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Abstract— This paper studies the information-theoretic limits
of a secondary or cognitive radio (CR) network under spectrum
sharing with an existing primary radio network. In particul ar, the
fading cognitive multiple-access channel (C-MAC) is first studied,
where multiple secondary users transmit to the secondary base
station (BS) under both individual transmit-power constraints
and a set of interference-power constraints each applied atone
of the primary receivers. This paper considers the long-term (LT)
or the short-term (ST) transmit-power constraint over the fading
states at each secondary transmitter, combined with the LT or
ST interference-power constraint at each primary receiver. In
each case, the optimal power allocation scheme is derived for
the secondary users to achieve the ergodic sum capacity of the
fading C-MAC, as well as the conditions for the optimality of the
dynamic time-division-multiple-access (D-TDMA) scheme in the
secondary network. The fading cognitive broadcast channel(C-
BC) that models the downlink transmission in the secondary net-
work is then studied under the LT/ST transmit-power constraint
at the secondary BS jointly with the LT/ST interference-power
constraint at each of the primary receivers. It is shown thatD-
TDMA is indeed optimal for achieving the ergodic sum capacity
of the fading C-BC for all combinations of transmit-power and
interference-power constraints.

Index Terms— Broadcast channel, cognitive radio, convex op-
timization, dynamic resource allocation, ergodic capacity, fading
channel, interference temperature, multiple-access channel, spec-
trum sharing, time-division-multiple-access.

I. I NTRODUCTION

COgnitive radio (CR), since the name was coined by
Mitola in his seminal work [1], has drawn intensive

attentions from both academic (see, e.g., [2] and references
therein) and industrial (see, e.g., [3] and references therein)
communities; and to date, many interesting and important
results have been obtained. In CR networks, the secondary
users or CRs usually communicate over the same bandwidth
originally allocated to an existing primary radio network.
In such a scenario, the CR transmitters usually need to
deal with a fundamental tradeoff between maximizing the
secondary network throughput and minimizing the resulted
performance degradation of the active primary transmissions.
One commonly known technique used by the secondary users
to protect the primary transmissions isopportunistic spectrum
access (OSA), originally outlined in [1] and later introduced
by DARPA, whereby the secondary user decides to transmit
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over a particular channel only when all primary transmissions
are detected to be off. For OSA, an enabling technology is
to detect the primary transmission on/off status, also known
as spectrum sensing, for which many algorithms have been
reported in the literature (see, e.g., [4] and references therein).
However, in practical situations with a nonzero misdetection
probability for an active primary transmission, it is usually
impossible to completely avoid the performance degradation
of the primary transmission with the secondary user OSA.

Another approach different from OSA for a CR to maximize
its throughput and yet to provide sufficient protection to the
primary transmission is allowing the CR to access the channel
even when the primary transmissions are active, provided that
the resultant interference power, or the so-calledinterference
temperature (IT) [5], [6], at each primary receiver is limited
below a predefined value. This spectrum sharing strategy is
also referred to as Spectrum Underlay [2], [7] or Horizontal
Spectrum Sharing [5], [8]. With this strategy,dynamic resource
allocation (DRA) becomes essential, whereby the transmit
powers, bit-rates, bandwidths, and antenna beams of the sec-
ondary transmitters are dynamically allocated based upon the
channel state information (CSI) in the primary and secondary
networks. A number of papers have recently addressed the
design of optimal DRA schemes to achieve the point-to-point
CR channel capacity under the IT constraints at the primary
receivers (see, e.g., [9]-[14]). On the other hand, since the CR
network is in nature a multiuser communication environment,
it will be more relevant to consider DRA among multiple
secondary users in a CR network rather than that for the case
of one point-to-point CR channel. Deploying the interference-
temperature constraint as a practical means to protect the
primary transmissions, the conventional network models such
as the multiple-access channel (MAC), broadcast channel
(BC), interference channel (IC), and relay channel (RC) can
all be considered for the secondary network, resulting in
various new cognitive network models and associated problem
formulations for DRA (see, e.g., [15]-[18]). It is also noted
that there has been study in the literature on the information-
theoretic limits of the CR channels by exploiting other types
of “cognitions” available at the CR terminals different from
the IT, such as the knowledge of the primary user transmit
messages at the CR transmitter [8], [19], the distributed
detection results on the primary transmission status at theCR
transmitter and receiver [20], the “soft” sensing results on the
primary transmission [21], and the primary transmission on-off
statistics [22].

In this paper, we focus on the single-input single-output
(SISO) or single-antenna fading cognitive MAC (C-MAC)
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and cognitive BC (C-BC) for the secondary network, where
K secondary users communicate with the base station (BS)
of the secondary network in the presence ofM primary
receivers. It is assumed that the BS has the perfect CSI on
the channels between the BS and all the secondary users, as
well as the channels from the BS and each secondary user
to all the primary receivers.1 Thereby, the BS can implement
a centralized dynamic power and rate allocation scheme in
the secondary network so as to optimize its performance and
yet maintain the interference power levels at all the primary
receivers below the prescribed thresholds. An information-
theoretic approach is taken in this paper to characterize the
maximum sum-rate of secondary users averaged over the
channel fading states, termed asergodic sum capacity, for both
the fading C-MAC and C-BC. The ergodic sum capacity can be
a relevant measure for the maximum achievable throughput of
the secondary network when the data traffic has a sufficiently-
large delay tolerance. As usual (see, e.g., [23]), we consider
both the long-term (LT) transmit-power constraint (TPC) that
regulates theaverage transmit power across all the fading
states at the BS or each of the secondary user, as well as
the short-term (ST) TPC that is more restrictive than the LT-
TPC by limiting the instantaneous transmit power at each
fading state to be below a certain threshold. Similarly, we also
consider both the LT interference-power constraint (IPC) that
regulates the resultant average interference power over fading
at each primary receiver, and the ST-IPC that imposes a more
strict instantaneous limit on the resultant interference power
at each fading state. The major problem to be addressed in
this paper is then to characterize the ergodic sum capacity of
the secondary network under different combinations of LT-
/ST-TPC and LT-/ST-IPC. Apparently, such a problem setup
is unique for the fading CR networks. Moreover, we are
interested in investigating the conditions over each case for
the optimality of the dynamic time-division-multiple-access
(D-TDMA) scheme in the secondary network, i.e., when it is
optimal to schedule a single secondary user at each fading state
for transmission to achieve the ergodic sum capacity. These
optimality conditions for D-TDMA are important to know as
when they are satisfied, the single-user decoding and encoding
at the secondary BS becomes optimal for the C-MAC and C-
BC, respectively. This can lead to a significant complexity
reduction compared with the cases where these conditions are
not satisfied such that the BS requires more complex multiuser
decoding and encoding techniques to achieve the ergodic sum
capacity.

Information-theoretic studies can be found for the determin-
istic (no fading) SISO-MAC and SISO-BC in, e.g., [24], and
for the fading (parallel) SISO-MAC and SISO-BC in, e.g.,
[25]-[27] and [28]-[30], respectively. In addition, D-TDMA
has been shown as the optimal transmission scheme to achieve
the ergodic sum capacity of the fading SISO-MAC under the

1In practice, CSI on the channels between the secondary usersand their
BS can be obtained by the classic channel training, estimation, and feedback
mechanisms, while CSI on the channels between the secondaryBS/users and
the primary receivers can be obtained by the secondary BS/users via, e.g.,
estimating the received signal power from each primary terminal when it
transmits, under the assumptions of pre-knowledge on the primary transmit
power levels and the channel reciprocity.

LT-TPC at each transmitter [26], [31]. Thanks to the duality
result on the capacity regions of the Gaussian MAC and
BC [32], the optimality of D-TDMA is also provable for
the fading SISO-BC to achieve the ergodic sum capacity.
However, to our best knowledge, characterizations of the
ergodic sum capacities as well as the optimality conditions
for D-TDMA over the fading C-MAC and C-BC under various
mixed transmit-power and interference-power constraintshave
not been addressed yet in the literature. In this paper, we will
provide the solutions to these problems. The main results of
this paper are summarized below for a brief overview:

• For the fading cognitive SISO-MAC, we show that D-
TDMA is optimal for achieving the ergodic sum capacity
when the LT-TPC is applied jointly with the LT-IPC. This
result is an extension of that obtained earlier in [31] for
the traditional fading SISO-MAC without the LT-IPC.
For the other three cases of mixed power constraints,
i.e., LT-TPC with ST-IPC, ST-TPC with LT-IPC, and ST-
TPC with ST-IPC, we show that although D-TDMA is in
general a suboptimal scheme and thus does not achieve
the ergodic sum capacity, it can be optimal under some
special conditions. We formally derive these conditions
from the Karush-Kuhn-Tucker (KKT) conditions [33]
associated with the capacity maximization problems. In
particular, for the case of LT-TPC with ST-IPC, we
show that the optimal number of secondary users that
transmit at the same time should be no greater than
M + 1. Therefore, for small values ofM , e.g.,M = 1
corresponding to a single primary receiver, D-TDMA
is close to being optimal. Furthermore, for all cases
considered, we derive the optimal transmit power-control
policy for the secondary users to achieve the ergodic
sum capacity. For the two cases of LT-TPC with LT-IPC
and ST-TPC with LT-IPC, we provide the closed-form
solutions for the optimal power allocation at each fading
state. Particularly, in the case of ST-TPC with LT-IPC, we
show that for the active secondary users at one particular
fading state, there is at most one user that transmits with
power lower than its ST power constraint, while all the
other active users transmit with their maximum powers.

• For the fading cognitive SISO-BC, we show that for all
considered cases of mixed power constraints, D-TDMA
is optimal for achieving the ergodic sum capacity. The
optimal transmit power allocations at the BS in these
cases have closed-form solutions, which resemble the
single-user “water-filling (WF)” solutions for the well-
known fading (parallel) Gaussian channels [24], [34].

