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Abstract

When information is to be transmitted over an unknown, possibly unreliable channel, an
erasure option at the decoder is desirable. Using constant-composition random codes, we propose
a generalization of Csiszár and Körner’s Maximum Mutual Information decoder with erasure
option for discrete memoryless channels. The new decoder is parameterized by a weighting
function that is designed to optimize the fundamental tradeoff between undetected-error and
erasure exponents for a compound class of channels. The class of weighting functions may be
further enlarged to optimize a similar tradeoff for list decoders — in that case, undetected-error
probability is replaced with average number of incorrect messages in the list. Explicit solutions
are identified.

The optimal exponents admit simple expressions in terms of the sphere-packing exponent,
at all rates below capacity. For small erasure exponents, these expressions coincide with those
derived by Forney (1968) for symmetric channels, using Maximum a Posteriori decoding. Thus
for those channels at least, ignorance of the channel law is inconsequential. Conditions for opti-
mality of the Csiszár-Körner rule and of the simpler empirical-mutual-information thresholding
rule are identified. The error exponents are evaluated numerically for the binary symmetric
channel.
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ing, Neyman-Pearson hypothesis testing.
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1 Introduction

Universal decoders have been studied extensively in the information theory literature as they are
applicable to a variety of communication problems where the channel is partly or even completely
unknown [1, 2]. In particular, the Maximum Mutual Information (MMI) decoder provides univer-
sally attainable error exponents for random constant-composition codes over discrete memoryless
channels (DMCs). In some cases, incomplete knowledge of the channel law is inconsequential as
the resulting error exponents are the same as those for maximum-likelihood decoders which know
the channel law in effect.

It is often desirable to provided the receiver with an erasure option that can be exercised when
the received data are deemed unreliable. For fixed channels, Forney [3] derived the decision rule that
provides the optimal tradeoff between the erasure and undetected-error probabilities, analogously
to the Neyman-Pearson problem for binary hypothesis testing. Forney used the same framework
to optimize the performance of list decoders; the probability of undetected errors is then replaced
by the expected number of incorrect messages on the list. The size of the list is a random variable
which equals 1 with high probability when communication is reliable.

For unknown channels, the problem of decoding with erasures was considered by Csiszár and
Körner [1]. They derived attainable pairs of undetected-error and erasure exponents for any DMC.
Their work was later extended by Telatar and Gallager [4]. However neither [1] nor [4] indicated
whether true universality is achievable, i.e., whether the exponents match Forney’s exponents. Also
they did not indicate whether their error exponents might be optimal in some weaker sense. The
problem was recently revisited by Merhav and Feder [5], using a competitive minimax approach.
The analysis of [5] yields lower bounds on a certain fraction of the optimal exponents. It is suggested
in [5] that true universality might generally not be attainable, which would represent a fundamental
difference with ordinary decoding.

This paper considers decoding with erasures for the compound DMC, with two goals in mind.
The first is to construct a broad class of decision rules that can be optimized in an asymptotic
Neyman-Pearson sense, analogously to universal hypothesis testing [6–8]. The second is to investi-
gate the universality properties of the receiver, in particular conditions under which the exponents
coincide with Forney’s exponents. We first solve the problem of variable-size list decoders because
it is simpler, and the solution to the ordinary problem of size-1 lists follows directly. We establish
conditions under which our error exponents match Forney’s exponents.

Following background material in Sec. 2, the main results are given in Secs. 3—5. We also
observe that in some problems the compound DMC approach is overly rigid and pessimistic. For
such problems we present in Sec. 6 a simple and flexible extension of our method based on the
relative minimax principle. In Sec. 7 we apply our results to a class of Binary Symmetric Channels
(BSC), which yields easily computable and insightful formulas. The paper concludes with a brief
discussion in Sec. 8. The proofs of the main results are given in the appendices.

1.1 Notation

We use uppercase letters for random variables, lowercase letters for individual values, and boldface
fonts for sequences. The probability mass function (p.m.f.) of a random variable X ∈ X is denoted
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by pX = {pX(x), x ∈ X}, the probability of a set Ω under pX by PX(Ω), and the expectation
operator by E. Entropy of a random variable X is denoted by H(X), and mutual information
between two random variables X and Y is denoted by I(X;Y ) = H(X) −H(X|Y ), or by I(pXY )
when the dependency on pXY should be explicit. The Kullback-Leibler divergence between two
p.m.f.’s p and q is denoted by D(p||q). All logarithms are in base 2. We denote by f ′ the derivative
of a function f .

Denote by px the type of a sequence x ∈ XN (px is an empirical p.m.f. over X ) and by Tx the
type class associated with px, i.e., the set of all sequences of type px. Likewise, denote by pxy the
joint type of a pair of sequences (x,y) ∈ XN ×YN (a p.m.f. over X ×Y) and by Txy the type class
associated with pxy, i.e., the set of all sequences of type pxy. The conditional type py|x of a pair of
sequences (x,y) is defined as pxy(x, y)/px(x) for all x ∈ X such that px(x) > 0. The conditional
type class Ty|x is the set of all sequences ỹ such that (x, ỹ) ∈ Txy. We denote by H(x) the entropy
of the p.m.f. px and by H(y|x) and I(x;y) the conditional entropy and the mutual information
for the joint p.m.f. pxy, respectively. Recall that [1]

(N + 1)−|X | 2NH(x) ≤ |Tx| ≤ 2NH(x), (1.1)

(N + 1)−|X | |Y| 2NH(y|x) ≤ |Ty|x| ≤ 2NH(y|x). (1.2)

We let PX and P
[N ]
X represent the set of all p.m.f.’s and empirical p.m.f.’s, respectively, for

a random variable X. Likewise, PY |X and P
[N ]
Y |X denote the set of all conditional p.m.f.’s and

all empirical conditional p.m.f.’s, respectively, for a random variable Y given X. The notation
f(N) ∼ g(N) denotes asymptotic equality: limN→∞

f(N)
g(N) = 1. The shorthands f(N)

.
= g(N) and

f(N)
�

≤ g(N) denote equality and inequality on the exponential scale: limN→∞
1
N ln f(N)

g(N) = 0 and

limN→∞
1
N ln f(N)

g(N) ≤ 0, respectively. We denote by 1{x∈Ω} the indicator function of a set Ω and

define |t|+ , max(0, t) and exp2(t) , 2t. We adopt the notational convention that the minimum of
a function over an empty set is +∞.

The function-ordering notation F � G indicates that F (t) ≤ G(t) for all t. Similarly, F � G
indicates that F (t) ≥ G(t) for all t.

2 Decoding with Erasure and List Options

2.1 Maximum-Likelihood Decoding

In his 1968 paper [3], Forney studied the following erasure/list decoding problem. A length-N ,
rate-R code C = {x(m), m ∈ M} is selected, where M = {1, 2, · · · , 2NR} is the message set and
each codeword x(m) ∈ XN . Upon selection of a message m, the corresponding x(m) is transmitted
over a DMC pY |X : X → Y. A set of decoding regions Dm ⊆ YN , m ∈ M, is defined, and the
decoder returns m̂ = g(y) if and only if y ∈ Dm. For ordinary decoding, {Dm, m ∈ M} form a
partition of YN . When an erasure option is introduced, the decision space is extended to M∪ ∅,
where ∅ denotes the erasure symbol. The erasure region D∅ is the complement of ∪m∈MDm in YN .
An undetected error arises if m was transmitted but y lies in the decoding region of some other
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message i 6= m. This event is given by

Ei =






(m,y) : y ∈

⋃

i∈M\{m}

Di






, (2.1)

where the subscript i stands for “incorrect message”. Hence

Pr[Ei] =
1

|M|
∑

m∈M

∑

y∈
S

i∈M\{m} Di

pNY |X(y|x(m))

=
1

|M|
∑

m∈M

∑

i∈M\{m}

∑

y∈Di

pNY |X(y|x(m)), (2.2)

where the second equality holds because the decoding regions are disjoint.

The erasure event is given by

E∅ = {(m,y) : y ∈ D∅}

and has probability

Pr[E∅] =
1

|M|
∑

m∈M

∑

y∈D∅

pNY |X(y|x(m)). (2.3)

The total error event is given by Eerr = Ei ∪E∅. The decoder is generally designed so that Pr[Ei] ≪
Pr[E∅], so Pr[Eerr] ≈ Pr[E∅].

Analogously to the Neyman-Pearson problem, one wishes to design the decoding regions to
obtain an optimal tradeoff between Pr[Ei] and Pr[E∅]. Forney proved the following class of decision
rules is optimal:

gML(y) =

{
m̂ : if pNY |X(y|x(m̂)) > eNT

∑

i 6=m̂

pNY |X(y|x(i))

∅ : else
(2.4)

where T ≥ 0 is a free parameter trading off Pr[Ei] against Pr[E∅]. The nonnegativity constraint on
T ensures that m̂ is uniquely defined for any given y. There is no other decision rule that yields
simultaneously a lower value for Pr[Ei] and for Pr[E∅].

