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Abstract— A lower bound on the minimum mean-squared to a large body of work seeking to find simple lower bounds
error (MSE) in a Bayesian estimation problem is proposed in on the MMSE in various estimation problems [3]-[12].
this paper. This bound utilizes a well-known connection to he Generally speaking, previous bounds can be divided into
deterministic estimation setting. Using the prior distribution, the . C . . IR
bias function which minimizes the Cramér—-Rao bound can be two c_ategones. Th_e We|s§—We|nste|n fam|ly_ IS baseq on a
determined, resulting in a lower bound on the Bayesian MSE. covariance inequality and includes the Bayesian Cramér—R
The bound is developed for the general case of a vector paratee  bound [3], the Bobrovski—Zakai bound [8], and the Weiss—
with an arbitrary probability distribution, and is shown to be \Weinstein bound [9], [10]. The Ziv—Zakai family of bounds
asymptotically tight in both the high and low signal-to-nosse ratio s ased on comparing the estimation problem to a related
regimes. A numerical study demonstrates several cases in wh detection scenario. This family includes the Ziv—Zakai u

the proposed technique is both simpler to compute and tighte o - <
than alternative methods. [4] and its improvements, notably the Bellini—Tartara bdun

: . N .. [6], the Chazan—Zakai—Ziv bound [7], and the generalizatio

Index Terms—Bayesian bounds, Bayesian estimation, mini- .
mum mean-squared error estimation, optimal bias, performace  Of Bell et al. [11]. Recently, Renaugt al. have combined both
bounds. approaches [12].

The accuracy of the bounds described above is usually
tested numerically in particular estimation settings. Fafw
o i i the previous results provide any sort of analytical proof

The goal of estimation theory is to infer the value of¢ accyracy, even under asymptotic conditions. Bellini and
an unknown parameter based on observations. A COMMAlL4 4 (6] briefly discuss performance of their bound ahhig
approach to this problem is the Bayesian framework, in whichyna-to-noise ratio (SNR), and Beit al.[11] prove that their
the estimate is constructed by combining the measuremenis,ng converges to the true value at low SNR for a particular
with prior information about the parameter [1]. In this 881 3 mily of Gaussian-like probability distributions. To thest

the paramete is random, and its distribution describegyt o\ knowledge, there are no other results concerning the
the a priori knowledge of the unknown value. In add't'onasymptotic performance of Bayesian bounds.
measurements are obtained, whose conditional distribution, z jifferent estimation setting arises when one considers
given®, provides further information about the parameter. Thg 55 3 deterministicunknown parameter. In this case, too,
objective is to construct an estimatér wh|ch is a function 5 -ommon goal is to construct an estimator having low MSE.
of the measurements, so ttéis close tof in some sense. A hyoyever, the term MSE has a very different meaning in the
common measure of the quality of an estimator Is 1ts Meafaterministic setting, since in this case, the expectasitaken
squared error (MSE), given b {||6 — 6]} _ only over the random variable. One elementary difference

It is well-known that the posterior meaR{6|x} is the \ih far-reaching implications is that in the Bayesian cake
technique minimizing the MSE. Thus, from a theoreticql;gg s a single real number, whereas the deterministic MSE
perspective, there is no difficulty in finding the minimumg 4 function of the unknown paramet@r13]-[15].
MSE (MMSE) estimator in any given problem. In practice, \jany jower bounds have been developed for the determin-
however, the complexity of computing the posterior meagic setting, as well. These include classical resultshsas
is often prohibitive. As a result, various alternativeseisu iha cramér—Rao [16], [17], Hammersley—Chapman—Robbins
as the maximunma posteriori (MAP) technlqu_e, have been 18], [19], Bhattacharya [20], and Barankin [21] bounds, as
developed [2]. The purpose of such methods is to approach {8y 45 more recent results [22]-[27]. By far the simplesd an
performance of the MMSE estimator with a computationally,ost commonly used of these approaches is the Cramér—Rao
efficient algorithm. bound (CRB). Like most other deterministic bounds, the CRB

An important goal is to quantify the performance degrajeais explicitly with unbiased estimators, or, equivdient
dation resulting from the use of these suboptimal techr§iqugith estimators having a specific, pre-specified bias famcti

One way to do this is to compare the MSE of the methofly, exceptions are the uniform CRB [23], [25] and the

used in practice with the MMSE. Unfortunately, computatioginimay linear-bias bound [26], [27]. The CRB is known to
of the MMSE s itself infeasible in many cases. This has le&easymptoticallytight in many cases, even though many later
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problem can be transformed to a corresponding Bayesian $etthe Bayesian sense, while expectation solely avefin
ting. Several theorems relate the performance of correlipgn the deterministic setting) is denoted B -; 6}. The notation
Bayesian and deterministic scenarios [13]. As a conse@JenE{- | 8} indicates Bayesian expectation conditionedéon
numerous bounds have both a deterministic and a Bayesia®ome further notation used throughout the paper is as fol-
version [3], [10], [12], [29]. lows. Lowercase boldface letters signify vectors and ugese
The simplicity and asymptotic tightness of the determiaistboldface letters indicate matrices. Tlith component of a
CRB motivate its use in problems in whidh is random. vectorv is denoteds;, whilev™) v ... signifies a sequence
Such an application was described by Young and Westerbefgvectors. The derivativé) f /0v of a function f(v) is a
[5], who considered the case of a scatarconstrained to vector function whoséth element isDf /Ov;. Similarly, given
the interval[fy, #1]. They used the prior distribution @f to a vector functiorb(0), the derivativedb/06 is defined as the
determine the optimal bias function for use in the biased CRBatrix function whos€, j)th entry is9b;/06;. The squared
and thus obtained a Bayesian bound. It should be noted thaiclidean normw”v of a vectorv is denoted| v||?, while
this result differs from the Bayesian CRB of Van Trees [3the squared Frobenius norfir(M M?) of a matrix M is
the two bounds are compared in Section Il-C. We refer tienoted| M ||%. In Section[Ill, we will also define some
the result of Young and Westerberg as the optimal-bias boukwhctional norms, which will be of use later in the paper.
(OBB), since it is based on choosing the bias function which ) o )
optimizes the CRB using the given prior distribution. A. The Bayesian—-Deterministic Connection
This paper provides an extension and a deeper analysi§Ve now review a fundamental relation between the Bayes-
of the OBB. Specifically, we generalize the bound to aian and deterministic estimation settings. Bate an unknown
arbitrary n-dimensional estimation setting [30]. The boundandom vector inR™ and leta be a measurement vector.
is determined by finding the solution to a certain partidihe joint probability density function (pdf) o8 and x is
differential equation. Using tools from functional anasysve pze(x,0) = pze(x|0)pe(8), Wherepy is the prior distri-
demonstrate that a unique solution exists for this difféaén bution of& andp,e is the conditional distribution of given
equation. Under suitable symmetry conditions, it is showat t 6. For later use, define the setof feasible parameter values
the method can be reduced to the solution of an ordinasy
differential equation and, in some cases, presented iredlos © ={0 €R": pg(0) > 0}. Q)
form. _ o Supposed = O(x) is an estimator of. Its (Bayesian) MSE
The mathematical tools employed in this paper are also uﬁgcbiven by
for characterizing the performance of the OBB. Specificatly
is demonstrated analytically that the proposed bound impsy MSE = E{ ||é — 9”2} = / Hé — 0|?pe.o(x,0)dxdd. (2)
totically tight for both high and low SNR values. Furthermpr
the OBB is compared with several other bounds; in tHay the law of total expectation, we have

examples considered, the OBB is both simpler computatipnal . 5
and more accurate than all relevant alternatives. MSE = / /”0 = 0l"pajo(2|0)dz | po(6)d6
The remainder of this paper is organized as follows. In Sec- A 9
tion[Ill we derive the OBB for a vector parameter. Secfioh Il - E{E{HO -4 ‘0}} ‘ ®)

discusses some mathematical concepts required to ensure ttNow consider a deterministic estimation setting, i.e.,-sup
existence of the OBB. In SectignlV, a practical technique fqpose# is a deterministic unknown which is to be estimated
calculating the bound is developed using variational daku from random measurements Let the distributionp,..q of x
In Section[V, we demonstrate some properties of the OBRs a function of¢) be given bypg.e(x;0) = pye(x|6),
including its asymptotic tightness. Finally, in Section, Wle i.e., the distribution ofz in the deterministic case equals
compare the performance of the bound with that of othéfie conditional distribution in the corresponding Bayasia
relevant techniques. problem.

The estimato® defined above is simply a function of the
measurements, and can therefore be applied in the determin-

_ ) _ istic case as well. Its deterministic MSE is given by
In this section, we derive the OBB for the general vector

case. To this end, we first examine the relation between the E{H@) - 0||2;0} = / 10 — 6|%pa.0(x; 0)da 4)

Bayesian and deterministic estimation settings (Selfigy).]

