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Rate of Channel Hardening of Antenna
Selection Diversity Schemes and Its

Implication on Scheduling

Dongwoon Bai, Patrick Mitran, Saeed S. Ghassemzadeh, RBbdMiller, and Vahid Tarokh

Abstract

For a multiple antenna system, we compute the asymptottdldison of antenna selection gain
when the transmitter selects the transmit antenna with ttegest channel. We use this to asymp-
totically estimate the underlying channel capacity disttions, and demonstrate that unlike multiple-
input/multiple-output (MIMO) systems, the channel for @ma selection systems hardens at a slower
rate, and thus a significant multiuser scheduling gain cast exO(1/logm) for channel selection as
opposed t@(1/4/m) for MIMO, wherem is the number of transmit antennas. Additionally, even auith
this scheduling gain, it is demonstrated that transmit rardeselection systems outperform open loop
MIMO systems in low signal-to-interference-plus-noiséagdSINR) regimes, particularly for a small
number of receive antennas. This may have some implicationgireless system design, because most

of the users in modern wireless systems have low SINRs.

. INTRODUCTION

arXiv:cs/0703022v1 [cs.IT] 5 Mar 2007

The use of multiple transmit antennas has been studied fi@less links because of its promise of
high spectral efficiency. When the receiver has full charstele information (CSl), the capacity of a
MIMO channel is typically calculated under the assumptloat either the transmitter has full CSl (closed
loop MIMO) or no CSI (open loop MIMO) [1]. In both cases, in erdto achieve data rates close to

capacity, the implementation of various signal processind RF units is needed. The underlying costs
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may increase as the number of antennas increases. For sqingatgns, this cost is prohibitive and
motivates the studies of alternative antenna technologies

Antenna selection schemes are attractive, since they cuteehardware costs dramatically [2]-[7].
Some proposals consider the selection of more than onerant@mnd require more than one transmit
chain. Nonetheless, in this paper, we are mainly intereistexd transmit antenna selection scheme that
selects the best channel between transmit antennas. Welemilbnstrate that under this scheme, there
is no channel hardening, and thus significant multiuser dugiveg gain can exist. This is unlike MIMO
systems [8], where the asymptotic scheduling gain is zetbthere is significant channel hardening.

To this end, we compute the asymptotic distribution of tHed®n gain and use this to asymptotically
estimate the underlying channel capacity distributions.ndte that the exact distribution of the selection
gain has been computed in the literature and the channetitapes been numerically and explicitly
(as a series expansion) calculated. However, these exaetsvare not insightful in predicting if channel
hardening exists or not, let alone the rate of hardening.tiisrpurpose, we will invoke the theory of
extreme order statistics assuming Rayleigh fading channel

The outline of the paper is given next. In Sectioh I, we présmir system model. In Sectiénllll, we
calculate the asymptotic distribution of selection gaind autage capacity gains. In Sectiod IV, we obtain
upper and lower bounds for the ergodic capacity. Theseteedamonstrate that channel hardening occurs
at much slower rate than MIMO, and thus significant multiusglieduling gain can exist. Additionally,
we will show that even without this scheduling gain, trartsamtenna selection can outperform an open
loop MIMO system in the low SINR regime for small number of e antennas. In Sectidnl V we
compute the scheduling gain. Finally, in Sectlod VI, we prégsour conclusions and final comments

while most of the proofs may be found in the Appendix.

Il. THE SYSTEM MODEL

We consider am x m MIMO channel model, withn transmit and: receive antennas. The input-output
relation is given by

y=Hs+ w. 1)

The matrix H represents the channel matrix, and is assumed to be know aeteiver. Then x 1
complex vectors is the transmitted signal vector, thex 1 vectory represents the received signal, and
w is ann x 1 zero-mean i.i.d. circularly symmetric complex Gaussiams@wector, with covariance
matrix E[ww'] = I,,. Interference, if any, is assumed to be absorbegimrAn average transmit power

constraintIE[sTs] < p, is assumed, wherg > 0.
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Assuming that a transmit antenna selection system choostartsmit only on theé-th antenngl
{1,--- ,m}), the capacity is given by
C(H, 1) =log, (1 + PZ ’Hil\2> : 2)
=1

Let X; = >_" | |Ha|?, then the best selection strategy is to choose antenna
I* = arg mlax[logQ (14 pX))] = arg max X (3)

for transmission. This scheme is of interest, since it elatés the need to feed back the channel matrix
H. In fact, the receiver needs only to feed back the index ob#s transmit antenna to the transmitter,
requiring onlylog, m bits of feedback information.

We are interested to see if there is asymptotic channel hargidor such a system, i.e. whether or
not the underlying scheduling gain asymptotically goeseimzand the rate of which this occurs. To this
end, we assume thdf has independent zero-mean complex Gaussian entries witinea 1/2 per real
components. This is a flat fading channel model. TRudas chi-square distribution withn2degrees of
freedom andX; is independent ofX;; whenever # I'.