The rest of this paper is organized as follows. Section
II provides the system model for the fading C-MAC and
C-BC. Section III and Section IV then present the results
on the ergodic sum-capacity, the associated optimal power-
control policy, and the optimality conditions for D-TDMA,
for the fading C-MAC and C-BC, respectively, under dif-
ferent mixed LT/ST transmit-power and interference-power
constraints. Section V provides the numerical results on the
ergodic sum capacities of the fading C-MAC and C-BC under
different mixed power constraints, the capacities with vs.



3

M
M M

M

PSfrag replacements SU-1

SU-2

SU-K

PR-1

PR-2

PR-M

BS

h1

h2

hK

g11

g12

gK2

gKM

Fig. 1. The cognitive SISO-MAC whereK SUs transmit to the secondary
BS while possibly interfering with each ofM PRs.

without the TDMA constraint, and those with vs. without the
optimal power control, and draws some insightful observations
pertinent to the optimal DRA in CR networks. Finally, Section
VI concludes this paper.

II. SYSTEM MODEL

Consider a fading C-MAC as shown in Fig. 1, whereK
CRs or secondary users (SUs) transmit to the secondary BS by
sharing the same narrow band withM primary receivers (PRs),
and all terminals are assumed to be equipped with a single
antenna each. Ablock-fading (BF) channel model is assumed
for all the channels involved. Furthermore, since this paper
considers coherent communications, only the fading channel
power gains (amplitude squares) are of interest. During each
transmission block, the power gain of the fading channel from
thek-th SU to the secondary BS is denoted byhk, while that
of the fading channel from thek-th SU to them-th PR is
denoted bygkm, k = 1, . . . ,K,m = 1, . . . ,M . These channel
power gains are assumed to be drawn from a vector random
process, which we assume to be ergodic over transmission
blocks and have a continuous, differentiable joint cumula-
tive distribution function (cdf), denoted byF (α), where
α , [h1 · · ·hK , g11 · · · g1M , g21 · · · g2M , . . . , gK1 · · · gKM ]
denotes the power gain vector for all the channels of interest.
We further assume thathk ’s and gkm’s are independent. In
addition, it is assumed that the additive noises (includingany
additional interferences from the outside of the secondary
network, e.g., the primary transmitters) at the secondary BS
are independent circular symmetric complex Gaussian (CSCG)
random variables, each having zero mean and unit variance,
denoted asCN (0, 1). Since in this paper we are interested in
the information-theoretic limits of the C-MAC, it is assumed
that the optimal Gaussian codebook is used by each SU
transmitter.

It is assumed that the secondary BS knowsa priori the
channel distribution informationF (α) and furthermore the
channel realizationα at each transmission block. Thereby, the
secondary BS is able to schedule transmissions of SUs and

allocate their transmit power levels and rate values at each
transmission block, so as to optimize the performance of the
secondary network and yet provide a necessary protection to
each of the PRs. We denote the transmit power-control policy
for SUs asPMAC, which specifies a mapping from the fading
channel realizationα to p(α) , [p1(α), . . . , pK(α)], where
pk(α) denotes the transmit power assigned to thek-th SU.
The long-term (LT) transmit-power constraint (TPC) for the
k-th SU, k = 1, . . . ,K, can then be described as

E [pk(α)] ≤ PLT
k (1)

where the expectation is taken overα with respect to (w.r.t.) its
cdf, F (α), and the short-term (ST) transmit-power constraint
(TPC) for thek-th SU is given as

pk(α) ≤ P ST
k , ∀α. (2)

Similarly, we consider both the LT and ST interference-power
constraints (IPCs) at them-th PR,m = 1, . . . ,M , described
as

E

[

K
∑

k=1

gkmpk(α)

]

≤ ΓLT
m (3)

K
∑

k=1

gkmpk(α) ≤ ΓST
m , ∀α, (4)

respectively. For a givenPMAC, the maximum achievable sum-
rate (in nats/complex dimension) of SUs averaged over all the
fading states can be expressed as (see, e.g., [35])

RMAC(PMAC) = E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

. (5)

The ergodic sum capacity of the fading C-MAC can then be
defined as

CMAC = max
PMAC∈F

RMAC(PMAC) (6)

whereF is the feasible set specified by a particular combina-
tion of the LT-TPC, ST-TPC, LT-IPC and ST-IPC. Note that all
of these power constraints are affine and thus specify convex
sets ofpk(α)’s, so does any of their arbitrary combinations.
Therefore, the capacity maximization in (6) is in general
a convex optimization problem, and thus efficient numerical
algorithms are available to obtain its solutions. In this paper,
we considerF to be generated by one of the following four
possible combinations of power constraints, which are LT-TPC
with LT-IPC, LT-TPC with ST-IPC, ST-TPC with LT-IPC, and
ST-TPC with ST-IPC, for the purpose of exposition.

Next, we consider the SISO fading C-BC as shown in Fig.
2, where the secondary BS transmits toK SUs while possibly
interfering with each of theM PRs. Without loss of generality,
we use the same notation,hk, to denote the channel power
gain from the BS to thek-th SU, k = 1, . . . ,K, as for the
C-MAC. The interference channel power gains from the BS to
PRs are denoted asfm, m = 1, . . . ,M , which are assumed to
be mutually independent and also independent ofhk’s. Similar
to the C-MAC case, letβ , [h1 · · ·hK , f1 · · · fM ] denote the
power gain vector for all the channels involved in the C-BC,
which we assume to be drawn from an ergodic vector random
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Fig. 2. The cognitive SISO-BC where the secondary BS transmits toK SUs
while possibly interfering with each ofM PRs.

process with a continuous, differentiable joint cdf, denoted by
G(β). It is assumed that the additive noises at all SU receivers
are independent CSCG random variables each distributed as
CN (0, 1); and the optimal Gaussian codebook is used by the
transmitter of the BS. With the available channel distribution
informationG(β) as well as the CSI onhk ’s andfm’s at each
transmission block, the secondary BS designs its downlink
transmissions to the SUs by dynamically allocating its transmit
power levels and rate values. LetPBC denote the transmit
power-control policy for the secondary BS, which specifies a
mapping from the fading channel realizationβ to its transmit
powerq(β). Similarly as for C-MAC, we define the LT-TPC
and ST-TPC for the secondary BS as

E [q(β)] ≤ QLT (7)

where the expectation is taken overβ w.r.t. its cdf,G(β), and

q(β) ≤ QST, ∀β, (8)

respectively; and the LT-IPC and ST-IPC at them-th PR,m =
1, . . . ,M , as

E [fmq(β)] ≤ ΓLT
m (9)

and

fmq(β) ≤ ΓST
m , ∀β, (10)

respectively.
Now, consider an auxiliary SISO fading C-MAC for the

SISO fading C-BC of interest, wherehk’s remain the same
as in the C-BC whilegkm = fm, ∀k ∈ {1, . . . ,K},m ∈
{1, . . . ,M}. Thus, the channel realizationα in this auxiliary
C-MAC can be concisely represented byβ in the C-BC. By
applying the MAC-BC duality result [32] at each fading state,
for a givenq(β), the maximum sum-rate of the C-BC can be
obtained from its auxiliary C-MAC as

max
P

K
k=1 pk(β)=q(β)

log

(

1 +

K
∑

k=1

hkpk(β)

)

. (11)

Therefore, the ergodic sum capacity of the fading C-BC can
be equivalently obtained from its auxiliary fading C-MAC as

CBC = max
PMAC∈D

RMAC(PMAC). (12)

whereD is specified by a particular combination of (7)-(10),
with q(β) being replaced by

∑K
k=1 pk(β). Note that we can

obtain the optimal power-control policyPBC to achieve the
ergodic sum capacity of the C-BC from the corresponding
optimalPMAC by solving the maximization problem in (12).
Similarly as for CMAC in (6), it can be shown that the
optimization problem for obtainingCBC in (12) is convex.

III. E RGODIC SUM CAPACITY FOR FADING COGNITIVE

MAC

In this section, we consider the SISO fading C-MAC
under different mixed transmit-power and interference-power
constraints. For each case, we derive the optimal power-control
policy for achieving the ergodic sum capacity, as well as the
conditions for the optimality of D-TDMA.