A conceptually simple (but suboptimal) alternative to (2.4) is

gML,2(y) =

{
m̂ : if pNY |X(y|x(m̂)) > eNT max

i 6=m̂
pNY |X(y|x(i))

∅ : else
(2.5)

where the decision is made based on the two highest likelihood scores.

If one chooses T < 0, there is generally more than one value of m̂ that satisfies (2.4), and gML

may be viewed as a list decoder that returns the list of all such m̂. Denote by Ni the number
of incorrect messages on the list. Since the decoding regions {Dm, m ∈ M} overlap, the average
number of incorrect messages in the list,

E[Ni] =
1

|M|
∑

m∈M

∑

i∈M\{m}

∑

y∈Di

pNY |X(y|x(m)), (2.6)
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no longer coincides with Pr[Ei] in (2.2).

For the rule (2.4) applied to symmetric channels, Forney showed that the following error expo-
nents are achievable for all ∆ such that Rconj ≤ R+∆ ≤ C:

Ei(R,∆) = Esp(R) + ∆

E∅(R,∆) = Esp(R+∆) (2.7)

where Esp(R) is the sphere-packing exponent, and Rconj is the conjugate rate, defined as the rate
for which the slope of Esp(·) is the inverse of the slope at rate R:

E′
sp(R

conj) =
1

E′
sp(R)

.

The exponents of (2.7) are achieved using independent and identically distributed (i.i.d.) codes.

2.2 Universal Decoding

When the channel law pY |X is unknown, maximum-likelihood decoding cannot be used. For
constant-composition codes with type pX , the MMI decoder takes the form

gMMI(y) = argmax
i∈M

I(x(i);y). (2.8)

Csiszár and Körner [1, p. 174—178] extended the MMI decoder to include an erasure option, using
the following decision rule:

gλ,∆(y) =

{
m̂ : if I(x(m̂);y) > R+∆+ λ max

i 6=m̂
|I(x(i);y) −R|+

∅ : else
(2.9)

where ∆ ≥ 0 and λ > 1. They derived the following error exponents for the resulting undetected-
error and erasure events:

{Er,λ(R, pX , pY |X) + ∆, Er,1/λ(R +∆, pX , pY |X)}, ∀pY |X

where
Er,λ(R, pX , pY |X) = min

p̃Y |X

{D(p̃Y |X‖pY |X |pX) + λ|I(pX , p̃Y |X)−R|+}.

While ∆ and λ are tradeoff parameters, they did not mention whether the decision rule (2.9)
satisfies any Neyman-Pearson type optimality criterion.

A different approach was recently proposed by Merhav and Feder [5]. They raised the possibility
that the achievable pairs of undetected-error and erasure exponents might be smaller than in the
known-channel case and proposed a decision rule based on the competitive minimax principle.
This rule is parameterized by a scalar parameter 0 ≤ ξ ≤ 1 which represents a fraction of the
optimal exponents (for the known-channel case) that their decoding procedure is guaranteed to
achieve. Decoding involves explicit maximization of a cost function over the compound DMC
family, analogously to a Generalized Likelihood Ratio Test (GLRT). The rule coincides which the
GLRT when ξ = 0, but the choice of ξ can be optimized. They conjectured that the highest
achievable ξ is lower than 1 in general, and derived a computable lower bound on that value.
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3 F–MMI Class of Decoders

3.1 Decoding Rule

Assume that random constant-composition codes with type pX are used, and that the DMC pY |X

belongs to a connected subset W of PY |X . The decoder knows W but not which pY |X is in effect.

Analogously to (2.9), our proposed decoding rule is a test based on the empirical mutual in-
formations for the two highest-scoring messages. Let F be the class of continuous, nondecreasing
functions F : [−R, H(pX)−R] → R. The decision rule indexed by F ∈ F takes the form

gF (y) =

{
m̂ : if I(x(m̂);y) > R+max

i 6=m̂
F (I(x(i);y) −R)

∅ : else.
(3.1)

Given a candidate message m̂, the function F weighs the score of the best competing codeword.
Since 0 ≤ I(x(i);y) ≤ H(pX), all values of F (t) outside the range [−R,H(pX)−R] are equivalent
in terms of the decision rule (3.1).

The choice F (t) = t results in the MMI decoding rule (2.8), and

F (t) = ∆ + λ |t|+ (3.2)

(two-parameter family of functions) results in the Csiszár-Körner rule (2.9).

One may further require that F (t) ≥ t to guarantee that m̂ = argmaxi I(x(i);y), as can be
verified by direct substitution into (3.1). In this case, the decision is whether the decoder should
output the highest-scoring message or output an erasure decision.

When the restriction F (t) ≥ t is not imposed, the decision rule (3.1) is ambiguous because more
than one m̂ could satisfy the inequality in (3.1). Then (3.1) may be viewed as a list decoder that
returns the list of all such m̂, similarly to (2.4).

The Csiszár-Körner decision rule parameterized by F in (3.2) is nonambiguous for λ ≥ 1. Note
there is an error in Theorem 5.11 and Corollary 5.11A of [1, p. 175], where the condition λ > 0
should be replaced with λ ≥ 1 [9].

In the limit as λ ↓ 0, (3.2) leads to the simple decoder that lists all messages whose empirical
mutual information score exceeds R+∆. If a list decoder is not desired, a simple variation on (3.2)
when 0 < λ < 1 is

F (t) =

{
∆+ λ |t|+ : t ≤ ∆

1−λ

t : else.

It is also worth noting that the function F (t) = ∆+ t may be thought of as an empirical version
of Forney’s suboptimal decoding rule (2.5), with T = ∆. Indeed, using the identity I(x;y) =
H(y)−H(y|x) and viewing the negative empirical equivocation

−H(y|x) =
∑

x,y

pxy(x, y) ln py|x(y|x)

as an empirical version of the normalized loglikelihood

1

N
ln pNY |X(y|x) =

∑

x,y

pxy(x, y) ln pY |X(y|x),

6



we may rewrite (2.5) and (3.1) respectively as

gML,2(y) =

{
m̂ : if 1

N ln pNY |X(y|x(m̂)) > T + max
i 6=m̂

1
N ln pNY |X(y|x(i))

∅ : else
(3.3)

and

gF (y) =

{
m̂ : if −H(y|x(m̂)) > ∆+max

i 6=m̂
[−H(y|x(i))]

∅ : else.
(3.4)

While this observation does not imply F (t) = ∆+t is an optimal choice for F , one might intuitively
expect optimality in some regime.

3.2 Error Exponents

For a random-coding strategy using constant-composition codes with type pX , the expected number
of incorrect messages on the list, E[Ni], and the erasure probability, Pr[E∅], may be viewed as
functions of R, pX , pY |X , and F . A pair {Ei(R, pX , pY |X , F ), E∅(R, pX , pY |X , F )} of incorrect-
message and erasure exponents is said to be universally attainable for such codes over W if the
expected number of incorrect messages on the list and the erasure probability satisfy

E[Ni] ≤ exp2
{
−N [Ei(R, pX , pY |X , F )− ǫ]

}
, (3.5)

Pr[E∅] ≤ exp2
{
−N [E∅(R, pX , pY |X , F )− ǫ]

}
, ∀pY |X ∈ W , (3.6)

for any ǫ > 0 and N greater than some N0(ǫ). The worst-case exponents (over all pY |X ∈ W ) are
denoted by

Ei(R, pX ,W , F ) , min
pY |X∈W

Ei(R, pX , pY |X , F ), (3.7)

E∅(R, pX ,W , F ) , min
pY |X∈W

E∅(R, pX , pY |X , F ). (3.8)

Our problem is to maximize the erasure exponent E∅(R, pX ,W , F ) subject to the constraint
that the incorrect-message exponent Ei(R, pX ,W , F ) is at least equal to some prescribed value α.
This is an asymptotic Neyman-Pearson problem. We shall focus on the regime of practical interest
where erasures are more acceptable than undetected errors:

E∅(R, pX ,W , F ) ≤ Ei(R, pX ,W , F ).

We emphasize that asymptotic Neyman-Pearson optimality of the decision rule holds only in a
restricted sense, namely, with respect to the F-MMI class (3.1).

Specifically, given R and W , we seek the solution to the constrained optimization problem

E∗
∅(R,W , α) , max

pX
max

F∈F(R,pX ,W ,α)
min

pY |X∈W
E∅(R, pX , pY |X , F ) (3.9)

where F(R, pX ,W , α) is the set of functions F that satisfy

min
pY |X∈W

Ei(R, pX , pY |X , F ) ≥ α (3.10)
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as well as the continuity and monotonicity conditions mentioned above (3.1).

If we were able to choose F as a function of pY |X , we would do at least as well as in (3.9) and
achieve the erasure exponent

E∗∗
∅ (R,W , α) , max

pX
min

pY |X∈W

max
F∈F(R,pX ,pY |X ,α)

E∅(R, pX , pY |X , F )

≥ E∗
∅(R,W , α). (3.11)

We shall be particularly interested in characterizing (R,W , α) for which the decoder incurs no
penalty for not knowing pY |X , i.e.,

• equality holds in (3.11), and

• the optimal exponents Ei(R, pX , pY |X , F ) and E∅(R, pX , pY |X , F ) in (3.10) and (3.9) coincide
with Forney’s exponents in (2.7) for all pY |X ∈ W ,

the second property being stronger than the first one.

