
ar
X

iv
:c

s/
07

03
02

2v
1 

 [c
s.

IT
]  

5 
M

ar
 2

00
7

SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 1

Rate of Channel Hardening of Antenna

Selection Diversity Schemes and Its

Implication on Scheduling
Dongwoon Bai, Patrick Mitran, Saeed S. Ghassemzadeh, Robert R. Miller, and Vahid Tarokh

Abstract

For a multiple antenna system, we compute the asymptotic distribution of antenna selection gain

when the transmitter selects the transmit antenna with the strongest channel. We use this to asymp-

totically estimate the underlying channel capacity distributions, and demonstrate that unlike multiple-

input/multiple-output (MIMO) systems, the channel for antenna selection systems hardens at a slower

rate, and thus a significant multiuser scheduling gain can exist - O(1/ logm) for channel selection as

opposed toO(1/
√
m) for MIMO, wherem is the number of transmit antennas. Additionally, even without

this scheduling gain, it is demonstrated that transmit antenna selection systems outperform open loop

MIMO systems in low signal-to-interference-plus-noise ratio (SINR) regimes, particularly for a small

number of receive antennas. This may have some implicationson wireless system design, because most

of the users in modern wireless systems have low SINRs.

I. INTRODUCTION

The use of multiple transmit antennas has been studied for wireless links because of its promise of

high spectral efficiency. When the receiver has full channelstate information (CSI), the capacity of a

MIMO channel is typically calculated under the assumption that either the transmitter has full CSI (closed

loop MIMO) or no CSI (open loop MIMO) [1]. In both cases, in order to achieve data rates close to

capacity, the implementation of various signal processingand RF units is needed. The underlying costs
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may increase as the number of antennas increases. For some applications, this cost is prohibitive and

motivates the studies of alternative antenna technologies.

Antenna selection schemes are attractive, since they can reduce hardware costs dramatically [2]–[7].

Some proposals consider the selection of more than one antenna and require more than one transmit

chain. Nonetheless, in this paper, we are mainly interestedin a transmit antenna selection scheme that

selects the best channel between transmit antennas. We willdemonstrate that under this scheme, there

is no channel hardening, and thus significant multiuser scheduling gain can exist. This is unlike MIMO

systems [8], where the asymptotic scheduling gain is zero and there is significant channel hardening.

To this end, we compute the asymptotic distribution of the selection gain and use this to asymptotically

estimate the underlying channel capacity distributions. We note that the exact distribution of the selection

gain has been computed in the literature and the channel capacity has been numerically and explicitly

(as a series expansion) calculated. However, these exact values are not insightful in predicting if channel

hardening exists or not, let alone the rate of hardening. Forthis purpose, we will invoke the theory of

extreme order statistics assuming Rayleigh fading channels.

The outline of the paper is given next. In Section II, we present our system model. In Section III, we

calculate the asymptotic distribution of selection gains and outage capacity gains. In Section IV, we obtain

upper and lower bounds for the ergodic capacity. These results demonstrate that channel hardening occurs

at much slower rate than MIMO, and thus significant multiuserscheduling gain can exist. Additionally,

we will show that even without this scheduling gain, transmit antenna selection can outperform an open

loop MIMO system in the low SINR regime for small number of receive antennas. In Section V we

compute the scheduling gain. Finally, in Section VI, we present our conclusions and final comments

while most of the proofs may be found in the Appendix.

II. T HE SYSTEM MODEL

We consider ann×m MIMO channel model, withm transmit andn receive antennas. The input-output

relation is given by

y = Hs +w. (1)

The matrixH represents the channel matrix, and is assumed to be known at the receiver. Them × 1

complex vectors is the transmitted signal vector, then× 1 vectory represents the received signal, and

w is an n × 1 zero-mean i.i.d. circularly symmetric complex Gaussian noise vector, with covariance

matrix E[ww†] = In. Interference, if any, is assumed to be absorbed inw. An average transmit power

constraintE[s†s] ≤ ρ, is assumed, whereρ ≥ 0.
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Assuming that a transmit antenna selection system chooses to transmit only on thel-th antenna(l ∈
{1, · · · ,m}), the capacity is given by

C(H, l) = log2

(

1 + ρ

n
∑

i=1

|Hil|2
)

. (2)

Let Xl =
∑n

i=1 |Hil|2, then the best selection strategy is to choose antenna

l∗ = argmax
l

[log2 (1 + ρXl)] = argmax
l

Xl (3)

for transmission. This scheme is of interest, since it eliminates the need to feed back the channel matrix

H . In fact, the receiver needs only to feed back the index of thebest transmit antenna to the transmitter,

requiring onlylog2m bits of feedback information.

We are interested to see if there is asymptotic channel hardening for such a system, i.e. whether or

not the underlying scheduling gain asymptotically goes to zero and the rate of which this occurs. To this

end, we assume thatH has independent zero-mean complex Gaussian entries with variance 1/2 per real

components. This is a flat fading channel model. ThusXl has chi-square distribution with 2n degrees of

freedom andXl is independent ofXl′ wheneverl 6= l′.

For any set of i.i.d. random variablesZ1, ..., Zm, we use the notationZ(m) to denotemax1≤i≤m Zi.