A. Long-Term Transmit-Power and Interference-Power Con-
straints

From (5) and (6), the ergodic sum capacity under the LT-
TPC and the LT-IPC can be obtained by solving the following
optimization problem:

Problem 3.1:

Maximize (Max.)
{pk(α)}

E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

subject to (s.t.) (1), (3).
The proposed solution to the above problem is based on the
Lagrange duality method. First, we write the Lagrangian of
this problem as in (13) (shown on the next page), whereλk

andµm are the nonnegative dual variables associated with each
corresponding power constraint in (1) and (3), respectively,
k = 1, . . . ,K, m = 1, . . . ,M . Then, the Lagrange dual
function,g({λk}, {µm}), is defined as

max
{pk(α)}:pk(α)≥0,∀k,α

L({pk(α)}, {λk}, {µm}). (14)

The dual function serves as an upper bound on the optimal
value of the original (primal) problem, denoted byr∗, i.e.,
r∗ ≤ g({λk}, {µm}) for any nonnegativeλk ’s andµm’s. The
dual problem is then defined as

min
{λk},{µm}:λk≥0,µm≥0,∀k,m

g({λk}, {µm}). (15)

Let the optimal value of the dual problem be denoted byd∗,
which is achievable by the optimal dual solutions{λ∗

k} and
{µ∗

m}, i.e., d∗ = g({λ∗
k}, {µ

∗
m}). For a convex optimization

problem with a strictly feasible point as in our problem, the
Slater’s condition [33] is satisfied and thus the duality gap,
r∗ − d∗ ≤ 0, is indeed zero. This result ensures that Problem
3.1 can be equivalently solved from its dual problem, i.e., by
first maximizing its Lagrangian to obtain the dual function
for some given dual variables, and then minimizing the dual
function over the dual variables.
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L({pk(α)}, {λk}, {µm}) = E

[

log(1 +

K
∑

k=1

hkpk(α))

]

−
K
∑

k=1

λk{E[pk(α)]− PLT
k } −

M
∑

m=1

µm

{

E

[

K
∑

k=1

gkmpk(α)

]

− ΓLT
m

}

(13)

Consider first the problem for obtainingg({λk}, {µm})
with some givenλk ’s and µm’s. It is interesting to observe
that this dual function can also be written as

g({λk}, {µm}) = E [g′(α)] +
K
∑

k=1

λkP
LT
k +

M
∑

m=1

µmΓLT
m (16)

where

g′(α) = max
{pk(α)}:pk(α)≥0,∀k

log

(

1 +
K
∑

k=1

hkpk(α)

)

−
K
∑

k=1

λkpk(α)−
M
∑

m=1

µm

K
∑

k=1

gkmpk(α). (17)

Thus, the dual function can be obtained via solving for sub-
dual-functiong′(α)’s, each for one fading state with channel
realization,α. Notice that the maximization problems in (17)
with differentα’s all have the same structure and thus can be
solved using the same computational routine. For conciseness,
we drop theα in pk(α)’s for the maximization problem at
each fading state and express it as

Problem 3.2:

Max.
{pk}

log

(

1 +
K
∑

k=1

hkpk

)

−
K
∑

k=1

λkpk −
M
∑

m=1

µm

K
∑

k=1

gkmpk

(18)

s.t. pk ≥ 0, ∀k. (19)
This problem is convex since its objective function is concave
and its constraints are all linear. By introducing nonnega-
tive dual variablesδk, k = 1, . . . ,K, for the corresponding
constraints on the nonnegativity ofpk ’s, we can write the
following KKT conditions [33] that need to be satisfied by
the optimal primal and dual solutions of Problem 3.2, denoted
as{p∗k} and{δ∗k}, respectively.

hk

1 +
∑K

l=1 hlp
∗
l

− λk −
M
∑

m=1

µmgkm + δ∗k = 0, ∀k (20)

δ∗kp
∗
k = 0, ∀k (21)

with p∗k ≥ 0 and δ∗k ≥ 0, ∀k. The following lemma can then
be obtained from these KKT optimality conditions:

Lemma 3.1: The optimal solution of Problem 3.2 has at
most one user indexed byi, i ∈ {1, . . . ,K}, with p∗i > 0, i.e.,
the solution follows a D-TDMA structure.

Proof: Please refer to Appendix I.
Given Lemma 3.1, the remaining tasks for solving Problem
3.2 are to find the user that transmits at each fading state as
well as the optimal transmit power, which are given by the
following lemma:

Lemma 3.2: In the optimal solution of Problem 3.2, leti
denote the user that hasp∗i > 0, and j be any of the other

users that hasp∗j = 0, i, j ∈ {1, . . . ,K}. Then useri must
satisfy

hi

λi +
∑M

m=1 µmgim
≥

hj

λj +
∑M

m=1 µmgjm
, ∀j 6= i. (22)

The optimal power allocation of useri is

p∗i =

(

1

λi +
∑M

m=1 µmgim
−

1

hi

)+

(23)

where(x)+ = max(0, x).
Proof: Please refer to Appendix II.

Solutions of Problem 3.2 across all the fading states are
basically an optimal mapping between an arbitrary channel
realization and the transmit power allocation for any givenλk ’s
andµm’s, which can then be used to obtain the dual function
g({λk}, {µm}). Next, the dual function needs to be minimized
overλk ’s andµm’s to obtain the optimal dual solutionsλ∗

k ’s
andµ∗

m’s with which the duality gap is zero. One method to
iteratively updateλk ’s andµm’s toward their optimal values
is the ellipsoid method [36], of which we omit the details here
for brevity.

Lemma 3.1 suggests that at each fading state, at most one
SU can transmit, i.e., D-TDMA is optimal. Since this result
holds for any givenλk ’s and µm’s, it must be true for the
optimal dual solutionsλ∗

k ’s andµ∗
m’s under which the optimal

value of the original problem or the ergodic sum capacity is
achieved. Therefore, we have the following theorem:

Theorem 3.1: D-TDMA is optimal across all the fading
states for achieving the ergodic sum capacity of the fading C-
MAC under the LT-TPC jointly with the LT-IPC. The optimal
rules to select the SU for transmission at a particular fading
state and to determine its transmit power are given by Lemma
3.2 with all λk ’s and µm’s replaced by their optimal dual
solutions for Problem 3.1.

Remark 3.1: Notice that if the LT-IPC given by (3) is not
present in Problem 3.1, or equivalently, the LT-IPC values
ΓLT
m ’s are sufficiently large such that these constraints are

inactive with the optimal power solutions of Problem 3.1, itis
then easy to verify from its KKT conditions that the optimal
dual solutions for allµm’s must be equal to zero. From (22),
it then follows that only useri with the largesthi

λi
among all

the users can probably transmit at a given fading state. This
result is consistent with that obtained earlier in [31] for the
traditional fading SISO-MAC without the LT-IPC. However,
under the additional LT-IPC, from (22) and (23) it is observed
that the selected SU for transmission and its transmit power
depend on the interference-power “prices”µm’s for different
PRs and the instantaneous interference channel power gains
gkm’s.
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B. Long-Term Transmit-Power and Short-Term Interference-
Power Constraints

The ergodic sum capacity under the LT-TPC but with the
ST-IPC can be obtained as the optimal value of the following
problem:

Problem 3.3:

Max.
{pk(α)}

E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

s.t. (1), (4).
Similar to Problem 3.1, we apply the Lagrange duality
method to solve the above problem. However, different from
Problem 3.1 that has both the long-term transmit-power and
interference-power constraints, it is noted that in Problem 3.3,
only the transmit-power constraints are long-term while the
interference-power constraints are short-term. Therefore, the
dual variables associated with the long-term constraints should
be introduced first, in order to decompose the problem into
individual subproblems over different fading states, to each
of which the corresponding short-term constraints can thenbe
applied. Letλk be the nonnegative dual variable associated
with the corresponding LT-TPC in (1),k = 1, . . . ,K. The
Lagrangian of this problem can then be written as

L({pk(α)}, {λk}) = E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

−
K
∑

k=1

λk

{

E [pk(α)]− PLT
k

}

. (24)

Let A denote the set of{pk(α)} specified by the remaining
ST-IPC in (4). The Lagrange dual function is then expressed
as

g({λk}) = max
{pk(α)}∈A

L({pk(α)}, {λk}). (25)

The dual problem is accordingly defined as
minλk≥0,∀k g({λk}). Similar to Problem 3.1, it can be
verified that the duality gap is zero for the convex optimization
problem addressed here; and thus solving its dual problem is
equivalent to solving the original problem.

Consider first the problem for obtainingg({λk}) with some
givenλk ’s. Similar to Problem 3.1, this dual function can be
decomposed into individual sub-dual-functions, each for one
fading state, i.e.,

g({λk}) = E [g′(α)] +

K
∑

k=1

λkP
LT
k (26)

where

g′(α) = max
{pk(α)}∈A(α)

log(1 +

K
∑

k=1

hkpk(α))−
K
∑

k=1

λkpk(α)

(27)

with A(α) denoting the subset ofA corresponding to the
fading state with channel realizationα. After dropping the
α in the corresponding maximization problem in (27) for a
particular fading state, we can express this problem as

Problem 3.4:

Max.
{pk}

log

(

1 +

K
∑

k=1

hkpk

)

−
K
∑

k=1

λkpk (28)

s.t.

K
∑

k=1

gkmpk ≤ ΓST
m , ∀m (29)

pk ≥ 0, ∀k. (30)
The above problem is convex, but in general does not have
a closed-form solution. Nevertheless, it can be efficiently
solved by standard convex optimization techniques, e.g., the
interior point method [33], or alternatively, via solving its
dual problem; and for brevity, we omit the details here. After
solving Problem 3.4 for all the fading states, we can obtain
the dual functiong({λk}). Next, the minimization ofg({λk})
overλk ’s can be resolved via the ellipsoid method, similarly
like that for Problem 3.1.

For this case, we next focus on studying the conditions
under which D-TDMA is optimal across the fading states. This
can be done by investigating the KKT optimality conditions
for Problem 3.4. First, we introduce nonnegative dual variables
µm, m = 1, . . . ,M , andδk, k = 1, . . . ,K, for their associated
constraints in (29) and (30), respectively. The KKT conditions
for the optimal primal and dual solutions of this problem,
denoted as{p∗k}, {µ∗

m}, and{δ∗k}, can then be expressed as

hk

1 +
∑K

l=1 hlp
∗
l

− λk −
M
∑

m=1

µ∗
mgkm + δ∗k = 0, ∀k (31)

µ∗
m

(

K
∑

k=1

gkmp∗k − ΓST
m

)

= 0, ∀m (32)

δ∗kp
∗
k = 0, ∀k (33)

K
∑

k=1

gkmp∗k ≤ ΓST
m , ∀m (34)

with p∗k ≥ 0, ∀k, δ∗k ≥ 0, ∀k, andµ∗
m ≥ 0, ∀m. Notice that in

this caseµm’s are local variables for each fading state instead
of being fixed as in (20) for Problem 3.2. From these KKT
conditions, the following lemma can then be obtained:

Lemma 3.3: The optimal solution of Problem 3.4 has at
mostM+1 secondary users that transmit with strictly positive
power levels.