Next, we focus on the deterministic case and review the ba§it1C€P=:6(2; 0) = pzjo(|0), we have

properties of the CRB (Sectidn_1I}B). Finally, the OBB is slio—eiz-0\ =£elio—_e 2‘0 5

derived from the CRB (Sectidn I[1C). {” I } {H I } ®)
The focus of this paper is the Bayesian estimation proBombining this fact with [(8), we find that the Bayesian

lem, but the bound we propose stems from the theory BSE equals the expectation of the MSE of the corresponding

deterministic estimation. To avoid confusion, we will indie deterministic problem, i.e.

that a particular quantity refers to the deterministic isgtt 5 an2) _ 5 pl2.

by appending the symboP to it. For example, the notation E{HO ol } B E{E{HO ol ’0}}' (©)

E{-} denotes expectation ovbpth § andx, i.e., expectation This relation will be used to construct the OBB in SecfioI-

Il. THE OPTIMAL-BIAS BOUND



B. The Deterministic Craér—Rao Bound b(6) = 0). Under the unbiasedness assumption, the bound

Before developing the OBB, we review some basic results §#{nplifies toMSE > Tr(J~'(8)). However, in the sequel we
the deterministic estimation setting. Supp@se a determinis- Will make use of the general forr (11).
tic parameter vector and letbe a measurement vector having
pdf pz.e(x; 6). Denote by® C R™ the set of all possible C. A Bayesian Bound from the CRB

values of@. We assume for technical reasons tigatis an The OBB of Young and Westerberg [5] is based on apply-
open sp[ﬂ ing the Bayesian—deterministic connection described ic+ Se
Let 6 be an estimator of from the measurements. We  ion[[-Alto the deterministic CRB{11). Specifically, reting
require the following regularity conditions to ensure thia@ ow to the Bayesian setting, one can combide (6) (11) to
CRB holds [31,83.1.3]. obtain that, for any estimatd with bias functionb(8),
1) pa.e(x; 0) is continuously differentiable with respect to R
0. This condition is required to ensure the existence of E{HG - OHQ} > Z[b] & / CRBIb, 6] pe(d6) (12)
the Fisher information. ©
2) The Fisher information matrid (8), defined by where the expectation is now performed over béthnd x.
Note that [IR) describes the Bayesian MSE as a function of
[J(0)],; = E{ 0108 paip 0108 Paio ;0} (7) a deterministic property (the bias) 6t Since any estimator
9; 90; has some bias function, and since all bias functions are
is bounded and positive definite for @l € ©. This continuously differentiable in our setting, minimizing|[b]
ensures that the measurements contain data about @er all continuously differentiable functiortsyields a lower
unknown parameter. bound on the MSE of any Bayesian estimator. Thus, under
3) Exchanging the integral and derivative in the equatiorihe regularity conditions of Sectidn II'B, a lower bound on

o P the Bayesian MSE is given by
/t(m)wpm;g(:c;ﬂ)dcc = %/t(:c)pm;g(mﬂ)dm

1b(6)|1*+

(8) s = inf /
is justified for any measurable functiofx), in the sense bect Jo
that, if one side exists, then the other exists and the two ob . ob\T
sides are equal. A sufficient condition for this to hold is Tr((I + %> J(6) (I + %> ) ]pe(dﬁ’) (13)
that the support op;¢ does not depend of.

4) All estimatorsé are Borel measurable functions whichyhereC is the space of continuously differentiable functions

satisfy f:0—=R"
9pzi6 otll < for all & 9 Note that the OBB differs from the Bayesian CRB of
< g(z) fora 9) \ , .
06 F Van Trees [3]. Van Trees’ result is based on applying the

for some integrable functiog(z). This technical re- Cauchy-Schwarz inequality to the joint pgff ¢, whereas the
quirement is needed in order to exclude certain pathologgtérministic CRB is based on applying a similar procedure
ical estimators whose statistical behavior is insuffidient©© P=;6- AS @ consequence, the regularity conditions required

smooth to allow the application of the CRB. for the Bayesian CRB are stricter, requiring thaty be twice
The bias of an estimatd is defined as differentiable with respect t6. By contrast, the OBB requires

R differentiability only of the conditional pdp.s. An example
b(6) = E{O; 0} - 0. (10) in which this difference is important is the case in which the
prior distributionpg is discontinuous, e.g., whem is uniform.

Under the above assumptions, it can be shown that the bigg, performance of the OBB in this setting will be examined
of any estimator is continuously differentiable [5, Lemnia 2;, Section V.

Furthermore, under these assumptions, the CRB holds, ang}, the next section, we will see that it is advantageous to

thus, for any estimator having bi#t6), we have perform the minimizatio{13) over a somewhat modified class
ANz > of functions. This will allow us to prove the unique existenc
E{||0 ol ’0} > CRB[b, 0] of a solution to the optimization problem, a result whichlwil
ob\ ., b\ " ) be of use when examining the properties of the bound later in
2Ty (I+ %) J(0) (I+ %) + ||6(0)]=. the paper.
(11)

I1l. M ATHEMATICAL SAFEGUARDS
A more common form of the CRB is obtained by restricting

. . ) . X ~ In the previous section, we saw that a lower bound on the
attention to unbiased estimators (i.e., techniques forckwhi

MMSE can be obtained by solving the minimization problem
1This is required in order to ensure that one can discussreiiftebility ) However, at t_hIS point, we have no guarantee that the
of pg. With respect to at any point@ € ©. In the Bayesian setting to solution s of (I3) is anywhere near the true value of the

which we will return in Sectiof T-=CP is defined by[{); in this case, adding \MSE. Indeed. at first sight, it may appear that= 0 for
a boundary to© essentially leaves the setting unchanged, as long as the ’ '

prior probability for @ to be on the boundary o® is zero. Therefore, this any estimation setting. TO see this’ note t'ﬁb] is a sum .
requirement is of little practical relevance. of two components, a bias gradient part and a squared bias



‘ /\ /\ Furthermore, this approach allows us to demonstrate devera
. important theoretical properties of the OBB.
\/ \ Let L2 be the space gfg-measurable functioris: © — R
such that

u NN [ 160) patdt) < . (14)
©
\j \j \/ Define the associated inner product
O @\ 2N [ e
(0.6, 23 [ nn @motie)  5)
MWBWBWBWBWD, and the corresponding nortb||. = (b, b),.. Any function
b € L? has a derivative in the distributional sense, but this

derivative might not be a function. For example, discoruimnsl
A functions have distributional derivatives which contaiDisac
delta. If, for everyi, the distributional derivativéb; /90 of b
WNW’ is a function inL?, thenb is said to be weakly differentiable
[32], and its weak derivative is the matrix functi@b/o6.
Roughly speaking, a function is weakly differentiable ifist
Fig. 1. A sequence of continuous functions for which b¢iitg)|2 and ~continuous and its derivative exists almost everywhere.
|1 +(6)|* tend to zero for aimost every value 6f The space of all weakly differentiable functions Iif is

called the first-order Sobolev space [32], and is dendfed

) ) Define an inner product oAl! as
part. Both parts are nonnegative, but the former is zero when

the bias gradient is-I, while the latter is zero when the b @ 2 /p0 p®@ - 8b§-1) 8b§2)
bias is zero. No differentiable functiob satisfies these two < ’ >H1 N < ’ >L2 + Z 00 ’ 00
constraints simultaneously for #l| since if the squared bias is =1 L(iG)
gv_erywhere zero, then the bias gradient is also zero. Hawevfhe associated norm iﬁbﬂip 2 (b, b) ;.. An important
it is possible to construct a sequence of funct_Mﬁ@ for  property which will be used extensively in our analysis iatth
which both the bias gradient and the squared bias norm tegd is 5 Hilpert space.

to zero foralmostevery value of. An example of such a se-  Note that since is an open set, not all functions @' are
quence in a one-dimensional setting is plotted in Eig. 1eHer, g1 For example, in the cas® = R, the functionb(8) =
a sequencb(_” of smooth, periodic functions is presented. Thg tor some nonzero constakt is continuously differentiable
function period tends to zero, and the percentage of theecygl,t not integrable. Thud is in C'! but not in H', nor even
in which the derivative equals-1 increases ag increases. iy 1,2. However any measurable function which is notff
Thus, the pointwise limit of th(_a fu_nctio_n sequence i§ Z€1Ras||b|| ;1 = oo, meaning that eitheb or 9b/dO has infinite
_almost everywhere, and the pointwise limit of the derivativy2 orm. Consequently, either the bias norm part or the bias
is —1 almost everywhere. . radient part ofZ[b] is infinite. It follows that performing the
In the specific case shown in Fid. 1, it can be shown that th&nimization [IB) overC' N H', rather than over', does
value O.fZ_[b(l)]_ does not tend to zero; in facZ[b(l)]. tends ot change the minimum value. On the other haftin H is
to infinity in this situation. However, our example illusi#a §ense inf! andZ[b] is continuous, so that minimizing (13)
that care must be taken when applying concepts from finitgger 71 rather tharC! N H? also does not alter the minimum.