Using this notation, the expected received SINR for the transmit antenna selection strategy is given by

ρ ·X(m). The asymptotic distribution ofX(m) for largem is of interest, since the ergodic capacity of the

selection scheme with the optimal choice of transmit antenna, is given by

EH [C(H ,Q(l∗))] = EH [log2 (1 + ρXl∗)]

= EX(m)

[

log2
(

1 + ρX(m)

)]

. (4)

We note that other measures of performance can also be derived based on the distribution ofX(m).

III. O RDER STATISTICS OF THECHI-SQUARE DISTRIBUTION

For anyn ≥ 1, the probability density function (pdf) and the cumulativedistribution function (cdf) of

the chi-square random variableXl ≥ 0 with 2n degrees of freedom are respectively given by

f(x) = e−x xn−1

(n− 1)!
(5)

and

F (x) = 1− e−x
n−1
∑

k=0

xk

k!
, (6)

for x ≥ 0. Clearly, the upper endpointω(F ) , sup{x|F (x) < 1} is infinity.
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Let F(m) andf(m) denote the cdf and the pdf ofX(m). It is well known that

F(m)(x) , FX(m)
(x) = Fm(x) =

(

1− e−x
n−1
∑

k=0

xk

k!

)m

(7)

and

f(m)(x) , fX(m)
(x) = m · Fm−1(x) · f(x)

= m

(

1− e−x
n−1
∑

k=0

xk

k!

)m−1

e−x xn−1

(n− 1)!
, (8)

respectively, forx ≥ 0 [9, pp. 9–11]. ClearlyF(m)(x) = 0 and f(m)(x) = 0 for x < 0. The ergodic

capacity of transmit antenna selection can be computed fromthe above, by numerical integration of (4).

Analytical solutions seem to be hard to obtain and offer no insights into channel hardening and scheduling

gain for such a system.

A. A Key Convergence Result

First, we have the following technical result whose proof may be found in the Appendix.

Lemma 1: Let F (·) andω(F ) be as defined above, then

1) For anyt > 0, the valueR(t) ,
∫ ω(F )
t

(1 − F (y))dy/{1 − F (t)} is well defined and satisfies

1 ≤ R(t) < ∞. As t → ∞,

R(t) =







1, if n = 1,

1 + (n− 1)1
t
+O

(

1
t2

)

, if n ≥ 2.
(9)

2) F (·) is in the domain of attraction of theGumbel distribution. That is to say, for all fixed realx,

asm → ∞,

Fm(am + bmx) → G(x) , exp(−e−x), (10)

whereG(x) is the Gumbel cdf, and the normalizing constantsam andbm can be selected to be

am = qm , F−1(1− 1/m) (11)

bm = R(qm). (12)

In the above lemma, other choices ofam andbm are also possible. We will study this next.

Notation: For any two real-valued sequencescm anddm, we define

cm ≈ dm if and only if limm→∞ |cm − dm| = 0;

cm = Θ(dm) if and only if 0 < limm→∞ cm/dm < ∞.
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Lemma 2: For F (·) andG(·) defined as above,

lim
m→∞

Fm(am + bmx) = G(x)

if and only if the normalizing constantsam andbm satisfy

am ≈ lnm+ (n− 1) ln(lnm)− ln(n− 1)! (13)

bm ≈ 1. (14)

Theorem 3: The variance ofX(m) is bounded away form0, i.e., the effective channel will exhibit

significant fluctuations.

Proof: It is known that the Gumbel distribution has a meanγ = 0.5772... (Euler’s constant) and

varianceπ2/6 ([9, p. 298]). Thus the mean and variance ofX(m) will approach toam + γ andb2mπ2/6,

respectively, asm increases. Hence, we have

E
[

X(m)

]

≈ am + γ, (15)

Var
[

X(m)

]

≈ π2

6
. (16)

Because the variance is neither zero for anym nor goes near zero asm increases, the channel will

fluctuate considerably.

This suggest that the scheduling gain may go to zero considerably slower than for MIMO. The

scheduling gain of the above antenna-selection system is computed in Section V.

B. Optimizing the Rate of Convergence

In this subsection, we study the best pairs of normalizing constantsam andbm that provide an accurate

fit to the Gumbel distribution, even for relatively small values ofm. For example, the simple choice of

am = lnm + (n − 1) ln(lnm) − ln(n − 1)! and bm = 1 yields a poor estimate of the distribution for

smallm, and may not yield accurate results for a realistic numbers of transmit antennas.

It is convenient to first introduce the sequence

αm , max

{

x ≥ 0

∣

∣

∣

∣

e−x xn−1

(n− 1)!
=

1

m

}

, (17)

which is well defined for allm greater than someM(n). Clearly,αm → ∞ asm → ∞.

Theorem 4: Let F (·) andG(·) be as given above. Consider the rate of convergence (for fixedx) of

|Fm(am + bmx)−G(x)|, (18)
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asm → ∞.