For any set of i.i.d. random variablés, ..., Z,,,, we use the notatiol,,,) to denotemax;<;<, Z;.
Using this notation, the expected received SINR for thestmih antenna selection strategy is given by
p- X(m)- The asymptotic distribution ok ,,,) for largem is of interest, since the ergodic capacity of the

selection scheme with the optimal choice of transmit ardeimgiven by
Ex[C(H,Q(I"))] = Eg[logy (1+ pXi-)]
= Ex(m) [log2 (1 + pX(m))] . (4)

We note that other measures of performance can also be déraged on the distribution of,,,).

[1l. ORDER STATISTICS OF THECHI-SQUARE DISTRIBUTION

For anyn > 1, the probability density function (pdf) and the cumulat@istribution function (cdf) of

the chi-square random variabk, > 0 with 2n degrees of freedom are respectively given by

n—1
f@)= e o, (5)
and
n—1 1
Flz)=1—¢€" %, (6)

o

=0

for = > 0. Clearly, the upper endpoint(F) = sup{z|F

—~

x) < 1} is infinity.
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Let F{,,y and f,,) denote the cdf and the pdf of,,). It is well known that

n—1 p\™
Fimy(2) £ Fx,,, () = F™(x) = (1 ey %) 7)

k=0
and

foy(@) 2 fxi (@) =m F""Y(z)- f(z)

n—1 xk m—1 xn—l
m( c kzzok'> -1 ®

respectively, forz > 0 [9, pp. 9-11]. ClearlyF(,,)(z) = 0 and f,,)(z) = 0 for x < 0. The ergodic

capacity of transmit antenna selection can be computed fr@mabove, by numerical integration & (4).

Analytical solutions seem to be hard to obtain and offer rsigints into channel hardening and scheduling

gain for such a system.

A. A Key Convergence Result
First, we have the following technical result whose proofyrba found in the Appendix.
Lemma 1: Let F(-) andw(F') be as defined above, then
1) For anyt > 0, the valueR(t) = ft“(F)(l — F(y))dy/{1 — F(t)} is well defined and satisfies
1 < R(t) < o0. Ast — o0,

1, if n=1,
R(t) = _ 9)
1+(n—1)5+0(3), ifn>2
2) F(-) is in the domain of attraction of th@umbel distribution. That is to say, for all fixed real,
asm — oo,

F™(am + bpx) — G(z) = exp(—e™®), (10)

whereG(z) is the Gumbel cdf, and the normalizing constamis andb,, can be selected to be

am = gm = F7H1 —1/m) (11)
b = R(gm). (12)
[

In the above lemma, other choices@f, andb,, are also possible. We will study this next.
Notation: For any two real-valued sequencgs andd,,,, we define
Cm ~ A, if and only if lim,, o |¢; — di| = 0;

em = O(d,y,) ifandonly if 0 < limy, oo ¢ /dpy < 00.
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Lemma 2: For F(-) andG(-) defined as above,

lim F™(ay, + bnz) = G(x)

m—r00

if and only if the normalizing constants,, andb,,, satisfy

am ~Ilnm+ (n—1)In(Inm) — In(n — 1)! (13)
by, ~ 1. (14)
L]

Theorem 3: The variance ofX(,,) is bounded away fornf, i.e., the effective channel will exhibit
significant fluctuations.
Proof: It is known that the Gumbel distribution has a mear- 0.5772... (Euler’s constant) and
variancer®/6 ([9, p. 298]). Thus the mean and varianceXdf,,, will approach toa,, + v andb?, = /6,

respectively, asn increases. Hence, we have

E [X(m)] X Ayt 7, (15)
2
Var [X(m)] ~ % (16)

Because the variance is neither zero for anynor goes near zero as increases, the channel will
fluctuate considerably. |
This suggest that the scheduling gain may go to zero coritiesslower than for MIMO. The

scheduling gain of the above antenna-selection systemnipeted in Sectiof V.

B. Optimizing the Rate of Convergence

In this subsection, we study the best pairs of normalizingstantsa,,, andb,,, that provide an accurate
fit to the Gumbel distribution, even for relatively small was ofm. For example, the simple choice of
am = Inm+ (n — 1)In(lnm) — In(n — 1)! andb,, = 1 yields a poor estimate of the distribution for
smallm, and may not yield accurate results for a realistic numbétsansmit antennas.

It is convenient to first introduce the sequence

T L } , (17)

amémax{sz n—l)!_m

which is well defined for altn greater than somé/(n). Clearly, o,,, — oo asm — oo.

