I− II− III (52)
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where

I =

∞
∑

p=1

(−1)p+1

p

(

〈σi〉∼ijti + 〈σj〉∼ijtj + 〈σiσj〉∼ijtitj

)p

II =
∞
∑

p=1

(−1)p+1

p
tpi 〈σi〉p∼ij, III =

∞
∑

p=1

(−1)p+1

p
tpj〈σj〉p∼ij

We expand the multinomial in I

∑

ka,kb,kc
ka+kb+kc=p

p!

ka!kb!kc!
tka+kc
i tkb+kc

j 〈σi〉ka∼ij〈σj〉kb∼ij〈σiσj〉kc∼ij

and subtract the terms II and III. Then only terms that have powers of the
form tki t

l
j with k, l ≥ 1 will survive in (52). Moreover because of the identities

E[t2k−1
i ] = E[t2ki ] and E[t2l−1

j ] = E[t2lj ] we find for S2

S2 =

+∞
∑

k≥l≥1

m
(2k)
1 m

(2l)
1

(

T00 + T01 + T10 + T11
)

+
+∞
∑

l>k≥1

m
(2k)
1 m

(2l)
1

(

T ′
00 + T ′

01 + T ′
10 + T ′

11

)

(53)

with (we abuse notation by not indicating the (kl) and (ij) dependence in
the T and T ′ factors)

Tκλ =

2k−κ+2l−λ
∑

p=2k−κ

(−1)p+1

p

p!

(p− (2l − λ))!(p− (2k − κ))!(2k − κ+ 2l − λ− p)!

× Et∼ij

[

〈σi〉p−(2l−λ)
∼ij 〈σj〉p−(2k−κ)

∼ij 〈σiσj〉2k−κ+2l−λ−p
∼ij

]

and
T ′
κλ = exchange k, l and κ, λ and i, j

The next simplification step occurs by using the Nishimori identity for the
expectation in the above formula

Et∼ij

[

〈σi〉m1

∼ij〈σj〉m2

∼ij〈σiσj〉m3

∼ij

]

= Et∼ij

[

〈σm1

i σm2

j (σiσj)
m3〉∼ij〈σi〉m1

∼ 〈σj〉m2

∼ij〈σiσj〉m3

∼ij

]
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and using σi ∈ {±1}, to “linearize” the terms (σiσj)
m1σm2

i σm3

j . Tedious but
straighforward algebra then yields

∑

κ,λ

Tκ,λ =
2k+2l−1
∑

p=2k−1

(−1)p+1

p(p+ 1)

(p+ 1)!

(p+ 1− 2k)!(p+ 1− 2l)!(2k + 2l − p− 1)!

× Et∼ij

[

〈σi〉p−2l+1
∼ 〈σj〉p−2k+1

∼ij (〈σiσj〉2k+2l−1−p
∼ij

]

A similar formula obtained by exchanging k, l and i, j holds for
∑

κλ T
′
κλ.

Replacing these sums in (53) yields a high noise expansion for S2.
However this is not yet pratical for us because we need to extract a general

square correlation factor
(

〈σiσj〉∼ij − 〈σi〉∼ij〈σj〉∼ij

)2
. The fact that this is

possible is a “miracle” that comes out of the Nishimori identities that were
used. Setting

X = 〈σi〉∼ij〈σj〉∼ij, Y = 〈σiσj〉∼ij

and using the change of variables m = p−2k+1 the last expression becomes
(k ≥ l)

Et∼ij

[〈σi〉2k−2l
∼ij

(2l)!

2l
∑

m=0

(−1)m
(

2l

m

)

XmY 2l−m(m+ 2k − 2) · · · (m+ 2k − (2l − 1))

]

One can check that this is equal to

〈σi〉2k−2l
∼ij

(2l)!
X2l−2k ∂2l−2

∂X2l−2

(

X2k−2(X − Y )2l
)

The latter can be checked by first expanding (X − Y )2l and then differenti-
ating. On the other hand one can use the Leibnitz rule

∂2l−2

∂X2l−2

(

X2k−2(X − Y )2l
)

=
2l−2
∑

r=0

(

2l − 2

r

)

∂r

∂Xr
X2k−2 ∂2l−2−r

∂X2k−2−r
(X − Y )2l

to find that the last expectation above is equal to

Et∼ij

[

(X − Y )2〈σi〉2k−2l
∼ij

2l−2
∑

r=0

ArlkX
r(X − Y )2l−r−2

]
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where

Arlk =
1

(2l)!