3.3 Basic Properties of F

To simplify the derivations, it is convenient to slightly strengthen the requirement that F be
nondecreasing, and work with strictly increasing functions F instead. Then the maxima over F in
(3.9) and (3.11) are replaced with suprema, but of course their value remains the same.

To each monotonically increasing function F corresponds an inverse F−1, such that

F (t) = u ⇔ F−1(u) = t.

Elementary properties satisfied by the inverse function include:

(P1) F−1 is continuous and increasing over its range.

(P2) If F � G, then F−1 � G−1.

(P3) G(t) = F (t) + ∆ ⇔ G−1(t) = F−1(t−∆).

(P4) dF (t)
dt = 1

/
dF−1(t)

dt .

(P5) If F is convex, then F−1 is concave.

(P6) The domain of F−1 is the range of F , and vice-versa.

Now for any F such that F (H(pX)−R) ≥ 0, define the scalar

tF , sup {t : F (t) = |F (t′)| ∀t′ ≤ t ≤ H(pX)−R} (3.12)

which may depend on R and pX via the difference H(pX) − R. From this definition we have the
following properties:

• |F (t)|+ is constant for all t ≤ tF ;

• F (t) ≥ 0 for t ≥ tF .

We have tF = 0 if F (t) is chosen as in (4.5), or if F (t) = ∆ + λ|t|+. If F has a zero-crossing, tF
is that zero-crossing. For instance, tF = −∆/λ if F (t) = ∆ + λt. Or tF = min{∆,H(pX) − R} if
F (t) = a|t−∆|+. The supremum in (3.12) always exists.
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4 Random-Coding and Sphere-Packing Exponents

The sphere packing exponent for channel pY |X is defined as

Esp(R, pX , pY |X) , min
p̃Y |X : I(pX ,p̃Y |X)≤R

D(p̃Y |X‖pY |X | pX) (4.1)

and as ∞ if the minimization above is over an empty set. The function Esp(R, pX , pY |X) is convex,
nonincreasing, and differentiable in R, and continuous in pY |X .

The sphere packing exponent for class W is defined as

Esp(R, pX ,W ) , min
pY |X∈W

Esp(R, pX , pY |X). (4.2)

The function Esp(R, pX ,W ) is differentiable in R because W is a connected set. In some cases,
Esp(R, pX ,W ) is convex in R, e.g., when the same pY |X achieves the minimum in (4.2) at all
rates. Denote by R∞(pX ,W ) the infimum of the rates R such that Esp(R, pX ,W ) < ∞, and by
I(pX ,W ) = minpY |X∈W I(pX , pY |X) the supremum of R such that Esp(R, pX ,W ) > 0.

The modified random coding exponent for channel pY |X and for class W are respectively defined
as

Er,F (R, pX , pY |X) , min
p̃Y |X

[D(p̃Y |X‖pY |X | pX) + F (I(pX , p̃Y |X)−R)] (4.3)

and
Er,F (R, pX ,W ) , min

pY |X∈W

Er,F (R, pX , pY |X). (4.4)

When F (t) = |t|+, (4.3) is just the usual random coding exponent. It can be verified that (4.3) is
a continuous functional of F .

Define the function

FR,pX ,W (t) , Esp(R, pX ,W )− Esp(R+ t, pX ,W ) (4.5)

which is depicted in Fig. 1 for a BSC example to be analyzed in Sec. 7. This function is increasing
for R∞(pX ,W )−R ≤ t ≤ I(pX ,W )−R and satisfies the following properties:

FR,pX ,W (0) = 0

F ′
R,pX ,W (t) = −E′

sp(R+ t, pX ,W )

Esp(R
′, pX ,W ) + FR,pX ,W (R′ −R) ≡ Esp(R, pX ,W ). (4.6)

If Esp(R, pX ,W ) is convex in R, then FR,pX ,W (t) is concave in t.

Proposition 4.1 The modified random coding exponent Er,F (R, pX , pY |X) satisfies the following
properties.
(i) Er,F (R, pX , pY |X) is nonincreasing in R.
(ii) If F ≺ G, then Er,F (R, pX , pY |X) ≤ Er,G(R, pX , pY |X).
(iii) Er,F (R, pX , pY |X) is related to the sphere packing exponent as follows:

Er,F (R, pX , pY |X) = min
R′

[Esp(R
′, pX , pY |X) + F (R′ −R)]. (4.7)

(iv) The above properties hold with W in place of pY |X in the arguments of the functions Er,F and
Esp.
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Figure 1: Function FR,pX ,W (·−R) whenR = 0.1, W is the family of BSC’s with crossover probability
ρ ≤ 0.1 (capacity C(ρ) ≥ 0.53), and pX is the uniform p.m.f. over {0, 1}.

The proof of these properties is given in the appendix. Part (iii) is a variation on Lemma 5.4
and its corollary in [1, p. 168]. Also note that while Er,F (R, pX , pY |X) is convex in R for some
choices of F , including (3.2), that property does not extend to arbitrary F .

Proposition 4.2 The incorrect-message and erasure exponents under the decision rule (3.1) are
respectively given by

Ei(R, pX , pY |X , F ) = Er,F (R, pX , pY |X), (4.8)

E∅(R, pX , pY |X , F ) = Er,|F−1|+(R, pX , pY |X). (4.9)

Proof: see appendix.

If F (t) = |t|+, then |F−1(t)|+ = |t|+, and both (4.8) and (4.9) reduce to the ordinary random-
coding exponent.

If the channel is not reliable enough in the sense that I(pX , pY |X) ≤ R + F (0), then
F−1(I(pX , pY |X) − R) ≤ F−1(F (0)) = 0, and from (4.9) we obtain E∅(R, pX , pY |X , F ) = 0 be-
cause the minimizing p̃Y |X in the expression for Er,|F−1|+ is equal to pY |X . Checking (3.1), a
heuristic explanation for the zero erasure exponent is that I(x(m);y) ≈ I(pX , pY |X) with high
probability when m is the transmitted message, and maxi 6=m I(x(m);y) ≈ R (obtained using (B.4)
with ν = R and the union bound).
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5 W -Optimal Choice of F

In this section, we view the incorrect-message and erasure exponents as functionals of |F |+ and
examine optimal tradeoffs between them. It is instructive to first consider the one-parameter family

F (t) ≡ ∆ ≥ 0, (5.1)

which coresponds to a thresholding rule in (3.1). Using (4.7) it is easily verified that

Ei(R, pX , pY |X , F ) = Er,F (R, pX , pY |X) ≡ ∆, (5.2)

E∅(R, pX , pY |X , F ) ≡ Esp(R +∆, pX , pY |X). (5.3)

Two extreme choices for ∆ are 0 and I(pX ,W ) − R because in each case one error exponent is
zero and the other one is positive. One would expect that better tradeoffs can be achieved using a
broader class of functions F , though.

Recalling (3.9) (3.10) and using (4.8) and (4.9), we seek the solution to the following two
asymptotic Neyman-Pearson optimization problems. For list decoding, find

EL
∅ (R,W , α) = max

pX
EL

∅ (R, pX ,W , α) (5.4)

where the cost function

EL
∅ (R, pX ,W , α) = sup

F∈FL(R,pX ,W ,α)

Er,|F−1|+(R, pX ,W ). (5.5)

where the feasible set FL(R, pX ,W , α) is the set of continuous, increasing functions F that yield
an incorrect-message exponent at least equal to α:

Ei(R, pX ,W , F ) = Er,F (R, pX ,W ) ≥ α. (5.6)

For classical decoding (list size ≤ 1), find

E∅(R,W , α) = max
pX

E∅(R, pX ,W , α) (5.7)

where
E∅(R, pX ,W , α) = sup

F∈F(R,pX ,W ,α)
Er,|F−1|+(R, pX ,W ) (5.8)

and F(R, pX ,W , α) is the subset of functions in FL(R, pX ,W , α) that satisfy F (t) ≥ t, i.e., the
decoder outputs at most one message.

Since F(R, pX ,W , α) ⊂ FL(R, pX ,W , α), we have

E∅(R, pX ,W , α) ≤ EL
∅ (R, pX ,W , α).

The sequel of this paper focuses on the class of variable-size list decoders associated with FL because
the error exponent tradeoffs are at least as good as those associated with F , and the corresponding
error exponents take a more concise form.
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Define the critical rate Rcr(pX ,W ) as the rate at which the derivative E′
sp(·, pX ,W ) = −1, and

∆ , α−Esp(R, pX ,W ). (5.9)

Two rates R1 and R2 are said to be conjugate given pX and W if the corresponding slopes of
Esp(·, pX ,W ) are inverse of each other:

E′
sp(R1, pX ,W ) =

1

E′
sp(R2, pX ,W )

. (5.10)

The difference d between two conjugate rates uniquely specifies them. We denote the smaller one by
R1(d) and the larger one by R2(d), irrespective of the sign of d. Hence R1(d) ≤ Rcr(pX ,W ) ≤ R2(d),
with equality when d = 0. We also denote by Rconj(pX ,W ) the conjugate rate of R, as defined
by (5.10). The conjugate rate always exists when R is below the critical rate Rcr(pX ,W ). If R is
above the critical rate and sufficiently large, Rconj(pX ,W ) may not exist. Instead of treating this
case separately, we note that this case will be irrelevant because the conjugate rate always appears
via the expression max{R,Rconj(pX ,W )} which is equal to R if R > Rcr(pX ,W ) and therefore this
expression is always well defined.