Proof: Please refer to Appendix III.
Lemma 3.3 suggests that the optimal number of SUs that

can transmit at each fading state may depend on the number
of PRs or interference-power constraints. For small valuesof
M , e.g.,M = 1 corresponding to a single PR, the number of
active SUs at each fading state can be at most two, suggesting
that D-TDMA may be very close to being optimal in this case.

In the theorem below, we present the general conditions,
for any K andM , under which D-TDMA is both necessary
and sufficient to be optimal at a particular fading state. Again,
without loss of generality, here we useλk ’s instead of their
optimal dual solutions obtained by the ellipsoid method.

Theorem 3.2: D-TDMA is optimal at an arbitrary fading
state for achieving the ergodic sum capacity of the fading C-
MAC under the LT-TPC jointly with the ST-IPC if and only
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if there exists one useri (the user that transmits) that satisfies
either one of the following two sets of conditions. Letj be
any of the other users,j ∈ {1, . . . ,K}, j 6= i; and m′ =

argminm∈{1,...,M}
ΓST
m

gim
.

•
1
λi

− 1
hi

≤
ΓST
m′

gim′
and hi

λi
≥ hj

λj
, ∀j 6= i. In this case,

p∗i =
(

1
λi

− 1
hi

)+

;

•
1
λi

− 1
hi

>
ΓST
m′

gim′
and (hjgim′ − higjm′) gim′

gim′+hiΓST
m′

≤

(λjgim′ − λigjm′) , ∀j 6= i. In this case,p∗i =
ΓST
m′

gim′
.

Proof: Please refer to Appendix IV.
Remark 3.2: Notice that in Theorem 3.2, the first set of

conditions holds when the optimal transmit power of the user
with the largesthi

λi
among all the users satisfies the ST-IPC

at all the PRs; the second set of conditions holds when the
first set fails to be true, and in this case any ofK SUs can be
the selected user for transmission provided that it satisfies the
givenK − 1 inequalities.

Remark 3.3: In the special case where only the ST-IPC
given by (4) is present or active in Problem 3.3, allλk ’s in
Theorem 3.2 can be taken as zeros. As a result, the first set of
conditions can never be true, while the second set of conditions
are simplified ashjgim′−higjm′ ≤ 0, ∀j 6= i, and the optimal

power of useri that transmits is stillp∗i =
ΓST
m′

gim′
. We thus have

the following corollary if it is further assumed that there is
only a single PR. For conciseness, the indexm for this PR is
dropped below.

Corollary 3.1: In the case that only the ST-IPC given by (4)
is present in Problem 3.3 and, furthermore,M = 1, D-TDMA
is optimal; and the selected useri for transmission satisfies
that hi

gi
≥

hj

gj
, ∀j 6= i, with transmit powerp∗i = ΓST

gi
.

C. Short-Term Transmit-Power and Long-Term Interference-
Power Constraints

In the case of ST-TPC combined with LT-IPC, the ergodic
sum capacity is the optimal value of the following optimization
problem:

Problem 3.5:

Max.
{pk(α)}

E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

s.t. (2), (3).
Again, we apply the Lagrange duality method for the above
problem. Letµm’s be the nonnegative dual variables associated
with the LT-IPC in (3),m = 1, . . . ,M . The Lagrangian of
Problem 3.5 can then be written as

L({pk(α)}, {µm}) = E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

−
M
∑

m=1

µm

{

E

[

K
∑

k=1

gkmpk(α)

]

− ΓLT
m

}

. (35)

Let B denote the set of{pk(α)} specified by the remaining
ST-TPC in (2). The Lagrange dual function is expressed as

g({µm}) = max
{pk(α)}∈B

L({pk(α)}, {µm}). (36)

The dual problem is accordingly defined as
minµm≥0,∀m g({µm}). Similar to the previous two cases, this
dual function can be equivalently written as

g({µm}) = E [g′(α)] +

m
∑

m=1

µkΓ
LT
m (37)

where

g′(α) = max
{pk(α)}∈B(α)

log

(

1 +

K
∑

k=1

hkpk(α)

)

−
K
∑

m=1

µm

K
∑

k=1

gkmpk(α) (38)

with B(α) denoting the subset ofB corresponding to the
fading state with channel realizationα. After droppingα in
the maximization problem in (38), for each particular fading
state we can express this problem as

Problem 3.6:

Max.
{pk}

log

(

1 +

K
∑

k=1

hkpk

)

−
K
∑

m=1

µm

K
∑

k=1

gkmpk (39)

s.t. pk ≤ P ST
k , ∀k (40)

pk ≥ 0, ∀k. (41)
After solving Problem 3.6 for all the fading states, we obtain
the dual functiong({µm}). The dual problem that minimizes
g({µm}) overµm’s can then be solved again via the ellipsoid
method.

Next, we present the closed-form solution of Problem 3.6
based on its KKT optimality conditions. Letλk and δk,
k = 1, . . . ,K, be the dual variables for the corresponding
user power constraints in (40) and (41), respectively. The
KKT conditions for the optimal primal and dual solutions of
this problem, denoted as{p∗k}, {λ∗

k}, and{δ∗k}, can then be
expressed as

hk

1 +
∑K

l=1 hlp
∗
l

− λ∗
k −

M
∑

m=1

µmgkm + δ∗k = 0, ∀k (42)

λ∗
k

(

p∗k − P ST
k

)

= 0, ∀k (43)

δ∗kp
∗
k = 0, ∀k (44)

p∗k ≤ P ST
k , ∀k (45)

with p∗k ≥ 0, λ∗
k ≥ 0, and δ∗k ≥ 0, ∀k. From these KKT

conditions, the following lemma can be first obtained:
Lemma 3.4: Let i and j be any two arbitrary users,i, j ∈

{1, 2, . . . ,K}, with p∗i > 0 andp∗j = 0 in the optimal solution
of Problem 3.6. Then, it must be true that hi

P

M
m=1 µmgim

≥
hj

P

M
m=1 µmgjm

.
Proof: Please refer to Appendix V.

Let π be a permutation over{1, . . . ,K} such that
hπ(i)

P

M
m=1 µmgπ(i)m

≥
hπ(j)

P

M
m=1 µmgπ(j)m

if i < j, i, j ∈ {1, . . . ,K}.

Supposing that there are|I| users that can transmit with
I ⊆ {1, . . . ,K} denoting this set of users, from Lemma 3.4 it
is easy to verify thatI = {π(1), . . . , π(|I|)}. The following
lemma then provides the closed-form solution to Problem 3.6:
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Lemma 3.5: The optimal solution of Problem 3.6 is

p∗π(a) =































P ST
π(a) a < |I|

min

(

P ST
π(|I|),

(

hπ(|I)|
P

M
m=1 µmgπ(|I|)m

− 1

−
∑|I|−1

b=1 hπ(b)P
ST
π(b)

)

1
hπ(|I|)

)

a = |I|

0 a > |I|

where|I| is the largest value ofx such that
hπ(x)

P

M
m=1 µmgπ(x)m

>

1 +
∑x−1

b=1 hπ(b)P
ST
π(b).

Proof: Please refer to Appendix VI.
From Lemma 3.5, it follows that in the case of ST-TPC

along with LT-IPC, for the active secondary users at one fading
state, there is at most one user that transmits with power lower
than its ST power constraint, while all the other active users
transmit with their maximum powers.

Furthermore, from Lemma 3.5, we can derive the conditions
for the optimality of D-TDMA at any fading state, which
are stated in the following theorem. Again, without loss of
generality, we useµm’s instead of their optimal dual solutions
for Problem 3.5 in expressing these conditions.

Theorem 3.3: D-TDMA is optimal at an arbitrary fading
state for achieving the ergodic sum capacity of the fading C-
MAC under the ST-TPC jointly with the LT-IPC if and only
if user π(1) satisfies

1 + hπ(1)P
ST
π(1) ≥

hπ(2)
∑M

m=1 µmgπ(2)m
. (46)

User π(1) is then selected for transmission and its optimal
transmit power is

p∗π(1) = min



P ST
π(1),

(

1
∑M

m=1 µmgπ(1)m
−

1

hπ(1)

)+


 .

(47)
Proof: From Lemma 3.5, it follows that D-TDMA is

optimal, i.e.,|I| ≤ 1, occurs if and only if (46) holds. Then,
(47) is obtained from Lemma 3.5 by combining the cases of
|I| = 0 and |I| = 1 .

Remark 3.4: In the case of the traditional fading SISO-
MAC with the user ST-TPC given in (2), but without the LT-
IPC given in (3), it can be easily verified that the ergodic
sum capacity is achieved when all users transmit with their
maximum available power values given byP ST

k ’s at each
fading state. This is consistent with the results obtained in
(46) by having allµm’s associated with the LT-IPC take zero
values. With zeroµm’s, it can be easily verified that the
condition given in Theorem 3.3 is never satisfied, and thus
D-TDMA cannot be optimal in this special case.

D. Short-Term Transmit-Power and Interference-Power Con-
straints

The ergodic sum capacity under both the ST-TPC and ST-
IPC can be obtained by solving the following optimization
problem:

Problem 3.7:

Max.
{pk(α)}

E

[

log

(

1 +

K
∑

k=1

hkpk(α)

)]

s.t. (2), (4).
Notice that this case differs from all three previous cases in that
all of its power constraints are short-term constraints andthus
separable over fading states. Therefore, we can decompose
the original problem into individual subproblems each for one
fading state. For conciseness, we drop again theα and express
the rate maximization problem at a particular fading state as

Problem 3.8:

Max.
{pk}

log

(

1 +

K
∑

k=1

hkpk

)

(48)

s.t. pk ≤ P ST
k , ∀k (49)

K
∑

k=1

gkmpk ≤ ΓST
m , ∀m (50)

pk ≥ 0, ∀k. (51)
The above problem is convex, but in general does not have a
closed-form solution. Similar to Problem 3.4, the interiorpoint
method [33] or the Lagrange duality method can be used to
solve this problem and thus we omit the details here.

