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Abstract

We introduce S-DUDE, a new algorithm for denoising DMC-corrupted data. The algorithm, which
generalizes the recently introduced DUDE (Discrete Universal DEnoiser) of Weissman et al., aims to
compete with a genie that has access, in addition to the noisy data, also to the underlying clean data,
and can choose to switch, up to m times, between sliding window denoisers in a way that minimizes
the overall loss. When the underlying data form an individual sequence, we show that the S-DUDE
performs essentially as well as this genie, provided that m is sub-linear in the size of the data. When the
clean data is emitted by a piecewise stationary process, we show that the S-DUDE achieves the optimum
distribution-dependent performance, provided that the same sub-linearity condition is imposed on the
number of switches. To further substantiate the universal optimality of the S-DUDE, we show that when
the number of switches is allowed to grow linearly with the size of the data, any (sequence of) scheme(s)
fails to compete in the above senses. Using dynamic programming, we derive an efficient implementation
of the S-DUDE, which has complexity (time and memory) growing only linearly with the data size and
the number of switches m. Preliminary experimental results are presented, suggesting that S-DUDE has
the capacity to significantly improve on the performance attained by the original DUDE in applications
where the nature of the data abruptly changes in time (or space), as is often the case in practice.

Index Terms- Discrete denoising, competitive analysis, individual sequence, universal algorithms,
piecewise stationary processes, dynamic programming, discrete memoryless channel (DMC), switching
experts, forward-backward recursions.

1 Introduction

Discrete denoising is the problem of reconstructing the components of a finite-alphabet sequence based on
the entire observation of its Discrete Memoryless Channel (DMC)-corrupted version. The quality of the
reconstruction is evaluated via a user-specified (single-letter) loss function. Universal discrete denoising,
in which no statistical or other properties are known a priori about the underlying clean data and the goal
is to attain optimum performance, was considered and solved in [1]. The main problem setting there is
the “semi-stochastic” one, in which the underlying signal is assumed to be an “individual sequence,” and
the randomness is due solely to the channel noise. In this setting, it is unreasonable to expect to attain
the best performance among all the denoisers in the world, since for every given sequence, there exists a
denoiser that recovers all the sequence components perfectly. Thus, [1] limits the comparison class, a.k.a.
expert class, and uses the competitive analysis approach. Specifically, it is shown that regardless of what
the underlying individual sequence may be, the Discrete Universal DEnoiser (DUDE) essentially attains
the performance of the best sliding window denoiser that would be chosen by a genie with access to the
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underlying clean sequence, in addition to the observed noisy sequence. This semi-stochastic setting result
is shown in [1] to imply the stochastic setting result, i.e., that for any underlying stationary signal, the
DUDE attains the optimal distribution-dependent performance.

The setting of an arbitrary individual sequence, combined with competitive analysis, has been very
popular in many other research areas, especially for problems of sequential decision-making. Examples
include universal compression [4], universal prediction [5], universal filtering [2], repeated game playing
[6, 7, 8], universal portfolios [9], online learning [10, 11], zero-delay coding [12, 13], and much more. A
comprehensive account of this line of research can be found in [14]. The beauty of this approach is the
fact that it leads to the construction of schemes that perform, on every individual sequence, essentially as
well as the best in a class of experts, which is the performance of a genie that had hindsight on the entire
sequence before selecting his actions. Moreover, if the expert class is judiciously chosen, the relative sense
of such a performance guarantees can, in many cases, imply optimum performance in absolute senses as
well.

One extension to this approach is competition with an expert class and a genie that has the freedom to
form a compound action, which breaks the sequence into a certain (limited) number of segments, applies
different experts in each segment, and achieves an even better performance overall. Note that the optimal
segmentation of the sequence and the choice of the best expert in each segment is also determined by hind-
sight. Clearly, competing with the best compound action is more challenging, since the number of possible
compound actions is exponential in the sequence length n, and the brute-force vanilla implementation of
the ordinary universal scheme requires prohibitive complexity. However, clever schemes with linear com-
plexity that successfully track the best segments and experts have been devised in many different areas,
such as online learning, universal prediction [15, 16], universal compression [17, 18], online linear regression
[19], universal portfolios [20], and zero-delay lossy source coding [22].

In this paper, we expand the idea of compound actions and apply it to the discrete denoising problem.
The motivation of this expansion is natural: the characteristics of the underlying data in the denoising
problem often tend to be time- or space-varying. In this case, determining the best segmentation and the
best expert for each segment requires complete knowledge of both clean and noisy sequences. Therefore,
whereas the challenge in sequential decision-making problems is to track the shift of the best expert based
on the past, true observation, the challenge in the denoising problem is to learn the shift based on the
entire, but noisy, observation. We extend DUDE to meet this challenge and provide results that parallel
and strengthen those of [1].

Specifically, we introduce the S-DUDE and show first that, for every underlying noiseless sequence,
it attains the performance of the best compound finite-order sliding window denoiser (concretely defined
later), both in expectation and in a high probability sense. We develop our scheme in the semi-stochastic
setting as in [1]. The toolbox for the construction and analysis of our scheme draws on ideas developed
in [2]. We circumvent the difficulty of not knowing the exact true loss by using an observable unbiased
estimate of it. This kind of an estimate has proved to be very useful in [2] and [3] to devise schemes
for filtering and for denoising with dynamic contexts. Building on this semi-stochastic setting result, we
also establish a stochastic setting result, which can be thought of as a generalization and strengthening of
the stochastic setting results of [1], from the world of stationary processes to that of piecewise stationary
processes.

Our stochastic setting has connections to other areas, such as change-point detection problems in
statistics [23, 24] and switching linear dynamical systems in machine learning and signal processing [25, 26].
Both of these lines of research share a common approach with S-DUDE, in that they try to learn the change
of the underlying time-varying parameter or state of stochastic models, based on noisy observations of the
parameter or state. One difference is that, whereas our goal is the noncausal estimation, i.e., denoising,
of the general underlying piecewise stationary process, the change-point detection problems mainly focus
on sequentially detecting the time point where the change of model happened. Another difference is in
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that the switching linear dynamical systems focus on a special class of underlying processes, the linear
dynamical system. In addition, they deal with continuous-valued signals, whereas our focus is the discrete
case, with finite-alphabet signals.

As we explain in detail, the S-DUDE can be practically implemented using a two-pass algorithm with
complexity (both space and time) linear in the sequence length and the number of switches. We also
present initial experimental results that demonstrate the S-DUDE’s potential to outperform the DUDE on
both simulated and real data.

The remainder of the paper is organized as follows. Section 2 provides the notation, preliminaries and
background for the paper; in Section 3 we present our scheme and establish its strong universality properties
via an analysis of its performance in the semi-stochastic setting. Section 4 establishes the universality of
our scheme in a fully stochastic setting, where the underlying noiseless sequence is emitted by a piecewise
stationary process. Algorithmic aspects and complexity of the actual implementation of the scheme is
considered in Section 5, and some experimental results are displayed in Section 6. In Section 7 we conclude
with a summary of our findings and some possible future research directions.

2 Notation, Preliminaries, and Motivation

2-A Notation

We use a combination of notation of [1] and [2]. Let X ,Z, X̂ denote, respectively, the alphabet of the clean,
noisy, and reconstructed sources, which are assumed to be finite. As in [1] and [2], the noisy sequence is a
DMC-corrupted version of the clean one, where the channel matrixΠ = {Π(x, z)}x∈X ,z∈Z , Π(x, z) denoting
the probability of a noisy symbol z when the underlying clean symbol is x, is assumed to be known and
fixed throughout the paper, and of full row rank. The z-th column of Π will be denoted as πz. Upper case
letters will denote random variables as usual; lower case letters will denote either individual deterministic
quantities or specific realizations of random variables.

Without loss of generality, the elements of any finite set V will be identified with {0, 1, · · · , |V|−1}. We
let V∞ denote the set of one-sided infinite sequences with V-valued components, i.e., v ∈ V∞ is of the form
v = (v1, v2, · · · ), vi ∈ V, i ≥ 1. For v ∈ V∞, let vn = (v1, · · · , vn) and vnm = (vm, · · · , vn). Furthermore, we
let vn\t denote the sequence vt−1vnt+1. R

V is a space of |V|-dimensional column vectors with real-valued
components indexed by the elements of V. The a-th component of q ∈ R

V will be denoted by either qa
or q[a]. Subscripting a vector or a matrix by “max” will represent the difference between the maximum
and minimum of all its components. Thus, for example, if Γ is a |Z| × |X | matrix, then Γmax stands
for maxx∈X ,z∈Z Γ(z, x) − minx∈X ,z∈Z Γ(z, x) (in particular, if the components of Γ are nonnegative and
Γ(z, x) = 0 for some z and x, then Γmax = maxz∈Z,z∈X Γ(z, x).) In addition, 1{·} denotes an indicator of
the event inside {·}.

Generally, let the finite sets Y, A be, respectively, a source alphabet and an action space. For a general
loss function l : Y ×A → R, a Bayes response for ζ ∈ R

Y under the loss function l is given as

bl(ζ) = argmin
a∈A

ζT · La, (1)

where La denotes the column of the matrix of the loss function l corresponding to the a-th action, and ties
are resolved lexicographically. The corresponding Bayes envelope is denoted as

Ul(ζ) = min
a∈A

ζT · La. (2)

Note that when ζ is a probability, namely, it has non-negative components summing to one, Ul(ζ) is the
minimum achievable expected loss (as measured under the loss function l) in guessing the value of Y ∈ Y
which is distributed according to ζ. The associated optimal guess is bl(ζ).