dimensional optimization problems to variational calculu Consequently, we will henceforth consider the problem
The purpose of this section is to show that- 0, so that

the bound is meaningful, for any problem setting satisfyimey 5= biefgl Z[b]. (17)
regularity conditions of Section I[IB. (This question wast n
addressed by Young and Westerberg [5].) While doing so, we A . L
develop some abstract concepts which will also be used Wh'gnthe minimization is that a unique minimizer can now be
p p
analyzing the asymptotic properties of the OBB in Sedfidn \g.uarante(_a(_j, as .demonstrated by the following result.
. - ) Proposition 1: Consider the problem
As often happens with variational problems, it turns out
that the minimum of[{113) is not necessarily achieved by any b = arg min Z|b] (18)
continuously differentiable function. In order to guammtan beH?
achievable minimum, one must instead minimizel (13) overvehere Z[b] is given by [I2) andJ () is positive definite
slightly modified space, which is defined below. As explaineghd bounded with probability 1. This problem is well-defined
in Section[I[-B, all bias functions are continuously differ i.e., there exists a uniqué € H' which minimizes Z[b].
tiable, so that the minimizing function ultimately obtainéf ~Furthermore, the minimum valug = Z[b] is finite and
it is not differentiable, will not be the bias of any estimato nonzero.
However, as we will see, the minimum value of our new Proving the unique existence of a minimizer forl(17) is a
optimization problem is identical to the infimum df_{13)technical exercise in functional analysis which can be tbimn

The advantage of including weakly differentiable functon



AppendiX{Il. However, once the existence of such a minimizéne optimalb(0) of (20) is given by the solution to the system
is demonstrated, it is not difficult to see thak s < co. To of partial differential equations
see thats < oo, we must find a functio for which Z[b] < 92b.
J(0) is bounded. Now suppose by contradiction that 0,
which implies that there exists a functidne H' such that ob; b (T 1),
o) (17 0 2 )
bias parts ofZ[b] are zero. In particular, since the squared bias grk ! !
part equals zero, we hav@| ;> = 0. Hence,b = 0, because (21)
_ . Neumann boundary condition
2[6) = [ (7 (6))pad6) (19) b
o N e o <I + —> J @) =0 (22)
which is positive; this is a contradiction. 06
having zero measure. In particular, the fact thét is unique a¢ 9. All derivatives in this system of equations are to be
does not preclude functions which are identicabtd almost interpreted in the weak sense.

oo. One such function i = 0, for which Z[b] is finite since  pg(0)b;(0) = pe(0) 5000 (J Yk
o O d9Tk
Z[b] = 0. Therefore, both the bias gradient and the squared + Z (5ik + )
L? is a normed space. But then, by the definition (12¢6f, for i = 1,...n, within the ranged € ©, which satisfies the
Note that functions irff* are defined up to changes on a sgby gl points@ € A. Here, () is a normal to the boundary

everywhere (which obviously have the same val{{g]). Note that Theoreril1 guarantees the existence of a unique
Summarizing the discussion of the last two sections, Wgytion in H! to the differential equation[(21) with the
have the following theorem. boundary conditiond (22).

Theorem 1:Let 6 be an unknown random vector with pdf The pound of Young and Westerberg [5] is a special case
pe(8) > 0 over the open seB C R, and letz be a of Theoren{®, and is given here for completeness.
measurement vector whose pdf, conditionedois given by Corollary 1: Under the settings of Theorefd 1, suppose
P|o(2|6). Assume the regularity conditions of Section 1-Bg — (g,,4,) is a bounded interval irR. Then, the bias

hold. Then, for any estimata?, functionb(9) minimizing (20) is a solution to the second-order
- ordinary differential equation
E{||0—0|\ } > min / CRB[b, 0]pe(0)d6. (20
beH! Jgo

The minimum in[(ZD) is nonzero and finite. Furthermore, this do de

minimum is achieved by a functiob € H', which is unique yithin the rangef € ©, subject to the boundary conditions
up to changes having zero probability. b (0) = ' (6;) = —1.

Two remarks are in order concerning TheorBim 1. First, theorem can be solved numerically, thus obtaining a
the functionb solving [20) might not be the bias of any,oyng for any problem satisfying the regularity conditions

estimator; indegd, uno!er our assumptions, all bias funstioe However, directly solving[{21) becomes increasingly caempl
continuously differentiable, wheredsneed only be weakly 55 the dimension of the problem increases. Instead, in many

differentiable. NevetheIessl:(J20) is sti_II a lower boundl Ocases, symmetry relations in the problem can be used to
th_e MMSE. Another mp_or?ant observation is that Theo@m_gimp“fy the solution. As an example, the following sphatig
arises from the deterministic CRB; hence, there are no requisy mmetric case can be reduced to a one-dimensional setting

ments on the prior distributiope (6). In particular,pe(6) can  oqivalent to that of Corollarl 1. The proof of this theorem
be discontinuous or have bounded support. By contrast, many, pe found in Appendix1V.

previous Bayesian bounds do not apply in such circumstancesrhaorem 3:Under the setting of Theoreffl 1, suppose that
© = {0 :||0|| < r}isasphere centered on the origig(0) =
IV.  CALCULATING THE BOUND q(||8|)) is spherically symmetric, and(8) = J(||0||)I, where
In finite-dimensional convex optimization problems, the : R — R is a scalar function. Then, the optimal-bias bound
requirement of a vanishing first derivative results in a s¢0) is given by
of equations, whose solution is the global minimum. Analo-

J(O)b(0) = H'(8) + (1 + b'(6)) (dlogp@ _ dlogJ ) (23)

i i imizat ol s 2 [ (L+V(p))?
gously, in the case of convex functional optimization pevhs E{HO _ 0||2} > / b2 (p) + ———2
such as[{20), the optimum is given by the solution of a set of I'(n/2) Jo J(p)
differential equations. The following theorem, whose fircan n—1 b(p) 2
be found in AppendiXll, specifies the differential equatio + N0 (1 + —) ]q(p)pn—ldp. (24)
relevant to our optimization problem. P p

In this section and in the remainder of the paper, we willere, T'(-) is the Gamma function, ank(p) is a solution to
consider the case in which the $8t= {6 : p(0) > 0} iS the ODE

bounded. From a practical point of view, even witgonsists B(O)  bo)
of the entire seR", it can be approximated by a bounded set J(6)b(8) = b"(0) + (n — 1) <T - 9—2)
containing only those values & for which pg(0) > e.

Theorem 2:Under the conditions of Theordm 1, supp@se +(1+V(0)) <d10gq _ dlog J> (25)
is a bounded subset &" with a smooth boundargx. Then, do do




subject to the boundary conditiohd)) = 0, ¥'(r) = —1. The (@), we then have
bias function for which the bound is achieved is given by
0 CRB(bo, 8] — CRB[b, 8] = |[bo(8)]* - [|b(6)]*
b(0) = b(HOII)W- (26) = |lpl®> —2uTb(0).  (30)

In this theorem, the requiremedi{0) = J(||0||)I indicates
that the Fisher information matrix is diagonal and that itdsing the functionalZ[-] defined in [I2), we obtain
components are spherically symmetric. Parameters having a
diagonal matrixJ are sometimes referred to asthogonal Z[bo] — Z[b] = E{||n|* — 2" b(0)}

The simplest case of orthogonality occurs when, to each = ||p||? = 2" E{b(0)}
parameterd;, there corresponds a measurementin such — H2 <0 (31)
a way that the random variables|@ are independent. Other K '
orthogonal scenarios can often be constructed by an appro
ate parametrization [33].

The requirement thal have spherically symmetric compo-
nents occurs, for example, in location problems, i.e. asiduns
in which the measurements have the farm= 6 + w, where ]
w is additive noise which is independent @f Indeed, under B- Tightness at Low SNR

such conditions/J is constant ir [31, §3.1.3]. If, in addition,  pgg) gt a1, [11] examined the performance of the extended
the noise components are independent, then this settiog 3}8,_7akai bound at low SNR and demonstrated that, for
satisfies the orthogonality requirement, and thus appiealf 5 o4 ticular family of distributions, the extended Ziv—zak
Theoren(B is appropriate. Note that this estimation probleg,;nq achieves the MSE of the optimal estimator as the SNR
is not separable, since the componentsfoére correlated; (gngs o). We now examine the low-SNR performance of the

thus, the MMSE in this situation is lower than the sum hgg and demonstrate tightness for a much wider range of
the components’ MMSE. An example of such a setting ISroblem settings.

presented in Sectidn VI.

Ff"husZ[bo] < Z|[b], contradicting the fact that(6) minimizes
(20). [

Bell et al. did not define the general meaning of a low SNR
value, and only stated that “[a]s observation time and/oRSN
V. PROPERTIES become very small, the observations become useless .].[and
e minimum MSE estimator converges to t@riori mean.”