1) The optimal sequences of constantsam andbm minimizing this rate is

am =







αm, if n = 1,

αm + (n− 1) 1
αm

+O
(

1
α2

m

)

, if n ≥ 2,
(19)

and

bm =







1, if n = 1,

1 + (n− 1) 1
αm

+O
(

1
α2

m

)

, if n ≥ 2.
(20)

2) Forn = 1, the optimal rate of convergence for any givenx is

|Fm(am + bmx)−G(x)| = Θ

(

1

m

)

, (21)

and forn ≥ 2,

|Fm(am + bmx)−G(x)| = Θ

(

1

(logm)2

)

. (22)

Corollary 5: For F (·), G(·), andqm as given above, the choice ofam = qm and

bm =







1, if n = 1,

1 + (n− 1) 1
qm

+O
(

1
q2m

)

, if n ≥ 2
(23)

also satisfies (19) and (20), and this is therefore optimal inthe sense of minimizing the rate of convergence

defined in (18).

The proofs may be found in the Appendix.

From (9) and Corollary 5, we can check that the choice of normalizing constants in Lemma 1 (am = qm,

bm = R(qm)) is optimal. Fig. 1 shows that the Gumbel approximation is anexcellent fit with this choice

of normalization coefficients. It can also be seen from the figure that the variance ofX(m) stays bounded

away from zero asm → ∞.

C. Outage Capacity

By using the above results, given a rateC0, the corresponding outage probabilityPout(C0) can be

approximated by

Pout(C0) , Pr
{

log2(1 + ρX(m)) ≤ C0

}

≈ G

(

2C0−1
ρ

− am

bm

)

. (24)
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Fig. 1. Exact and Gumbel-approximate (am = qm, bm = R(qm)) distributions of the selection gainX(m)

for m = 2, 5, 10, 20 andn = 1, 2, 5.

The outage capacityCout(P0) can then be approximated as

Cout(P0) , P−1
out(P0) = log2[1 + ρF−1(P

1

m

0 )]

≈ log2[1 + ρ{am − bm ln(− lnP0)}]. (25)

Fig. 2 shows 10% outage capacity of transmit antenna selection and MIMO without feedback for SINR

ρ = 5 dB. The normalizing constants for the approximations are chosen to be the same as those in Fig. 1.

The figure indicates that the above approximations improve as m increases. Additionally, even ignoring

the scheduling gain, thetransmit antenna selection scheme outperforms full open loop MIMO schemes

in terms of outage capacity, when the number of receive antennas is small.
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Fig. 2. 10% outage capacity of transmit antenna selection and MIMO versusm for n = 1, 2, 3 atρ = 5dB.

IV. ERGODIC CAPACITY

A. Some Useful Bounds

Theorem 6: For a random variableX with cdf F (·) as above,

qm ≤ E[X(m)] ≤ qeγ(m+1), (26)

where γ is Euler’s constant (eγ = 1.7810...), qm is the quantile defined in (11), andqeγ(m+1) ,

F−1 (1− 1/eγ(m+ 1)). The ergodic capacitȳC(ρ) , E
[

log2
(

1 + ρ X(m)

)]

also satisfies

log2 (1 + ρ qm) ≤ C̄(ρ) ≤ log2
(

1 + ρ qeγ(m+1)

)

, (27)

for any ρ > 0.

The proof may be found in the Appendix.

From Jensen’s inequality and the left inequality in (26), weobtain

log2 (1 + ρ qm) ≤ C̄(ρ) ≤ log2
(

1 + ρ E[X(m)]
)

≤ log2
(

1 + ρ qeγ(m+1)

)

(28)



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 9

From the fact thatqeγ(m+1) − qm ≈ γ, we can see that

log2
(

1 + ρ qeγ(m+1)

)

≈ log2 (1 + ρ qm) . (29)

It follows that

C̄(ρ) ≈ log2
(

1 + ρ E[X(m)]
)

(30)

≈ log2 (1 + ρ (qm + γ)) . (31)

B. Asymptotic Analysis for Large Number of Receive Antennas

A chi-square random variableX with cdf F (·) as in above is the sum of2n i.i.d. random variables

with mean and variance= 0.5. In order to study the change ofF (·) and qm as functions ofn, it will

be convenient to writeFn(·) and qm(n) respectively. Asn increases, (from the central limit theorem)

(X −n)/
√
n converges to the Gaussian distribution with mean zero and variance one. Thus, for largen,

qm(n) = F−1
n

(

1− 1

m

)

= n+O(
√
n). (32)

By Theorem 6 and (32),

E[X(m)] = n+O(
√
n), (33)

C̄(ρ) = log2
(

1 + ρ (n+O(
√
n))
)

. (34)

C. Numerical Results

Fig. 3 demonstrates the ergodic capacity of various systemsfor a few basic antenna configurations. It

is observed that the transmit antenna selection scheme performance is superior to an open loop MIMO

scheme in the low SINR regime.This may have some implications on wireless system design as most

of the users in modern wireless systems have low SINRs. In fact, the ergodic capacity of open loop

MIMO is upper bounded byn log2(1+ ρ), while the ergodic capacity of transmit antenna selection goes

to infinity asm → ∞, and is not upper bounded.

In Figures 4 and 5, we study the ergodic capacity respectively as a functionm and n, for SINR

ρ = 5 dB. It is observed that our bounds in (27) and approximation in (31) for the ergodic capacity

of transmit antenna selection schemes are very good and become exact asm increases. In terms of the

ergodic capacity, it is also seen that transmit antenna selection outperforms open loop MIMO when the

number of receive antennas is small. If more than two receiveantennas are deployed, it appears that

open loop MIMO is better than transmit antenna selection fora moderate number of transmit antennas
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Fig. 3. Ergodic capacity versusρ for m = 1, 2 andn = 1, 2.