3



An n-block denoiser is a collection of n mappings X̂n = {X̂t}1≤t≤n, where X̂t : Z
n → X̂ . We assume

a given loss function Λ : X × X̂ → [0,∞), where the maximum single-letter loss is denoted by Λmax, and
λx̂ denotes the x̂-th column of the loss matrix. The normalized cumulative loss of the denoiser X̂n on the
individual sequence pair (xn, zn) is represented as

L
X̂n(x

n, zn) =
1

n

n∑

t=1

Λ(xt, X̂t(z
n)).

In words, L
X̂n(x

n, zn) is the normalized (per-symbol) loss, as measured under the loss function Λ, when

using the denoiser X̂n and when the observed noisy sequence is zn while the underlying clean one is xn.
The notation L

X̂n is extended for 1 ≤ i ≤ j ≤ n,

L
X̂n(x

j
i , z

n) =
1

j − i+ 1

j
∑

t=i

Λ(xt, X̂t(z
n))

denoting the normalized (per-symbol) loss between (and including) locations i and j.
Now, consider the set S = {s : Z → X̂}, which is the (finite) set of mappings that take Z into X̂ .

We refer to elements of S as “single-symbol denoisers”, since each s ∈ S can be thought of as a rule for
estimating X ∈ X on the basis of Z ∈ Z. Now, for any s ∈ S, an unbiased estimator for Λ(x, s(Z)) (based
on Z only), where x is a deterministic symbol and Z is the output of the DMC when the input is x, can
be obtained as in [2]. First, pick a function h : Z → R

X with the property that, for a, b ∈ X ,

Eahb(Z) =
∑

z∈Z
hb(z)Π(a, z)

= δ(a, b) ,

{
1, if a = b
0, otherwise

}

, (3)

where Ea denotes expectation over the channel output Z when the underlying channel input is a, and
hb(z) denotes the b-th component of h(z). Let H denote the |Z| × |X | matrix whose z-th row is hT (z),
i.e., H(z, b) = hb(z). To see that our assumption of a channel matrix with full row rank guarantees the
existence of such an h, note that (3) can equivalently be stated in matrix form as

ΠH = I, (4)

where I is the |X | × |X | identity matrix. Thus, e.g., any H of the form H = ΓT (ΠΓT )−1, for any Γ such
that ΠΓT is invertible, satisfies (4). In particular, Γ = Π is a valid choice (ΠΠT is invertible, since Π is of
full row rank) corresponding to the Moore-Penrose generalized inverse [27]. Now, for any s ∈ S, ρ(s) ∈ R

X

denotes the column vector with x-th component

ρx(s) =
∑

z

Λ(x, s(z))Π(x, z)

= ExΛ(x, s(Z)). (5)

In words, ρx(s) is the expected loss using the single-symbol denoiser s, while the underlying symbol is x.
Considering S as an action space alphabet, we define a loss function ℓ : Z × S → R as

ℓ(z, s) = h(z)T · ρ(s). (6)

We observe from (3) and (5) that ℓ(Z, s) is an unbiased estimate of Λ(x, s(Z)) since

Exℓ(Z, s) = Exh(Z)T · ρ(s) =
∑

x′

Exhx′(Z)ρx′(s) =
∑

x′

δ(x, x′)ρx′(s) = ρx(s) = ExΛ(x, s(Z)) ∀x ∈ X . (7)
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For ξ ∈ R
Z , let BH(ξ, ·) ∈ S be defined by

BH(ξ, z) = argmin
x̂

ξT ·H · [λx̂ ⊙ πz], (8)

where, for vectors v1 and v2 of equal dimensions, v1 ⊙ v2 denotes the vector obtained by component-wise
multiplication. Note that, similarly as in [2, (88),(89) ],

BH(ξ, ·) = argmin
s∈S

∑

z

ξT ·H · [λs(z) ⊙ πz]

= argmin
s∈S

ξT ·H · ρ(s)

= argmin
s∈S

∑

z

ξz · [h
T (z) · ρ(s)]

= argmin
s∈S

∑

z

ξz · ℓ(z, s) = bℓ(ξ). (9)

Thus, BH(ξ, ·) is a Bayes response for ξ under the loss function ℓ defined in (6).

2-B Preliminaries

In this section, we summarize the results from [1] and motivate the approach underlying the construction of
our new class of denoisers. Analogously as in [2], the n-block denoiser X̂n = {X̂t}1≤t≤n can be associated
with Fn = {Ft}1≤t≤n, where Ft : Z

n\t → S is defined as follows: Ft(z
n\t, ·) is the single-symbol denoiser

in S satisfying

X̂t(z
n) = Ft(z

n\t, zt) ∀zt. (10)

Therefore, we can adopt the view that at each time t, an n-block denoiser is choosing a single-symbol
denoiser based on all the noisy sequence components but zt, and applying that single-symbol denoiser on
zt to yield the t-th reconstruction x̂t. Conversely, any sequence of mappings into single-symbol denoisers
Fn defines a denoiser X̂n, again via (10). We will adhere to this viewpoint in what follows.

One special class of widely used n-block denoisers is that of k-th order “sliding window” denoisers,
which we denote by X̂n,Sk . Such denoisers are of the form

X̂sk
t (zn) = sk(z

t+k
t−k), t = k + 1, · · · , n − k, (11)

where sk is an element of Sk = {sk : Z2k+1 → X̂}, the (finite) set of mappings from Z2k+1 into X̂ .1 We
also refer to sk ∈ Sk as a “k-th order denoiser”. Note that S0 = S. From the definition (11), it follows that

X̂sk
i (zn) = X̂sk

j (zn) whenever zi+k
i−k = zj+k

j−k . (12)

Following the association in (10), we can adopt an alternative view that the k-th order sliding window
denoiser chooses a single-symbol denoiser sk(z

t−1
t−k, z

t+k
t+1 , ·) ∈ S at time t on the basis of the context, and

X̂sk
t (zn) = sk(z

t−1
t−k, z

t+k
t+1 , zt).

We denote ct , (zt−1
t−k , z

t+k
t+1 ) as a (two-sided) context for zt, and define the set of all possible k-th order

contexts, Ck , {(u−1
−k, u

k
1) : (u

−1
−k, u

k
1) ∈ Z2k}. Then, for given zn and for each c ∈ Ck, we define

T (c) ,
{
t : ct = c, k + 1 ≤ t ≤ n− k

}
= {t : (zt−1

t−k , z
t+k
t+1 ) = c, k + 1 ≤ t ≤ n− k

}
, (13)

1The value of X̂
sk
t (zn) for t ≤ k and t > n− k is defined, for concreteness and simplicity, as an arbitrary fixed symbol in

X̂ .
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the set of indices where the context equals c. Now, an equivalent interpretation for (12) is that for each
c ∈ Ck, the k-th order sliding window denoiser employs a time-invariant single-symbol denoiser, sk(c, ·),
at all points t ∈ T (c). In other words, the sequence zn is partitioned into the subsequences associated with
the various contexts, and on each such subsequence a time-invariant single-symbol scheme is employed.

In [1], for integers k ≥ 0 and n > 2k, the k-th order minimum loss of (xn, zn) is defined by

Dk(x
n, zn) , min

X̂n∈X̂n,Sk

L
X̂n(x

n−k
k+1 , z

n)

= min
sk∈Sk

1

n− 2k

n−k∑

t=k+1

Λ(xt, sk(ct, zt)). (14)

The identity of the element sk ∈ Sk that achieves (14) depends not only on zn, but also on xn, since (14)
can be expressed as

1

n− 2k

∑

c∈Ck

[

min
s∈S

∑

τ∈T (c)

Λ(xτ , s(zτ ))

]

,

and at each time t, the best k-th order sliding window denoiser that achieves (14) will employ the single-
symbol denoiser

argmin
s∈S

∑

τ∈T (ct)

Λ(xτ , s(zτ )), (15)

which is determined from the joint empirical distribution of pairs {(xτ , zτ ) : τ ∈ T (ct)}.
It was shown in [1] that, despite the lack of knowledge of xn, Dk(x

n, Zn) is achievable in a sense made
precise below, in the limit of growing n, by a scheme that only has access to Zn. This scheme is dubbed
in [1] as the Discrete Universal DEnoiser (DUDE), X̂n,k

univ. The algorithm is defined by

X̂k
univ,t(z

n) = BH(m(zn, zt−1
t−k , z

t+k
t+1 ), zt), (16)

where m(zn, c) is the vector of counts of the appearances of the various symbols within the context c along
the sequence zn. That is, for all β ∈ Z, m(zn, z̃−1

−k, z̃
k
1 ) is the |Z|-dimensional column vector whose β-th

component is
m(zn, z̃−1

−k, z̃
k
1 )[β] =

∣
∣{t : k + 1 ≤ t ≤ n− k, zt+k

t−k = z̃−1
−kβz̃

k
1}
∣
∣,

namely, the number of appearances of z̃−1
−kβz̃

k
1 along the sequence zn.

The main result of [1] is the following theorem, pertaining to the semi-stochastic setting of an individual
sequence x = (x1, x2, . . .) corrupted by a DMC that yields the stochastic noisy sequence Z = (Z1, Z2, . . .).