In this section, we examine several properties of the OB his statement clearly does not apply to all estimation prob
We first demonstrate that the optimal bias function has zelro y PPy P

mean, a property which also characterizes the bias funofion ems, since it is not always clear what parameter correspond
! Y tq the observation time or the SNR. We propose to define

the MMSE esUmator._Next, we prove that, under very gen_er%e zero SNR case more generally as any situation in which
conditions, the resulting bound is tight at both low and hig 6(0) — 0 with probability 1. This definition implies that the

SNR values. This is an important result, since a desirab o )
. . ; . rpeasurements do not contain information about the unknown
property of a Bayesian bound is that it provides an accurate

estimate of the ambiguity region between high and low SNﬁframeter, which is the usual informal meaning of zero SNR.
e

[11]. Reliable estimation at the two extremes increases test;[g]i\tg??se{h(g) r:)r(r)r’weI;ncasno ?r?atsgﬁ\rlvgelzir;ﬁot:?m’wlli\gfh
likelihood that the transition between these two regimes wi b ' P

be correctly identified. statement of-B(.aIbt aI._ )
The OBB is inapplicable whed'(6) = 0, since the CRB

is based on the assumption thAt0) is positive definite. To
A. Optimal Bias Has Zero Mean avoid this singularity, we consider a sequence of estimatio
S]&;:ettings which converge to zero SNR. More specifically, we
require all eigenvalues aof () to decrease monotonically to
zero forpg-almost all@. The following theorem, the proof of

In any Bayesian estimation problem, the bias of the MM
estimatorfo, = E{6|x} has zero mean:

E{éopt} = E{E{0|z}} = E{0} (27) which can be found in Appendix]V, demonstrates the tightness
of the OBB in this low-SNR setting.
so that Theorem 5:Let 6 be a random vector whose pg§(8) is
E{b(éopt)} = E{E{0|z} — 0} = 0. (28) nonzero over an open s&tC R”. Letz™), (), ... be a se-

guence of observation vectors having finite Fisher inforomat
Thus, it is interesting to ask whether the optimal bias whianatricesJ (), J®(6), .. ., respectively. Suppose that, for
minimizes [20) also has zero mean. This is indeed the caa# N, the matrixJ(N)(O) is positive definite fopg-almost all
as shown by the following theorem. 6, and that all eigenvalues of™) (0) decrease monotonically
Theorem 4:Let b(0) be the solution to[(20). Then, to zero asN — oo for pg-almost all@. Let Gy denote the
optimal-bias bound for estimating from (™). Then,
E{b(@)} =0. (29
Proof: Assume by contradiction thdt(6) has nonzero . _ _ 2
mean E{b(8)} = u # 0. Defineby(0) = b(0) — p. From ngnooﬁN B E{”0 EA0} } (32)



C. Tightness at High SNR [28, §l11.3], [13, §6.8]. One reason for this is that asymptotic
We now examine the performance of the OBB for higﬁfﬁmency describes the behavior 6f conditioned on each

SNR values. To formally define the high SNR regime wRossible value off, and is thus a stronger result than the
consider a sequence of measuremants, z(2). .. of asingle aSymptotic Bayesian MSE of (83).

parameter vecto@. It is assumed that, when conditioned on

0, all measurements:() are identically and independently VI. EXAMPLE: UNIFORM PRIOR

distributed (lID). Furthermore, we assume that the Fisher i Th iainal bound of Y 4 W b 5 q
formation matrix of a single observatiaf(0) is well-defined, e original bound of Young and Westerberg [5] predates
most Bayesian bounds, and, surprisingly, it has never been

positive definite and finite fopg-almost all6. We consider '’ . . :
cited by or compared with later results. In this section, we

the problem of estimating from the set of measurements i .
{zV) (™1, for a given value ofN. The high SNR measure the performance of the original bound and of its

regime is obtained when is large. exten_5|on to the vec_tor case agalnst thgt .Of vapous other
IIechnlques. We consider the case in whighis uniformly

When N tends to infinity, the MSE of the optimal estimato ributed di ional bald — (0 - 10
tends to zero. An important question, however, concerns tﬂ'}écr' [gne sc?\t/k?;tam_ imensional open balb = {6 - [|9]] <

rate of convergence of the minimum MSE. More precisel§, =
given the optimal estimatad”™ of @ from {® . 2™}, p6(6) = 1 (35)
one would like to determine the asymptotic distribution of 0 Vi (r) ©

~(N) .

VN(O - 0)_, cor_1d|t|oned onf. A fundamental result of wherelg equalsl whend € S and0 otherwise, and
asymptotic estimation theory can be loosely stated asvislio

[28, §lI1.3], [13, §6.8]. Under some fairly mild regularity 7/ 2pn—1

conditions, the asymptotic distribution of/N(G - 0), I(1+4+n/2)

conditioned ond, does not depend on the prior distributior?s the volume of am-ball of radiusr [35]. We further assume
pe; rather, \/N(é(N) — 6)|0 converges in distribution to that
a Gaussian random vector with mean zero and covariance
J~1(0). It follows that

(36)

r=0+w (37)

. L (N) ) . where w is zero-mean Gaussian noise, independen® of
Jim NE{HG -0 } =E{Tx[J7'(0)]}.  (33) having covariance2I. We are interested in lower bounds on
) o ) the MSE achievable by an estimator &ffrom .
Since the minimum MSE tends to zero at high SNR, \yg pegin by developing the OBB for this setting, as well
any lower bound on the minimum MSE must also tend Qs some alternative bounds. We then compare the different

zero asN — oo. However, one would further expect agpproaches in a one-dimensional and a three-dimensional
good lower bound to follow the behavior df_{33). In Otheéetting.

words, if Gy represents the lower bound for estimatifig

from {“i(i)v---’m(m}' a desirable property iISVGy — proplem is given byJ(8) = o2I, so that the conditions
E{Tr[J~(0)]}. The following theorem, whose proof isqf Theoren{B hold. It follows that the optimal bias function
found in Appendix[V, demonstrates that this is indeed the given byb(8) = b(||6]))8/||0||, whereb(-) is a solution to

case for the OBB. _ o the differential equation
Except for a very brief treatment by Bellini and Tartara

[6], no previous Bayesian bound has shown such a result. b B 4 (n—1) (b_' _ ﬁ)
Although it appears that the Ziv—Zakai and Weiss—\Weinstein o2 0 02
bounds may also satisfy this property, this has not beergprov . .
formally. Ityis also kr?éwn tflatpthey Bayesian CRB rﬂ;ﬂf[lf with poundar_y cqnd|t|0q$(0) - 0.’ bl(.r) n —1. The general
asymptotically tight in this sense [34, Egs. (37)—(39)]. solution to this differential equation is given by

Theorem 6:Let & be a random vector whose pgf (0 0 0
is nonzero over an open sétC R™. Letz™®, z(?) ... b(e)a b(O) = C10" "L 2 (;) + o0 T (;) (39)
sequence of measurement vectors, suchahate, (216, . ..
are IID. Let J(0) be the Fisher information matrix for where I,(z) and K,(z) are the modified Bessel functions
estimatingd from z(*), and supposd (8) is finite and positive ©f the first and second types, respectively [36]. Sifce(z)
definite for pg-almost all 8. Let 3y be the optimal-bias is singular at the origin, the requiremeh0) = 0 leads to
bound [20) for estimating from the observation sequenceC2 = 0. Differentiating [39) with respect t6, we obtain
{® ... ™}, Then,

lim N = B{Tr(J " (6))} oy V0= (1n() 4 hen(5)) w0

Note that f](\gr Theorenil6 to hold, we require only thagg that the requirement(r) = —1 leads to
J(6) be finite and positive definite. By contrast, the various
theorems guaranteeing asymptotic efficiency of Bayesitin es = T
mators all require substantially stronger regularity doods ' Lyyo(r/o) +r/oliins(r/o)

The Fisher information matrix for the given estimation

(38)

n/2

(41)



Substituting this value di(-) into (24) yields the OBB, which where H = [h4, ..., h,,] is a matrix containing an arbitrary
can be computed by evaluating a single one-dimensional mimberm of test vectors ands is a matrix whose elements
tegral. Alternatively, in the one-dimensional case, thedgnal are given by
can be computed analytically, as will be shown below. . L
Despite the widespread use of finite-support prior distri- G;; = SE{f(m’e’h“Sl)r(m’f’hf’sj)}
butions [4], [10], the regularity conditions of many bounds E{L*(x;0 + hi, 0)} B{L* (x;0 + h;, 0)}
are violated by such prior pdf functions. Indeed, the Bagymsiin which
CRB of Van Trees [3], the Bobrovski—Zakai bound [8], and the A rs s
Bayesian Abel bound [12] all assume that(@) has infinite  "(®: 63 hi, i) = L (z;0+hi, 0) =L (x;0 ~hi, 0) (51)
support, and thus cannot be applied in this scenario. and
Techniques from the Ziv—Zakai family are applicable to
constrained problems. An extension of the Ziv—Zakai bound
for vector parameter estimation was developed by Bekl.