Theorem 4: Let F'(-) andG(-) be as given above. Consider the rate of convergence (for fixed

[E" (am + bm) — G(z)], (18)
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asm — oo.
1) The optimal sequences of constaajs andb,, minimizing this rate is

Qs if n=1, (19)
Ay =
am+(n—1)i+0( L ) if n > 2,

2
a7n

and
; 1, if n=1, 20)
e 1+O%Jki+0(%>,ﬁn22
2) Forn =1, the optimal rate of convergence for any giverns
1
|E™ (ap, + bpx) — G(z)| = O <E> , (21)
and forn > 2,
m B 1
|F™(am + bpx) — G(x)| = O <(log m)2> . (22)

Corollary 5: For F'(-), G(-), andg,, as given above, the choice of, = ¢,, and

) 1, if n=1, 23)
" 1+m—mi+O@Q,ﬁnz2

qm
also satisfies (19) and(R0), and this is therefore optimdiérsense of minimizing the rate of convergence
defined in [(I8). O
The proofs may be found in the Appendix.
From [9) and Corollaril5, we can check that the choice of nbming constants in Lemmd Lif, = ¢,
b = R(qm)) is optimal. Fig[l shows that the Gumbel approximation iercellent fit with this choice
of normalization coefficients. It can also be seen from theréghat the variance of,,,) stays bounded

away from zero asn — oo.

C. Outage Capacity

By using the above results, given a rafg, the corresponding outage probabiliy,;(Cy) can be

approximated by

Pout (CO)

Pr {logy(1+ pX(1m)) < Co}

201 _ o
G (”bi) . (24)

&2
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Fig. 1. Exact and Gumbel-approximat€,{ = ¢, b, = R(g)) distributions of the selection gaiN,,,)
for m =2,5,10,20 andn = 1,2,5.

The outage capacit§',,:(Fp) can then be approximated as

Cout(Po) £ Poit(Py) =logy[l + pF 1 (Py)]

out

~ logy[l + p{am — by In(—1n Ppy)}]. (25)

Fig.[2 shows 10% outage capacity of transmit antenna seteatid MIMO without feedback for SINR
p = 5 dB. The normalizing constants for the approximations a@seh to be the same as those in Elg. 1.
The figure indicates that the above approximations impreve: dancreases. Additionally, even ignoring
the scheduling gain, thigansmit antenna selection scheme outperforms full open loop MIMO schemes

in terms of outage capacity, when the number of receive aateis small.
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— 8 -n=3, MIMO, Simulated
0 1 1 1 1 1 T T T T
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Number of Transmit Antennas

Fig. 2. 10% outage capacity of transmit antenna selectidiMMO versusm for n = 1,2,3 atp = 5dB.

IV. ERGODIC CAPACITY
A. Some Useful Bounds

Theorem 6: For a random variabl& with cdf F'(-) as above,

am < E[X(m)] < Gevime1)s (26)
where v is Euler's constantef = 1.7810...), ¢, is the quantile defined inC(11), ang 41 =
F~'(1—1/€"(m +1)). The ergodic capacity’'(p) = E [log, (1 + p X(,))] also satisfies

logy (14 p gm) < C(p) <logy (14 p Gevim1)) » (27)
for any p > 0. ]

The proof may be found in the Appendix.
From Jensen’s inequality and the left inequality[in](26), etxain

logy (14 p gm) < C(p) <logy (1 + p E[X(m)]) <logs (1 + p Gevme1)) (28)
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From the fact that (,,+1) — ¢n ~ 7, We can see that

10g2 (1 +p Qe‘*(m+1)) ~ 10g2 (1 +p Qm) . (29)

It follows that
Clp) =~ logy (14 pE[X(m))) (30)
~ logy (1+p (gm +17))- (31)

B. Asymptotic Analysis for Large Number of Receive Antennas

A chi-square random variabl& with cdf F'(-) as in above is the sum @ i.i.d. random variables
with mean and variance- 0.5. In order to study the change @f(-) and¢,, as functions ofn, it will
be convenient to writeF,(-) and ¢,,,(n) respectively. Asn increases, (from the central limit theorem)

(X —n)//n converges to the Gaussian distribution with mean zero aridn@e one. Thus, for large,

i) = F (1= 1) =+ OV (32)

By Theoren{® and(32),
EXm)] = n+0(/n), (33)
Clp) = logy (1+p(n+0(Vn))). (34)

C. Numerical Results

Fig.[3 demonstrates the ergodic capacity of various sysfems few basic antenna configurations. It
is observed that the transmit antenna selection schemerperfice is superior to an open loop MIMO
scheme in the low SINR regim&his may have some implications on wireless system design as most
of the users in modern wireless systems have low SINRs. If) the ergodic capacity of open loop
MIMO is upper bounded by: log,(1 + p), while the ergodic capacity of transmit antenna selectioesg
to infinity asm — oo, and is not upper bounded.