Theorem 1 ([1, Theorem 1]) Take k = kn satisfying kn|Z|2kn = o(n/ log n). Then, for all x ∈ X∞, the

sequence of denoisers {X̂n,kn
univ} defined in (16) satisfies:

a)

lim
n→∞

[

L
X̂

n,kn
univ

(xn, Zn)−Dkn(x
n, Zn)

]

= 0 a.s.

b)

E
[

L
X̂

n,kn
univ

(xn, Zn)−Dkn(x
n, Zn)

]

= O

(√

kn|Z|2kn

n

)

.
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Theorem 1 was further shown in [1] to imply the universality of the DUDE in the fully stochastic setting
where the underlying sequence is emitted by a stationary source (and the goal is to attain the performance
of the optimal distribution-dependent denoiser).

From (16), it is apparent that the DUDE ends up employing a k-th order sliding window denoiser
(where the sliding window scheme the DUDE chooses depends on zn). Moreover, (9) implies that, at each
time t, DUDE is merely employing the single-symbol denoiser BH(m(zn, zt−1

t−k , z
t+k
t+1 ), ·) ∈ S, which can be

obtained by finding the Bayes response bℓ
(
m(zn, zt−1

t−k, z
t+k
t+1 )

)
or, equivalently, the mapping in S given by

argmin
s∈S

∑

τ∈T (ct)

ℓ(zτ , s), (17)

where ℓ(z, s) is the loss function defined in (6). By comparing (15) with (17), and from Theorem 1, we
observe that working with the estimated loss ℓ(zτ , s) in lieu of the genie-aided Λ(xτ , s(zτ )) allows us to
essentially achieve the genie-aided performance in (14).

2-C Motivation

Our motivation for this paper is based on the observation that the k-th order sliding window denoisers ignore
the time-varying nature of the underlying sequence xn. That is, as discussed above, for time instances with
the same contexts, the single-symbol denoiser employed along the associated subsequence is time-invariant.
In other words, for each t, only the empirical distribution of the sequence {(xτ , zτ ) : τ ∈ T (ct)} matters,
but its order of composition, i.e., its time-varying nature, is not considered. It is clear, however, that when
the characteristics of the underlying clean sequence xn are changing, the (normalized) cumulative loss that
is achieved by sliding window denoisers that can shift from one rule to another along the sequence may
be strictly lower (better) than (14). We now devise and analyze our new scheme that achieves this more
ambitious target performance.

3 The Shifting Denoiser (S-DUDE)

In this section, we derive our new class of denoisers and analyze their performance. In Subsection 3-A,
we begin with the simplest case, competing with shifting symbol-by-symbol denoisers, or, in other words,
shifting 0-th order denoisers. The argument is generalized to shifting k-th order denoisers in Subsection
3-B, and the framework and results include Subsection 3-A as a special case. We will use the notation S0,
instead of S, for consistency in denoting the class of single-symbol denoisers. Throughout this section, we
assume the semi-stochastic setting.

3-A Switching between symbol-by-symbol (0-th order) denoisers

Consider an n-tuple of single-symbol denoisers S = {s1, · · · , sn} ∈ Sn
0 . Then, as mentioned in Section 2-B,

for such S, we can define the associated n-block denoiser X̂n,S as

X̂S

t (z
n) = st(zt). (18)

Note that in this case, the single-symbol denoiser applied at each time may depend on the time t (but not
on zn\t, as would be the case for a general denoiser). We also denote the estimated normalized cumulative
loss as

L̃S(z
n) ,

1

n

n∑

t=1

ℓ(zt, st), (19)

whose property is given in the following lemma, which parallels [2, Theorem 4].
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Lemma 1 Fix ǫ > 0. For fixed S ∈ Sn
0 , and all xn ∈ X n,

P
(

L
X̂n,S(x

n, Zn)− L̃S(Z
n) > ǫ

)

≤ exp
(

− n
2ǫ2

L2
max

)

and (20)

P
(

L̃S(Z
n)− L

X̂n,S(x
n, Zn) > ǫ

)

≤ exp
(

− n
2ǫ2

L2
max

)

, (21)

where Lmax = Λmax + ℓmax.

In words, the lemma shows that for every S ∈ Sn
0 , the estimated loss L̃S(Z

n) is concentrated around the
true loss L

X̂n,S(x
n, Zn) with high probability, as n becomes large, regardless of the underlying sequence

xn.
Proof of Lemma 1: See Appendix 8-A. �

Now, let the integer 0 ≤ m ≤ ⌊n2 ⌋ denote the maximum number of shifts allowed along the sequence.
Then, define a set Sn

0,m ⊆ Sn
0 as

Sn
0,m =

{

S ∈ Sn
0 :

n∑

t=2

1{st−1 6=st} ≤ m
}

, (22)

namely, Sn
0,m is the set of n-tuples of single-symbol denoisers with at most m shifts from one mapping to

another.2 Analogously to (14), for the class of n-block denoisers X̂n,S with S ∈ Sn
0,m, we define

D0,m(xn, zn) , min
S∈Sn

0,m

L
X̂n,S(x

n, zn)

= min
S∈Sn

0,m

1

n

n∑

t=1

Λ(xt, st(zt)), (23)

which is the minimum normalized cumulative loss that can be achieved for (xn, zn) by the sequence of n
single-symbol denoisers that allow at most m shifts. Our goal in this section is to build a universal scheme
that only has access to Zn, but still essentially achieves D0,m(xn, Zn).

As hinted by the DUDE, we build our universal scheme by working with the estimated loss. That is,
define

Ŝ = Ŝ(zn) , arg min
S∈Sn

0,m

L̃S(z
n), (24)

and our (0,m)-Shifting Discrete Universal DEnoiser (S-DUDE), X̂n,0,m
univ , is defined as X̂n,Ŝ. It is clear

that, by definition, L
X̂n,Ŝ(x

n, zn) ≥ D0,m(xn, zn) for all xn and zn, but we can also show that, with high
probability, L

X̂n,Ŝ(x
n, Zn) does not exceed D0,m(xn, Zn) by much, as stated in the following theorem.

Theorem 2 Let X̂n,0,m
univ be defined as X̂n,Ŝ, where Ŝ is given in (24). Then, for all ǫ > 0 and xn ∈ X n,

P
(

L
X̂

n,0,m

univ

(xn, Zn)−D0,m(xn, Zn) > ǫ
)

≤ 2 exp

(

−n
[ ǫ2

2L2
max

− 2
{

h
(m

n

)

+
(m+ 1) lnN

n

}])

,

where h(x) = −x lnx− (1−x) ln(1−x) for 0 ≤ x ≤ 1, and N = |S| = |Z||X̂ |. In particular, the right-hand
side of the inequality is exponentially small, provided m = o(n).

2Note that, when m = 0, Sn
0,0 is the set of constant n-tuples consisting of the same single-symbol denoiser.
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Remark: It is reasonable to expect this theorem to hold, given Lemma 1. That is, since, for fixed S ∈ Sn
0,m,

L̃S(Z
n) is concentrated on L

X̂n,S(x
n, Zn), it is plausible that Ŝ that achieves minS∈Sn

0,m
L̃S(Z

n) will have

a loss L
X̂n,Ŝ(x

n, Zn) close to minS∈Sn
0,m

L
X̂n,S(x

n, Zn), i.e., D0,m(xn, Zn).
Proof of Theorem 2: See Appendix 8-B. �

3-B Switching between k-th order denoisers

Now, we extend the result from Subsection 3-A to the case of shifting between k-th order denoisers. The
argument parallels that of Subsection 3-A. Let {sk,t}

n−k
t=k+1 be an arbitrary sequence of the k-th order

denoiser mappings, i.e., sk,t ∈ Sk for k+1 ≤ t ≤ n− k. Now, for given zn, define an (n− 2k)-tuple of (k-th
order denoiser induced) single-symbol denoisers

Sk(z
n) , {sk,t(ct, ·)}

n−k
t=k+1 ∈ Sn−2k

0 , (25)

where, to recall, ct = (zt−1
t−k, z

t+k
t+1 ), and sk,t(ct, ·) is the single-symbol denoiser induced from sk,t ∈ Sk and

ct. For brevity of notation, we will suppress the dependence on zn in Sk(z
n) and denote it as Sk. Then,

as in (18), we define the associated n-block denoiser X̂n,Sk as 3

X̂
Sk
t (zn) = sk,t(ct, zt). (26)

In addition, extending (19), the estimated normalized cumulative loss is given as

L̃Sk
(zn) =

1

n− 2k

n−k∑

t=k+1

ℓ(zt, sk,t(ct, ·)). (27)

Then, we have the following lemma, which parallels Lemma 1.

Lemma 2 Fix ǫ > 0. For any fixed sequence {sk,t}
n−k
t=k+1, and all xn ∈ X n,

Pr
(

L
X̂

n,Sk
(xn−k

k+1 , Z
n)− L̃Sk

(Zn) > ǫ
)

≤ (k + 1) exp

(

−
2(n − 2k)ǫ2

(k + 1)L2
max

)

and (28)

Pr
(

L̃Sk
(Zn)− L

X̂
n,Sk

(xn−k
k+1 , Z

n) > ǫ
)

≤ (k + 1) exp

(

−
2(n − 2k)ǫ2

(k + 1)L2
max

)

, (29)

where Lmax = Λmax + ℓmax.