[11]. From [11, Property 4], the MSE of théh component 1h€ Vectorshy,.... h,, and the scalars,, ..., s, are arbi-
of 6 is bounded by trary, and can be optimized to maximize the bound (49). To

avoid a multidimensional nonconvex optimization probleva,

E{(@i _éi)2} > /OOV{ max A(é)Pmin(é)}hdh restrict attention tom = n, h, = he;, ands; = 1/2, as
0 d:el6=h (42) suggested by [10]. This results in a dependency on a single

. . . N scalar parametei.
wheree; is a unit vector in the direction of thih component,  jqer these conditionss,; can be written as
V{-} is the valley-filling function defined by Y

(50)

a 16 (01)pz0(x(601)

L(x;01,0 .
(:61,62) 16 (02)Dz)0(x(62)

(52)

1 ~ -
V{f(h)} = h 43 o= —hi —h; - _h: h;
{f(n)} glggcf( +1n), 43) Gy M(hi)M(hj)[M(m h;,—h;)+ M(h; — h;, h;)
A®) 2 [ min(pe(8),pe(0 +8))d6, (44) — M(h;+ hj,h;) — M(h; + hj,h;)| (53)
d Ppin(d) is th  mini bability of for th where
and P, is the minimum probability of error for the M 2 B L2060+ h o 54
problem of testing hypothesi&, : 8 = 6 vs. H; : 0 = (h) { (36 + b, )} (54)

0o + 6. In the current settingP,i, (8) is given byPin(8) =  and
Q(||8]l/20), whereQ(z) = (2m)~ /2 [ e=/24t is the tail

Y 1/2(,,.
function of the normal distribution. Also, we have M (hy, ho) = E{L PP(a:0 + h1a9)1@+h2} : (59)
A(8) = V.2 (r,[18]]) (45) Note that we have used the corrected version of the Weiss—

Vi (r) Weinstein bound [37]. Substituting the probability distriion

where of z and @ into the definitions ofA/ (k) and M (h4, hs), we
Ve = [ Leleineds (46) have
" M(h) = Ed o 18+h—x|?/40® ,[|0—|?/40®  _

and© + he, = {6 + he, : 6 € ©). Thus, VE(r, h) is the () {C O”‘}
volume of the intersection of twa-balls whose centers are _ VIRl —jyny2 /502 (56)
at a distance of. units from one another. Substituting these V(1)

results into [(4R), we have and, similarly,

E{(Gi - 9})2} 5 e—lIh1]|? /802

M(hi,h2) = ———~—

[e%S) C

S A ALY (LI P Vo) ~
0 siefo=h  Va(r) 7 Thus, M (h) is a function only of||h||, and M (hq, hs) is a

Note that boti/,C (r, ||5]|) andQ(||]|/20) decrease with{§|. function only of || k]|, ||hz||, and|ki — hs||. Sinceh; = he;,
Therefore, the maximum if_(#7) is obtained f8r= he;. it follows that, fori # j, the numerator of (33) vanishes. Thus,
Also, since the argument &f{-} is monotonically decreasing, G is a diagonal matrix, whose diagonal elements equal
the valley-filling function has no effect and can be removed. NI(0, hey) — NI(2her, hey)

/ leletn, loth,dd. (57)

Finally, sinceV,¢(r,h) = 0 for h > 2r, the integration can Gyi=2 > (58)
be limited to the rang€0, 2r]. Thus, the extended Ziv—Zakai M?(hes)
bound is given by The Weiss—Weinstein bound is given by substituting thisltes
. 2r  y;C into (49) and maximizing ovet, i.e.,
E{||0—0|\2} > / nMQ<i) hdh.  (48) -
0 Va(r) 20 - nh2M?(hey)
. L _ Ele—9| } > max = > )
We now compute the Weiss—Weinstein bound for the setting hel0,2r] 2[M (0, hey) — M (2heq, hel)g
at hand. This bound is given by 59)

- R The value ofh yielding the tightest bound can be determined
E{||9 4 } >Tr(HG H") (49) by performing a grid search.
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Fig. 2. Comparison of the MSE bounds and the minimum achievtSE in a one-dimensional setting for whiéh~ U[—r, r] andz|0 ~ N (0, o?).

To compare the OBB with the alternative approaches deeund [48) can be written as
veloped above, we first consider the one-dimensional case in R 2 A A
which @ is uniformly distributed in the rang® = (—r, ). Let E{HO - 0||2} > / (1 - —) hQ(—) dh.  (62)
x = 6+ w be a single noisy observation, whexeis zero- 0 2r 20
mean Gaussian noise, independend ofvith variances2. We Using integration by parts| (62) becomes
wish to bound the MSE of an estimator éffrom z.

2
The optimal bias function is given by {89). Using the fact E{”g - é||2} > &Q(f)
that I1 »(t) = /2/m sinh(t)/v/t, we obtain 3 s 8 5
20y o) - 2T, ( 63
7 { 3/2<202) 3V r 2\ 252 (63)

b(O) = —o sinh(6/0) (60)
cosh(r/o) where To(z) = (1/T(a)) [5 e~ *t*"'dt is the incomplete
which also follows [5] from Corollan[I1. Substituting thisGa@mma function. Like the expressidn61) for the OBB, this
expression into[{20), we have that, for any estimakor bound can be showr_1 to converge to the noise variafiaghen
r > o and to the prior variance? /3 wheno >> r. However,
A2 2 tanh(r/o) while the convergence of the OBB to these asymptotic values
E{ (0 —06) } = (1 - rlo ) ‘ (61) has been demonstrated in general in Theorems 5 And 6, the

asymptotic tightness of the Ziv—Zakai bound in the general
Apart from the reduction in computational complexity, thease remains an open question.
simplicity of (61) also emphasizes several features of theThe Weiss—Weinstein bound {59) can likewise be simplified

estimation problem. First, the dependence of the problemyther in the one-dimensional case, yielding
on the dimensionless quantity/ o, rather than o and o

separately, is clear. This is to be expected, as a changét& un E{||9 9|| }

of measurement would multiply both and o by a constant. h2e—h/da? (1 _ h)?
Second, the asymptotic properties demonstrated in Theorem > max ¢ ( — ﬂ) .
B and® can be easily verified. Fors> o, the bound converges T he0.2] 2 (1 - g5 — max (0,1 — &) e=h?/20%)
to the noise variance?, corresponding to an uninformativeHowever, calculating this bound still requires a numerical
prior whose optimal estimator & = z; whereas, folr > r, search for the optimal value df.

a Taylor expansion oftanh(z)/z immediately shows that These bounds are compared with the exact value of the
the bound converges te?/3, corresponding to the case ofMSE in Fig.[2. In this figure, the SNR is defined as
uninformative measurements, where the optimal estimator i Var (@ 5

6 = 0. Thus, the bound{61) is tight both for very low and for SNR(dB) = 10log,,, (L()) = 10log,, (r_) . (65)
very high SNR, as expected. Var(w) 30?

In the one-dimensional case, we haVg(r) = 2r and The MMSE was computed by Monte Carlo approximation of
V€ (r,h) = max(2r — h,0), so that the extended Ziv—Zakaithe error of the optimal estimatd£{f|z}, which was itself
bound [(48) and the Weiss—Weinstein bound (59) can also @@mputed by numerical integration. Fg. 2(a) plots the MMSE
simplified somewhat. In particular, the extended Ziv—Zakaind the values obtained by the aforementioned bounds, while

(64)
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Fig. 3. Comparison of the MSE bounds and the minimum achievtSE in a three-dimensional setting for whiéhis uniformly distributed over a ball
of radiusr andx|0 ~ N (0, 021I).

Fig.[2(b) plots the ratio between each of the bounds and tthe paper. The authors would also like to thank the anonymous
actual MMSE in order to emphasize the difference in accuraogviewers for their many constructive comments.
between the various bounds. As can be seen from this figure,
the OBB is closer to the true MSE than all other bounds, for APPENDIXI
all tested SNR values. SOME TECHNICAL LEMMAS
~ The improvements provided by the OBB continue to hold the proof of several theorems in the paper relies on the
in h|gher dlmen_smns as well, although in this case it is n%llowing technical results.
possible to provide a closed form for any of the bounds. For| amma 1:Consider the minimization problems
example, FiglL B compares the aforementioned bounds with the
true MMSE in the three-dimensional case. In this case the SNR M, = ;21; Zyb], £=1,2,3 (67)
is given by ) - .
Var(6) 2 where JJ(0) is positive definite and bounded a.@g),
SNR(B) = 010 (25 ) = 01omo (1) 600, 0 [ 16(6)po(a)
Here, computation of the minimum MSE requires multi- © T
dir_nensional numerical integration,.and is by far more cqmpuzz[b] A / Tr<<I T @) J71(6) <I i @) )pg(de)
tationally complex than the calculation of the bounds. Agii o 00 00
is evident from this f|gu_re that th_e OBB is a very tight boundZ [b] 2 Z,[b] + Zo[b] (68)
in all ranges of operation, and is considerably closer to the
true value than either of the alternative approaches. and S C H! is convex, closed, and bounded under #tié
norm [16). Then, for each, there exists a functioh® € §
VII. CONCLUSION such thatZ[b'®)] = M,. If £ =1 or ¢ = 3, then the minimizer
Although often considered distinct settings, there are iof (€4) is unique.
sightful connections between the Bayesian and deterritinist Note thatZ;[b] equalsZ[b] of (12); the notationZs[b] is
estimation problems. One such relation is the use of ti@roduced for simplicity. Also note that under mild reguia
deterministic CRB in a Bayesian problem. The applicatiomssumptions od (@), uniqueness can be demonstrated/fer
of this deterministic bound to the problem of estimating th& as well, but this is not necessary for our purposes.
minimum Bayesian MSE results in a Bayesian bound which Proof: The spacd{! is a Cartesian product of Sobolev
is provably tight at both high and low SNR values. NumericaipacesH!(©), each of which is a separable Hilbert space
simulation of the location estimation problem demonsgaté38, §3.7.1]. ThereforeH'! is also a separable Hilbert space.
that the technique is both simpler and tighter than altér@at It follows from the Banach—Alaoglu theorem [3$83.17] that
approaches. all bounded sequences #ii' have weakly convergent subse-
quences [32§2.18]. Recall that a sequengé®, f?, ... e
ACKNOWLEDGEMENT H! is said to converge weakly tgf'” e H' (denoted
The authors are grateful to Dr. Volker Pohl for fruitfulf® — £©) if
discussions concerning many of the mathematical aspects of LIf9] - L[£] (69)
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for all continuous linear functionals[-] [32, §2.9]. Note that, for any positive definite matri¥/, Tr(AW BT)
Given a particular valué € {1, 2, 3}, let b be a sequence is an inner product of the two matrices and B. Therefore,