(

2l−2
r

)

[2l]r[2k − 2]2l−2−r, [m]r = m(m− 1) · · · (m− r + 1)

We define A011 = 1
2
. We proceed similarly for the terms with k < l. Finaly

one finds

S2 =
∑

k≥l≥1

m
(2k)
1 m

(2l)
1 Et∼ij

[(

〈σiσj〉∼ij − 〈σi〉∼ij〈σi〉∼ij

)2

〈σi〉2k−2l
∼ij

×
2l−2
∑

r=0

Arlk〈σi〉r∼ij〈σj〉r∼ij

(

〈σi〉∼ij〈σj〉∼ij − 〈σiσj〉∼ij

)2l−2−r]

+
∑

l>k≥1

idem with k, l and i, j exchanged (54)

Let us now briefly justify that the series is absolutely convergent for
channels satisfying H . We Note the following facts: Arlk ≤

(

2l−2
r

)

22k−3

and 22k−232l−2 ≤ (5
2
)2k+2l−4 for k ≥ l together with the version with k, l

exchanged. It easily follows that

|S2| ≤
8

625
Et∼ij

[(

〈σiσj〉∼ij − 〈σi〉∼ij〈σi〉∼ij

)2]
∑

k,l≥1

(5

2

)2k+2l|m(2k)
1 m

(2l)
1 |

(55)

Thus the series for S2 is absolutely convergent as long as

+∞
∑

p=1

(5

2

)2p|m(2p)
1 | < +∞

Note that we have not attempted to optimize the above estimates.

C Appendix C

We prove lemma 2 for highly noisy general BMS channels. For this we use
the high noise expansion derived in appendix B. There it was derived for
a general linear code ensemble, and this is also the framework of the proof
below. Of course the result applies to the interpolating ensemble of lemma
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2. Note that the the final constants F (ǫ) and G(ǫ) do not depend on the
code ensemble but only on the channel.

Consider equation (8) for d2

dǫ2
EC,t[hn]. By the same estimates than those

for S1 in appendix B, the first term on the right hand side is certainly greater
than

−
+∞
∑

p=1

|m(2p)
2 |

2p(2p− 1)
= −A

To get a lower bound for the second term we consider the series expansion
given by that for S2 in (54). In that series we keep the first term correspond-
ing to k = l = 1, namely

1

2
(m

(2)
1 )2

∑

j 6=1

EC,t∼1j

[(

〈σ1σj〉∼1j − 〈σ1〉∼1j〈σj〉∼1j

)2]

= B

and lower bound the rest of the series (k, l) 6= (1, 1) by using estimates of
appendix B. More precisely this part is lower bounded by

−
(

8

625

(+∞
∑

p=1

(5

2

)2p|m(2p)
1 |

)2

− 1

2
(m

(2)
1 )2

)

×
∑

j 6=1

EC,t∼1j

[(

〈σ1σj〉∼1j − 〈σ1〉∼1j〈σj〉∼1j

)2]

= −C

Putting these three estimates together we get

d2

dǫ2
EC,t[hn] ≥ −A +B − C (56)

As long as the noise level is high enough so that (see H)

+∞
∑

p=2

(5

2

)2p|m(2p)
1 | < (

√
2− 1)

(5

2

)2|m(2)
1 |

the inequality (56) implies

∑

j 6=1

EC,t∼1j

[(

〈σ1σj〉∼1j − 〈σ1〉∼1j〈σj〉∼1j

)2]

≤ F̃ (ǫ) + G̃(ǫ)
d2

dǫ2
EC,t[hn] (57)
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for two noise dependent positive finite constants F̃ (ǫ), G̃(ǫ).
The final step of the proof consists in passing from the extrinsic average

〈−〉∼1j in the correlation to the ordinary one 〈−〉1j . This is achieved as
follows. From the formulas (16) and (17) we deduce that