Remark: Note that when k = 0, this lemma coincides with Lemma 1. The proof of this lemma combines
Lemma 1 and the de-interleaving argument in the proof of [1, Theorem 2]. Namely, we de-interleave Zn into
(k + 1) subsequences consisting of symbols separated by blocks of k symbols, and exploit the conditional
independence of symbols in each subsequence, given all symbols not in that subsequence, to use Lemma 1.

Proof of Lemma 2: See Appendix 8-C. �

Now, for an integer 0 ≤ m ≤ ⌊n−2k
2 ⌋ and given zn, let n(c) , |T (c)|, and m(c) , min{n(c),m} for

c ∈ Ck. Then, analogously as in (22), we define

Sn
k,m(z

n) =
{

Sk(z
n) ∈ Sn−2k

0 : {sk,τ (c, ·)}τ∈T (c) ∈ S
n(c)
0,m(c) for all c ∈ Ck

}

. (30)

3Again, the value of X̂
Sk
t (zn) for t ≤ k and t > n − k can be defined as an arbitrary fixed symbol, since it will be

inconsequential in subsequent development.
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In words, Sn
k,m(zn) is the set of (n − 2k)-tuples of (k-th order denoiser induced) single-symbol denoisers

that allow at most m(c) shifts within the subsequence {t : t ∈ T (c)} for each context c ∈ Ck.
4 Again, for

brevity, the dependence on zn in Sn
k,m(z

n) is suppressed, and we write simply Sn
k,m. It is worth noting that

Sn
k,m is a larger class than the class of k-th order ‘sliding window’ denoisers that are allowed to shift at

most m times. The reason is that in Sn
k,m, the shift within each subsequence associated with each context

can occur at any time, regardless of the shifts in other subsequences, whereas in the latter class, the shifts
in each subsequence occur together with other shifts in other subsequences.

For integers k ≥ 0 and n > 2k, we now define, for the class of n-block denoisers X̂n,S with S ∈ Sn
k,m,

Dk,m(xn, zn) , min
S∈Sn

k,m

L
X̂n,S(x

n−k
k+1 , z

n)

= min
S∈Sn

k,m

1

n− 2k

n−k∑

t=k+1

Λ(xt, sk,t(ct, zt)), (31)

the minimum normalized cumulative loss of (xn, zn) that can be achieved by the sequence of k-th order
denoisers that allow at most m shifts within each context. Now, to build a legitimate (non genie-aided)
universal scheme achieving (31) on the basis of Zn only, we define

Ŝk,m = arg min
S∈Sn

k,m

L̃S(z
n), (32)

and the (k,m)-S-DUDE, X̂n,k,m
univ , is defined as X̂n,Ŝk,m. Note that when m = 0, X̂n,Ŝk,m coincides with the

DUDE in [1]. The following theorem generalizes Theorem 2 to the case of general k ≥ 0.

Theorem 3 Let X̂
n,k,m
univ be given by X̂n,Ŝk,m, where Ŝk,m is defined in (32). Then, for all ǫ > 0 and

xn ∈ X n,

Pr
(

L
X̂

n,k,m
univ

(xn−k
k+1 , Z

n)−Dk,m(xn, Zn) > ǫ
)

(33)

≤ 2(k + 1) exp

(

− (n− 2k) ·
[ ǫ2

2(k + 1)L2
max

− 2|Z|2k ·
{

h
( m

n− 2k

)

+
(m+ 1) lnN

n− 2k

}]
)

, (34)

where h(x) = −x lnx− (1− x) ln(1− x) for 0 ≤ x ≤ 1, and N = |S| = |Z||X̂ |.

Remark: Note that when k = 0, this theorem coincides with Theorem 2. Similarly to the way Theo-
rem 2 was plausible given Lemma 1, Theorem 3 can be expected given Lemma 2, since Ŝk,m achieves
minS∈Sn

k,m
L̃S(Z

n), and we expect L
X̂

n,Ŝk,m
(xn−k

k+1 , Z
n) to be close to Dk,m(xn, Zn) from the concentration

of L̃S(Z
n) to L

X̂n,S(x
n−k
k+1 , Z

n) for all S ∈ Sn
k,m.

Proof of Theorem 3: See Appendix 8-D. �

From Theorem 3, we now easily obtain one of the main results of the paper, which extends Theorem
1 from the case m = 0 to the case of general 0 ≤ m ≤ ⌊n−2k

2 ⌋. That is, the following theorem asserts
that, for every underlying sequence x ∈ X∞, our (k,m)-S-DUDE performs essentially as well as the best
shifting k-th order denoiser that allows at most m shifts within each context, both in high probability and
expectation sense, provided a growth condition on k and m is satisfied.

Theorem 4 Suppose k = kn and m = mn are such that the right-hand side of (34) is summable in n.

Then, for all x ∈ X∞, the sequence of denoisers {X̂n,k,m
univ } satisfies

4When m = 0, Sn
k,0(z

n) becomes the set of n-block k-th order ‘sliding window’ denoisers.
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a)

lim
n→∞

[

L
X̂

n,k,m

univ

(xn, Zn)−Dk,m(xn, Zn)
]

= 0 a.s. (35)

b) For any δ > 0,

E
[

L
X̂

n,k,m

univ

(xn, Zn)−Dk,m(xn, Zn)
]

= O

(√

kn|Z|2kn
(mn

n

)1−δ
)

. (36)

Remark: It will be seen in Claim 1 below that the stipulation in the theorem implies limn→∞ kn|Z|2kn
(
mn

n

)1−δ
=

0, which, when combined with (36), implies that the expected difference on the left hand side of (36) van-
ishes with increasing n. That in itself, however, can easily be deduced from (35) and bounded convergence.
The more significant value of (36) is in providing a rate of convergence result for the ‘redundancy’ in the
S-DUDE’s performance, as a function of both k and m. In particular, note that for any η > 0, O(n−1/2+η)
is achievable provided kn = c log n and mn = nξ, for small enough positive constants c, ξ.

In what follows, we specify the maximal growth rates for k = kn and m = mn under which the
summability condition stipulated in Theorem 4 holds.

Claim 1 a) Maximal growth rate for k: The summability condition in Theorem 4 is satisfied provided
kn = c1 log n with c1 < 1

2 log |Z| and mn grows at any sub-polynomial rate. On the other hand, the

condition is not satisfied for kn = c1 log n with any c1 ≥ 1
2 log |Z| , even when m is fixed (not growing

with n).

b) Maximal growth rate for m: The summability condition in Theorem 4 is satisfied for any sub-linear
growth rate of mn, provided kn is taken to increase sufficiently slowly that kn|Z|2kn = o((n/mn)

1−δ)
for some δ > 0. On the other hand, the condition is not satisfied whenever mn grows linearly with
n, even when k is fixed.

Proof of Claim 1: See Appendix 8-E. �

Proof of Theorem 4: See Appendix 8-F. �

3-C A “strong converse”

In Claim 1, we have shown the necessity of m = o(n) for the condition required in Theorem 4 to hold.
However, we can prove the necessity of m = o(n) in a much stronger sense, described in the following
theorem.

Theorem 5 Suppose that X = X̂ , that Λ(x, x̂) ≥ 0 for all x, x̂ with equality if and only if x = x̂, and that
Π(x, z) > 0 for all x, z. If m = Θ(n), then for any sequence of denoisers {X̂n}, there exists x∞ ∈ X∞

such that
lim sup
n→∞

E
[
L
X̂n(x

n, Zn)−D0,m(xn, Zn)
]
> 0. (37)

Remark: The theorem establishes the fact that when m = o(n) does not hold, namely, when m = Θ(n),
not only does the almost sure convergence in Theorem 4 not hold but, in fact, even the much weaker
convergence in expectation would fail. Further, it shows that this would be the case for any sequence of
denoisers, not necessarily the S-DUDE. Furthermore, (37) features D0,m(xn, Zn), pertaining to competition
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with a genie that shifts among single-symbol denoisers so, a fortiori, it implies that for any fixed k > 0 or
k that grows with n,

lim sup
n→∞

E
[
L
X̂n(x

n, Zn)−Dk,m(xn, Zn)
]
> 0 (38)

also holds since, by definition, D0,m(xn, zn) ≥ Dk,m(xn, zn) for all xn, zn and k ≥ 0. Therefore, the
theorem asserts that for any sequence of denoisers to compete with Dk,m(xn, Zn), even in expectation
sense, m = o(n) is necessary. Finally, we mention that the conditions stipulated in the statement of the
theorem regarding the loss function and the channel can be considerably relaxed without compromising the
validity of the theorem. These conditions are made to allow for the simple proof that we give in Appendix
8-G.

4 The Stochastic Setting

In [1], the semi-stochastic setting result, [1, Theorem 1], was shown to imply the result for the stochastic
setting as well. That is, when the underlying data form a stationary process, [1, Section VI] shows that
the DUDE attains optimum distribution-dependent performance. Analogously, we can now use the results
from the semi-stochastic setting of the previous section to generalize the results of [1, Section VI] and
show that our S-DUDE attains optimum distribution-dependent performance when the underlying data
form a piecewise stationary process. We first define the precise notion of the class of piecewise stationary
processes in Subsection 4-A, and discuss the richness of this class in Subsection 4-B. Subsection 4-C gives
the main result of this section: the stochastic setting optimality of the S-DUDE.