In Figures[# and]5, we study the ergodic capacity respegtiasl a functionm and n, for SINR
p = 5 dB. It is observed that our bounds in_{27) and approximatior3d) for the ergodic capacity
of transmit antenna selection schemes are very good andrigeeract asn increases. In terms of the
ergodic capacity, it is also seen that transmit antennatefeoutperforms open loop MIMO when the
number of receive antennas is small. If more than two receitennas are deployed, it appears that

open loop MIMO is better than transmit antenna selectionafonoderate number of transmit antennas
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gl = MF2,n=2, Tx Ant. Sel. : o
—x- MF2,n=2, MIMO
O mEeo, n=2, MIMO U.B. v ,

Ergodic Capacity (bits/channel use)

10 15

5
SINR p (dB)

Fig. 3. Ergodic capacity versysfor m = 1,2 andn = 1,2.

(m = 1,---,20) at SINRp = 5 dB. Nonetheless, in lower SINR regimes, transmit antentecten

will outperform open loop MIMO even for more than two recemetennas.

V. SCHEDULING

For a single cell with multiple users, many scheduling sfyas have been proposed. Among them, it
is known that a greedy scheduling algorithm maximizes tha&l ®ystem capacity. In greedy scheduling,
the base station selects the user with the best channel aivaytime. Only this user may communicate
with the base station.

It is known that multiple transmit antennas in MIMO reduceawchel fluctuations and thus the benefits of
scheduling decrease as the number of transmit antennasages [8]. However, that is not necessarily the
case for transmit antenna selection because there aréicagmichannel fluctuations even after deploying
a large number of transmit antennas. We compare the systeatitaof greedy scheduling for antenna
selection to that of round robin scheduling for antennactiele as well as greedy and round-robin
scheduling for MIMO. Our basic assumption for the analysishiat all users have the same number of

antennas.
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6 4 n=3, Tx Ant. Sel., LB. o g e-ErE osa=Es ey

Ergodic Capacity (bits/channel use)

0 I I I I I I
2 4 6 8 10 12 14 16 18 20

Number of Transmit Antennas

Fig. 4. Ergodic capacity versus for n =1,2,3 atp =5 dB.

We define thecapacity of a scheduling algorithm where there ard{ users and each user is equipped
with n antennas in case of downlink @r antennas in case of uplink as the average system capacity
after scheduling.

The greedy scheduling capacity is then the same as the ergagacity of transmit-antenna-selection

with m K transmit antennas, and it is given by

E [logy (14 p X)) ] = loga(1+ p (gmk + 7)), (35)

using [31). From[(27), this is upper and lower boundedday (1 + p gk ) andlogy (1 + p Ger(mi+1))
respectively. Note that round robin scheduling has the seapecity as the ergodic capacity of a point-

to-point link with the same number of transmit antennas angliven by

E [logy (14 p X(my) | = loga(1+ p (gm + 7)), (36)

and this is upper and lower bounded [n](27).
Fig. [@ shows the average system capacity of transmit-aatealection and MIMO versus:. The

approximations and bounds in this figure are those givel H), (88), and the discussions following
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p=5dB
T T T T T
—6—n¥2, Tx Ant. Sel., Exact
|| -—+— mF2, Tx Ant. Sel., Approx.
Vv - mF2, Tx Ant. Sel., U.B.
A mE2, TX Ant. Sel., L.B.
—&— m=20, Tx Ant. Sel., Exact
—x— mF20, Tx Ant. Sel., Approx|
B> -+ m=20, Tx Ant. Sel., U.B.

[l <  m=20, Tx Ant. Sel., L.B.

Ergodic Capacity (bits/channel use)

0 I I I I I I I I I
2 4 6 8 10 12 14 16 18 20

Number of Receive Antennas

Fig. 5. Ergodic capacity versusfor m = 2,20 atp = 5 dB.

them. We can check that the capacity of greedy schedulingrdmsmit-antenna-selection increases as
the number of transmit antennas increases while it decsdas®IMO. Thus, greedy scheduling works
well with transmit antenna selection in the presence of gelasumber of transmit antennas.

We define thescheduling gain as the increase of average system capacity over that witlobetduling.

It can be approximated as

E [logs (1+ p X(mi))] — E [logs (1 + p X )] (37)
1+p(qu+,Y)> < ImK — Gm )

lo —log, (14 p —TmK ~dm 38

g2<1+p(qm+’y) T T (g + ) (38)

~ log, (1 + quqi_q’”> ~ log, <1 + %> (39)

- ofd)-o(sks)

The numerically integrated values ¢f {37) for< m < 20 and the approximated values ©f38) for
2 < m < 20 are tabulated in Tablgé | for-5dB < p < 10dB with 5dB increamentp = 1, and K = 32.