〈σjσi〉 − 〈σj〉〈σi〉 =
(

〈σjσi〉∼ij − 〈σj〉∼ij〈σi〉∼ij

)

Rij

with

Rij =

(

1− 〈σi〉ti − 〈σj〉tj + 〈σiσj〉titj
)2

(1− t2i )(1− t2j)
≤ 4

(1− t2i )(1− t2j )

a function that depends on all log-likelihood variables.
Thus we have

(〈σjσi〉 − 〈σj〉〈σi〉)2 =
(

〈σjσi〉∼ij − 〈σj〉∼ij〈σi〉∼ij

)2
R2

ij

≤
(

〈σjσi〉∼ij − 〈σj〉∼ij〈σi〉∼ij

)2 16

(1− t2i )
2(1− t2j )

2

Taking now the expectation EC,t we get

EC,t

[(

〈σjσi〉 − 〈σj〉〈σi〉
)2]

≤ EC,t∼ij

[(

〈σjσi〉∼ij − 〈σj〉∼ij〈σi〉∼ij

)2]

× Eti,tj

[

16

(1− t2i )
2(1− t2j )

2

]

Since ti, tj are independent we get

Eti,tj

[

16

(1− t2i )
2(1− t2j)

2

]

= 16

(

E

[

1

(1− t2)2

])2

= 16

(

E

[

∑

p≥0

(p+ 1)t2p
])2

= 16

([

∑

p≥0

(p+ 1)m
(2p)
0

])2

(58)

which converges for highly noisy channels satisfying H . The result of the
lemma follows by combining (57) and (58). The constants F (ǫ) and G(ǫ) are
equal to F̃ (ǫ) and G̃(ǫ) divided by the expression on the right hand side of
the last inequality.
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D Appendix D

We prove the boundedness and positivity of d
dǫ
Es[hn,γ(t∗, s)] which is needed

in the proof of lemma 2.

Lemma 3. For the BEC and BIAWGNC with any noise level, and any BMS
satisfying H, there exists a constant k(ǫ) independent of n, γ, t∗ and s such
that

0 ≤ d

dǫ
Es[hn,γ(t∗, s)] ≤ k(ǫ) (59)

For the BEC we can take k(ǫ) = ln 2
ǫ

and for the BIAWGNC k(ǫ) = 2
ǫ−3 .

For general BMS channels satisfying H the constant remains bounded as a
function of ǫ (i.e. in the high noise regime).

Here we have stated the lemma for the multi-Poisson interpolating en-
semble which is our specific need. However as the proof below shows it is
independent of the specific code ensemble and the bound depends only on
the channel.

Proof. We will use the GEXIT formula of lemma 1. Since the proposition
applies for any linear code it also applies for the interpolating ensemble of
interest here. In the case of the BEC and BIAWGNC we have (see (5), (7)

d

dǫ
Es[hn,γ(t∗, s)] =

ln 2

ǫ
(1− Es[〈σ1〉s]

and

d

dǫ
Es[hn,γ(t∗, s)] =

2

ǫ3
(1− Es[〈σ1〉s]

The bounds of the lemma follow immediately since −1 ≤ σ1 ≤ 1.
For highly noisy BMS channels we proceed by expansions. For this reason

we have to use the “extrinsic form” of the GEXIT formula (analogous to (21))

d

dǫ
Es[hn,γ(t∗, s)] =

∫ +1

−1

dt1
∂cD(t1)

∂ǫ
Es,∼t1

[

ln

(

1 + t1〈σ1〉s,∼1

1 + t1

)]

Expanding the logarithm and using Nishimori identities (as in the expansion
of S1 in appendix B we obtain

d

dǫ
Es[hn,γ(t∗, s)] =

∞
∑

p=1

m
(2p)
1

2p(2p− 1)
Es,∼1[〈σ1〉2ps,∼1 − 1]
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The positivity follows from m
(2p)
1 ≤ 0 [1] and −1 ≤ σ1 ≤ 1. The upper bound

(and absolute convergence) follow from condition H . In particular we get

k(ǫ) = 2

+∞
∑

k=1

|m(2p)
1 |

2p(2p− 1)

which is independent of n, γ, t∗ and s.
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