The proofs of Prop. 5.1 and 5.3 and Lemma 5.4 below may be found in the appendix; recall
FR,pX ,W (t) was defined in (4.5). The proof of Prop. 5.5 parallels that of Prop. 5.1(ii) and is therefore
omitted.

Proposition 5.1 The suprema in (5.5) and (5.8) are respectively achieved by

FL∗(t) = FR,pX ,W (t) + ∆ (5.11)

= α− Esp(R+ t, pX ,W ) (5.12)

and
F ∗(t) = max(t, FL∗(t)). (5.13)

The resulting incorrect-message exponent is given by Ei(R, pX ,W ) = α. The optimal solution is
nonunique. In particular, for t ≤ 0, one can replace FL∗(t) by the constant FL∗(0) without effect
on the error exponents.

The proof of Prop. 5.1 is quite simple and can be separated from the calculation of the error
exponents. The main idea is as follows. If G � F , we have Er,G(R, pX ,W ) ≤ Er,F (R, pX ,W ).
Since G−1 � F−1, we also have Er,G−1(R, pX ,W ) ≥ Er,F−1(R, pX ,W ). Therefore we seek F ∗ ∈
FL(R, pX ,W , α) such that F ∗ � F for all F ∈ FL(R, pX ,W , α). Such F ∗, assuming it exists,
necessarily achieves EL

∅ (R, pX ,W , α). The same procedure applies to F(R, pX ,W , α).

Corollary 5.2 If R ≥ I(pX ,W ), the thresholding rule FL∗(t) ≡ ∆ of (5.1) is optimal, and the
optimal error exponents are Ei(R, pX ,W , α) = ∆ and EL

∅ (R, pX ,W , α) = 0.

Proof. Since R ≥ I(pX ,W ), we have Esp(R, pX ,W ) = 0. Hence from (4.5), FR,pX ,W (t) ≡ 0
for all t ≥ 0. Substituting into (5.11) proves the optimality of the thresholding rule (5.1). The
corresponding error exponents are obtained by minimizing (5.2) and (5.3) over pY |X ∈ W . ✷

The case R < I(pX ,W ) is addressed next.
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Proposition 5.3 If Esp(R, pX ,W ) is convex in R, the optimal incorrect-message and erasure ex-
ponents are related as follows.
(i) For |Rconj(pX ,W )−R|+ ≤ ∆ ≤ I(pX ,W )−R, we have

Ei(R, pX ,W , α) = Esp(R, pX ,W ) + ∆ = α

EL
∅ (R, pX ,W , α) = Esp(R +∆, pX ,W ). (5.14)

(ii) The above exponents are also achieved using the penalty function F (t) = ∆ + λ|t|+ with

−E′
sp(R, pX ,W ) ≤ λ ≤ 1

−E′
sp(R+∆, pX ,W )

. (5.15)

(iii) If R ≤ Rcr(pX ,W ) and 0 ≤ ∆ ≤ Rconj(pX ,W )−R, we have

Ei(R, pX ,W , α) = Esp(R, pX ,W ) + ∆ = α

EL
∅ (R, pX ,W , α) = Esp(R2(∆), pX ,W ) + F−1

R,pX ,W (R1(∆)−R). (5.16)

(iv) If R ≤ Rcr(pX ,W ) and R∞(pX ,W )−R ≤ ∆ ≤ 0, we have

Ei(R, pX ,W , α) = Esp(R, pX ,W ) + ∆ = α

EL
∅ (R, pX ,W , α) = Esp(R1(∆), pX ,W ) + F−1

R,pX ,W (R2(∆)−R). (5.17)

Part (ii) of the proposition implies that not only is the optimal F nonunique under the combi-
nations of (R, pX ,W , α) of Part (i), but also the Csiszár-Körner rule (2.9) is optimal for any (∆, λ)
in a certain range of values.

Also, while Prop. 5.3 provides simple expressions for the worst-case error exponents over W ,
the exponents for any specific channel pY |X ∈ W are obtained by substituting the function (5.12)
and its inverse, respectively, into the minimization problem of (4.7). This problem does generally
not admit a simple expression.

This leads us back to the question asked at the end of Sec. 2, namely, when does the decoder
pay no penalty for not knowing pY |X? Defining

E′
sp(R, pX ,W ) , min

pY |X∈W

E′
sp(R, pX , pY |X), (5.18)

and
R

conj
(pX ,W ) , max

pY |X∈W

Rconj(pX , pY |X) (5.19)

we have the following lemma, whose proof appears in the appendix.

Lemma 5.4

E′
sp(R, pX ,W ) ≥ E′

sp(R, pX ,W ), (5.20)

R
conj

(pX ,W ) ≥ Rconj(pX ,W ) (5.21)

with equality if the same pY |X minimizes Esp(R, pX , pY |X) at all rates.
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Proposition 5.5 Assume that R, pX , W , ∆ and λ are such that

|Rconj
(pX ,W )−R|+ ≤ ∆ ≤ I(pX ,W )−R, (5.22)

−E ′
sp(R, pX ,W ) ≤ λ ≤ 1

−E′
sp(R +∆, pX ,W )

. (5.23)

Then the pair of incorrect-message and erasure exponents

{Esp(R, pX , pY |X) + ∆, Esp(R +∆, pX , pY |X)} (5.24)

is universally attainable over pY |X ∈ W using the penalty function F (t) = ∆ + λ|t|+, and equality
holds in the erasure-exponent game of (3.11).

Proof. From (5.19) and (5.22), we have

|Rconj(pX , pY |X)−R|+ ≤ ∆ ≤ I(pX , pY |X)−R, ∀pY |X ∈ W .

Similarly, from (5.18) and (5.23), we have

−E′
sp(R, pX , pY |X) ≤ λ ≤ 1

−E′
sp(R+∆, pX , pY |X)

, ∀pY |X ∈ W .

Then applying Prop. 5.3(ii) with the singleton {pY |X} in place of W proves the claim. ✷

The set of (∆, λ) defined by (5.22), (5.23) is smaller than that of Prop. 5.3(i) but is not empty
because E′

sp(R+∆, pX ,W ) tends to zero as ∆ approaches the upper limit I(pX ,W )−R. Thus the
universal exponents in (5.24) hold at least in the small erasure-exponent regime (where Esp(R +
∆, pX , pY |X) → 0) and coincide with those derived by Forney [3, Theorem 3(a)] for symmetric
channels, using MAP decoding. For symmetric channels, the same input distribution pX is optimal
at all rates. 1 Our rates are identical to his, i.e., the same optimal error exponents are achieved
without knowledge of the channel.

6 Relative Minimax

When the compound class W is so large that I(pX ,W ) ≤ R, we have seen from Corollary 5.2 that
the simple thresholding rule F (t) ≡ ∆ is optimal. Even if I(pX ,W ) > R, our minimax criterion
(which seeks the worst-case error exponents over the class W ) for designing F might be a pessimistic
one. This drawback can be alleviated to some extent using a relative minimax principle, see [10]
and references therein. Our proposed approach is to define two functionals α(pY |X) and β(pY |X)
and the relative error exponents

∆αEi(R, pX , pY |X , F ) , Ei(R, pX , pY |X , F )− α(pY |X),

∆β E∅(R, pX , pY |X , F ) , E∅(R, pX , pY |X , F )− β(pY |X).

Then solve the constrained optimization problem of (3.9) with the above functionals in place of
Ei(R, pX , pY |X , F ) − α and E∅(R, pX , pY |X , F ). It is reasonable to choose α(pY |X) and β(pY |X)

1 Forney also studied the case E∅(R) > Ei(R), which is not covered by our analysis.
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large for “good channels” and small for very noisy channels. While α(pY |X) and β(pY |X) could
be the error exponents associated with some reference test, this is not a requirement. A possible
choice is

α(pY |X) = ∆

β(pY |X) = Esp(R+∆, pX , pY |X)

which are the error exponents (5.2) and (5.3) corresponding to the thresholding rule F (t) ≡ ∆.
Another choice is

α(pY |X) = Esp(R, pX , pY |X) + ∆ (6.1)

β(pY |X) = Esp(R+∆, pX , pY |X) (6.2)

which are the “ideal” Forney exponents — achievable under the assumptions of Prop. 5.5(i).