Note that the approximations are at most 0.1 bits away froenetkact values. Thus_(38) is a good
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p=5dB,K=32,n=1
6 T T T

5805 8-0 4

2 ®®4&®®-%®%-%®@—®®$®@—®@
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& A —%— Tx Ant. Sel., Round Robin, Appro:
v - Tx Ant. Sel., Round Robin, U.B.
A - Tx Ant. Sel., Round Robin, L.B.
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Number of Transmit Antennas
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Fig. 6. Average system capacity after scheduling versusr n = 1 and K = 32 at p = 5dB.

approximation to[(37).

We define thdractional scheduling gain of greedy scheduling to be the greedy scheduling gain of as a
fraction of the capacity of round robin scheduling. Sifitfog, (1 + p X)) ] & 1oga(1 + p (gm + 7)),
it is easy to see that

E [logy (1 + p Xomr))| — E [logp (L +p X)) :0( 1 )
E [logy (14 p X(m))] log m log(logm) /

(41)

VI. CONCLUSION

In this work, we considered the use of transmit antenna seteim multiple antenna wireless systems.
It was shown that for antenna selection systems (unlike MI8§Stems), the channel hardens at much
slower rate, and thus significant multiuser scheduling gamexist. Additionally, it was shown that even
without this scheduling gain, transmit antenna selectimiesns outperform open loop MIMO systems at
low SINR regimes, particularly for a small number of recewdgennas. The implications of these results

on wireless system design was briefly discussed.
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K=32,n=1
p 5dB 0dB 508 10dB

m
1 0.8084 1.4366 2.0183 2.4095
2 || 0.7803 (0.83)| 1.2899 (1.34)| 1.6826 (1.67)| 1.8935 (1.82)
3 || 0.7528 (0.78)| 1.1958 (1.20)| 1.5048 (1.45)| 1.6540 (1.56)
4 || 0.7308 (0.75)| 1.1308 (1.12)| 1.3926 (1.33)| 1.5119 (1.42)
5 || 0.7131 (0.72)| 1.0826 (1.06)| 1.3139 (1.25)| 1.4155 (1.33)
6 || 0.6984 (0.70)| 1.0449 (1.02)| 1.2548 (1.20)| 1.3445 (1.27)
7 || 0.6861 (0.69)| 1.0144 (0.99)| 1.2082 (1.15)| 1.2895 (1.21)
8 || 0.6754 (0.67)| 0.9890 (0.96)| 1.1702 (1.11)| 1.2464 (1.17)
9 || 0.6661 (0.66)| 0.9673 (0.94)| 1.1384 (1.09)| 1.2084 (1.14)
10 || 0.6578 (0.65)| 0.9485 (0.92) 1.1113 (1.06)| 1.1772 (1.11)
11 | 0.6504 (0.65)| 0.9321 (0.90)| 1.0877 (1.04) 1.1502 (1.09)
12 || 0.6438 (0.64)| 0.9174 (0.89)| 1.0670 (1.02)| 1.1267 (1.07)
13 || 0.6377 (0.63)| 0.9045 (0.88)| 1.0486 (1.00)| 1.1058 (1.05)
14 || 0.6321 (0.63)| 0.8925 (0.87)| 1.0321 (0.99) 1.0872 (1.03)
15 || 0.6270 (0.62)| 0.8816 (0.86)| 1.0172 (0.97)| 1.0704 (1.02)
16 || 0.6222 (0.62)| 0.8717 (0.85)| 1.0035 (0.96)| 1.0551 (1.00)
17 || 0.6178 (0.61)| 0.8626 (0.84) 0.9911 (0.95)| 1.0411 (0.99)
18 || 0.6137 (0.61)| 0.8541 (0.83)| 0.9796 (0.94)| 1.0283 (0.98)
19 || 0.6098 (0.60)| 0.8463 (0.82)] 0.9690 (0.93)| 1.0164 (0.97)
20 || 0.6062 (0.60)| 0.8390 (0.81)| 0.9591 (0.92)| 1.0054 (0.96)

14

TABLE |. Exact and approximated (parenthesis) scheduliaig ¢n bits for variousn andp for n =1

and K = 32.

APPENDIX

Proof of Lemmal[ll In the first part of the lemma, far > 0,

and thus

/t T F)dy =

_tg

z/

n—1

k 4
Z—!
i=0

_tz

zOz'

—t n—1 tk
Zk:(] E!