(m = 1, · · · , 20) at SINR ρ = 5 dB. Nonetheless, in lower SINR regimes, transmit antenna selection

will outperform open loop MIMO even for more than two receiveantennas.

V. SCHEDULING

For a single cell with multiple users, many scheduling strategies have been proposed. Among them, it

is known that a greedy scheduling algorithm maximizes the total system capacity. In greedy scheduling,

the base station selects the user with the best channel at anygiven time. Only this user may communicate

with the base station.

It is known that multiple transmit antennas in MIMO reduce channel fluctuations and thus the benefits of

scheduling decrease as the number of transmit antennas increases [8]. However, that is not necessarily the

case for transmit antenna selection because there are significant channel fluctuations even after deploying

a large number of transmit antennas. We compare the system capacity of greedy scheduling for antenna

selection to that of round robin scheduling for antenna selection as well as greedy and round-robin

scheduling for MIMO. Our basic assumption for the analysis is that all users have the same number of

antennas.
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Fig. 4. Ergodic capacity versusm for n = 1, 2, 3 at ρ = 5 dB.

We define thecapacity of a scheduling algorithm where there areK users and each user is equipped

with n antennas in case of downlink orm antennas in case of uplink as the average system capacity

after scheduling.

The greedy scheduling capacity is then the same as the ergodic capacity of transmit-antenna-selection

with mK transmit antennas, and it is given by

E
[

log2
(

1 + ρ X(mK)

)]

≈ log2(1 + ρ (qmK + γ)), (35)

using (31). From (27), this is upper and lower bounded bylog2(1 + ρ qmK) and log2(1 + ρ qeγ(mK+1)),

respectively. Note that round robin scheduling has the samecapacity as the ergodic capacity of a point-

to-point link with the same number of transmit antennas and is given by

E
[

log2
(

1 + ρ X(m)

)]

≈ log2(1 + ρ (qm + γ)), (36)

and this is upper and lower bounded in (27).

Fig. 6 shows the average system capacity of transmit-antenna-selection and MIMO versusm. The

approximations and bounds in this figure are those given in (35), (36), and the discussions following
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Fig. 5. Ergodic capacity versusn for m = 2, 20 at ρ = 5 dB.

them. We can check that the capacity of greedy scheduling fortransmit-antenna-selection increases as

the number of transmit antennas increases while it decreases for MIMO. Thus, greedy scheduling works

well with transmit antenna selection in the presence of a large number of transmit antennas.

We define thescheduling gain as the increase of average system capacity over that withoutscheduling.

It can be approximated as

E
[

log2
(

1 + ρ X(mK)

)]

− E
[

log2
(

1 + ρ X(m)

)]

(37)

≈ log2

(

1 + ρ (qmK + γ)

1 + ρ (qm + γ)

)

= log2

(

1 + ρ
qmK − qm

1 + ρ (qm + γ)

)

(38)

≈ log2

(

1 +
qmK − qm

qm

)

≈ log2

(

1 +
lnK

qm

)

(39)

= O

(

1

qm

)

= O

(

1

logm

)

. (40)

The numerically integrated values of (37) for1 ≤ m ≤ 20 and the approximated values of (38) for

2 ≤ m ≤ 20 are tabulated in Table I for−5dB ≤ ρ ≤ 10dB with 5dB increament,n = 1, andK = 32.

Note that the approximations are at most 0.1 bits away from the exact values. Thus, (38) is a good
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Fig. 6. Average system capacity after scheduling versusm for n = 1 andK = 32 at ρ = 5dB.

approximation to (37).

We define thefractional scheduling gain of greedy scheduling to be the greedy scheduling gain of as a

fraction of the capacity of round robin scheduling. SinceE
[

log2
(

1 + ρ X(m)

)]

≈ log2(1+ ρ (qm+ γ)),

it is easy to see that

E
[

log2
(

1 + ρ X(mK)

)]

− E
[

log2
(

1 + ρ X(m)

)]

E
[

log2
(

1 + ρ X(m)

)] = O

(

1

logm log(logm)

)

. (41)

VI. CONCLUSION

In this work, we considered the use of transmit antenna selection in multiple antenna wireless systems.

It was shown that for antenna selection systems (unlike MIMOsystems), the channel hardens at much

slower rate, and thus significant multiuser scheduling gaincan exist. Additionally, it was shown that even

without this scheduling gain, transmit antenna selection systems outperform open loop MIMO systems at

low SINR regimes, particularly for a small number of receiveantennas. The implications of these results

on wireless system design was briefly discussed.
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K = 32, n = 1

❅
❅
❅❅m

ρ
-5dB 0dB 5dB 10dB

1 0.8084 1.4366 2.0183 2.4095

2 0.7803 (0.83) 1.2899 (1.34) 1.6826 (1.67) 1.8935 (1.82)

3 0.7528 (0.78) 1.1958 (1.20) 1.5048 (1.45) 1.6540 (1.56)

4 0.7308 (0.75) 1.1308 (1.12) 1.3926 (1.33) 1.5119 (1.42)