of functions inS such thatZ,[b")] — M,. This is a bounded by the Cauchy-Schwarz inequality,

sequence sinc& is bounded, and therefore there exists a

subsequenck’*) which converges weakly to sorbéy, € H'. Tr(AWB") < \/TY(AWAT) Tr(BWB").  (76)
Furthermore, since is closed we havebf,f))t € S. We will  Applying this to [75), we have

now show thatZ, [bgf))t] = M,.

To this end, it suffices to show th@[l’ is weakly lower
semicontinuous, i.e., for any sequeng ) ¢ H' which

©) ¢ pyi (0) ONG
converges weakly tgf'"”’ € H*, we must show that / Tr (I n af ) J*1(0) <I n af )
(7o) “’°

Zo[f ] < liminf
J— 00

Zy[ ] < liminf Z,[f)]. 00 00
Consider a weakly convergent sequent@ — £ Then, @ OA
) holds for an Y i g H a rfdé) f i - | Tr I+ af J_l(e) I+ af pe(d@)
6 y continuous linear function&l-]. Specifi 00 90
cally, choose the continuous linear functional
(77)
0
Li[f] = /@f( )(H)f(é))pg(de). (71)  once again using the Cauchy—Schwarz inequality results in
We then have Zg[f(o)] < liminf Zg[f(o)]Zg[f(j)] (78)
j—oo
A f(O) = f(O) ‘
! . | 1(,[) | and thereforeZ,[f(*)] < liminf; .., Z»[f\], so thatZ,[] is
- 715]30 Ly[f] weakly lower semicontinuous. Sinég(f] = Z1[f] + Z2[f],
" . it follows that Z3-] is also weakly lower semicontinuous.
= ILDQO/ S 120)£7 (0)pe(d) Now recall thatb(™*) — b{t} and Z,[b(*)] — M,. By the
! ©i=1 definition [70) of lower semicontinuity, it follows that
< limnt \/ L120@2p0(@0) - [ 1£9©)]po(d0) Zulbog] < lyminf Z[b'"] = My 9
—oo e e
o / ; and sincel/; is the infimum ofZ, [b], we obtainZ[bl%)] = M.
=\ Z1[f) hjn_l)&lf ZilfY) (72) Thusb®) isga minimizer of [Ei]?)d | el
’ Opt . ) . . .
where we have used the Cauchy—Schwarz inequality. It fallow It remains to show that fot e {1,3}, the minimizer
that of (€7) is unique. To this end, we first show th&i[] is
/ . ; strictly convex. Leth(® (1) € S be two essentially different
o [f(O)] = hjnig.}f Zlf (J)] (73) fur:cti)(/)ns i\./e.x 7 " e
and thereforeZ, [f(V)] < liminf; ... Z1[f"], so thatZ,[] pg({e c0:b9(0) £ b(l)(O)}) > 0. (80)
is weakly lower semicontinuous.
Similarly, consider the continuous linear functional Let 5™ () = Ab(?(0) + (1 — \)bV) () for somed < A < 1,
af© of T so thatb® € § by convexity. We then have
= -1 Z 2
(74) @
. 2
for which we have +/ H/\b(o)(g) (- )\)b(l)(g)H o (d6)
o\Q
Zo[ ] = Lo[£V] 0) (912 1) (912
— i Ly[f9) < [ BO®I + 1= 26 @)1 po)
Jj—o0 Q
e [ O@E + - 01 @)1 o)
= lim Tr|( T+ =—|J %) e\Q
= Je 06 —AZi [0 + (1 = \) Zo[pV)] (81)

I+ 5 squared Euclidean norihe||2. Thus Z;[-] is strictly convex,
and hence has a unique minimum.
Note that Zs[b] = Z1[b] + Zz[b]. Since Z,[] is strictly

2|n fact, we require thatS be “weakly closed” in the sense that weakly convex andZ2[~] is convex. it follows thatZ3[~] is strictly
convergent sequences B converge to an element if. However, sinceS d th | h ’ . o Thi let
is convex, this notion is equivalent to the ordinary defimitiof closure [39, CONVEX, and thus aiso has a unique minimum. 1his completes

§3.13]. the proof. [ |

ofW r where the inequality follows from strict convexity of the
: pe(dB). (75)
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The following lemma can be thought of as a triangl&imilarly, we have

inequality for a normed space of matrix functions o@&er

Lemma 2:Let pg be a probability measure over, and let

M : © — R"*™ be a matrix function. Suppose

1T+ M®)0(a0) < o ®2)
for some constant. It follows that
. IM(6)Fpo(dO) < (Va+ v/n). (83)
Proof: By the triangle inequality,
IMO)|p=M(O0)+T—1I|p<|M(@®)+I|+ IIII(IéZ)

Since||I]|% = n, we have
[ 1M @)1 po(as)

< [ (114 M@ +n+ 20/ 1T + M6 potip).
(85)
Using the fact that

/ |1+ M(0)|| - pe(de) \// 1T+ M ()7 po(d6)

(86)
and combining with[(82), it follows that
/HM(@)HQFpg(dH) <atnt2ia (87
)
which completes the proof. [ ]

APPENDIXII
PROOF OFPROPOSITIONT]

The following proof of Propositioh]l makes use of the

results developed in Appendik I.
Proof: [Proof of Propositioi 11] Recall thaf;[b] of (68)

Z[b] > /O <<I+ %) J(0) <I+ %)T> e (dB)

(90)
so that it suffices to minimizé {17) over functiobdor which

ob ab\"
— — <.
/@Tr((IJrao)J (0) (I+60) )pg(d@)_U
(91)
Note thatJ (@) is bounded a.e., and therefo)&g,in(J‘l) >

1/K a.e., for some constaift. It follows that

()0 (1 2)')
0

2

> E HI a.e(pg). (92)
Combining with [91) yields
ab|?
/ I+ _— pe(da) < KU. (93)
o 96
From Lemmd[R, we then have
b’ 2
po(d0) < (Vi+VED) . (99)
26 || -

From [89) and[(94) it follows that the minimization {17) can
be limited to the closed, bounded, convex set

S = {be H': bl <U+ (\/K—U+ \/ﬁ)z}. (95)

Applying Lemmdl proves the unique existence of a minimizer
of (I7). The proof that < s < co appears immediately after
the statement of Propositign 1. [ ]

APPENDIXIII
PROOF OFTHEOREMI[Z

equalsZ[b]. Thus, we would like to apply Lemnid 1 (with The following is the proof of Theoreml 2 concerning the

¢ = 3) to prove the unique existence of a minimizer ofalculation of the OBB.
(I17). However, Lemmall requires that the minimization be
performed over a closed, bounded, and convexSsethereas Problem of minimizing the functional
(17) is performed over the unbounded dét. To resolve
this issue, we must show that the minimizatiénl(17) can be Z[b] = /@F[b, 6]deo

where F'[b, 8] is smooth and convex ib : © — R”, and

reformulated as a minimization over a closed, bounded, and
O C R” is a bounded set with a smooth boundaryThen,

convex setsS.
To this end, note that
Z[b] is also smooth and convex iy so thatb is a global
:/ Tr(J ! minimum of Z[b] if and only if the differentiald Z[h] equals
e zero atb for all admissible functiong : © — R™ [40].

and thereforeMl < U < oc. Thus, it suffices to perform the By a standard technique [4§35], it can be shown that

minimization [1¥) over those functions for whichi[b] < U.