< o0

(42)

(43)
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From [43), ifn =1, R(t) =1, and ifn > 2,

- 1 - 2

+ 25 + O(t"3)
R(t) = (tn )1 (tn 2)

ot + o + O )

= LHn—U%+O<§>. (44)

This proves the first part of the lemma.
From [43),lim; ., zR(t)/t = 0 for all real z and thus
1 — F(t+zR(t)) e~ THeRW) (¢ + zR(t))("—1

tliglo 1—F(t) - tli>11010 e~tgn—1
n—1
= lim e *f(®) <1 + _mR(t))
t—00 t
= e " (45)

For the second part, the result follows froml(45) and theofeiihg theorem whose proof can be found
in [10, Ch. 2]. [ |
A

Theorem 7: Define the upper endpoint(F) = sup{z|F(z) < 1}. Then F is in the domain of

attraction ofG = exp(—exp(—=x)) if and only if there exists some finite < w(F') such that

w(F)
/ (1 - F(y))dy < oo, (46)

and for all realz,
1—-F(t+zR(t) _,

I = 47
o) 1— F(t) © (47)
where ")
s Ji (= F(y))dy
Moreover, the normalizing constants, andb,, in (I0) can be chosen as
am:q;éinf{x 1—F(m)§i} (49)
m
and
[

The following lemma in [10, Ch. 2] will also prove useful inettproof of LemmaR2.
Lemma 8: Let X,, be any sequence of random variables such that, for someattsist,, o, b, > 0,
by, >0,
lim Pr{X,, < anm +bnz} = hm Pr{X,, <a;, + b2} =G(z), (51)

m—ro0
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for all continuity points of the distribution functiot¥(z). Then [51) holds if and only if both of the

following hold

i == =0 (52)

lim Um g (53)
mgnoo E o ’

]

Proof of Lemma[Z We prove [(1#) first. From Lemnid 8 necessary and sufficientitond for b,,,

are
bm,
lim =1 54
e Rlgn) Y
From [9) in Lemmall we know that
1, if n=1,
R(t) = o (55)
1+ (n-1)3+0(3), ifn>2
and
lim ¢, = . (56)
m—0oQ

Thuslim,,_.. b,, should bel. Since the converse is also true, we have proledl (14). Beoafufl4),
(52) in LemmdB reduces to
lim (ap, —a;,) =0 (57)

m—o0

and the conditions fou,, andb,, can be separated. Since the referemgecan be chosen to bg,, in

this case, it suffices to prove that

lim [gy, —{lnm + (n — 1) In(lnm) — In(n — 1)!}] = 0. (58)

m—ro0

From the definition ofg,,,

D L
eIy = (59)
k=0
Forn =1,
Qm = ln m7 (60)
and obviously[(60) satisfies (68). Now far> 2 andm large enough thag,, > 1,
n-l ¢ i n—2 ¢
WS T
n—1 n—2
dm n—2 1
< —
SR e ALY

< n‘]m + ¢ 2e. (61)
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Thus,

-1 n—1

_ qfn 1 — dm n—2

e Im < —<etm¢ T —+te- .
m=1! " m { n ! e dm

Taking the logarithms on both sides 6f[62) gives
—gm+(n—1lng,—Inn—-1)!<—Inm
n—1
B qy e(n—1)!
< qm—l-ln[(n_l)! (1—1— o

—1)!
= —¢n+(n—1)Ing,—In(n—1)!+In <1+@>

and it yields
dm

Inm<g,—(n—1)Ing,+In(n—1)!<lnm-+In <1+

Definee,, as

gm =Inm+ (n—1)In(lnm) —In(n — 1) + &,

and then we must proviém,, o £, = 0. From [64),

|
im 2™ —1 and lim —2" —y.
m—oo Inm m—oo Inm
We can see
E
lim —2 =0
m—oo Inm

Again, by substituting[{85) for the leftmost, in (64) and definingy,, £ In ¢,,, — In(Inm),

(n—l)&m§€m<(n—1)5m+ln<1+w>.

am
Because

—1)!
lim In <1+ M) =0,

m— o0 qm

we only need to shodim,,, .~ d,, = 0. For m such thatg,, # Inm,

Om = Ing, —In(lnm)
1
= (gm—1In m)C—, for somed(,, € (¢m,Inm) or (Inm, g,,)
qm — Inm

= , for somen,, € (0,1
Inm + 1y (gm — Inm) i € (0.1)

(n—1)In(lnm) —In(n — 1) + &,
Inm + T]m{(n - 1) ln(lnm) — ln(n — 1)] + Em}7
by mean value theorem. From_{67) andl(69),

lim §,, =0.

m—ro0

17

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)
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[ |
Proof of Theorem[d: First, note that we borrow some of the proof techniques froafl’sipaper
[12] and Galambos’s book [10, Sec. 2.10]. We see thatsatisfies

am — (n—1)Inay, +1In(n — 1)! = Inm. (71)
As in the proof of Lemmal2, it can be shown that
Agrloo[ozm —{lnm+ (n —1)In(lnm) — In(n — 1)!}] = 0. (72)
Then, we can express the general normalizing constaptandb,,, as
U = Qp + 0y, @Nd by, = 1+ 54, (73)
whereJ,, ande,, are sequences satisfy
lim §,,=0 and lim &, =0. (74)

m—r00 m—r00

Forn = 1, (Z1) and the choice of (19) and“{20) are proved in [10, p. l#jause the chi-square

distribution just become the exponential distributionnele, let us assume > 2, and define
Zm () 2 m[l — F(am, + b)) (75)