For this case, we next present in the following theorem the
conditions for D-TDMA to be optimal at an arbitrary fading
state:

Theorem 3.4: D-TDMA is optimal at an arbitrary fading
state for achieving the ergodic sum capacity of the fading
C-MAC under the ST-TPC jointly with the ST-IPC if and
only if there exists one useri (the user that transmits) that
satisfies both of the following two conditions. Letj be any
of the other users,j ∈ {1, . . . ,K}, j 6= i, and m′ =

argminm∈{1,...,M}
ΓST
m

gim
.

•
ΓST
i

gim′
≤ P ST

i ;

•
hi

gim′
≥ hj

gjm′
, ∀j 6= i.

The optimal transmit power of useri is p∗i =
ΓST
i

gim′
.

Proof: Please refer to Appendix VII.

IV. ERGODIC SUM CAPACITY FOR FADING COGNITIVE BC

From (12), the ergodic sum capacities for the SISO fading
C-BC under different mixed TPC and IPC constraints can be
obtained as the optimal values of the following optimization
problems:

Problem 4.1:

Max.
{pk(β)}

E

[

log

(

1 +

K
∑

k=1

hkpk(β)

)]

s.t. (7), (9) (Case I : LT− TPC and LT− IPC)

or (7), (10) (Case II : LT− TPC and ST− IPC)

or (8), (9) (Case III : ST− TPC and LT− IPC)

or (8), (10) (Case IV : ST− TPC and ST− IPC).
Notice that in (7)-(10), the transmit power of the secondary

BS at a given fading state,q(β), needs to be replaced by the
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user sum-power in the dual C-MAC,
∑K

k=1 pk(β). Compared
with the problems addressed in Section III for the C-MAC,
it is easy to see that the corresponding problems in the C-
BC case are very similar, e.g., both have the same objective
function, and similar affine constraints in terms ofpk(α)’s or
pk(β)’s. Thus, we skip the details of derivations and present
the results directly in the following theorem:

Theorem 4.1: In each of Cases I-IV, D-TDMA is optimal
across all the fading states for achieving the ergodic sum
capacity of the fading C-BC. In each case, the useri with
the largesthi among all the users should be selected for
transmission at a particular fading state. The optimal rulefor
assigning the transmit power of the BS at each fading state
(for concisenessβ is dropped in the following expressions)
in each case is given below. Letj be any of the users other
than i, j ∈ {1, . . . ,K}, j 6= i; m′ = argminm∈{1,...,M}

ΓST
m

fm
;

andλ andµm’s are the optimal dual variables associated with
the LT-TPC in (7) and the LT-IPC in (9), respectively, if they
appear in any of the following cases.

• Case I:

q∗ =

(

1

λ+
∑M

m=1 µmfm
−

1

hi

)+

; (52)

• Case II:

q∗ = min

(

ΓST
m′

fm′

,

(

1

λ
−

1

hi

)+
)

; (53)

• Case III:

q∗ = min



QST,

(

1
∑M

m=1 µmfm
−

1

hi

)+


 ; (54)

• Case IV:

q∗ = min

(

QST,
ΓST
m′

fm′

)

. (55)

Remark 4.1: In the case of the traditional fading SISO-BC
without the LT- or ST-IPC, by combining the results in [31]
for the fading SISO-MAC and the MAC-BC duality results in
[32], it can be inferred that it is optimal to deploy D-TDMA
by transmitting to the user with the largesthi at each time
in terms of maximizing the ergodic sum capacity, regardless
of the LT- or ST-TPC at the BS. Theorem 4.1 can thus be
considered as the extensions of such result to the SISO fading
C-BC under the additional LT- or ST-IPC. Also notice that the
optimal power allocation strategies in (52)-(54) resemblethe
well-known “water-filling (WF)” solutions for the single-user
fading channels [24], [34].

V. NUMERICAL EXAMPLES

In this section, we present numerical results on the per-
formances of the proposed multiuser DRA schemes for some
example fading CR networks under different mixed transmit-
power and interference-power constraints, namely: Case I:LT-
TPC with (w/) LT-IPC; Case II: LT-TPC w/ ST-IPC; Case
III: ST-TPC w/ LT-IPC; and Case IV: ST-TPC w/ ST-IPC.
For simplicity, we consider symmetric multiuser channels
where all channel complex coefficients are independent CSCG

random variables distributed asCN (0, 1). In total, 10, 000
randomly generated channel power gain vectors forα or β
are used to approximate the actual ergodic sum-rate of the
secondary network in each simulation result. Furthermore,we
assume that the TPC (LT or ST) values are identical for all
SUs, and the IPC (LT or ST) values are identically equal to
one, the same as the additive Gaussian noise variance, at all
PRs. For convenience, we useP to stand for allP ST

k ’s and
PLT
k ’s, Q for both QST and QLT, andΓ for all ΓST

m ’s and
ΓLT
m ’s. The simulation results are presented in the following

subsections.

A. Effects of LT/ST TPC/IPC on Ergodic Sum Capacity

First, we compare the achievable ergodic sum capacities for
the fading CR network under four different cases of mixed
TPC and IPC. Fig. 3 shows the results for the fading C-MAC
with K = 2 andM = 1, and Fig. 4 for the fading C-BC with
K = 5 andM = 2.

For the C-MAC case, it is observed in Fig. 3 that the ergodic
sum capacityCMAC in Case I is always the largest while
that in Case IV is the smallest for any given SU transmit
power constraintP . This is as expected since both the ST-
TPC and ST-IPC are less favorable from the SU’s perspective
as compared to their LT counterparts: The former one imposes
more stringent power constraints than the latter one over
the DRA in the SU network. It is also observed that asP

increases, eventuallyCMAC becomes saturated as the IPC
(LT or ST) becomes more dominant than the TPC. On the
other hand, for small values ofP where the TPC is more
dominant than the IPC, it is observed that the LT-TPC (where
D-TDMA is optimal in Case I and close to being optimal
in Case II) leads to a capacity gain over the ST-TPC (where
D-TDMA is non-optimal in Case III or IV) due to the well-
known multiuser diversity effect exploited by D-TDMA [37].
Furthermore,CMAC in Case II is observed to be initially larger
than that in Case III for small values ofP , but becomes
equal to and eventually smaller than that in Case III asP

increases. This is due to the facts that for small values ofP ,
TPC dominates IPC and furthermore LT-TPC is more flexible
over ST-TPC; while for large values ofP , IPC becomes more
dominant over TPC and LT-IPC is more flexible over ST-IPC.

For the C-BC case, similar results like those in the C-
MAC are observed. However, there exists one quite different
phenomenon for the C-BC. As the secondary BS transmit
powerQ becomes large, the achievable ergodic sum capacity
CBC shown in Fig. 4 under the LT-IPC is much larger than
that under the ST-IPC, regardless of the LT- or ST-TPC, as
compared withCMAC shown in Fig. 3. This is due to the fact
that for the C-BC withM = 2 and a single BS transmitter, the
ST-IPC can limit the transmit power of the secondary BS more
stringently than the case of C-MAC shown in Fig. 3, where
there are two SU transmitters but only a single PR. Since it is
not always the case that both channels from the two SUs to
the PR have very large gains at a given time, in the C-MAC
case the SU with the smallest instantaneous channel gain to
the PR can be selected for transmission, i.e., there exists an
interestingnew form of multiuser diversity effect in the fading
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Fig. 3. Comparison of the ergodic sum capacity under different combinations
of TPC and IPC for the fading C-MAC withK = 2, M = 1.
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Fig. 4. Comparison of the ergodic sum capacity under different combinations
of TPC and IPC for the fading C-BC withK = 5, M = 2.

C-MAC. In contrast, for the C-BC, the BS is likely to transmit
with large power only if both channel gains from the BS to
the two PRs are reasonably low.

B. Fading C-MAC With (w/) vs. Without (w/o) TDMA Con-
straint

Next, we consider the fading C-MAC and examine the
effect of the TDMA constraint on its achievable ergodic sum
capacity. Notice that for the fading C-BC, it has been shown in
Theorem 4.1 that D-TDMA is optimal for all cases of mixed
TPC and IPC; and for the fading C-MAC, it has also been
shown in Theorem 3.1 that D-TDMA is optimal in Case I.
Therefore, in this subsection, we only consider the fading
C-MAC in Cases II, III, and IV. We compare the ergodic
sum capacityCMAC achievable in each of these cases via
the optimal DRA rule proposed in this paper w/o the TDMA

constraint against that with an explicit TDMA constraint, i.e.,
at most one SU is selected for transmission at any time.
However, for the cases with the explicit TDMA constraint,
we still allow DRA over the SU network to optimally select
the SU (i.e., using D-TDMA) and set its power level for
transmission at each fading state, so as to maximize the long-
term average sum-rate. For conciseness, we discuss the optimal
DRA schemes for the fading C-MAC under the explicit TDMA
constraint in Appendix VIII.

In Figs. 5 and 6, we compare the achievableCMAC w/ vs.
w/o the TDMA constraint for Cases II-IV withK = 2, M =
1, andK = 4,M = 2, respectively. It is observed in both
figures that the achievableCMAC in each case of mixed TPC
and IPC is larger without the TDMA constraint. This is as
expected since TDMA is an additional constraint that limits
the flexibility of DRA in the SU network.