4-A Definition of the class of processes P{mn}

Let P
(1)
X

, · · · , P
(M)
X

be a finite collection of M probability distributions of stationary processes, with com-
ponents taking the values in X . Let A be a process with components taking the values in {1, . . . ,M}.
Then, a piecewise stationary process X is generated by shifting between the M processes in a way specified
by the “switching process” A, as we now describe.

First, denote r(An) as the number of shifts that have occurred along the n-tuple An, i.e.,

r(An) ,

n−1∑

j=1

1{Aj 6=Aj+1}.

Thus, there are r(An) + 1 “blocks” in An, where each block is a tuple of constant values that are different
from the values of adjacent blocks. Now, for each 1 ≤ i ≤ r(An) + 1, we define

τi(A
n) ,

{
inf{t :

∑t
j=1 1{Aj 6=Aj+1} = i} if 1 ≤ i ≤ r(An)

n if i = r(An) + 1

as the last time instance of the i-th block in An. In addition, define τ0(A
n) , 0. Clearly, r(An) and τi(A

n)
depend on An and, thus, are random variables. However, for brevity, we suppress the dependence on An

when there is no confusion, and write simply r and τi, respectively.
Using these definitions, and by denoting PAn as the n-th order marginal distribution of A, we define a

piecewise stationary process X by characterizing its n-th order marginal distribution PXn as

PXn(Xn = xn) =
∑

an

PAn(an)P (Xn = xn|An = an)

=
∑

an

PAn(an)

r+1∏

i=1

P
(aτi )

X
(xτiτi−1+1), (39)
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for each n. The corresponding distribution of the process X is denoted as PX.
5 In words, X is constructed

by following one of the M probability distributions in each block, switching from one to another depending
on A. Furthermore, conditioned on the realization of A, each stationary block is independent of other
blocks, even if the distribution of distinct blocks is the same. This property of conditional independence is
reasonable for modeling many types of data arising in practice, since we can think of the M distributions
as different ‘modes’; if the process returns to the same mode, it is reasonable to model the new block as a
new independent realization of that same distribution. In other words, the ‘mode’ may represent the kind
of ‘texture’ in a certain region of the data, but two different regions with the same ‘texture’ should have
independent realizations from the texture-generating source. Our notion of a piecewise stationary process
almost coincides with that developed in [21]. The main difference is that we allow an arbitrary distribution
for the process A.

Now, we define P{mn} to be the class of all process distributions that can be constructed as in (39)

for some M , some collection P
(1)
X

, · · · , P
(M)
X

of stationary processes, and some switching process A whose
number of shifts satisfies

r(An) ≤ mn a.s. ∀n. (40)

In words, a process X belongs to6 P{mn} if and only if it can be formed by switching between a finite
collection of independent processes in which the number of switches by time n does not exceed mn.

4-B Richness of P{mn}

In this subsection, we examine how rich the class P{mn} is, in terms of the growth rate mn and the
existence of denoising schemes that are universal with respect to P{mn}. First, given any distribution on
a noiseless n-tuple, PXn , we define

D(PXn ,Π) , min
X̂n∈Dn

EL
X̂n(X

n, Zn), (41)

where Dn is the class of all n-block denoisers. The expectation on the right-hand side of (41) assumes
that Xn is generated from PXn and that Zn is the output of the DMC, Π, whose input is Xn. Thus,
D(PXn ,Π) is the optimum denoising performance (in the sense of expected per-symbol loss) attainable
when the source distribution PXn is known.

What happens when the source distribution is unknown? Theorem 3 of [1] established the fact that7

lim
n→∞

[

EL
X̂n

DUDE
(Xn, Zn)− D(PXn ,Π)

]

= 0 for all stationary PX. (42)

Note that our newly-defined class of processes, P{mn}, is simply the class of all stationary processes if one
takes the sequence mn to be mn ≡ 0 for all n. Thus, assuming mn ≡ 0, (42) is equivalent to

lim
n→∞

[

EL
X̂n

DUDE
(Xn, Zn)− D(PXn ,Π)

]

= 0 for all PX ∈ P{mn}. (43)

At the other extreme, when mn = n, P{mn} consists of all possible (not necessarily stationary) processes.
We can observe this equivalence by having M = |X | processes each be a constant process at a different
symbol in X , and creating any process by switching to the appropriate symbol. In this case, not only does

5{PXn}n≥1 is readily verified to be a consistent family of distributions and, thus, by Kolmogorov’s extension theorem,
uniquely defines the distribution of the process X.

6The phrase “the process X belongs to P{mn}” is shorthand for “the distribution of the process X, PX, belongs to P{mn}”.
7When PX is stationary, the limit limn→∞ D(PXn ,Π)

△
= D(PX,Π) was shown to exist in [1]. Thus, (42) was equivalently

stated as limn→∞ EL
X̂n

DUDE

= D(PX,Π) in [1, Theorem 3].
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(43) not hold for the DUDE, but clearly (43) cannot hold under any sequence of denoisers. In other words,
P{mn} is far too rich to allow for the existence of schemes that are universal with respect to it.

It is obvious then that P{mn} is significantly richer than the family of stationary processes whenever
mn grows with n. It is of interest then to identify the maximal growth rate of mn that allows for the
existence of schemes that are universal with respect to P{mn}, and to find such a universal scheme. In
what follows, we offer a complete answer to these questions. Specifically, we show that if the growth rate
of mn allows for the existence of any scheme which is universal with respect to P{mn}, the S-DUDE is
universal, too.

4-C Universality of S-DUDE

Here, we state our stochastic setting result, which establishes the universality of (k,m)-S-DUDE with
respect to the class P{mn}.

Theorem 6 Let k = kn and m = mn satisfy the growth rate condition stipulated in Theorem 4, in addition
to limn→∞ kn = ∞. Then, the sequence of denoisers {X̂n,k,m

univ } defined in Section 3 satisfy

lim
n→∞

[

EL
X̂

n,k,m
univ

(Xn, Zn)− D(PXn ,Π)
]

= 0 for all PX ∈ P{mn}. (44)

Remark 1: Recall that, as noted in Claim 1, mn = o(n) together with appropriately slowly growing
k = kn is sufficient to guarantee the growth rate condition stipulated in Theorem 4. Hence, by Theorem 6,
m = o(n) and the sufficiently slowly growing k = kn suffices for (44) to hold. Therefore, Theorem 6 implies
the existence of schemes that are universal with respect to P{mn} whenever mn increases sublinearly in
n. Since, as discussed in Subsection 4-B, no universal scheme exists for P{mn} when mn is linear in n, we
conclude that the sub-linearity of mn is the necessary and sufficient condition for a universal scheme to exist
with respect to P{mn}. Moreover, Theorem 6 establishes the strong sense of optimality of the S-DUDE,
as it shows that whenever P{mn} is universally “competable”, the S-DUDE does the job. This fact is
somewhat analogous to the situation in [21], where the optimality of the universal lossless coding scheme
presented therein for piecewise stationary sources was established under the condition that m = o(n).
Remark 2: A pointwise result

lim
n→∞

[
L
X̂

n,k,m
univ

(Xn, Zn)− D(PXn ,Π)
]
= 0 a.s.

for all PX ∈ P{mn}, which is analogous to [1, Theorem 4], can also be derived. However, we omit such
a result here since the details required for stating it rigorously would be convoluted, and its added value
over the strong point-wise result we have already established in the semi-stochastic setting would be little.

Proof of Theorem 6: See Appendix 8-H. �

5 Algorithm and Complexity

5-A An Efficient Implementation of S-DUDE

In the preceding two sections, we gave strong asymptotic performance guarantees for the new class of
schemes, the S-DUDE. However, the question regarding the practical implementation of (32), i.e., obtaining

Ŝk,m = arg min
S∈Sn

k,m

L̃S(z
n),

for fixed k, m and n remains and, at first glance, may seem to be a difficult combinatorial optimization
problem. In this section, we devise an efficient two-pass algorithm, which yields (32) and performs denoising
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with linear complexity in the sequence length n. A recursion similar to that in the first pass of the algorithm
we present appears also in the study of tracking the best expert in on-line learning [15, 16].

From the definition of Sn
k,m, (30), we can see that obtaining (32) is equivalent to obtaining the best

combination of single-symbol denoisers with at most m(c) shifts that minimizes the cumulative estimated
loss along {t : t ∈ T (c)}, for each c ∈ Ck. Thus, our problem breaks down to |Ck| independent problems,
each being a problem of competing with the best combination of single-symbol schemes allowingm switches.

To describe an algorithm that implements this parallelization efficiently, we first define variables. For

(k,m)-S-DUDE, let I = m + 1, J = N + 1, where N = |S| = |Z||X̂ |. Then, a matrix Mt ∈ R
I×J is

defined for k + 1 ≤ t ≤ n − 2k, where Mt(i, j) for 1 ≤ i ≤ I and 1 ≤ j ≤ J − 1 represents the minimum
(un-normalized) cumulative estimated loss of the sequence of single-symbol denoisers along the time index
{τ : τ ≤ t, cτ = ct}, allowing at most (i − 1) shifts between single-symbol denoisers and applying st = j.
Moreover, Mt(i, J), for 1 ≤ i ≤ I, is the symbol-by-symbol denoiser that attains the minimum value of the
i-th row of Mt, i.e., argmin1≤j≤J−1Mt(i, j). A time pointer T ∈ R

D, where D = |Ck| = |Z|2k, is defined
to store the closest time index that has the same context as current time, during the first and second pass.
That is,

T (ct) ,

{
max{τ : τ < t, cτ = ct}, when first pass
min{τ : τ > t, cτ = ct}, when second pass

}

(45)

We also define r ∈ R
D and q ∈ R

D as variables for storing the pointer enabling our scheme to follow the
best combination of single-symbol denoisers during the second pass. Thus, the total memory size required
is O(mNn+ |Z|2k) = O(mn) (assuming that k satisfies the growth rate stipulated in the previous sections,
which implies |Z|2k = o(n)).