We will shortly prove that,,(x) — e~* asm — oo but assuming that this is the case, frdml(75),

F™(apm + b)) = [1 - Z’”(x)} , (76)
m
and by the triangle inequality,
|F™ (@, + b)) — e 0] — e (®) G(m)|‘ < |F™(am + bm) — G(x)]
< |EF™(am + bpz) — e @) 4 e (@) — G(2)]. (77)
Also from [10, p. 8], for anyz € (0,1/2),
e — (1= 2)"[e*™ —1] < (1—2)™ <e ™, (78)

For fixedz, because,,, () — e %, z,,(z)/m € (0,1/2) for large enoughn. By (78) with z = z,,(x)/m,
] e ()
eﬂMM[mp<%%§2>_q

_ amw[%%ﬁ+o<%ﬁ}. (79)

|F™ (apm, + bnx) — e_z’"(m)|

IN

IN
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The rate of convergence pF" (a,, +bp,z) — e~ *~(*)| is dominated by the /m term, which will turn out
to be much faster than that pf~>~(*) —G(z)|. Now, consider the rate of convergencgof*(*) —G(x)|.

From the definition ofF'(x) in (@), we can easily see that as— oo,

![1+n;1+0<%>} (80)

From [17) and noting that,,, s, 1/, — 0 asm — oo,

n—1

1—F(z) = e_x(;_ D

—(am+boz) (@m + b))

(n—1)!

2~ (B +Ema) x Om Em n—1
)'e (& 1 + a— + a— + a—ZE
. m m m

(&

= L1 (Gt o) £ O, 4 2)]

. o A S Y S U
| (= )

[679%) m A Am
B [1—(6m+sm:n)+”_1x+0<i2+53n+e$n>] (81)
m Oy, oz,
and
n—1 1 n—1 1
Becausel — F'(a,, + b,x) is equal to the product of(81) and (82),
1— F(am + bpx)
= ie‘r [1 — (O + Emx) + (n 1)(1 +2z)+ 0 (% + 62, —I—s2m>} . (83)
m m o)
From this, it is clear that as» — oo,
Zm/ () = m[l — F(am + bpz)] — e . (84)
Using the fact thatG(z) = exp(—e™7),
e @) — G(x)]
= G(z)lexp(e™™ — zm(2)) — 1
= G(x) ‘(e_m — zm(x)) 4+ O ((e_m — zm(m))2)|
— (n—1) 1 2 2
= G(z)e ™ |(om + em®) — T(1+:n)+0 — + 65 + € (85)

Obviously, to cancel outn — 1)(x + 1) /an,

S = (n = 1)—— + O <ai2> (86)

(077 m
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and
_(n—l)i—l-O 1 (87)
m = Qm a2m '

Therefore,[(IP) and_(20) must be satisfied to optimize the ehtconvergence. Moreover, &, ande,,
are chosen a§ (86) and {87), by the second order expansian e shown that the terms 6f1/a2,)

cannot be canceled out. Thus

le=@) — G(z)] =6 <ai2> : (88)
Because
am =Inm+ (n—1)In(Inm) — In(n — 1)! + o(1), (89)

1/a2, — 0 is much slower than /m — 0 asm — oo. Hence, combining (88) anf {[79) into {77) yields

F™ (an + bn) — G(z)] = O (%2) . (90)

From [89), )
P + ) = G = € (). (91)
[ |

Proof of Corollary[® Forn =1, ¢, = a,, = Inm andb,, = 1. Therefore,[(I9) and(20) hold. Let

us now taken > 2. From the definition ofv,, andg,,,

1 pan O _ 1+ Z Sty (92)
m_ ¢ -1 ’;1 ’
where,,_1 P, = (n — 1)!/(n — 1 — k)!. By taking logarithms,
—m + (n—1)Ina,, —In(n —1)!
= —gm+m—1)Ing,—In(n—1)!+In (1—1—2 qip ) . (93)
k=1 1m

Definee,, asq,, = a,, + . We can see that,, — oo ande,, — 0 asm — oo because of[(712).