The relative minimax problem is a simple extension of the minimax problem solved earlier.
Define the following functions:

∆αEr,F (R, pX ,W ) = min
pY |X∈W

[Er,F (R, pX , pY |X)− α(pY |X)], (6.3)

∆αEsp(R, pX ,W ) = min
pY |X∈W

[Esp(R, pX , pY |X)− α(pY |X)], (6.4)

FR,pX ,W ,α(t) = ∆αEsp(R, pX ,W )−∆α Esp(R + t, pX ,W ). (6.5)

The function FR,pX ,W ,α(t) of (6.5) is increasing and satisfies FR,pX ,W ,α(0) = 0. The above functions
∆αEr,F and ∆αEsp satisfy the following relationship:

∆α Er,F (R, pX ,W )
(a)
= min

pY |X∈W

{

min
R′

[Esp(R
′, pX , pY |X) + F (R′ −R)]− α(pY |X)

}

= min
R′

{

min
pY |X∈W

[Esp(R
′, pX , pY |X)− α(pY |X)] + F (R′ −R)]

}

(b)
= min

R′
[∆α Esp(R

′, pX ,W ) + F (R′ −R)] (6.6)

where (a) is obtained from (4.7) and (6.3), and (b) from (6.4). Equation (6.6) is of the same form
as (4.7), with ∆αEr,F and ∆αEsp in place of Er,F − α and Esp − α, respectively.

Analogously to (5.4), (5.5), and (5.6), the relative minimax for variable-size decoders is given
by

∆β E
L
∅ (R,W , α) = max

pX
sup

F∈FL(R,pX ,W ,α)

∆β Er,|F−1|+(R, pX ,W ) (6.7)

where the feasible set FL(R, pX ,W , α) is the set of functions F that satisfy

∆αEr,F (R, pX ,W ) ≥ 0

as well as the previous continuity and monotonicity conditions. The following proposition is anal-
ogous to Prop. 5.1.
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Proposition 6.1 The supremum over F in (6.7) is achieved by

FL∗(t) = FR,pX ,W ,α(t)−∆α Esp(R, pX ,W )

= −∆αEsp(R+ t, pX ,W ), (6.8)

independently of the choice of β. The relative minimax is given by

∆βE
L
∅ (R,W , α) = max

pX
∆β Er,|(FL∗)−1|(R, pX ,W ).

Proof: The proof exploits the same monotonicity property (Er,F ≤ Er,G for F � G) that was used
to derive the optimal F in (5.12). The supremum over F is obtained by following the steps of the
proof of Prop. 5.1, substituting ∆α Er,F , ∆αEsp, and FR,pX ,W ,α for Er,F −α, Esp−α, and FR,pX ,W ,
respectively. The relative minimax is obtained by substituting the optimal F into (6.7). ✷

We would like to know how much influence the reference function α has on the optimal F . For
the “Forney reference exponent function” α of (6.1), we obtain the optimal F from (6.8) and (6.4):

FL∗(t) = − min
pY |X∈W

[Esp(R+ t, pX , pY |X)− α(pY |X)]

= − min
pY |X∈W

[Esp(R+ t, pX , pY |X)− Esp(R, pX , pY |X)−∆]

= ∆+ max
pY |X∈W

[Esp(R, pX , pY |X)− Esp(R+ t, pX , pY |X)]

= ∆ + max
pY |X∈W

FR,pX ,pY |X
(t). (6.9)

Interestingly, the maximum above is often achieved by the cleanest channel in W — for which
Esp(R, pX , pY |X) is large and Esp(R + t, pX , pY |X) falls off rapidly as t increases. This stands in
contrast to (5.12) which may be written as

FL∗(t) = α− min
pY |X∈W

Esp(R+ t, pX , pY |X)

= ∆ + min
pY |X∈W

Esp(R, pX , pY |X)− min
pY |X∈W

Esp(R+ t, pX , pY |X). (6.10)

In (6.10), the minima are achieved by the noisiest channel at rates R and R+ t, respectively. Also
note that FL∗(t) from (6.9) is uniformly larger than FL∗(t) from (6.10) and thus results in larger
incorrect-message exponents.

For R > I(pX ,W ), Corollary 5.2 has shown that the minimax criterion is maximized by the
thresholding rule F (t) = ∆ which yields Ei(R, pX , pY |X) = ∆ and E∅(R, pX , pY |X) = Esp(R +
∆, pX , pY |X) for all pY |X . The relative minimax criterion based on α(pY |X) of (6.1) yields a higher
Ei(R, pX , pY |X) for good channels and this is counterbalanced by a lower E∅(R, pX , pY |X). Thus
the primary advantage of the relative minimax approach is that α(pY |X) can be chosen to more
finely balance the error exponents across the range of channels of interest.

7 Compound Binary Symmetric Channel

We have evaluated the incorrect-message and erasure exponents of (5.24) for the compound BSC
with crossover probability ρ ∈ [ρmin, ρmax], where 0 < ρmin < ρmax ≤ 1

2 . The class W may
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be identified with the interval [ρmin, ρmax], where ρmin and ρmax correspond to the cleanest and
noisiest channels in W , respectively. Denote by h2(ρ) , −ρ log ρ − (1 − ρ) log(1 − ρ) the binary
entropy function, by h−1

2 (·) the inverse of that function over the range [0, 12 ], and by pρ the Bernoulli
p.m.f. with parameter ρ.

Capacity of the BSC is given by C(ρ) = 1−h2(ρ), and the sphere packing exponent by [1, p. 195]

Esp(R, ρ) = D(pρR ||pρ)

= ρR log
ρR
ρ

+ (1− ρR) log
1− ρR
1− ρ

, 0 ≤ R ≤ C(ρ), (7.1)

where ρR = h−1
2 (1−R) ≥ ρ. The optimal input distribution pX is uniform at all rates and will be

omitted from the list of arguments of the functions Er,F , Esp, and FR below. The critical rate is

Rcr(ρ) = 1− h2

(

1

1 +
√

1/ρ2 − 1

)

,

and Esp(0, ρ) = − log
√

4ρ(1 − ρ).

The capacity and sphere-packing exponent for the compound BSC are respectively given by
C(W ) = C(ρmax) and

Esp(R,W ) = min
ρmin≤ρ≤ρmax

Esp(R, ρ) = Esp(R, ρmax). (7.2)

For R ≥ C(W ), the optimal F is the thresholding rule of (5.1), and (5.2) and (5.3) yield

Ei(R, ρ) = ∆ and E∅(R, ρ) = Esp(R+∆, ρ).

In the remainder of this section we consider the case R < C(W ), in which case Esp(R,W ) > 0.

Optimal F . For any 0 ≤ ∆ ≤ C(ρ)−R, we have ρ ≤ ρR+∆ ≤ ρR ≤ 1
2 . From (7.1) we have

FR,ρ(t) = Esp(R, ρ)− Esp(R + t, ρ)

= D(pρR ||pρ)−D(pρR+t
||pρ)

= h2(ρR)− h2(ρR+t) + (ρR − ρR+t)

(

log
1

ρ
− log

1

1− ρ

)

= h2(ρR)− h2(ρR+t) + (ρR − ρR+t) log

(
1

ρ
− 1

)

, t ≥ 0,

which is a decreasing function of ρ.

Evaluating the optimal F from (5.12), we have

FL∗(t) = ∆ + FR,W (t)

= ∆ + Esp(R,W )− Esp(R+ t,W )

= ∆ + Esp(R, ρmax)−Esp(R+ t, ρmax)

= ∆ + FR,ρmax(t), t ≥ 0.
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Observe that the optimal F is determined by the noisiest channel (ρmax) and does not depend at
all on ρmin.

This contrasts with the relative minimax criterion with α(pY |X) of (6.1), where evaluation of
the optimal F from (6.9) yields

FL∗(t) = ∆ + max
ρmin≤ρ≤ρmax

FR,ρ(t)

= ∆ + FR,ρmin
(t), t ≥ 0

which is determined by the cleanest channel (ρmin) and does not depend on ρmax.

Optimal Error Exponents. The derivations below are simplified if instead of working with
the crossover probability ρ, we use the following reparameterization:

µ , ρ−1 − 1, µmax , ρ−1
min − 1, µmin , ρ−1

max − 1

and

µR , ρ−1
R − 1 =

1

h−1
2 (1−R)

− 1 ⇔ R = 1− h2

(
1

1 + µ

)

where µR increases monotonically from 1 to ∞ as R increases from 0 to 1. With this notation, we
have ρ = 1

1+µ and µmax ≥ µ ≥ µR+∆ ≥ µR ≥ 1. Also

dR

dρR
= −dh2(ρR)

dρR
= − log µR

ln 2

dEsp(R, ρ)

dρR
=

log µ− log µR

ln 2

− E′
sp(R, ρ) =

dEsp(R, ρ)/dρR
−dR/dρR

=
log µ

log µR
− 1 =

log µ/µR

log µR
. (7.3)

From (5.18) and (7.3), we obtain

−E ′
sp(R,W ) = − min

ρmin≤ρ≤ρmax

E′
sp(R, ρ) =

log µmax/µR

log µR
. (7.4)

Observe that the minimizing ρ is ρmin, i.e., the cleanest channel in W . In contrast, from (7.2), we
have

− E′
sp(R,W ) = −E′

sp(R, ρmax) =
log µmin/µR

log µR
< −E′

sp(R,W ) (7.5)

which is determined by the noisiest channel (ρmax).