In Fig. 5, it is observed that the gap between the achievable
CMAC’s w/ and w/o the TDMA constraint in each of Cases
II-IV diminishes as the SU transmit power constraintP
becomes sufficiently large. This phenomenon can be explained
as follows. First, note that asP increases, eventually the TPC
will become inactive and the IPC becomes the only active
power constraint in each case. As a result, Case II and Case
IV only have the (same) ST-IPC and Case III only has the
LT-IPC as active constraints. Thus, the observed phenomenon
is justified since D-TDMA has been shown to be optimal for
the above two cases, according to Corollary 3.1 (notice that
M = 1 for Fig. 5) and Theorem 3.1 (with allλk ’s taking
a zero value), respectively. However, in Fig. 6 withM > 1,
only Case III has the same convergedCMAC w/ and w/o the
TDMA constraint asP becomes large, according to Theorem
3.1. In general, the capacity gap between cases w/ and w/o
the TDMA constraint becomes larger asK or M increases,
as observed by comparing Figs. 5 and 6. For example, for
Case II, in Fig. 5 withM = 1, the capacity gap is negligible
for all values ofP , which is consistent with Lemma 3.3; but
it becomes notably large in Fig. 6 withM = 2.

C. Dynamic vs. Fixed Resource Allocation

At last, we compare the ergodic sum capacity achievable
with the optimal DRA against the achievable average sum-
rate of users via some heuristic fixed resource allocation (FRA)
schemes for the same fading CR network. For DRA, we select
the most flexible power allocation scheme for the SU network
under the LT-TPC and the LT-IPC (i.e., Case I), which is D-
TDMA based and gives the largestCMAC and CBC among
all cases of mixed power constraints under the same power-
constraint valuesP (Q) andΓ for the fading C-MAC (C-BC).
For FRA, we also consider TDMA, which uses the simple
“round-robin” user scheduling rule, under the ST-TPC and
the ST-IPC. More specifically, for the fading C-MAC, at each
time the SU, say useri, which is scheduled for transmission,
will transmit a power equal tomin(P, Γ

maxm gim
), while for

the fading C-BC, the BS transmits with the power equal to
min(Q, Γ

maxm fm
). Notice that the considered FRA can be

much more easily implemented as compared to the proposed
optimal DRA. Therefore, we need to examine the capacity
gains by the optimal DRA over the FRA.
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Fig. 5. Comparison of the ergodic sum capacity w/ vs. w/o the TDMA
constraint for the fading C-MAC withK = 2, M = 1.
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Fig. 6. Comparison of the ergodic sum capacity w/ vs. w/o the TDMA
constraint for the fading C-MAC withK = 4, M = 2.

In Fig. 7, capacity comparisons between DRA and FRA are
shown for the fading C-MAC withK = 2 or 4, andM = 2.
Notice that for the DRA case we have normalized the SU LT-
TPC for K = 4 by a factor of2 such that the sum of user
transmit power constraints for bothK = 2 and K = 4 are
identical. Furthermore, for fair comparison between DRA and
FRA, the SU ST-TPC values in the FRA case are4 and 2
times the LT-TPC value in the DRA forK = 4 and K =
2, respectively. It is observed that DRA achieves substantial
throughput gains over FRA for bothK = 2 and K = 4.
Notice that for FRA, it can be easily shown that with the
user power normalization, the average sum-rate is statistically
independent ofK. Furthermore, multiuser diversity gains in
the achievable ergodic sum-rate for the DRA are also observed
by comparingK = 4 againstK = 2, given the same sum of
user power constraints.

−20 −15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SU Transmit Power Constraint (dB)

A
ve

ra
ge

 A
ch

ie
va

bl
e 

T
hr

ou
gh

pu
t (

na
ts

/s
ec

/H
z)

 

 

DRA, K=4
DRA, K=2
FRA, K=2 or K=4

Fig. 7. Comparison of the average achievable throughput with DRA vs. with
FRA for the fading C-MAC withK = 2 or 4, M = 2.
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Fig. 8. Comparison of the average achievable throughput with DRA vs. with
FRA for the fading C-BC withM = 1 or 4, andQLT = QST = 3dB.

In Fig. 8, we show the capacity comparisons between the
fading C-BC with DRA and that with FRA, for a fixed
secondary BS transmit power constraintQ = 3dB, M = 1 or
4, and different values ofK. Since there is only one transmitter
at the BS for the C-BC, there is no user power normalization
required as in the C-MAC case. The capacity gains by DRA
over FRA are observed to become more significant for both
M = 1 andM = 4 cases, asK increases, due to the multiuser
diversity effect. As an example, atK = 20, the capacities with
DRA are 2.75 and 3.83 times of that with FRA, forM = 1
and M = 4, respectively. This suggests that in contrast to
the conventional fading BC without any IPC, the multiuser
diversity gains obtained by the optimal DRA become more
crucial to the fading C-BC as the number of PRs,M , becomes
larger.
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VI. CONCLUDING REMARKS

In this paper, we have studied the information-theoretic
limits of the CR network under wireless spectrum sharing
with an existing primary radio network. By applying the
interference-power constraint as a practical means to protect
each primary link, we characterize the achievable ergodic sum
capacity of the fading C-MAC and C-BC under different
mixed LT-/ST-TPC and LT-/ST-IPC. Optimal DRA schemes
for both cases w/ and w/o a TDMA constraint are presented.
Interestingly, except the cases where the optimality of D-
TDMA can be analytically proved, it is verified by simulation
that there are also many circumstances where D-TDMA with
the optimal user scheduling and power control performs very
closely to the optimal non-TDMA-based schemes in the fading
C-MAC. Furthermore, an interesting new form of multiuser
diversity is observed for the fading C-MAC by exploiting the
additional CSI of channels between secondary transmittersand
primary receivers, which differs from that in the conventional
fading MAC by exploiting only the CSI of channels between
secondary users and BS.

Finally, it is worth pointing out that with the techniques
introduced in this paper, it is possible to derive the optimal
resource allocation for the more general cases where all
LT/ST TPC and IPC are present, and/or secondary users have
different priorities for rate allocation (i.e., characterization of
the capacity region instead of the sum capacity). Moreover,
the results in this paper are also applicable to the general
channel models consisting of parallel Gaussian channels over
which the average and instantaneous (transmit or interference)
power constraints can be applied, e.g., the frequency-selective
fading broadband channel which is decomposable into parallel
narrow-band channels at each fading state via the well-known
orthogonal-frequency-division-multiplexing (OFDM) modula-
tion/demodulation.

APPENDIX I
PROOF OFLEMMA 3.1

Suppose that there are two arbitrary usersi andj with p∗i >

0 andp∗j > 0. From (21), it follows thatδ∗i = 0 andδ∗j = 0.
Applying this fact to (20), the following equality must hold:

hi

λi +
∑M

m=1 µmgim
=

hj

λj +
∑M

m=1 µmgjm
. (56)

Since hi and gim’s are independent ofhj and gjm’s, and
furthermoreλi, λj , and µm’s are all constants in Problem
3.2, it can be inferred that the above equality is satisfied with
a zero probability. Thus, it is concluded that there is at most
one user with a strictly positive power value.

APPENDIX II
PROOF OFLEMMA 3.2

Let useri be the user that can transmit, i.e,p∗i > 0, while
for the other usersj 6= i, p∗j = 0. Problem 3.2 then becomes
the maximization oflog(1 + hipi) − λipi −

∑M
m=1 µmgimpi

subject topi ≥ 0, for which p∗i given in (23) can be easily
shown to be the optimal solution. Next, we need to show that
for the selected useri for transmission, ifp∗i > 0, it must

satisfy (22). Sincep∗i > 0, from (21) it follows thatδ∗i = 0.
Sinceδ∗j ≥ 0, ∀j 6= i, from (20), it follows that

hi

1 + hip
∗
i

− λi −
M
∑

m=1

µmgim = 0 (57)

hj

1 + hip
∗
i

− λj −
M
∑

m=1

µmgjm ≤ 0, ∀j 6= i (58)

from which (22) can be obtained.

APPENDIX III
PROOF OFLEMMA 3.3

Suppose that there are|J | users withp∗j > 0, wherej ∈ J
andJ ⊆ {1, 2, . . . ,K}. Then from (33), it follows thatδ∗j =

0, if j ∈ J . Let c∗ = 1+
∑K

l=1 hlp
∗
l . From (31), the following

equalities must hold:

hj

c∗
− λj −

M
∑

m=1

µ∗
mgjm = 0, ∀j ∈ J . (59)

Removingc∗ in the above equations yields

λi +
∑M

m=1 µ
∗
mgim

hi

=
λj +

∑M

m=1 µ
∗
mgjm

hj

, ∀j ∈ J , j 6= i

(60)
where i is an arbitrary user index inJ . Notice that in (60)
there areM variablesµ∗

1,. . . , µ∗
M , but |J | − 1 independent

equations (with probability one). Therefore,M ≥ |J | − 1
must hold in order for the above equations to have at least
one set of solutions. It then concludes that|J | must be no
greater thanM + 1.

APPENDIX IV
PROOF OFTHEOREM 3.2

Suppose that useri transmits withp∗i > 0, while for the
other usersj ∈ {1, . . . ,K}, j 6= i, p∗j = 0. We will consider
the following two cases: i) Allµ∗

m’s are equal to zero; ii)
There is one and only oneµ∗

m, denoted asµ∗
m′ , which is

strictly positive. Notice that it is impossible for more than one
µ∗
m’s to be strictly positive at the same time, which can be

shown as follows. For useri, from (32), µ∗
m′ > 0 suggests

that gim′p∗i = ΓST
m′ . Supposing that there is̃m 6= m′ such that

µ∗
m̃ > 0 and thusgim̃p∗i = ΓST

m̃ , a contradiction then occurs
as gim′

ΓST
m′

= gim̃
ΓST
m̃

holds with a zero probability.