Substitutinga,,, + €, for g, yields

n—1
n_1P
Em—(n—1)1n<1+—>+ln<1+2ﬁ>. (94)
Define
n—1 1Pk
B &Y (95)
kZ:1 (m +em)F

It is obvious that:,,/a,, — 0 and 3,, — 0 asm — co. Thus for large enougin,

e o((22))

em=(n—1) + Bm + O(B1). (96)
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However, since

n—1
o n—lPk - n—1 L
o k=1 (am +em)k  am o <a$n> 7 &7)
(@9) becomes
em:(n—1)€—m+”_1+0<i2>. (98)
Qm Qm oz,
Then
n—1 1
‘o 7O oz
em = 1 n_—(l M)
—1 1 —1 1
- [&e@)| e @)
O, oz, Qo ag,
1 1
= (n—1)— . 99
(n-1-+0 () (99)
Clearly, q,, satisfies[(IB). We can obtaih_{20) by substitutingl (19)dqrin (23). [ |

Proof of Theorem[@ We first introduce a simple convex ordering result by van Zjgét Ch. 2].
AssumeX andY be arbitrary random variables, whose cdfs @re and Fy respectively. Van Zwet
showed that ifFy. ' (Fiy (7)) is convex, thenFy (E[X]) < Fy(E[Y]) and Fx(E[X(m)]) < Fy (E[Y(m))),
provided the expectations exist. - (Fx (x)) is concave, then the inequalities are reversed. Now, we
return to the chi-square distribution, where the randoniatsée X follows the cdf F(x) in (@) and
consider a random variablg with the cdf Fy (y) = —1/y (—oo0 < y < —1). We can easily see that

Py (E[¥ ) =1 (100)

Becausery, ' (F(z)) = —1/F(z), we only need to show thdt/F(x) is convex. If so,~1/F(xz) is then

concave and
E[X (] > P! <1 - i) . (101)
m

Then, the lower bound of (26) will be proved. Becaus@) = 0, we can assume& > 0. It will be

sufficient to show that

21 f)F@ - 2f@)
@[Fu)]“ Fop Y (102)

for z > 0. However, this can be verified explicitly when= 1. Forn > 2, it follows from

o0

f@F@  n-1(  nl k41
{f@y — n <1 n—l,;%”)!wk)

n—1

(103)
n
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We now show the upper bound 6f {26). If a random varidbleas a cdfFy (y) =1—e™¥ (0 < y < o0),

then .
Z % (104)
For 2 > 0, define
h(z) 2 F ' (F(x)) = — In[l — F(x)). (105)

Then, forn =1, h”(z) = 0, and forn > 2,

o 2,<1+zk n—1-k)%)

n—1 gk 2
k=0 kT

> 0. (106)

Therefore, by convex ordering,

FEX(]) < Fy(EYim)) = Fy (Z %)
= 1l—exp (—Z%)
k=1
= 1—m1 exp[ {f:

?T‘|H

m+1}

Form > 1, we can easily show thgt;" , % —In(m + 1) is increasing as a function of: and by the

(107)

definition of v as Euler's constant,

. m 1 . m+1 1 1
nll_r)rclleg E—ln(m—l—l) :mh_rgol{g %—ln(m—l—l)}—m—_'_l = 7. (108)
k=1 k=1
ThusY jt, + — In(m +1) <~ and it yields
1
< -1 - | =q.+ .
E[Xm] < F (1 o 1)> Qer (m+1) (109)

Hence,[(2b) is proved. The upper bound[of] (27) can be deduwoedthe upper bound of (26) by Jensen'’s
inequality because > 0 andlog,(1 + p(+)) is then a concave function. Now, only the proof for the

lower bound of[(2I7) remains. Defing < log,(1+ pX). ThenZ,,) = logy(14 pX(,,)). The cdf of Z is

Fu(z) = F (22; 1) . (110)
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We will show thatl/F(z) is convex. Letl/F(x) be Q(z) and then

i (mm) =0 (5) e ()| Jer

If we substitute(2* — 1)/p for z, then we only need to show

/i 1 /
Q" () <x + ;) +Q'(z) >0, (112)

for 2 > 0, and [11P) becomes

i [P @F@) + 2@ (241 - f(@)F@)]
> s [ @F @) + 20 @Y 2 - 1@ F @) (113)
because- f/(z)F(z) + 2{f(x)}* > 0 by (I03). We claim
[—f'(2)F(x) + 2{f(2)}*] & — f(2)F(z) > 0. (114)
This is because
L 3:.n—l n—1 ZL'k "
e mi(n—l)! [(az—n) <e””—kzzoﬁ> + (n—l)!] > 0. (115)
Thus—1/Fz(z) is concave. By the convex ordering with the déf(y) =1 —e ¥ (0 < y < c0),
2E[Zim] _ 1 1
Fz(BlZm))) = F (f) >1-— (116)
oB[Zm] _ 1 B
It 1(“%) — G, (117)
and therefore
C'(p) = E[Z(m)] > 10g2(1 +p- Qm)' (118)
[ |
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