5 0.7131 (0.72) 1.0826 (1.06) 1.3139 (1.25) 1.4155 (1.33)

6 0.6984 (0.70) 1.0449 (1.02) 1.2548 (1.20) 1.3445 (1.27)

7 0.6861 (0.69) 1.0144 (0.99) 1.2082 (1.15) 1.2895 (1.21)

8 0.6754 (0.67) 0.9890 (0.96) 1.1702 (1.11) 1.2464 (1.17)

9 0.6661 (0.66) 0.9673 (0.94) 1.1384 (1.09) 1.2084 (1.14)

10 0.6578 (0.65) 0.9485 (0.92) 1.1113 (1.06) 1.1772 (1.11)

11 0.6504 (0.65) 0.9321 (0.90) 1.0877 (1.04) 1.1502 (1.09)

12 0.6438 (0.64) 0.9174 (0.89) 1.0670 (1.02) 1.1267 (1.07)

13 0.6377 (0.63) 0.9045 (0.88) 1.0486 (1.00) 1.1058 (1.05)

14 0.6321 (0.63) 0.8925 (0.87) 1.0321 (0.99) 1.0872 (1.03)

15 0.6270 (0.62) 0.8816 (0.86) 1.0172 (0.97) 1.0704 (1.02)

16 0.6222 (0.62) 0.8717 (0.85) 1.0035 (0.96) 1.0551 (1.00)

17 0.6178 (0.61) 0.8626 (0.84) 0.9911 (0.95) 1.0411 (0.99)

18 0.6137 (0.61) 0.8541 (0.83) 0.9796 (0.94) 1.0283 (0.98)

19 0.6098 (0.60) 0.8463 (0.82) 0.9690 (0.93) 1.0164 (0.97)

20 0.6062 (0.60) 0.8390 (0.81) 0.9591 (0.92) 1.0054 (0.96)

TABLE I. Exact and approximated (parenthesis) scheduling gain in bits for variousm andρ for n = 1

andK = 32.

APPENDIX

Proof of Lemma 1: In the first part of the lemma, fort > 0,
∫ ∞

t

(1− F (y))dy =
n−1
∑

k=0

∫ ∞

t

e−y y
k

k!
dy

= e−t
n−1
∑

k=0

k
∑

i=0

ti

i!
< ∞ (42)

and thus

1 ≤ R(t) ,

∫∞

t
(1− F (y))dy

1− F (t)
=

e−t
∑n−1

k=0

∑k
i=0

ti

i!

e−t
∑n−1

k=0
tk

k!

< ∞. (43)
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From (43), ifn = 1, R(t) = 1, and if n ≥ 2,

R(t) =

tn−1

(n−1)! + 2 tn−2

(n−2)! +O(tn−3)

tn−1

(n−1)! +
tn−2

(n−2)! +O(tn−3)

= 1 + (n− 1)
1

t
+O

(

1

t2

)

. (44)

This proves the first part of the lemma.

From (44),limt→∞ xR(t)/t = 0 for all real x and thus

lim
t→∞

1− F (t+ xR(t))

1− F (t)
= lim

t→∞

e−(t+xR(t))(t+ xR(t))(n−1)

e−ttn−1

= lim
t→∞

e−xR(t)

(

1 +
xR(t)

t

)n−1

= e−x. (45)

For the second part, the result follows from (45) and the following theorem whose proof can be found

in [10, Ch. 2].

Theorem 7: Define the upper endpointω(F ) , sup{x|F (x) < 1}. Then F is in the domain of

attraction ofG = exp(− exp(−x)) if and only if there exists some finitea < ω(F ) such that
∫ ω(F )

a

(1− F (y))dy < ∞, (46)

and for all realx,

lim
t→ω(F )

1− F (t+ xR(t))

1− F (t)
= e−x, (47)

where

R(t) ,

∫ ω(F )
t

(1− F (y))dy

1− F (t)
. (48)

Moreover, the normalizing constantsam andbm in (10) can be chosen as

am = q∗m , inf

{

x

∣

∣

∣

∣

1− F (x) ≤ 1

m

}

(49)

and

bm = R(q∗m). (50)

The following lemma in [10, Ch. 2] will also prove useful in the proof of Lemma 2.

Lemma 8: LetXm be any sequence of random variables such that, for some constantsam, a∗m, bm > 0,

b∗m > 0,

lim
m→∞

Pr{Xm ≤ am + bmx} = lim
m→∞

Pr{Xm ≤ a∗m + b∗mx} = G(x), (51)
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for all continuity points of the distribution functionG(x). Then (51) holds if and only if both of the

following hold

lim
m→∞

am − a∗m
bm

= 0 (52)

lim
m→∞

b∗m
bm

= 1. (53)

Proof of Lemma 2: We prove (14) first. From Lemma 8 necessary and sufficient conditions for bm

are

lim
m→∞

bm
R(qm)

= 1 (54)

From (9) in Lemma 1 we know that

R(t) =







1, if n = 1,

1 + (n− 1)1
t
+O

(

1
t2

)

, if n ≥ 2,
(55)

and

lim
m→∞

qm = ∞. (56)

Thus limm→∞ bm should be1. Since the converse is also true, we have proved (14). Because of (14),

(52) in Lemma 8 reduces to

lim
m→∞

(am − a∗m) = 0 (57)

and the conditions foram and bm can be separated. Since the referenceam can be chosen to beqm in

this case, it suffices to prove that

lim
m→∞

[qm − {lnm+ (n− 1) ln(lnm)− ln(n − 1)!}] = 0. (58)

From the definition ofqm,

e−qm

n−1
∑

k=0

qkm
k!