Our two-pass algorithm has ingredients from both the DUDE and from the forward-backward recursions
of hidden Markov models [28] and, in fact, the algorithm becomes equivalent to DUDE when m = 0. The
first pass of the algorithm runs forward from t = k + 1 to t = n − k, and updates the elements of Mt

recursively. The recursions have a natural dynamic programming structure. For 2 ≤ i ≤ I, 1 ≤ j ≤ J − 1,
Mt(i, j) is determined by

Mt(i, j) = ℓ(zt, j) + min
{

MT (ct)(i, j),MT (ct)(i− 1,MT (ct)(i− 1, J))
}

, (46)

that is, adding the current loss to the best cumulative loss up to T (ct) along {τ : τ < t, cτ = ct}. When
i = 1, the second term in the minimum of (46) is not defined, andMt(i, j) just becomes ℓ(zt, j)+MT (ct)(i, j).
The validity of (46) can be verified by observing that there are two possible cases in achieving Mt(i, j):
either the (i − 1)-th shift to the single-symbol denoiser j occurred before t, or it occurred at time t.
We can see that the first term in the minimum of (46) corresponds to the former case; the second term
corresponds to the latter. Obviously, the minimum of these two (where ties may be resolved arbitrarily),
leads to the value of Mt(i, j) as in (46). After updating all Mt’s during the first pass, the second pass runs
backwards from t = n − k to t = k + 1, and extracts Ŝk,m from {Mt}

n−2k
t=k+1 by following the best shifting

between single-symbol denoisers. The actual denoising (i.e., assembling the reconstruction sequence X̂n)
is also performed in that pass. The pointers r(ct) and q(ct) are updated recursively, and they track the
best shifting point and combination of single-symbol denoisers, respectively, for each of the subsequences
associated with the various contexts. A succinct description of the algorithm is provided in Algorithm 1.
The time complexity of the algorithm is readily seen to be O(mn) as well.
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Algorithm 1 The (k,m)-Shifting Discrete Denoising Algorithm

Require: Mt(i, j) ∈ R
I×J , k + 1 ≤ t ≤ n− 2k, 1 ≤ i ≤ I, 1 ≤ j ≤ J , T ∈ R

D,r ∈ R
D, q ∈ R

D, L ∈ R

Ensure: Ŝk = {sk,t(ct, ·)}
n−2k
t=k+1 in (32) and the denoised output {x̂t}

n−k
t=k+1

τ(c) ⇐ φ for all c ∈ Ck

for t = k + 1 to n− 2k do

if T (ct) = φ then

Mt(i, j) ⇐ ℓ(zt, j) for 1 ≤ i ≤ I, 1 ≤ j ≤ J − 1
Mt(i, J) ⇐ argmin1≤j≤J−1Mt(i, j) for 1 ≤ i ≤ I

else

M∗
T (ct)

(i, j) ⇐

{
MT (ct)(i, j) for i = 1, 1 ≤ j ≤ J − 1

min
{
MT (ct)(i, j),MT (ct)(i− 1,MT (ct)(i− 1, J))

}
for 2 ≤ i ≤ I, 1 ≤ j ≤ J − 1

}

Mt(i, j) ⇐ M∗
T (ct)

(i, j) + ℓ(zt, j) for 1 ≤ i ≤ I, 1 ≤ j ≤ J − 1

Mt(i, J) ⇐ argmin1≤j≤J−1Mt(i, j) for 1 ≤ i ≤ I
end if

T (ct) ⇐ t
end for

T (c) ⇐ φ for all c ∈ Ck

for t = n− 2k to k + 1 do

if T (ct) = φ then

r(ct) ⇐ I, q(ct) ⇐ Mt(r(ct), J)
else

L ⇐ MT (ct)(r(ct), q(ct))− ℓ(zt, q(ct))
if L < Mt(r(ct), q(ct)) then

r(ct) ⇐ r(ct)− 1, q(ct) ⇐ Mt(r(ct), J)
end if

end if

T (ct) ⇐ t, sk,t(ct, ·) ⇐ q(ct)
x̂t ⇐ sk,t(ct, zt)

end for

5-B Extending the S-DUDE to Multi-Dimensional Data

As noted, our algorithm is essentially separately employing the same algorithm to compete with the best
shifting single-symbol denoisers, on each subsequence associated with each context. The overall algorithm
is the result of parallelizing the operations of the schemes for the different subsequences, which allows for
a more efficient implementation than if these schemes were to be run completely independently of one
another. This characteristic of running the same algorithm in parallel along each subsequence enables us
to extend S-DUDE to the case of multi-dimensional data: run the same algorithm along each subsequence
associated with each (this time multi-dimensional) context. It should be noted, however, that the extension
of the S-DUDE to the multidimensional case is not as straightforward as the extension of the DUDE was,
since, whereas the DUDE’s output is independent of the ordering of the data within each context, this
ordering may be very significant in its effect on the output and, hence, the performance of S-DUDE.
Therefore, the choice of a scheme for scanning the data and capturing its local spatial stationarity, e.g.,
Peano-Hilbert scanning [29], is an important ingredient in extending S-DUDE to the denoising of multi-
dimensional data. Findings from the recent study on universal scanning reported in [30, 31] can be brought
to bear on such an extension.
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6 Experimentation

In this section, we report some preliminary experimental results obtained by applying S-DUDE to several
kinds of noise-corrupted data.

6-A Image denoising

In this subsection, we report some experimental results of denoising a binary image under the Hamming
loss function. The first and most simplistic experiment is with the 400×400 black-and-white binary image
shown in Figure 1. The first figure is the clean underlying image. The image is passed through a binary
symmetric channel (BSC) with crossover probability δ = 0.1, to obtain the noisy image (second image in
Figure 1). Note that in this case, there are only four symbol-by-symbol denoisers, namely, S = {0, 1, z, z̄},
representing always-say-0, always-say-1, say-what-you-see, and flip-what-you-see, respectively. The third
image in Figure 1 is the DUDE output with k = 0, and the last image is the output of our S-DUDE with
k = 0,m = 1. The DUDE with k = 0 is competes with the best time-invariant symbol-by-symbol denoiser

Figure 1: 400 × 400 binary images.

which, in this case, is the say-what-you-see denoiser, since the empirical distribution of the clean image
is (0.5, 0.5) and δ = 0.1. Thus, the DUDE output is the same as the noisy image; hence, no denoising is
performed. However, it is clear that, for this image, the best compound action of the symbol-by-symbol
denoisers is always-say-0 for the first half and then a shift to always-say-1 for the remainder. We can see
that our (0, 1)-S-DUDE successfully captures this shift from the noisy observations, and results in perfect
denoising with zero bit errors.

Now, we move on to a more realistic example. The first image in Figure 2, a concatenation of a half-
toned Einstein image (300 × 300) and scanned Shannon’s 1948 paper (300 × 300), is the clean image. We
pass the image through a binary symmetric channel (BSC) with crossover probability δ = 0.1, to obtain
the second noisy image, which we raster scan and employ the S-DUDE on the resulting one-dimensional
sequence. Since the two concatenated images are of a very different nature, we expect our S-DUDE to
perform better than the DUDE, because it is designed to adapt to the possibility of employing different
schemes in different regions of the data. The plot shows the performance of our (k,m)-S-DUDE with
various values of k and m. The horizontal axis reflects k, and the vertical axis represents the ratio of bit
error per symbol (BER) to δ = 0.1. Each curve represents the BER of schemes with different m = 0, 1, 2, 3.
Note that m = 0 corresponds to the DUDE. We can see that S-DUDE with m > 0 mostly dominates the
DUDE, with an additional BER reduction of ∼ 11%, including when k = 6, the best k value for the DUDE.
The bottom three figures show the denoised images with (k,m) = (4, 0), (4, 2), (6, 1), achieving BERs of
δ× (0.744, 0.6630, 0.4991), respectively. Thus, in this example, (4, 2)-S-DUDE achieves an additional BER
reduction of 11% over the DUDE with k = 4, and the overall best performance is achieved by (6, 1)-S-
DUDE. Given the nature of the image, which is a concatenation of two completely different types of images,
each reasonably uniform in texture, it is not surprising to find that the S-DUDE with m = 1 performs the
best.
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Figure 2: Clean and noisy images, the bit error rate plot for (k,m)-S-DUDE, and three denoised outputs
for (k,m) = (4, 0), (4, 2), (6, 1), respectively.

6-B State estimation for a switching binary hidden Markov process

Here, we give a stochastic setting experiment. A switching binary hidden Markov process in this example
is defined as a binary symmetric Markov chain observed through a BSC, where the transition probabilities
of the Markov chain switches over time. The goal of a denoiser here is to estimate the underlying Markov
chain based on the noisy output.