First, we will prove the “only if” part of Theorem 3.2.
Consider initially the case where allµ∗

m’s are equal to zero.
Suppose thatp∗i > 0, from (33) it follows thatδ∗i = 0. Since
δ∗j ≥ 0, ∀j 6= i, from (31) the followings must be true:

hi

1 + hip
∗
i

− λi = 0 (61)

hj

1 + hip
∗
i

− λj ≤ 0, ∀j 6= i. (62)

Thus, useri must satisfy hi

λi
≥ hj

λj
, ∀j 6= i. From (61), it

follows that p∗i =
(

1
λi

− 1
hi

)+

in this case. Also notice that

from (34) gimp∗i ≤ ΓST
m must hold for ∀m = 1, . . . ,M .
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Therefore, we conclude thatp∗i ≤
ΓST
m′

gim′
, where m′ =

argminm∈{1,...,M}
ΓST
m

gim
, and thus

(

1
λi

− 1
hi

)+

≤
ΓST
m′

gim′
. There-

fore, the first set of conditions in Theorem 3.2 is obtained.
In the second case where there is one and only oneµ∗

m′ > 0,
it follows from (32) thatgim′p∗i = ΓST

m′ . Since from (34) we

havegimp∗i ≤ ΓST
m , ∀m 6= m′, it follows that

ΓST
m′

gim′
≤ ΓST

m

gim
, and

thus, again,m′ = argminm∈{1,...,M}
ΓST
m

gim
, andp∗i =

ΓST
m′

gim′
in

this case. From (31), we have

µ∗
m′ =

(

hi

1 + hip
∗
i

− λi

)

1

gim′

. (63)

Sinceµ∗
m′ > 0, from (63) it follows that 1

λi
− 1

hi
> p∗i =

ΓST
m′

gim′
.

Furthermore, from (31), the followings must be true:

hi

1 + hip
∗
i

− λi − µ∗
m′gim′ = 0 (64)

hj

1 + hip
∗
i

− λj − µ∗
m′gjm′ ≤ 0, ∀j 6= i. (65)

Thus, we have

hi

λi + µ∗
m′gim′

≥
hj

λj + µ∗
m′gjm′

, ∀j 6= i. (66)

Substitutingµ∗
m′ in (63) into the above inequalities yields

(hjgim′ − higjm′)
gim′

gim′ + hiΓST
m′

≤ (λjgim′ − λigjm′) ,

(67)
∀j 6= i. The second set of conditions in Theorem 3.2 is thus
obtained.

Next, the “if” part of Theorem 3.2 can be shown easily
by the fact that for a strictly-convex optimization problem,
the KKT conditions are not only necessary but also sufficient
to be satisfied by the unique set of primal and dual optimal
solutions [33].

APPENDIX V
PROOF OFLEMMA 3.4

Sincep∗j = 0, p∗i > 0, from (43) and (44) it follows that
λ∗
j = 0 and δ∗i = 0, respectively. Then, from (42) it follows

that

hi

1 +
∑K

l=1 hlp
∗
l

−
M
∑

m=1

µmgim ≥ 0 (68)

hj

1 +
∑K

l=1 hlp
∗
l

−
M
∑

m=1

µmgjm ≤ 0. (69)

From the above two inequalities, Lemma 3.4 can be easily
shown.

APPENDIX VI
PROOF OFLEMMA 3.5

The following lemma is required for the proof of Lemma
3.5:

Lemma 6.1: The optimal solution of Problem 3.6 has at
most one user, indexed byi, which satisfies0 < p∗i < P ST

i ,
wherei = π(|I|); and the optimal sum-power of transmitting
users must satisfy

∑|I|
a=1 hπ(a)p

∗
π(a) =

hπ(|I|)
P

M
m=1 µmgπ(|I|)m

− 1.

Proof: Suppose that there are two usersi and j with
0 < p∗i < P ST

i and 0 < p∗j < P ST
i . From (43) and (44), it

follows that λ∗
i = λ∗

j = 0 and δ∗i = δ∗j = 0, respectively.
Using these facts, from (42), it follows that the following two
equalities must hold at the same time:

hi

1 +
∑K

l=1 hlp
∗
l

−
M
∑

m=1

µmgim = 0 (70)

hj

1 +
∑K

l=1 hlp
∗
l

−
M
∑

m=1

µmgjm = 0. (71)

Thus, we have

hi
∑M

m=1 µmgim
=

hj
∑M

m=1 µmgjm
. (72)

Sincehi andgim’s are independent ofhj andgjm’s, andµm’s
are constants, it is inferred that the above equality is satisfied
with a zero probability. Thus, we conclude that there is at most
one useri with 0 < p∗i < P ST

i . From (70), we have

K
∑

l=1

hlp
∗
l =

|I|
∑

a=1

hπ(a)p
∗
π(a) =

hi
∑M

m=1 µmgim
− 1. (73)

Using (42) and (73), it is easy to see that for any userk ∈
I, k 6= i with p∗k > 0, it must satisfy

hk
∑M

m=1 µmgkm
≥

hi
∑M

m=1 µmgim
. (74)

Thus, we conclude thati = π(|I|).
Lemma 6.1 suggests that only one of the following two sets

of solutions forp∗k, k ∈ I, can be true, which are

• Case I:p∗
π(a) = P ST

π(a), a = 1, . . . , |I|;
• Case II:p∗

π(a) = P ST
π(a), a = 1, . . . , |I| − 1, andp∗

π(|I|) =
(

hπ(|I)|
P

M
m=1 µmgπ(|I|)m

− 1−
∑|I|−1

b=1 hπ(b)P
ST
π(b)

)

1
hπ(|I|)

.

Sincep∗
π(|I|) ≤ P ST

π(|I|), it then follows that

p∗π(|I|) = min

(

P ST
π(|I|),

(

hπ(|I)|
∑M

m=1 µmgπ(|I|)m
− 1

−

|I|−1
∑

b=1

hπ(b)P
ST
π(b)

)

1

hπ(|I|)

)

.

(75)

The remaining part to be shown for Lemma 3.5 is that the
optimal number of active users|I| is the largest value ofx
such that

hπ(x)
∑M

m=1 µmgπ(x)m
> 1 +

x−1
∑

b=1

hπ(b)P
ST
π(b). (76)

First, we show that in both Case I and Case II, for any user
π(a) ∈ I, a = 1, . . . , |I|, the above inequality holds. Since
for (76), from Lemma 3.4 it follows that its left-hand side
decreases asx increases, while its right-hand side increases
with x, it is sufficient to show that (76) holds fora = |I|. This
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is the case since from (42) withδ∗
π(|I|) = 0 andλ∗

π(|I|) ≥ 0,
we have

hπ(|I|)
∑M

m=1 µmgπ(|I|)m
≥ 1 +

|I|
∑

b=1

hπ(b)p
∗
π(b) (77)

> 1 +

|I|−1
∑

b=1

hπ(b)P
ST
π(b). (78)

Next, we show that for any userπ(j), j ∈ {|I| + 1, . . . ,K},
(76) does not hold. Again, it is sufficient to consider user
π(|I| + 1) since if it does not satisfy (76), neither does any
of the other usersπ(|I|+ 2), . . . , π(K). For userπ(|I|+ 1),
from (42) with δ∗

π(|I|+1) ≥ 0 and λ∗
π(|I|+1) = 0, it follows

that

hπ(|I|+1)
∑M

m=1 µmgπ(|I|+1)m

≤ 1 +

|I|
∑

b=1

hπ(b)p
∗
π(b) (79)

≤ 1 +

|I|
∑

b=1

hπ(b)P
ST
π(b). (80)

Therefore, it is concluded that (76) can be used to determine
|I|.

APPENDIX VII
PROOF OFTHEOREM 3.4

The proof of Theorem 3.4 is also based on the KKT
optimality conditions for Problem 3.8. Letλ∗

k, µ∗
m, and δ∗k,

k = 1, . . . ,K,m = 1, . . . ,M be the optimal dual variables
associated with the constraints in (49), (50), and (51), respec-
tively. The KKT conditions can then be expressed as

hk

1 +
∑K

l=1 hlp
∗
l

− λ∗
k −

M
∑

m=1

µ∗
mgkm + δ∗k = 0, ∀k (81)

λ∗
k

(

p∗k − P ST
k

)

= 0, ∀k (82)

µ∗
m

(

K
∑

k=1

gkmp∗km − ΓST
m

)

= 0, ∀m (83)

δ∗kp
∗
k = 0, ∀k (84)

p∗k ≤ P ST
k , ∀k (85)

K
∑

k=1

gkmp∗km ≤ ΓST
m , ∀m (86)

with p∗k ≥ 0, λ∗
k ≥ 0, µ∗

m ≥ 0, and δ∗k ≥ 0, ∀k,m. First, we
will prove the “only if” part of Theorem 3.4. Suppose that
useri should transmit withp∗i > 0, while for the other users
j ∈ {1, . . . ,K}, j 6= i, p∗j = 0. From (82) and (84), it follows
that λ∗

j = 0, ∀j 6= i andδ∗i = 0, respectively.
We will show that there is one and only oneµ∗

m, denoted as
µ∗
m′ , which is strictly positive. Notice that it is impossible for

more than oneµ∗
m’s to be strictly positive at the same time.