=
1

m
. (59)

For n = 1,

qm = lnm, (60)

and obviously (60) satisfies (58). Now forn ≥ 2 andm large enough thatqm ≥ 1,
n−1
∑

k=0

qkm
k!

=
qn−1
m

(n− 1)!
+

n−2
∑

k=0

qkm
k!

≤ qn−1
m

(n− 1)!
+ qn−2

m

n−2
∑

k=0

1

k!

<
qn−1
m

(n− 1)!
+ qn−2

m e. (61)
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Thus,

e−qm
qn−1
m

(n− 1)!
≤ 1

m
< e−qm

{

qn−1
m

(n − 1)!
+ e · qn−2

m

}

. (62)

Taking the logarithms on both sides of (62) gives

−qm + (n− 1) ln qm − ln(n− 1)! ≤ − lnm

< −qm + ln

[

qn−1
m

(n− 1)!

(

1 +
e(n− 1)!

qm

)]

= −qm + (n − 1) ln qm − ln(n − 1)! + ln

(

1 +
e(n− 1)!

qm

)

(63)

and it yields

lnm ≤ qm − (n− 1) ln qm + ln(n− 1)! < lnm+ ln

(

1 +
e(n− 1)!

qm

)

. (64)

Defineεm as

qm = lnm+ (n− 1) ln(lnm)− ln(n− 1)! + εm (65)

and then we must provelimm→∞ εm = 0. From (64),

lim
m→∞

qm
lnm

= 1 and lim
m→∞

ln qm
lnm

= 0. (66)

We can see

lim
m→∞

εm
lnm

= 0. (67)

Again, by substituting (65) for the leftmostqm in (64) and definingδm , ln qm − ln(lnm),

(n − 1)δm ≤ εm < (n− 1)δm + ln

(

1 +
e(n− 1)!

qm

)

.

Because

lim
m→∞

ln

(

1 +
e(n− 1)!

qm

)

= 0, (68)

we only need to showlimm→∞ δm = 0. For m such thatqm 6= lnm,

δm = ln qm − ln(lnm)

= (qm − lnm)
1

ζm
, for someζm ∈ (qm, lnm) or (lnm, qm)

=
qm − lnm

lnm+ ηm(qm − lnm)
, for someηm ∈ (0, 1)

=
(n− 1) ln(lnm)− ln(n− 1)! + εm

lnm+ ηm{(n− 1) ln(lnm)− ln(n − 1)! + εm} , (69)

by mean value theorem. From (67) and (69),

lim
m→∞

δm = 0. (70)
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Proof of Theorem 4: First, note that we borrow some of the proof techniques from Hall’s paper

[12] and Galambos’s book [10, Sec. 2.10]. We see thatαm satisfies

αm − (n− 1) lnαm + ln(n− 1)! = lnm. (71)

As in the proof of Lemma 2, it can be shown that

lim
m→∞

[αm − {lnm+ (n− 1) ln(lnm)− ln(n− 1)!}] = 0. (72)

Then, we can express the general normalizing constantsam andbm as

am = αm + δm and bm = 1 + εm, (73)

whereδm andεm are sequences satisfy

lim
m→∞

δm = 0 and lim
m→∞

εm = 0. (74)

For n = 1, (21) and the choice of (19) and (20) are proved in [10, p. 142]because the chi-square

distribution just become the exponential distribution. Hence, let us assumen ≥ 2, and define

zm(x) , m[1− F (am + bmx)]. (75)

We will shortly prove thatzm(x) → e−x asm → ∞ but assuming that this is the case, from (75),

Fm(am + bmx) =

[

1− zm(x)

m

]m

, (76)

and by the triangle inequality,
∣

∣

∣
|Fm(am + bmx)− e−zm(x)| − |e−zm(x) −G(x)|

∣

∣

∣
≤ |Fm(am + bmx)−G(x)|

≤ |Fm(am + bmx)− e−zm(x)|+ |e−zm(x) −G(x)|. (77)

Also from [10, p. 8], for anyz ∈ (0, 1/2),

e−mz − (1− z)m[e2mz2 − 1] < (1− z)m ≤ e−mz. (78)

For fixedx, becausezm(x) → e−x, zm(x)/m ∈ (0, 1/2) for large enoughm. By (78) withz = zm(x)/m,

|Fm(am + bmx)− e−zm(x)| ≤
[

1− zm(x)

m

]m [

exp

(

2z2m(x)

m

)

− 1

]

≤ e−zm(x)

[

exp

(

2z2m(x)

m

)

− 1

]

= e−zm(x)

[

2z2m(x)

m
+O

(

1

m2

)]

. (79)
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The rate of convergence of|Fm(am+bmx)−e−zm(x)| is dominated by the1/m term, which will turn out

to be much faster than that of|e−zm(x)−G(x)|. Now, consider the rate of convergence of|e−zm(x)−G(x)|.
From the definition ofF (x) in (6), we can easily see that asx → ∞,

1− F (x) = e−x xn−1

(n− 1)!