Conditions for universality. Next we evaluate R
conj

(W ) from (5.19). For a given ρ, the
conjugate rate of R is obtained from (7.3):

−E′
sp(R, ρ) =

1

−E′
sp(R

conj , ρ)

log(µ/µR)

log µR
=

log µRconj

log(µ/µRconj )
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hence

µRconj =
µ

µR

Rconj(µ) = 1− h2

(
1

1 + µ/µR

)

R
conj

(W ) = max
µmin≤µ≤µmax

Rconj(µ)

= Rconj(µmax).

From (5.10) and (7.2), we have
Rconj(W ) = Rconj(µmin).

Analogously to (7.5), observe that both R
conj

(W ) and Rconj(W ) are determined by the cleanest
and noisiest channels in W , respectively.

We can now evaluate the conditions of Prop. 5.5, under which F (t) = ∆ + λ|t|+ is universal
(subject to conditions on ∆ and λ). In (5.22), ∆ must satisfy

∣
∣
∣R

conj
(W )−R

∣
∣
∣

+
≤ ∆ ≤ C(W )−R

∣
∣Rconj(µmax)−R

∣
∣
+ ≤ ∆ ≤ C(µmin)−R

∣
∣
∣
∣
h2

(
1

1 + µR

)

− h2

(
1

1 + µmax/µR

)∣
∣
∣
∣

+

≤ ∆ ≤ h2

(
1

1 + µR

)

− h2

(
1

1 + µmin

)

. (7.6)

The left side is zero if µmax ≤ µ2
R. If µmax > µ2

R, the argument of | · |+ is positive, and we need
µmax/µR < µmin to ensure that the left side is lower than the right side. Hence there exists a
nonempty range of values of ∆ satisfying (7.6) if and only if

µR ≥ min

{√
µmax,

µmax

µmin

}

which may also be written as
µmax ≤ max{µ2

R, µR µmin}.

Next, substituting (7.4) into (5.23), we obtain the following condition for λ:

log µmax/µR

log µR
≤ λ ≤ log µR+∆

log µmax/µR+∆
. (7.7)

This equation has a solution if and only if the left side does not exceed the right side, i.e.,

µmax ≤ µR µR+∆, (7.8)

or equivalently, ρmin ≥ (1 + µR µR+∆)
−1. Since µR is an increasing function of R, the larger the

values of R and ∆, the lower the value of ρmin for which the universality property still holds.

If equality holds in (7.8), the only feasible value of λ is

λ =
log µR+∆

log µR
≥ 1. (7.9)

This value of λ remains feasible if (7.8) holds with strict inequality.
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Figure 2: Erasure and incorrect-message exponents E∅(R) and Ei(R) for BSC with crossover prob-
ability ρ = 0.1 (capacity C(ρ) ≈ 0.53) and rate R = 0.1.

8 Discussion

The F-MMI decision rule of (3.1) is a generalization of Csiszár and Körner’s MMI decoder with
erasure option. The weighting function F in (3.1) can be optimized in an asymptotic Neyman-
Pearson sense given a compound class of channels W . An explicit formula has been derived in
terms of the sphere-packing exponent function for F that maximizes the erasure exponent subject
to a constraint on the incorrect-message exponent. The optimal F is generally nonunique but agrees
with existing designs in special cases of interest.

In particular, Corollary 5.2 shows that the simple thresholding rule F (t) ≡ ∆ is optimal if
R ≥ I(pX ,W ), i.e., when the transmission rate cannot be reliably supported by the worst channel
in W . When R < I(pX ,W ), Prop. 5.5 shows that for small erasure exponents, our expressions
for the optimal exponents coincide with those derived by Forney [3] for symmetric channels, where
the same input distribution pX is optimal at all rates. In this regime, Csiszár and Körner’s rule
F (t) = ∆ + λ|t|+ is also universal under some conditions on the parameter pair (∆, λ). It is also
worth noting that while suboptimal, the design F (t) = ∆+ t yields an empirical version of Forney’s
simple decision rule (2.5).

Previous work [5] using a different universal decoder had shown that Forney’s exponents can be
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matched in the special case where undetected-error and erasure exponents are equal (corresponding
to T = 0 in Forney’s rule (2.4)). Our results show that this property extends beyond this special
case, albeit not everywhere.

Another analogy between Forney’s suboptimal decision rule (2.5) and ours (3.1) is that the
former is based on the two highest likelihood scores, and the latter is based on the two highest
empirical mutual information scores. Our results imply that (2.5) in optimal (in terms of error
exponents) in the special regime identified above.

The relative minimax criterion of Sec. 6 is attractive when the compound class W is broad (or
difficult to pick) as it allows finer tuning of the error exponents for different channels in W . The
class W could conceivably be as large as PY |X , the set of all DMC’s.

Finally, we have extended our framework to decoding for compound multiple access channels.
Those results will be presented elsewhere.

Acknowledgements. The author thanks Shankar Sadasivam for numerical evaluation of the
error exponent formulas in Sec. 7, and Prof. Lizhong Zheng for helpful comments.
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A Proof of Proposition 4.1

(i) is immediate from (4.3), restated below:

Er,F (R, pX , pY |X) = min
p̃Y |X

[D(p̃Y |X‖pY |X | pX) + F (I(pX , p̃Y |X)−R)], (A.1)

and the fact that F is nondecreasing.
(ii) is immediate for the same reason as above.
(iii) Since the function Esp(R, pX , pY |X) is decreasing in R for R ≤ I(pX , pY |X), we have

Esp(R, pX , pY |X) = min
p̃Y |X : I(pX ,p̃Y |X)=R

D(p̃Y |X‖pY |X | pX), ∀R ≤ I(pX , pY |X). (A.2)

Since F is nondecreasing, p̃Y |X that achieves the minimum in (A.1) must satisfy I(pX , p̃Y |X) ≤
I(pX , pY |X). Hence

Er,F (R, pX , pY |X)

= min
p̃Y |X : I(pX ,p̃Y |X)≤I(pX ,pY |X)

[D(p̃Y |X‖pY |X | pX) + F (I(pX , p̃Y |X)−R)]

= min
R′≤I(pX ,pY |X)

min
p̃Y |X : I(pX ,p̃Y |X)=R′

[D(p̃Y |X‖pY |X | pX) + F (R′ −R)]

(a)
= min

R′≤I(pX ,pY |X)
[Esp(R

′, pX , pY |X) + F (R′ −R)]

(b)
= min

R′
[Esp(R

′, pX , pY |X) + F (R′ −R)]

where (a) is due to (A.2), and (b) holds because Esp(R
′, pX , pY |X) = 0 for R′ ≥ I(pX , pY |X) and F

is nondecreasing.
(iv) The claim follows directly from the definitions (4.2) and (4.4), taking minima over W . ✷

B Proof of Proposition 4.2

Given the p.m.f. pX , choose any type px such that maxx∈X |px(x)− pX(x)| ≤ |X |
N . 2 Define

Er,F,N(R, px, pY |X) = min
py|x

[D(py|x‖pY |X |px) + F (I(x;y) −R)] (B.1)

and
Esp,N(R, px, pY |X) = min

py|x : I(x;y)≤R
D(py|x‖pY |X | px) (B.2)

which differ from (4.3) and (4.1) in that the minimization is performed over conditional types
instead of general conditional p.m.f.’s. We have

lim
N→∞

Er,F,N(R, px, pY |X) = Er,F (R, pX , pY |X)

lim
N→∞

Esp,N(R, px, pY |X) = Esp(R, pX , pY |X) (B.3)

2 For instance, truncate each pX(x) down to the nearest integer multiple of 1/N and add a/N to the smallest
resulting value to obtain px(x), x ∈ X , summing to one. a is an integer in the range {0, 1, · · · , |X | − 1}.
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by continuity of the divergence functional and of F in the region where the minimand D + F is
finite.

We will use the following two standard inequalities.

1) Given an arbitrary sequence y, draw x′ independently of y and uniformly over a fixed type
class Tx. Then [1]

Pr[Tx′|y] =
|Tx′|y|
|Tx|

=
|Tx′|y|
|Tx′ |

.
= 2−NI(x′;y).

Hence for any 0 ≤ ν ≤ H(px),

Pr[I(x′;y) ≥ ν] =
∑

T
x′|y

Pr[Tx′|y]1{I(x′;y)≥ν}

.
=

∑

T
x′|y

2−NI(x′;y)
1{I(x′;y)≥ν}

(a).
= max

T
x′|y

2−NI(x′;y)
1{I(x′;y)≥ν}

.
= 2−Nν (B.4)

where (a) holds because the number of types is polynomial in N . For ν > H(px) we have
Pr[I(x′;y) ≥ ν] = 0.