We now show that this can be achieved by minimizing over _ / OF <~ 0 OF \

oF
+EZ/ <ab<”

a closed, bounded, and convex $etFirst, note thatZ[b] >
o™

(96)

)po(dB) = U (88)

[b]|%., so that one may choose to minimiZe](17) only over -
functionsb for which
anet b ) v(0) hi(0)do  (97)

Iblz- < U. (89)

Proof: [Proof of Theoreni 2] Consider the more general
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where ¢ is an infinitesimal quantitybl(.j) = 0b;/00;, and We now demonstrate some properties of the transformation
v(0) is an outward-pointing normal at the boundary poindf b and 6. First, we have, for any,

6 € A. We now seek conditions for whichZ[h] = 0 for

all h(@). Consider first functiong(6) which equal zero on

the boundary\. In this case, the second integral vanishes, and [ 9p, ? 51}2 by 2
we obtain the Euler-Lagrange equations 3_@ 6_9] (89 s ¢ + 0; > sin ¢)
. o OF b b 2
39 ab(]) ) (98) + ( 69 in ¢ —|— - COS ¢)
by 0bs
Substituting this result back intb (97), and again usingfttog =20, + % - (103)
that5Z[h] = 0 for all h, we obtain the boundary condition ! !
T .
Also, for anyi,
Vi, VO € A, B—F,...,B—F v(0)=0.  (99)
oM o™
2 2 2
Plugging F'[b, 8] = CRBIb, 8]pe(0) into (98) and [(9P) pro- (8—131> + (8—131> = <%6_{?1 + %8—?2)
vides the required result. [ | 90, 90, 09106, 092 06,
(S o0y’
891 892 a92 8@2
APPENDIX IV b\ 2 b\ 2
=== — 104
PROOF OFTHEOREMI[3 <891) + <892) (104)

Before proving Theorernl 3, we provide the following two

lemmas, which demonstrate some symmetry properties of the
Y y prop where we used the fact thét= R,0. Third, we have

CRB.
Lemma 3:Under the conditions of Theorefd 3, the func-
tional Z[b] of (@I2) is rotation and reflection invariant, i.e., o o o
Z[b] = Z[Ub] for any unitary matrixU'. 8_91 = L cos® ¢ + — sin ¢ cos ¢
Proof: We first demonstrate that[b] is rotation invari- ! 80éb 02 5
ant. From the definitions af[b] and CRB[b, 8], we have + 22 sin ¢ cos ¢ + =2 sin? o,
00, 004
ob ob q(/161) Oby _ Obi . by
Z|bl = Tr| (T + — I+ — do —— = —Ssln — —=— sSIn @ Cos
6] / ( +30)( +ao) ] 716l 90, ~ 2, " 0 gg, nocos?
Oby | Oby 4
— —=sin ¢ cos ¢ + —— cos” ¢, (105)
+ [ 1b(6)1a(101)ae. (100) 7 7.
The second integral is clearly rotation invariant, since a
rotation ofb does not alter its norm. It remains to show that the® that
first integral, which we denote hj [b], does not change when . -
b is rotated. To this end, we begin by considering a rotation 0by | by _ 0Oby , 0Oby (106)
about the first two coordinates, such tibais transformed to 060p 002 96, 06,
b £ R4b, where the rotation matriRR,, is defined such that
Ryb = (b1 cos é + by sin o, We now show that
— by sing + bycos g, bs, ..., b,)T. (101)
o6\ o,
We must thus show thak[b] = I;[b]. Let us perform the > (51'3' + 8_91> => <5w + 57, ) : (107)
change of variable® — 6, wheref = R _4 6. Rewriting 0] / 0] J
the trace in[(100) as a sum, we have
8b 180 - For terms withi, j > 3, we haveb; = b; andf; = 6;, so that
/ Z ( ; ) ——"d0 (102) replacingb with b and @ with 6 does not change the result.
e terms withi = 1,2 andj > 3 do not change because o
J(01]) Th ith d d h b f

} (I03), while the terms withi > 3 andj = 1,2 do not change
where we have used the facts ttj&f| = ||| and that® does because of (104). It remains to show that the teimis= 1, 2
not change under the change of variables. do not modify the sum. To this end, we write out these four
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terms as this end, we note that

b\ o, \" [(ob\T [0hs i _ s v 0,200 _ s ovpa, (112)
<1+—1> +<1+—2> +<—1> +( 2) o0, 7" o, Y i

06, 96, 06, 06, /
~ ~ whered;; is the Kronecker delta. It follows that
=924+ 2% + 2% ab; \
001 00, <5Z—j + a—é) = (L+1)6i; +4(1 + t)t'0:0,6;; + 460767

~ 2 ~ 2 ~ 2 ~ 2
by by Obsy Oby (113)
+ <891> + (892> + <691> + (892> Therefore
b ob\ " b \ 2
2—~ o —_— e .. JRE—
+ Tr (I+80) (I+80) ] ;(613—1—89j)

20, 90,

2 2 2 2
T <%) T (ﬁ) 1 (ﬁ) 1 <%) =n(l+1)> + 47 0707 +4(1+t)t' > 67

o6, 00, o6, 90 >
2 2 2 2
_ (1 n 6_b~1) N (1 N 6_132) n (%) N (%) =n(1+t)%+4t%)0)* + 4(1 + t)t'||6]|>. (114)
00, 002 002 00 Thus,CRB[b, 8] depends o only throughl|@||?, completing
the proof. [ ]

where, in the second transition, we have uded](103).] (104), Proof: [Proof of Theoreni3] We have seen in Theoilem 2
and [1086). It follows thafl; [B] of (I02) is equal taf;[b], and that the solution of [(20) is unique. Now suppose that the
henceZ[b] = Z[b]. The result similarly holds for rotations Optimumb is not rotation invariant, i.e., there exists a rotation
about any other two coordinates. Since any rotation can B@trix R such that Rb(0) is not identical tob(8). By
decomposed into a sequence of two-coordinate rotations, kW&mmal3,Rb(0) is also optimal, which is a contradiction.
conclude thatZ[b] is rotation invariant. Furthermore, suppose thiats not radial, i.e., for some value
Next, we prove thaZ[b] is invariant to reflections through of 6, () contains a component perpendicular to the vector
hyperplanes containing the origin. Singgb] is invariant to - Consider a hyperplane passing through the origin, whose
rotations, it suffices to choose a single hyperplane, gy normal is the aforementioned perpendicular component. By

6, = 0}. Let Lemmal[3, The reflection db through this hyperplane is also
an optimal solution of[(20), which is again a contradiction.
b2 (—bi(0),b2(0),...,b,(0)T (109) Therefore, the optimurh is spherically symmetric and radial,
so that it can be written as
be the reflection ob, and consider the corresponding change 0
of variables b(6) = b(WH)m (115)
02 (—01,0,...,0,)7. (110)

whereb(+) is a scalar function.

To determine the value di(-), it suffices to analyze the
differential equation[{21) along a straight line from thégor
to the boundary. We choose a line along theaxis, and begin
by calculating the derivatives df; (), ¢(||0]]), and J(||0])
along this axis. The derivative af{||0||) is given by

By the symmetry assumptiongg andJ are unaffected by the
change of variables; furthermor@b/96 = db/96. It follows
that CRB[b, 8] = CRBIb, 6], and thereforeZ[b] = Z[b].
Lemma 4:Supposeb(0) is radial and rotation invariant,
i.e., b(@) = t(||@]|*)0 for some functiont € H'. Also

suppose thaf (8) = J(||0||)I, where.J(-) is a scalar function. 9q _ q/(p)ﬁ (116)
Then, CRBJ[b, 0] of (1) is rotation invariant in@, i.e., 09; P
CRB[b, RO] = CRB([b, 6] for any rotation matrixR. where we have denoteg = /0|, so thatp is weakly

Proof: We will show thatCRBIb, 8] depends o only gifferentiable and
through||8||?, and is therefore rotation invariant. For the given 9p _Y (117)
value ofb(6) and J(0), we have a0, p’

Along the#; axis, we haved; = p while §, =--- =6,, =0,
CRB[b, 8] so that
ey me | (14 2) a0 (14 22) S = (118)
06 06 99j lo—pe,
_epel 4 (I ) @) (I ) @)T Similarly, sinceJ(0) :1 J(p)I,
- J(el) 00 00 0 ik __J'(p) 05 5on (119)
(111) 90; J2(p) p

. . . so that along thé; axis
where, for notational convenience, we have omitted the de- g !

pendence of on ||8||%. It remains to show that the trace in AT )i

J'(p)
= ———<0;10,1. 120
the above expression is a functionébnly through||8||2. To 00, ik (120)

()

O=pe;
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From [1I%), we have Substituting this into the definition dfRBJ[b, 8], we obtain

J P P P 1 n—1 b( )
12 / 2 _p
Thus, on thed; axis, we have =)+ J(p) 1+ ¥ (o))" + J(p) <1 * p ) - (130)
% — ¥ (p)5. (122) Combining [I30) with[(127) yield§_(24), as required. m
J 10=pe;

APPENDIXV

The second derivative df;(8) can be shown to equal
PROOFS OFASYMPTOTIC PROPERTIES

2, 0.
0°b; = ”(p)% Theorem$ b andl 6 demonstrate asymptotic tightness of the
90;00 p OBB. The proofs of these two theorems follow.
Vip) bp)\ (0. [ 0i. Ok ,0:0;0k Proof: [Proof of Theorem[ 5] We begin the proof by
+ | —= =) | =0k + =0+ —0i; — 3 : . : o :
P p? P P P p3 studying a certain optimization problem, whose relevanitie w
(123) be demonstrated shortly. Let> 0 be a constant and consider

Therefore, on the; axis the problem
2
_(92b1 ! u(t) = inf / I ob
= = + — || pe(de)
001 lo—pe, e vetit Jo || 00|,
o, V() bip) | st. [ [b@)Ppatde) <t (13)
902 =, T2 (U#1) e
) 7 o=ven Notice thatu(t) < n for all ¢, since an objective having a value
b _ ; of n is achieved by the functioh(@) = 0. Thus, it suffices
=0 (U, k#1).  (124) = .
00;00k | e, to perform the minimization[{I31) over functiorts ¢ H'
Substituting these derivatives infa {21), we obtain satisfying "
a(p) (. v(p) b(p) / I+ 25| pe(dd) <n. (132)
a(p)b(p) = - (b (p) + (n — 1)T —(n— 1)p_2) o .