[

1 +
n− 1

x
+O

(

1

x2

)]

. (80)

From (17) and noting thatδm, εm, 1/αm → 0 asm → ∞,

e−(am+bmx) (am + bmx)n−1

(n− 1)!

= e−αm
αn−1
m

(n− 1)!
e−xe−(δm+εmx)

(

1 +
x

αm
+

δm
αm

+
εm
αm

x

)n−1

=
1

m
e−x

[

1− (δm + εmx) +O(δ2m + ε2m)
]

·
[

1 + (n− 1)
x

αm
+O

(

1

α2
m

+
δm
αm

+
εm
αm

)]

=
1

m
e−x

[

1− (δm + εmx) +
n− 1

αm
x+O

(

1

α2
m

+ δ2m + ε2m

)]

(81)

and

1 +
n− 1

am + bmx
+O

(

1

(am + bmx)2

)

= 1 +
n− 1

αm
+O

(

1

α2
m

)

. (82)

Because1− F (am + bmx) is equal to the product of (81) and (82),

1− F (am + bmx)

=
1

m
e−x

[

1− (δm + εmx) +
(n− 1)

αm
(1 + x) +O

(

1

α2
m

+ δ2m + ε2m

)]

. (83)

From this, it is clear that asm → ∞,

zm(x) = m[1− F (am + bmx)] → e−x. (84)

Using the fact thatG(x) = exp(−e−x),

|e−zm(x) −G(x)|

= G(x)| exp(e−x − zm(x)) − 1|

= G(x)
∣

∣(e−x − zm(x)) +O
(

(e−x − zm(x))2
)∣

∣

= G(x)e−x

∣

∣

∣

∣

(δm + εmx)− (n− 1)

αm
(1 + x) +O

(

1

α2
m

+ δ2m + ε2m

)
∣

∣

∣

∣

(85)

Obviously, to cancel out(n− 1)(x+ 1)/αm,

δm = (n− 1)
1

αm
+O

(

1

α2
m

)

(86)
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and

εm = (n− 1)
1

αm
+O

(

1

α2
m

)

. (87)

Therefore, (19) and (20) must be satisfied to optimize the rate of convergence. Moreover, ifδm andεm

are chosen as (86) and (87), by the second order expansion, itcan be shown that the terms ofO(1/α2
m)

cannot be canceled out. Thus

|e−zm(x) −G(x)| = Θ

(

1

α2
m

)

. (88)

Because

αm = lnm+ (n− 1) ln(lnm)− ln(n− 1)! + o(1), (89)

1/α2
m → 0 is much slower than1/m → 0 asm → ∞. Hence, combining (88) and (79) into (77) yields

|Fm(am + bmx)−G(x)| = Θ

(

1

α2
m

)

. (90)

From (89),

|Fm(am + bmx)−G(x)| = Θ

(

1

(logm)2

)

. (91)

Proof of Corollary 5: For n = 1, qm = αm = lnm andbm = 1. Therefore, (19) and (20) hold. Let

us now taken ≥ 2. From the definition ofαm andqm,

1

m
= e−αm

αn−1
m

(n− 1)!
= e−qm

qn−1
m

(n− 1)!

(

1 +

n−1
∑

k=1

n−1Pk

qkm

)

, (92)

wheren−1Pk = (n − 1)!/(n − 1− k)!. By taking logarithms,

−αm + (n− 1) lnαm − ln(n− 1)!

= −qm + (n− 1) ln qm − ln(n− 1)! + ln

(

1 +

n−1
∑

k=1

n−1Pk

qkm

)

. (93)

Define εm as qm = αm + εm. We can see thatαm → ∞ and εm → 0 asm → ∞ because of (72).

Substitutingαm + εm for qm yields

εm = (n− 1) ln

(

1 +
εm
αm

)

+ ln

(

1 +

n−1
∑

k=1

n−1Pk

(αm + εm)k

)

. (94)

Define

βm ,

n−1
∑

k=1

n−1Pk

(αm + εm)k
. (95)

It is obvious thatεm/αm → 0 andβm → 0 asm → ∞. Thus for large enoughm,

εm = (n− 1)

[

εm
αm

+O

(

(

εm
αm

)2
)]

+ βm +O(β2
m). (96)



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 21

However, since

βm =

n−1
∑

k=1

n−1Pk

(αm + εm)k
=

n− 1

αm
+O

(

1

α2
m

)

, (97)

(96) becomes

εm = (n− 1)
εm
αm

+
n− 1

αm
+O

(

1

α2
m

)

. (98)

Then

εm =

n−1
αm

+O
(

1
α2

m

)

1− n−1
αm

=

[

n− 1

αm
+O

(

1

α2
m

)] [

1 +
n− 1

αm
+O

(

1

α2
m

)]

= (n− 1)
1

αm
+O

(

1

α2
m

)

. (99)

Clearly, qm satisfies (19). We can obtain (20) by substituting (19) forqm in (23).

Proof of Theorem 6: We first introduce a simple convex ordering result by van Zwet[11, Ch. 2].