2) Given an arbitrary sequence x, draw y from the conditional p.m.f. pNY |X(·|x). We have [1]

Pr[Ty|x]
.
= 2−ND(py|x‖pY |X |px). (B.5)

Then for any ν > 0,

Pr[I(x;y) ≤ ν] =
∑

Ty|x

Pr[Ty|x]1{I(x;y)≤ν}

.
=

∑

py|x

2−ND(py|x‖pY |X |px) 1{I(x;y)≤ν}

.
= max

py|x
2−ND(py|x‖pY |X |px) 1{I(x;y)≤ν}

= max
py|x : I(x;y)≤ν

2−ND(py|x‖pY |X |px)

= 2−NEsp,N (ν,px,pY |X). (B.6)

Incorrect Messages. The codewords are drawn independently and uniformly from type class
Tx. Since the conditional error probability is independent of the transmitted message, assume
without loss of generality that message m = 1 was transmitted. An incorrect codeword x(i)
appears on the decoder’s list if i > 1 and

I(x(i);y) ≥ R+max
j 6=i

F (I(x(j);y) −R).

Let x = x(1). To evaluate the expected number of incorrect codewords on the list, we first fix y.
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Given y, define the i.i.d. random variables Zi = I(x(i);y) − R for 2 ≤ i ≤ 2NR. Also let
z1 = I(x;y) − R, which is a function of the joint type pxy. The expected number of incorrect
codewords on the list depends on (x,y) only via their joint type and is given by

E[Ni|Txy] =

2NR
∑

i=2

Pr

[

I(x(i);y) ≥ R+ max
j /∈M\{i}

F (I(x(j);y) −R)

]

=
2NR
∑

i=2

Pr

[

Zi ≥ max
j /∈M\{i}

F (Zj)

]

≤
2NR
∑

i=2

Pr[Zi ≥ F (z1)]

= (2NR − 1)Pr[Z2 ≥ F (z1)]

(a)
= (2NR − 1)Pr[I(x′;y) ≥ R+ F (I(x;y) −R)]

(b).
= 2NR 2−N [R+F (I(x;y)−R)]

= 2−NF (I(x;y)−R) (B.7)

where in (a), x′ is drawn independently of y and uniformly over the type class Tx; and (b) is
obtained by application of (B.4).

Averaging over y, we obtain

E[Ni|Tx] =
∑

Ty|x

Pr[Ty|x]E[Ni|Txy]

.
= max

Ty|x

Pr[Ty|x]E[Ni|Txy]

(a)
.
= max

py|x
exp2{−N [D(py|x‖pY |X |px) + F (I(x;y) −R)]}

(b)
= exp2{−NEr,F,N(R, px, pY |X)}
(c)
.
= exp2{−NEr,F (R, pX , pY |X)}

where (a), (b), (c) follow from (B.5), (B.1), (B.3), respectively. This proves (4.8).

Erasure. The decoder fails to return the transmitted codeword x = x(1) if

I(x;y) ≤ R+ max
2≤i≤2NR

F (I(x(i);y) −R). (B.8)

Denote by p∅(px) the probability of this event. The event is the disjoint union of events E1 and E2
below. The first one is

E1 : I(x;y) ≤ R+ F (0). (B.9)

Since F−1 is increasing, E1 is equivalent to F−1(I(x;y) −R) ≤ 0. The second event is

E2 : R+ F (0) < I(x;y) ≤ R+ max
2≤i≤2NR

F (I(x(i);y) −R)

= R+ F

(

max
2≤i≤2NR

I(x(i);y) −R

)
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where equality holds because F is nondecreasing. Thus E2 is equivalent to

max
2≤i≤2NR

I(x(i);y) ≥ R+ F−1(I(x;y) −R) > R. (B.10)

Applying (B.6), we have

Pr[E1] = p
(1)
∅ (px) , Pr[I(x;y) ≤ R+ F (0)]

.
= exp2

{
−NEsp,N(R+ F (0), px, pY |X)

}
. (B.11)

Clearly p∅(px) ∼ p
(1)
∅ (px) ∼ 1 if R+ F (0) ≥ I(px, pY |X).

Next we have

Pr[E2] = p
(2)
∅ (Ty|x) = Pr

[

max
2≤i≤2NR

I(x(i);y) ≥ R+ F−1(I(x;y) −R)

]

= Pr

[

max
2≤i≤2NR

Zi ≥ F−1(z1)

]

(a)
.
= 2−NF−1(z1)

= 2−NF−1(I(x;y)−R)

where (a) follows by application of the union bound and (B.4).

Averaging over y, we obtain

p
(2)
∅ (px) ,

∑

Ty|x : I(x;y)>R+F (0)

Pr[Ty|x] p
(2)
∅ (Ty|x)

.
= max

Ty|x : I(x;y)>R+F (0)
Pr[Ty|x] p

(2)
∅ (Ty|x)

.
= max

py|x : I(x;y)>R+F (0)
exp2{−N [D(py|x‖pY |X |px) + F−1(I(x;y) −R)]}. (B.12)

For R+ F (0) ≤ I(px, pY |X), we have

max
py|x : I(x;y)≤R+F (0)

exp2{−ND(py|x‖pY |X |px)} .
= max

py|x : I(x;y)=R+F (0)
exp2{−ND(py|x‖pY |X |px)},

hence (B.12) may be written more simply as

p
(2)
∅ (px)

.
= max

py|x
exp2{−N [D(py|x‖pY |X |px) + |F−1(I(x;y) −R)|+]}

= exp2{−NEr,|F−1|+,N(R, px, pY |X)}. (B.13)

Since E1 and E2 are disjoint events, we obtain

p∅(px) = p
(1)
∅ (px) + p

(2)
∅ (px)

.
= exp2{−N min{Er,|F−1|+,N (R, px, pY |X), Esp,N(R+ F (0), px, pY |X)}}
.
= exp2{−N min{Er,|F−1|+(R, pX , pY |X), Esp(R+ F (0), pX , pY |X)}}
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where the last line is due to (B.3).

The function F−1(t) has a zero-crossing at t = F (0). Applying (4.7), we obtain

Er,|F−1|+(R, pX , pY |X) = min
R′

[Esp(R
′, pX , pY |X) + |F−1(R′ −R)|+]

≤ Esp(R+ F (0), pX , pY |X) + 0

hence
p∅(px)

.
= exp2{−NEr,|F−1|+(R, pX , pY |X)}.

This proves (4.9). ✷

C Proof of Proposition 5.1

We first prove (5.12). Recall (4.7) and (4.6), restated here for convenience:

Er,F (R, pX ,W ) = min
R′

[Esp(R
′, pX ,W ) + F (R′ −R)],

Esp(R, pX ,W ) ≡ Esp(R
′, pX ,W ) + FR,pX ,W (R′ −R), ∀R′.

Hence
Er,FR,pX,W

(R, pX ,W ) = Esp(R, pX ,W ). (C.1)

Case I: Esp(R, pX ,W ) = α, i.e., from (5.9), we have ∆ = 0. The feasible set FL(R, pX ,W , α)
defined in (5.6) takes the form {F : Er,F (R, pX ,W ) ≥ Esp(R, pX ,W )}. Owing to (C.1) and
the monotonicity property of Prop. 4.1(ii), an equivalent representation of FL(R, pX ,W , α) is
{F : F � FR,pX ,W }. As indicated below the statement of Prop. 5.1, this implies FR,pX ,W achieves
the supremum in (5.5).

Case II: Esp(R, pX ,W ) 6= α. The derivation parallels that of Case I. An equivalent representa-
tion of the constrained set FL(R, pX ,W , α) in (5.6) is {F : F � FL∗}, where

FL∗(t) = FR,pX ,W (t) + α− Esp(R, pX ,W )

= FR,pX ,W (t) + ∆

= α− Esp(R+ t, pX ,W ).

Hence FL∗ achieves the maximum in (5.5).

To prove (5.13), we simply observe that if FL∗ � F for all F ∈ FL(R, pX ,W , α), then F ∗ � F
for all F ∈ F(R, pX ,W , α), where F ∗(t) = max(t, FL∗(t)). ✷

D Proof of Proposition 5.3

We have

EL
∅ (R, pX ,W , α)

(a)
= Er,|(FL∗)−1|+(R, pX ,W )

(b)
= min

R′
[Esp(R

′, pX ,W ) + |(FL∗)−1|+(R′ −R)]

(c)
= min

R′≥R+t
(FL∗)−1

[Esp(R
′, pX ,W ) + (FL∗)−1(R′ −R)] (D.1)
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where equality (a) results from Props. 4.2 and 5.1, (b) follows from (4.7), and (c) from the definition
(3.12) and the fact that the function Esp(R

′, pX ,W ) is nonincreasing in R′. From (5.12) and
property (P3) in Sec. 3 we obtain the inverse function

(FL∗)−1(t) = F−1
R,pX ,W (t−∆) (D.2)

where FR,pX ,W (t) is given in (4.5). Hence t(FL∗)−1 = ∆ and

EL
∅ (R, pX ,W , α) = min

R′≥R+∆
[Esp(R

′, pX ,W ) + F−1
R,pX ,W (R′ −R−∆)

︸ ︷︷ ︸

h(R′)

]. (D.3)

By assumption Esp(R, pX ,W ) is convex in R, and therefore FR,pX ,W (t) is concave. By applica-
tion of Property (P5) in Sec. 3, the function F−1

R,pX ,W is convex, and thus so is h(R′) in (D.3). The

derivatives of F−1
R,pX ,W and h are respectively given by

(F−1
R,pX ,W )′(t) =

1

F ′
R,pX ,W (t)

=
1

−E′
sp(R+ t, pX ,W )

(D.4)

and

h′(R′) = E′
sp(R

′, pX ,W ) +
1

−E′
sp(R

′ −∆, pX ,W )
.