For useri, from (83),µ∗
m′ > 0 suggests thatgim′p∗i = ΓST

m′ .
Supposing that there is̃m 6= m′ such thatµ∗

m̃ > 0 and thus
gim̃p∗i = ΓST

m̃ , a contradiction then occurs asgim′

ΓST
m′

= gim̃
ΓST
m̃

holds with a zero probability. Second, we will show that it
is also impossible for allµ∗

m’s to be zero. If this is the case,

(81) for any userj 6= i, becomes hj

1+hip
∗
i

+ δ∗j = 0. This
can be true only whenhj = 0, which occurs with a zero
probability. Therefore, we conclude that there is one and only
oneµ∗

m′ > 0.
Since gim′p∗i = ΓST

m′ and from (86) we havegimp∗i ≤

ΓST
m , ∀m 6= m′, it follows that

ΓST
m′

gim′
≤ ΓST

m

gim
, and thusm′ =

argminm∈{1,...,M}
ΓST
m

gim
andp∗i =

ΓST
m′

gim′
. Also notice from (85)

that in this case
ΓST
m′

gim′
≤ P ST

i must hold. At last, considering
(81) for useri and any other userj, we have

hi

1 + hip
∗
i

− µm′gim′ = 0 (87)

hj

1 + hip
∗
i

− µm′gjm′ ≤ 0. (88)

Thus, we conclude thathi

gim′
≥ hj

gjm′
, ∀j 6= i, must hold.

Next, the “if” part of Theorem 3.4 follows due to the
fact that for a strictly-convex optimization problem, the KKT
conditions are both necessary and sufficient for the unique set
of primal and dual optimal solutions [33].

APPENDIX VIII
ERGODIC SUM CAPACITY FOR FADING C-MAC UNDER

TDMA CONSTRAINT

In this appendix, we formally derive the optimal rule of
user selection and power control to achieve the ergodic sum
capacity for the SISO fading C-MACunder an explicit TDMA
constraint, in addition to any combination of transmit-power
and interference-power constraints. The TDMA constraint
implies that at each fading state there is only one SU that
can transmit. LetΠ(α) be a mapping function that gives the
index of the SU selected for transmission at a fading state
with channel realizationα. Note that for this particular fading
state,pΠ(α) ≥ 0, while for the other SUsk ∈ {1, . . . ,K},
k 6= Π(α), pk = 0. The ergodic sum capacity of the fading
C-MAC under TDMA constraint can be obtained as

CTDMA
MAC = max

Π(α)
max

{pk(α)}∈F
E
[

log
(

1 + hΠ(α)pΠ(α)(α)
)]

(89)
whereF is specified by a particular combination of power
constraints described in (1)-(4). Clearly, for any given function
Π(α), the capacity maximization in (89) overF is a convex
optimization problem. However, the maximization over the
function Π(α) may not be necessarily convex, and thus
standard convex optimization techniques may not apply di-
rectly. Fortunately, it will be shown next that the optimization
problem in (89) can be efficiently solved for all considered
cases of mixed LT-/ST-TPC and LT-/ST-IPC.

A. Long-Term Transmit-Power and Interference-Power Con-
straints

From (89), the ergodic sum capacity under the TDMA
constraint, as well as the LT-TPC in (1) and the LT-IPC in
(3) can be obtained by solving the following optimization
problem:
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Problem 8.1:

Max.
Π(α),{pk(α)}

E
[

log
(

1 + hΠ(α)pΠ(α)(α)
)]

s.t. E [pk(α) · 1(Π(α) = k)] ≤ PLT
k , ∀k (90)

E
[

gΠ(α)mpΠ(α)(α)
]

≤ ΓLT
m , ∀m (91)

where1(A) is the indicator function taking the values of 1 or 0
depending on the trueness or falseness of eventA, respectively.

First, we write the Lagrangian of this problem,
L(Π(α), {pk(α)}, {λk}, {µm}), as in (92) (shown on
the next page), whereλk and µm are the nonnegative dual
variables associated with the corresponding constraints in
(90) and (91), respectively,k = 1, . . . ,K, m = 1, . . . ,M .
Then, the Lagrange dual function,g({λk}, {µm}), is defined
as

max
Π(α),{pk(α)}

L(Π(α), {pk(α)}, {λk}, {µm}). (93)

The dual problem is accordingly defined as
min{λk},{µm} g({λk}, {µm}). Since the problem at hand may
not be convex, the duality gap between the optimal values of
the original and the dual problems may not be zero. However,
it will be shown in the later part of this subsection that the
duality gap for Problem 8.1 is indeed zero.

We consider only the maximization problem in (93) for
obtaining g({λk}, {µm}) with some givenλk ’s and µm’s,
while the minimization ofg({λk}, {µm}) overλk ’s andµm’s
can be obtained by the ellipsoid method, since it is always
a convex optimization problem. For each fading state, the
maximization problem in (93) can be expressed as (withα

dropped for brevity)
Problem 8.2:

Max.
Π,pΠ

log (1 + hΠpΠ)− λΠpΠ −
M
∑

m=1

µmgΠmpΠ (94)

s.t. pΠ ≥ 0. (95)
For any given userΠ, the optimal power solution for the above
problem can be obtained as

p∗Π =

(

1

λΠ +
∑M

m=1 µmgΠm

−
1

hΠ

)+

. (96)

Substituting this solution into the objective function of Prob-
lem 8.2 yields

(log(
hΠ

λΠ +
∑M

m=1 µmgΠm

))+−(1−
λΠ +

∑M
m=1 µmgΠm

hΠ
)+.

(97)
It is easy to verify that the maximization of the above function
overΠ is attained with useri that satisfies

hi

λi +
∑M

m=1 µmgim
≥

hj

λj +
∑M

m=1 µmgjm
, ∀j 6= i. (98)

From (96) and (98), it follows that the same set of solutions
for Problem 3.2 without the TDMA constraint, which is given
in Lemma 3.2, also holds for Problem 8.2 with the TDMA
constraint. Note that the optimal solutions of Problem 3.1
without the TDMA constraint are also TDMA-based, and thus
they are also feasible solutions to Problem 8.1 with the TDMA

constraint. Since these solutions have also been shown in the
above to be optimal for the dual problem of Problem 8.1, we
conclude that the duality gap is zero for Problem 8.1; and both
Problem 3.1 and Problem 8.1 have the same set of solutions.

B. Long-Term Transmit-Power and Short-Term Interference-
Power Constraints

The ergodic sum capacity under the TDMA constraint plus
the LT-TPC and the ST-IPC can be obtained as the optimal
value of the following problem:

Problem 8.3:

Max.
Π(α),{pk(α)}

E
[

log
(

1 + hΠ(α)pΠ(α)(α)
)]

s.t. (90)

gΠ(α)mpΠ(α)(α) ≤ ΓST
m , ∀α,m. (99)

Similarly as for Problem 8.1, we apply the Lagrange duality
method for solving the above problem by introducing the
nonnegative dual variablesλk, k = 1, . . . ,K, associated with
the LT-TPC given in (90). However, since Problem 8.3 is not
necessarily convex, the duality gap for this problem may notbe
zero. Nevertheless, it can be verified that Problem 8.3 satisfies
the so-called “time-sharing” conditions [38] and thus has a
zero duality gap. For brevity, we skip the details of derivations
here and present the optimal power-control policy in this case
as follows:

Lemma 8.1: In the optimal solution of Problem 8.3, the user
Π(α) that transmits at a fading state with channel realization
α maximizes the following expression among all the users
(with α dropped for brevity):

log (1 + hΠp
∗
Π)− λΠp

∗
Π (100)

where

p∗Π = min

(

min
m∈{1,...,M}

ΓST
m

gΠm

,

(

1

λΠ
−

1

hΠ

)+
)

(101)

andλk, k = 1, . . . ,K, are the optimal dual solutions obtained
by the ellipsoid method.

C. Short-Term Transmit-Power and Long-Term Interference-
Power Constraints

The ergodic sum capacity under the TDMA constraint, the
ST-TPC, and the LT-IPC can be obtained as the optimal value
of the following problem:

Problem 8.4:

Max.
Π(α),{pk(α)}

E
[

log
(

1 + hΠ(α)pΠ(α)(α)
)]

s.t. pΠ(α)(α) ≤ P ST
Π(α), ∀α (102)

(91).
By introducing the nonnegative dual variablesµm,m =
1, . . . ,M , associated with the LT-IPC given in (91), Problem
8.4 can be solved similarly as for Problem 8.3 by the Lagrange
duality method. For brevity, we present the optimal power-
control policy in this case directly as follows:

Lemma 8.2: In the optimal solution of Problem 8.4, the user
Π(α) that transmits at a fading state with channel realization
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E
[

log
(

1 + hΠ(α)pΠ(α)(α)
)]

−
K
∑

k=1

λk

{

E [pk(α) · 1(Π(α) = k)]− PLT
k

}

−
M
∑

m=1

µm

{

E
[

gΠ(α)mpΠ(α)(α)
]

− ΓLT
m

}

(92)

α maximizes the following expression among all the users
(with α dropped for brevity):

log (1 + hΠp
∗
Π)−

M
∑

m=1

µmgΠmp∗Π (103)

where

p∗Π = min



P ST
Π ,

(

1
∑M

m=1 µmgΠm

−
1

hΠ

)+


 (104)

and µm,m = 1, . . . ,M , are the optimal dual solutions
obtained by the ellipsoid method.

D. Short-Term Transmit-Power and Interference-Power Con-
straints

At last, the ergodic sum capacity under the TDMA con-
straint, the ST-TPC, and the ST-IPC can be obtained as the
optimal value of the following problem:

Problem 8.5:

Max.
Π(α),{pk(α)}

E
[

log
(

1 + hΠ(α)pΠ(α)(α)
)]

s.t. (102), (99).
In this case, all the constraints are separable over the fading
states and, thus, this problem is decomposable into indepen-
dent subproblems each for one fading state. For brevity, we
present the optimal power-control policy in this case directly
as follows:

Lemma 8.3: In the optimal solution of Problem 8.5, the user
Π(α) that transmits at a fading state with channel realization
α maximizes the following expression among all the users
(with α dropped for brevity):

p∗ΠhΠ (105)

where

p∗Π = min

(

P ST
Π , min

m∈{1,...,M}

ΓST
m

gΠm

)

. (106)
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