AssumeX and Y be arbitrary random variables, whose cdfs areFX and FY respectively. Van Zwet

showed that ifF−1
Y (FX(x)) is convex, thenFX(E[X]) ≤ FY (E[Y ]) andFX(E[X(m)]) ≤ FY (E[Y(m)]),

provided the expectations exist. IfF−1
Y (FX (x)) is concave, then the inequalities are reversed. Now, we

return to the chi-square distribution, where the random variable X follows the cdfF (x) in (6) and

consider a random variableY with the cdfFY (y) = −1/y (−∞ < y < −1). We can easily see that

FY (E[Y(m)]) = 1− 1

m
. (100)

BecauseF−1
Y (F (x)) = −1/F (x), we only need to show that1/F (x) is convex. If so,−1/F (x) is then

concave and

E[X(m)] ≥ F−1

(

1− 1

m

)

= qm. (101)

Then, the lower bound of (26) will be proved. BecauseF (0) = 0, we can assumeX > 0. It will be

sufficient to show that
d2

dx2

[

1

F (x)

]

= −f ′(x)F (x) − 2{f(x)}2
{F (x)}3 > 0 (102)

for x > 0. However, this can be verified explicitly whenn = 1. For n ≥ 2, it follows from

f ′(x)F (x)

{f(x)}2 =
n− 1

n

(

1− n!

n− 1

∞
∑

k=1

k + 1

(k + n)!
xk

)

<
n− 1

n
. (103)
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We now show the upper bound of (26). If a random variableY has a cdfFY (y) = 1−e−y (0 < y < ∞),

then

E[Y(m)] =

m
∑

k=1

1

k
. (104)

For x > 0, define

h(x) , F−1
Y (F (x)) = − ln[1− F (x)]. (105)

Then, forn = 1, h′′(x) = 0, and forn ≥ 2,

h′′(x) =
d

dx

[

f(x)

1− F (x)

]

=

xn−2

(n−2)!

(

1 +
∑n−1

k=1(n− 1− k)x
k

k!

)

(

∑n−1
k=0

xk

k!

)2

> 0. (106)

Therefore, by convex ordering,

F (E[X(m)]) ≤ FY (E[Y(m)]) = FY

(

m
∑

k=1

1

k

)

= 1− exp

(

−
m
∑

k=1

1

k

)

= 1− 1

m+ 1
exp

[

−
{

m
∑

k=1

1

k
− ln(m+ 1)

}]

.

(107)

For m ≥ 1, we can easily show that
∑m

k=1
1
k
− ln(m + 1) is increasing as a function ofm and by the

definition of γ as Euler’s constant,

lim
m→∞

[

m
∑

k=1

1

k
− ln(m+ 1)

]

= lim
m→∞

[{

m+1
∑

k=1

1

k
− ln(m+ 1)

}

− 1

m+ 1

]

= γ. (108)

Thus
∑m

k=1
1
k
− ln(m+ 1) ≤ γ and it yields

E[X(m)] ≤ F−1

(

1− 1

eγ(m+ 1)

)

= qeγ(m+1). (109)

Hence, (26) is proved. The upper bound of (27) can be deduced from the upper bound of (26) by Jensen’s

inequality becauseρ > 0 and log2(1 + ρ(·)) is then a concave function. Now, only the proof for the

lower bound of (27) remains. DefineZ , log2(1+ ρX). ThenZ(m) = log2(1+ ρX(m)). The cdf ofZ is

FZ(z) = F

(

2z − 1

ρ

)

. (110)
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We will show that1/FZ(z) is convex. Let1/F (x) beQ(x) and then

d2

dz2

[

1

FZ(z)

]

=

[

Q′′

(

2z − 1

ρ

)

2z

ρ
+Q′

(

2z − 1

ρ

)]

2z

ρ
(ln 2)2. (111)

If we substitute(2z − 1)/ρ for x, then we only need to show

Q′′(x)

(

x+
1

ρ

)

+Q′(x) ≥ 0, (112)

for x > 0, and (112) becomes

1

{F (x)}3
[

[

−f ′(x)F (x) + 2{f(x)}2
]

(

x+
1

ρ

)

− f(x)F (x)

]

≥ 1

{F (x)}3
[[

−f ′(x)F (x) + 2{f(x)}2
]

x− f(x)F (x)
]

, (113)

because−f ′(x)F (x) + 2{f(x)}2 ≥ 0 by (103). We claim

[

−f ′(x)F (x) + 2{f(x)}2
]

x− f(x)F (x) ≥ 0. (114)

This is because

e−2x xn−1

(n− 1)!

[

(x− n)

(

ex −
n−1
∑

k=0

xk

k!

)

+
xn

(n− 1)!

]

≥ 0. (115)

Thus−1/FZ(z) is concave. By the convex ordering with the cdfFY (y) = 1− e−y (0 < y < ∞),

FZ(E[Z(m)]) = F

(

2E[Z(m)] − 1

ρ

)

≥ 1− 1

m
(116)

=⇒ 2E[Z(m)] − 1

ρ
≥ F−1

(

1− 1

m

)

= qm, (117)

and therefore

C̄(ρ) = E[Z(m)] ≥ log2(1 + ρ · qm). (118)
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