In our example, we construct a simple switching binary hidden Markov process of length n = 106, in
which the transition probability of the underlying binary symmetric Markov source switches from p = 0.01
to p = 0.2 at the midpoint of the sequence, and the crossover probability of BSC is δ = 0.1. Then,
we estimate the state of the underlying Markov chain based on the BSC output. The goodness of the
estimation is again measured by the Hamming loss, i.e., the fraction of errors made. Slightly better than
the optimal Bayesian distribution-dependent performance for this case can be obtained by employing the
forward-backward recursion scheme, incorporating the varying transition probabilities with the help of a
genie that knows the exact location of the change in the process distribution. Figure 3 plots the BER of
(k,m)-S-DUDE with various k and m, compared to the genie-aided Bayes optimal BER. The horizontal
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axis represents k, and the two curves refer to m = 0 (DUDE) and m = 1. The vertical axis is the ratio of
BER to δ = 0.1.
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Figure 3: BER for switching binary hidden Markov process (δ = 0.1, n = 106). The switch of the underlying
binary Markov chain occurs when t = 5× 105, from the transition probability p = 0.01 to p = 0.2.

We can observe that the optimal Bayesian BER is (lower bounded by) 0.4865×δ. The best performance
of the DUDE was achieved when k = 6 with a BER of 0.5738× δ, which is far above (18% more than) the
optimal BER. It is clear that, despite the size of the data, the DUDE fails to converge to the optimum, as
it is confined to be employing the same sliding-window scheme throughout the whole data. However, we
can see that the (4, 1)-S-DUDE achieves a BER of .4979 × δ, which is within 2.3% of the optimal BER.
This example shows that our S-DUDE is competent in attaining the optimum performance for a class
richer than that of the stationary processes. Specifically, it attains the optimum performance for piecewise
stationary processes, on which the DUDE generally fails.

7 Conclusion and Some Future Directions

Inspired by the DUDE algorithm, we have developed a generalization that accommodates switching be-
tween sliding window rules. We have shown a strong semi-stochastic setting result for our new scheme
in competing with shifting k-th order denoisers. This result implies a stochastic setting result as well,
asserting that the S-DUDE asymptotically attains the optimal distribution-dependent performance for the
case in which the underlying data is piecewise stationary. We also described an efficient low-complexity
implementation of the algorithm, and presented some simple experiments that demonstrate the potential
benefits of employing S-DUDE in practice.

There are several future research directions related to this work. The S-DUDE can be thought of as a
generalization of the DUDE, with the introduction of a new component captured by the non-negative integer
parameter m. Many previous extensions of the DUDE, such as the settings of channel with memory[34],
channel uncertainty [33], applications to channel decoding[37], discrete-input, continuous-output data[35],
denoising of analog data[32], and decoding in the Wyner-Ziv problem[36], may stand to benefit from a
revision that would incorporate the viewpoint of switching between time-invariant schemes. Particularly,
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extending S-DUDE to the case where the the data are analog as in [32] will be non-trivial and interesting
from both a theoretical and a practical viewpoint. In addition, as mentioned in Section 5, an extension of
the S-DUDE to the case of multi-dimensional data is not as straightforward as the extension of the DUDE
was. Such an extension should prove interesting and practically important. Finally, it would be useful
to devise guidelines, in the spirit of those in [38, 3], for the choice of k and m based on n and the noisy
observation sequence zn.
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8 Appendix

8-A Proof of Lemma 1

We first establish the fact that for all xn ∈ X n, and for fixed S ∈ Sn
0 ,

{

n
[
L
X̂n,S(x

n, Zn)− L̃S(Z
n)
]}

n≥1

is a {Zn}-martingale. This is not hard to see by following:

E
(

n[L
X̂n,S(x

n, Zn)− L̃S(Z
n)]
∣
∣Zn−1

)

= E
( n∑

t=1

Λ(xt, st(Zt))−

n∑

t=1

ℓ(Zt, st)
∣
∣Zn−1

)

= (n− 1)[L
X̂n−1,S(x

n−1, Zn−1)− L̃S(Z
n−1)] + E

(

Λ(xn, sn(Zn))− ℓ(Zn, sn)
∣
∣Zn−1

)

= (n− 1)[L
X̂n−1,S(x

n−1, Zn−1)− L̃S(Z
n−1)], (47)

where (47) follows from the fact that Zn is independent of Zn−1, and EΛ(xn, sn(Zn)) = Eℓ(Zn, sn).
Therefore, LS(x

n, Zn) − L̃S(Z
n) is a normalized sum of bounded martingale differences; therefore the

inequalities (20) and (21) follow directly from the Hoeffding-Azuma inequality [14, Lemma A.7]. �

8-B Proof of Theorem 2

Consider following chain of inequalities:

P
(

L
X̂n,Ŝ(x

n, Zn)−D0,m(xn, Zn) > ǫ
)

= P
(

max
S∈Sn

0,m

{
L
X̂n,Ŝ(x

n, Zn)− L
X̂n,S(x

n, Zn)
}
> ǫ
)

≤
∑

S∈Sn
0,m

P
(

L
X̂n,Ŝ(x

n, Zn)− L
X̂n,S(x

n, Zn) > ǫ
)

(48)

≤
∑

S∈Sn
0,m

P
(

L
X̂n,Ŝ(x

n, Zn)− L̃
Ŝ
(Zn) > ǫ/2

)

︸ ︷︷ ︸

(i)

+
∑

S∈Sn
0,m

P
(

L̃
Ŝ
(Zn)− L

X̂n,S(x
n, Zn) > ǫ/2

)

︸ ︷︷ ︸

(ii)

, (49)
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where (48) follows from the union bound, and (49) follows from adding and subtracting L̃
Ŝ
(Zn), and the

union bound. For term (i) in (49),

(i) ≤
∑

S∈Sn
0,m

P
(

max
S∈Sn

0,m

{
L
X̂n,S(x

n, Zn)− L̃S(Z
n)
}
> ǫ/2

)

(50)

≤
∑

S∈Sn
0,m

∑

S∈Sn
0,m

exp
(

− n
ǫ2

2L2
max

)

, (51)

where (50) follows from L
X̂n,Ŝ(x

n, Zn)− L̃
Ŝ
(Zn) ≤ maxS∈Sn

0,m

{
L
X̂n,S(xn, Zn)− L̃S(Z

n)
}
, and (51) follows

from the union bound and (20). Similarly, for term (ii) in (49),

(ii) ≤
∑

S∈Sn
0,m

P
(

L̃S(Z
n)− L

X̂n,S(x
n, Zn) > ǫ/2

)

(52)

≤
∑

S∈Sn
0,m

exp
(

− n
ǫ2

2L2
max

)

, (53)

where (52) follows from L̃
Ŝ
(Zn) ≤ L̃S(Z

n) a.s., and (53) follows from (21). Therefore, continuing (49), we
obtain

(49) ≤ 2
∑

S∈Sn
0,m

∑

S∈Sn
0,m

exp
(

− n
ǫ2

2L2
max

)

= 2
[ m∑

k=0

(
n− 1

k

)

N(N − 1)k
]2

exp
(

− n
ǫ2

2L2
max

)

(54)

≤ 2 exp

(

−n
[ ǫ2

2L2
max

− 2h
(m

n

)

−
2(m+ 1) lnN

n

])

, (55)

where (54) follows from |Sn
0,m| =

∑m
k=0

(n−1
k

)
N(N−1)k, and (55) follows from |Sn

0,m| ≤ Nm+1 exp
(
nh(mn )

)
.

Hence, the theorem is proved. �

8-C Proof of Lemma 2

We will prove (28) since the proof of (29) is essentially identical. As in [1], define

Id , {t : k + 1 ≤ t ≤ n− k, t ≡ d mod (k + 1)},

whose cardinality is denoted nd = ⌊(n − d − k)/(k + 1)⌋. Then, by denoting Ct = (Zt−1
t−k , Z

t+k
t+1 ), we start

the chain of inequalities,

Pr
(

L
X̂

n,Sk
(xn−k

k+1 , Z
n)− L̃Sk

(Zn) > ǫ
)

≤ Pr

(
k∑

d=0

∑

τ∈Id

{

Λ
(
xτ , sk,τ (Cτ , Zτ)

)
− ℓ
(
Zτ , sk,τ (Cτ , ·)

)}

> (n− 2k)ǫ

)

(56)

≤

k∑

d=0

Pr

(
∑

τ∈Id

{

Λ
(
xτ , sk,τ (Cτ , Zτ)

)
− ℓ
(
Zτ , sk,τ (Cτ , ·)

)}

> (n− 2k)γdǫ

)

, (57)
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where (56) follows from the triangle inequality, (57) follows from the union bound, and {γd} is a set of
nonnegative constants (to be specified later) satisfying

∑

d γd = 1. In the sequel, for simplicity, we will
denote Λ

(
xτ , sk,τ (Cτ , Zτ)

)
and ℓ

(
Zτ , sk,τ (Cτ , ·)

)
in (48) as Λτ and ℓτ , respectively. Now, the collection of

random variables Z(d) is defined to be

Z(d) , {Zt : 1 ≤ t ≤ n, t /∈ Id},

and z(d) ∈ Zn−nd denotes a particular realization of Z(d). Then, by conditioning, we have

(57) ≤

k∑

d=0

∑

z(d)∈Zn−nd

Pr(Z(d) = z(d))Pr

(
∑

τ∈Id

{
Λτ − ℓτ

}
> (n− 2k)γdǫ

∣
∣
∣
∣
∣
Z(d) = z(d)