By Prop. 5.1 and the definition of ∆ in (5.9), we have Ei(R, pX ,W ) = α = Esp(R, pX ,W ) +∆.
Next we prove the statements (i)—(iv).

(i) max(0, Rconj(pX ,W )−R) ≤ ∆ ≤ I(pX ,W )−R.

This case is illustrated in Fig. 3. We have

R+∆ ≥ max(R,Rconj(pX ,W )) ≥ Rcr(pX ,W ). (D.5)

Hence

h′(R+∆) = E′
sp(R+∆, pX ,W ) +

1

−E′
sp(R, pX ,W )

≥
{

E′
sp(R, pX ,W ) + 1

−E′
sp(R,pX ,W ) ≥ 0 : if R ≥ Rcr(pX ,W )

E′
sp(R

conj(pX ,W ), pX ,W ) + 1
−E′

sp(R,pX ,W ) = 0 : if R ≤ Rcr(pX ,W )

≥ 0. (D.6)

By convexity of h(·) this implies that R+∆ minimizes h(R′) over R′ ≥ R+∆, and so

EL
∅ (R, pX ,W , α) = h(R +∆) = Esp(R +∆, pX ,W ).

(ii). Due to (D.5), we have either R ≥ Rcr(pX ,W ) or R+∆ ≥ Rconj(pX ,W ) ≥ R. In both cases,

−E′
sp(R, pX ,W ) ≤ 1

−E′
sp(R+∆, pX ,W )

.
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Figure 3: Construction and minimization of h(R′) for Case (i).

Let F (t) = ∆+ λ|t|+ where λ is sandwiched by the left and right sides of the above inequality. We
have tF = 0 and F ′(t) = λ1{t≥0}. The inverse function is F−1(t) = 1

λ(t − ∆) for t ≥ ∆. Hence

(F−1)′(t) = 1
λ 1{t≥∆} and tF−1 = ∆. Substituting F and F−1 into (4.7), we obtain

Er,F (R, pX ,W ) = min
R′≥R

[Esp(R
′, pX ,W ) + ∆ + λ(R′ −R)],

Er,|F−1|+(R, pX ,W ) = min
R′≥R+∆

[

Esp(R
′, pX ,W ) +

1

λ
(R′ −R−∆)

]

.

Taking derivatives of the bracketed terms with respect to R′ and recalling that

λ ≥ −E′
sp(R, pX ,W ),

1

λ
≥ −E′

sp(R+∆, pX ,W ),

we observe that these derivatives are nonnegative. Since Esp(·, pX ,W ) is convex, the minima are
achieved at R and R+∆ respectively.

The resulting exponents are Esp(R, pX ,W )+∆ and Esp(R+∆, pX ,W ) which coincide with the
optimal exponents of (5.14).

(iii). R ≤ Rcr(pX ,W ) and 0 ≤ ∆ ≤ Rconj(pX ,W )−R.

This case is illustrated in Fig. 4 in the case ∆ = 0. From (D.6), we have h′(R′) = 0 if and only
if R′ and R′ −∆ are conjugate rates. In this case, using the above assumption on ∆, we have

R ≤ R′ −∆ = R1(∆) ≤ Rcr(pX ,W ) ≤ R′ = R2(∆) ≤ Rconj(pX ,W ). (D.7)
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Figure 4: Construction and minimization of h(R′) for Case (ii), with ∆ = 0.

Hence R2(∆) = R′ ≥ R + ∆ is feasible for (D.3) and minimizes h(·). Substituting R′ back into
(D.3), we obtain

EL
∅ (R, pX ,W , α) = h(R2(∆)) = Esp(R2(∆), pX ,W ) + F−1

R,pX ,W (R1(∆)−R)

which establishes (5.16).

(iv). R ≤ Rcr(pX ,W ) and R∞(pX ,W )−R ≤ ∆ ≤ 0.

Again we have h′(R′) = 0 if and only if R′ and R′ − ∆ are conjugate rates. Then, using the
above assumption on ∆, we have

R ≤ R′ = R1(∆) ≤ Rcr(pX ,W ) ≤ R′ −∆ = R2(∆). (D.8)

Hence R1(∆) = R′ ≥ R + ∆ is feasible for (D.3) and minimizes h(·). Substituting R′ back into
(D.3), we obtain

EL
∅ (R, pX ,W α) = h(R1(∆)) = Esp(R1(∆), pX ,W ) + F−1

R,pX ,W (R2(∆)−R)

which establishes (5.17). ✷
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E Proof of Lemma 5.4

First we prove (5.20). For any R0 < R1, we have

∫ R1

R0

E′
sp(R, pX ,W ) dR

(a)
=

∫ R1

R0

min
pY |X∈W

E′
sp(R, pX , pY |X) dR

≤ min
pY |X∈W

∫ R1

R0

E′
sp(R, pX , pY |X) dR

= min
pY |X∈W

[Esp(R1, pX , pY |X)− Esp(R0, pX , pY |X)]

(b)

≤ Esp(R1, pX , p∗Y |X)− Esp(R0, pX , p∗Y |X)

= min
pY |X∈W

Esp(R1, pX , pY |X)− Esp(R0, pX , p∗Y |X)

≤ min
pY |X∈W

Esp(R1, pX , pY |X)− min
pY |X∈W

Esp(R0, pX , pY |X)

= Esp(R1, pX ,W )− Esp(R0, pX ,W )

=

∫ R1

R0

E′
sp(R,pX ,W ) dR (E.1)

where (a) follows from the definition of E′
sp in (5.18), and we choose p∗Y |X in inequality (b) as the

minimizer of Esp(R1, pX , ·) over W . Since (E.1) holds for all R0 < R1, we must have inequality
between the integrands in the left and right sides: E′

sp(R, pX ,W ) ≤ E′
sp(R,pX ,W ). Moreover, the

three inequalities used to derive (E.1) hold with equality if the same p∗∗Y |X minimizes E′
sp(R, pX , ·)

at all rates, and the same p∗Y |X minimizes Esp(R, pX , ·) at all rates. We need not (and generally do

not) have p∗∗Y |X = p∗Y |X . 3

Next we prove (5.21). By definition of Rconj(pX ,W ), we have

−E′
sp(R

conj(pX ,W ), pX ,W ) =
1

−E′
sp(R, pX ,W )

(a)

≥ 1

−E ′
sp(R, pX ,W )

= min
pY |X∈W

1

−E′
sp(R, pX , pY |X)

= min
pY |X∈W

[−E′
sp(R

conj(pX , pY |X), pX , pY |X)]

(b)

≥ min
pY |X∈W

[−E′
sp(R

conj
(pX ,W ), pX , pY |X)]

(c)
= −E ′

sp(R
conj

(pX ,W ), pX ,W )

(d)

≥ −E′
sp(R

conj
(pX ,W ), pX ,W ).

where (a) and (d) are due to (5.20), (b) to the definition of R
conj

(pX ,W ) in (5.19) and the fact that
−E′

sp(R, pX , pY |X) is a decreasing function of R, and (c) from (5.18). Since −E′
sp(R, pX ,W ) is also

a decreasing function of R, we must have Rconj(pX ,W ) ≤ R
conj

(pX ,W ). Moreover, the conditions
for equality are the same as those for equality in (5.20). ✷

3 While p∗Y |X is the noisiest channel in W , p∗∗Y |X may be the cleanest channel in W , as in the BSC example of
Sec. 7.
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[7] G. Tusnády, “On Asymptotically Optimal Tests,” Annals of Statistics, Vol. 5, No. 2, pp. 385—
393, 1977.

[8] O. Zeitouni and M. Gutman, “On Universal Hypotheses Testing via Large Deviations,” IEEE
Trans. Information Theory, Vol. 37, No. 2, pp. 285—290, 1991.

[9] I. Csiszár, personal communication, Aug. 2007.

[10] M. Feder and N. Merhav, “Universal Composite Hypothesis Testing: A Competitive Minimax
Approach,” IEEE Trans. Information Theory, Vol. 48, No. 6, pp. 1504—1517, June 2002.

31


	Introduction
	Notation

	Decoding with Erasure and List Options
	Maximum-Likelihood Decoding
	Universal Decoding

	F–MMI Class of Decoders
	Decoding Rule
	Error Exponents
	Basic Properties of F

	Random-Coding and Sphere-Packing Exponents
	W-Optimal Choice of F
	Relative Minimax
	Compound Binary Symmetric Channel
	Discussion
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Lemma ??