J(p)

It follows from Lemmal2 that such functions also satisfy

/ () I
+(1+V(p) ( T(0) a(p) 7 p)> (125) / ab| o (d8) < (YR = 4. .
which is equivalent to[{25). 0108k -

To obtain the boundary conditions, observe that Leriinatherefore, [I31) is equivalent to the minimization

implies b(0) = 0, whence we conclude th&f0) = 0. Next, )

evaluate the boundary condition {22) at boundary péint u(t) = inf / A po(d0) (134)
rey, where the surface normal(@) equalse;, so that beS: Jo 00 ||
h
1+bl(p):1+%20, 0 —res (126) "CC
1

. § si={oem: [ 1oo) (a0 <.
which is equivalent to the boundary conditiofir) = —1. e

To find the OBB [24), we must now calculaté[b] for ab||?
the obtained bias functiod (1115). To this end, note that, by /@ 70 Fpe(dO) < 4n}. (135)

Lemmd4,CRBIb, 0] is rotation invariant irg for the required . .
b(). Thus, the integran@RB([b, 8]¢(||6]|) is constant on any The setS; is convex, closed, and bounded H'. Applying
(n — 1)-sphere centered on the origin, so that Lemmall (with¢ = 2) implies that there exists a function
; bopt € 'S¢ which minimizes [(I34), and hence also minimizes
26}~ [ CRBIb.pesla()Su(dp  (127) (3D o |
0 Note that the objective if (181) is zero if and only if
where ob.
n/2 ' — _T a.e.(po). 136
2m n—1 (128) 90 (p@) ( )

Sn(p) = T/ o - |
_ ) The only functions inH! satisfying this requirement are the
is the hypersurface area of én— 1)-sphere of radiup [35].  functions

It thus suffices to calculate the value 6RB[b, 8] at points bO) —k—0 ae 137
along thed; axis. From [(1211), it follows that () €.(pe) (137)

% = diag (b’(p),@,...,@) ) (129)

for some constank € R™. Let u = E{0} and define

v = E{||0— E{6}|*}. (138)

szel
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For functions of the form{{I37), the constraintof (131) iseyi and note that\y > 0 for all N, since J™¥)(8) is positive

by definite. Thus
k — 0|*pe(d0 :/ k—p+p—0]*pe(d (V) -1
[ 1= 010(a0) = [ k= e+ 11— 0]1po(a0) 2= [ [ (122 (50000
= Ik — pl® +o ©
> . (139) o) T
L — | I+ po(d6)
In (39), equality is obtained if and only ¥ = u. Therefore, 00
if ¢ < v, no functions satisfyind (136) are feasible, and thus 9
1 )
u(t)=0 if t >, Zm/@ I‘f’w pe(d0)
t)y>0 ift<w. 140
u(t) | v (140) § ulg) (150
We now return to the setting of Theorér 5. We must show AN

that fy — v asN — 0. We denote functiqns correspon_dingb\ssume by contradiction thag < v. From [140), it then
to the problem of estimating from =) with a superscript follows that u(g) > 0. Since all eigenvalues o.fT(N)(G)

(N). Thus, for exampleZV)[b] denotes the functionat[b] decrease to zero, we have; — 0, and thus
of (I2) for the problem corresponding to the measurement ' '
vectorz V), u(q)

Since all eigenvalues of V) () decrease monotonically Py = AN oo (151)
with N for pg-almost all@, we have ) )
This contradicts the facE (145) thaty < v. We conclude that
CRBW[b,0] < CRBY Vb, 6] (141) ¢ = v, as required. n

Proof: [Proof of Theoreni 6] The proof is analogous to
that of Theoreni]5. We begin by considering the optimization

Z(N) [b] < Z(N+l)[b] (142) prOblem

for anyb € H', for pg-almost allg, and for allN. Therefore

for anyb € H' and for all N. It follows that for all N inf / ||b(8)||*pe(dB)
beH! Jg

By = min ZM[b] < min ZVV[b] = Byy1 (143) ob\ ;4 ab\"
st. /@Tr((I—i-%)J ) (I+%) )pg(d@) <t

beH! beH!
so that3y is a non-decreasing sequence. Furthermore, note

that (152)

ZMp—6]=v foral N (144)  for some constant > 0. Denote the minimum value of (152)
by w(t). Let u = E{06} and note thab(6) = p — 0 satisfies
the constraint in[(132) for any > 0, and has an objective
equal tov of (I38). Thus, to determina(t), it suffices to

wherew is given by [I3B). Thereforgdy < v for all N. Thus
BN converges to some valug and we have

Ay <g<wv forall N. (145) minimize [I52) over the set

To prove the theorem, it remains to show that v. 1 / 2
S;=<beH : b6 de) <
Let b™) be the minimizer ofl{1I7) whef is estimated from k { < o 16(6)1"po(@6) < v,

x(N); this minimizer exists by virtue of Propositiéh 1. We then ob b\ T
have / Tr <I + %> J(0) <I + %> pe(dl) < t}.

By = 2NN < g (146)
and therefore Define

A £ esssup Amax (J(0)). (153)
[ 162 @)po(d6) < o (147) oce
)

Since J(0) is positive definite almost everywhere, we have
It follows thatb™) satisfies the constraint of the optimization\ > 0. For anyb € S;, we have

problem [I31) witht = q. As a consequence, we have )

a5 [ 3 LT+ 5| petae < (154)
L+ %] p@®zu@. s ° v
© F and therefore, by Lemniad 2,
Define 9
ob 2
AN 2 esssup Amax (J () (149) / — || pe(d8) < (\/5 + \/ﬁ) . (155)
6cO ) 80 F




Hence, for any € Sy,

16121 =/®|b(0)|2pe(d0)+/®H%
<+ (VB Vi)

Thus.S; is bounded for alt. It is straightforward to show that
Sy is also closed and convex. Therefore, employing Leriima 1
(with ¢ = 1) ensures that there exists a (uniqug); € S;
minimizing (152).

Note that the objective i (152) is 0 if and onlytifp(0) =
0 almost everywhere. So, 0 € S;, we havew(t) = 0, and
otherwisew(t) > 0. Let us define

2
pe(d0)
F

s & E{Tx(J~'(0))} (157)

and note thab € S, if and only if t > s. Thus
w(t)=0 fort>s o
w(t) >0 otherwise. (158)

2

Let us now return to the setting of Theorér 6. For sim—[ ]

plicity, we denote functions corresponding to the problenﬁs]

of estimating® from {z(, ... 2™} with a superscript 4
(N). For example, from the additive property of the Fisher

information [2,§3.4], we have 5

JMN () = NJ(6). (159)

(6]

It follows that (7]

(N +1)CRB™+V (b, 0] > NCRB™)[b, 6]
for all be H!, all @ € ©, and all N. Therefore

(160)
[8]

(N +1)ZzWN+[p] > Nz b (161) [9]

for all b€ H!, and hence
- (N+1)
(N +Dfy4r = min (N +1)20 D))
(N)
> min (NZ [b])

= Nfn.

Thus{Npgn} is a non-decreasing sequence. Furthermore, we
have

[10]

. [11]
> min

(162) [12]

(23]

14]

NZWMo] = s (163)

so that NGy < s for all N. It follows that {N8x} is non-

17

Thus, b satisfies the constraint df (1152) with=r. As a
consequence, we have

/@ 167(8)[206(d8) > w(r) (166)
(156) and therefore
NfBn = NZ(N)[b(N)]
>N [ O] po(a)
©
> Nw(r). (167)

Now suppose by contradiction that < s. It follows from
(I58) thatw(r) > 0. Hence, by[(I87) NGy — oo, which
contradicts the fact thalv gy is bounded. We conclude that
r = s, as required.
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