)

, (58)

and let Pd denote the conditional probability of (58). Now, conditioned on Z(d) = z(d), {Zτ}τ∈Id are all
independent, and the summation in Pd beomes

∑

τ∈Id

{

Λ
(
xτ , sk,τ (cτ , Zτ)

)
− ℓ
(
Zτ , sk,τ (cτ , ·)

)}

,

which is the sum of the absolute differences of the true and estimated losses of the symbol-by-symbol
denoisers sk,τ (cτ , ·) over τ ∈ Id. Thus, we can apply (20), and obtain

Pd = Pr

(
∑

τ∈Id

{
Λτ − ℓτ

}
> nd ·

(n− 2k)γdǫ

nd

∣
∣
∣
∣
∣
Z(d) = z(d)

)

≤ exp
(

−
2(n − 2k)2γ2dǫ

2

L2
maxnd

)

. (59)

Following [1], we choose γd =
√
nd

P

j

√
nj
, and from the Cauchy-Schwartz inequality and

∑

d nd = n − 2k, we

arrive at

nd

γ2d
≤ (k + 1)

k∑

d=0

nd = (k + 1)(n − 2k),

and, hence,

Pd ≤ exp
(

−
2(n − 2k)ǫ2

(k + 1)L2
max

)

. (60)

Therefore, plugging (60) into (58), we finally have

(58) ≤ (k + 1) exp
(

−
2(n− 2k)ǫ2

(k + 1)L2
max

)

,

which proves the lemma. �
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8-D Proof of Theorem 3

The proof resembles that of Theorem 2. Consider

Pr
(

L
X̂

n,Ŝk,m
(xn−k

k+1 , Z
n)−Dk,m(xn, Zn) > ǫ

)

= P
(

max
S∈Sn

k,m

{
L
X̂

n,Ŝk,m
(xn−k

k+1 , Z
n)− L

X̂n,S(x
n−k
k+1 , Z

n)
}
> ǫ
)

≤
∑

S∈Sn
k,m

P
(

L
X̂

n,Ŝk,m
(xn−k

k+1 , Z
n)− L

X̂n,S(x
n−k
k+1 , Z

n) > ǫ
)

(61)

≤
∑

S∈Sn
k,m

{

P
(

L
X̂

n,Ŝk,m
(xn−k

k+1 , Z
n)− L̃

Ŝk,m
(Zn) >

ǫ

2

)

+ P
(

L̃
Ŝk,m

(Zn)− L
X̂n,S(x

n−k
k+1 , Z

n) >
ǫ

2

)}

(62)

≤ 2(k + 1)
∑

S∈Sn
k,m

∑

S∈Sn
k,m

exp

(

−
(n− 2k)ǫ2

2(k + 1)L2
max

)

(63)

= 2(k + 1)

[m(c)
∑

k=0

(
n(c)− 1

k

)

N(N − 1)k
]2|Ck|

exp

(

−
(n− 2k)ǫ2

2(k + 1)L2
max

)

, (64)

where (61)-(62) follow similarly as in (48)-(49); (63) follows from arguments similar to (50), (52), and

Lemma 2 (which plays the role that Lemma 1 played there); and (64) follows from |Sn
k,m| =

[
(
∑m(c)

k=0

(n(c)−1
k

)
N(N−

1)k
]|Ck|. Now, for all c ∈ Ck,

m(c)
∑

k=0

(
n(c)− 1

k

)

N(N − 1)k ≤ Nm+1 exp
(

n(c)h
(m(c)

n(c)

))

≤ Nm+1 exp
(

(n− 2k)h
( m(c)

n− 2k

))

(65)

≤ Nm+1 exp
(

(n− 2k)h
( m

n− 2k

))

, (66)

where (65) is based on the fact that exp(nh(mn )) is an increasing function in n, and (66) follows from

m ≤ ⌊n−2k
2 ⌋. Therefore, together with |Ck| = |Z|2k, we have

(64) ≤ 2(k + 1) exp

(

− (n− 2k) ·
[ ǫ2

2(k + 1)L2
max

− 2|Z|2k ·
{

h
( m

n− 2k

)

+
(m+ 1) lnN

n− 2k

}])

, (67)

which proves the theorem. �

8-E Proof of Claim 1

For part a), to show the necessity first, suppose c1 ≥ 1
2 log |Z| . Then, from |Z|2k = n

2k log |Z|
log n , we have

2|Z|2k · {h( m
n−2k ) +

(m+1) lnN
n−2k } = Ω

(
n

2k log |Z|
logn (mn )

1−δ
)
, which will grow to infinity as n grows, even when

m is fixed. Therefore, the right-hand side of (34) is not summable. On the other hand, k = c1 log n
with c1 < 1

2 log |Z| is readily verified to suffice for the summability, provided that m = mn grows at any

sub-polynomial rate, i.e., grows more slowly than nα for any α > 0 (e.g., c2 log n).

For part b), to show the necessity, suppose m = Θ(n). Then, h( m
n−2k ) +

(m+1) lnN
n−2k = Θ(1), and, thus,

for sufficiently small ǫ, ǫ2

2(k+1)L2
max

− |Z|2k ·
{
h
(

m
n−2k

)
+ (m+1) logN

n−2k

}
< 0 even for k fixed. Therefore, the
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right-hand side of (34) is not summable. Hence, m = o(n) is necessary for the summability. For sufficiency,
suppose m = mn is any rate, such that limn→∞

mn

n = 0. Then,

ǫ2

2(k + 1)L2
max

− 2|Z|2k ·
{

h
( m

n− 2k

)

+
(m+ 1) logN

n− 2k

}

=
1

k

{ ǫ2

2(1 + 1
kL

2
max)

− 2k|Z|2k ·O
((mn

n

)1−δ
)}

. (68)

Thus, if k grows sufficiently slowly that k|Z|2k = o
(
( n
mn

)1−δ
)
, then (68) becomes positive for sufficiently

large n, and the right-hand side of (34) becomes summable. �

8-F Proof of Theorem 4

First, denote the random variable An
k,m , L

X̂
n,k,m
univ

(xn−k
k+1 , Z

n)−Dk,m(xn, Zn). Then, for part a), we have

L
X̂

n,k,m
univ

(xn, Zn)−Dk,m(xn, Zn) ≤
2kΛmax

n
+An

k,m a.s.

Since the maximal rate for k is c1 log n as specified in Claim 1, limn→∞
2kΛmax

n = 0. Furthermore, from the
summability condition on k and m, Theorem 3, and the Borel-Cantelli lemma, we get limn→∞An

k,m = 0
with probability 1, which proves part a). To prove part b), note that, for any ǫ > 0,

E
[
L
X̂

n,k,m

univ

(xn, Zn)−Dk,m(xn, Zn)
]

≤
2kΛmax

n
+ E(An

k,m)

=
2kΛmax

n
+ E(An

k,m|An
k,m ≤ ǫ)Pr(An

k,m ≤ ǫ) + E(An
k,m|An

k,m > ǫ)Pr(An
k,m > ǫ)

≤
2kΛmax

n
+ ǫ+ Λmax · Pr(An

k,m > ǫ)

≤
2kΛmax

n
+ ǫ+ Λmax · (right-hand side of (34)). (69)

From the proof of Claim 1, the condition of Theorem 4 requires k = kn and m = mn to satisfy

lim
n→∞

kn|Z|2kn(
mn

n
)1−δ = 0.

Therefore, if we set ǫ2 = Θ(kn|Z|2kn(mn

n )1−δ) with sufficiently large constant then, from (68), we can see
that the right-hand side of (34) will decay almost exponentially, which is much faster than Θ(kn|Z|2kn(mn

n )1−δ).

Hence, from (69), we conclude that E(An
k,m) = O

(√

kn|Z|2kn(mn

n )1−δ
)

, which results in part b). �

8-G Proof of Theorem 5

The fact that m = Θ(n) implies the existence of α > 0, such that m ≥ nα for all sufficiently large n. Let
X be the process formed by concatenating i.i.d. blocks of length ⌈1/α⌉, each block consisting of the same
repeated symbol chosen uniformly from X . The first observation to note is that, for all n large enough
that m ≥ nα,

D0,m(Xn, Zn) = 0 a.s. (70)

This is because, by construction, Xn is, with probability 1, piecewise constant with constancy sub-blocks
of length, at least, ⌈1/α⌉. Thus, a genie with access to Xn can choose a sequence of symbol-by-symbol
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schemes (in fact, ignoring the noisy sequence), with less than nα (and, therefore, less than m) switches,
that perfectly recover Xn (and, therefore, by our assumption on the loss function, suffers zero loss). On
the other hand, the assumptions on the loss function and the channel imply that, for the process X just
constructed,

lim sup
n→∞

min
X̂n

EL
X̂n(X

n, Zn) > 0, (71)

since even the Bayes-optimal scheme for this process incurs a positive loss, with a positive probability, on
each ⌈1/α⌉ super-symbol. Thus, we get

E
{

lim sup
n→∞

E
[
L
X̂n(X

n, Zn)−D0,m(Xn, Zn)|Xn
] }

(72)

≥ lim sup
n→∞

E
[
L
X̂n(X

n, Zn)−D0,m(Xn, Zn)
]

(73)

= lim sup
n→∞

EL
X̂n(X

n, Zn) (74)

≥ lim sup
n→∞

min
X̂n

EL
X̂n(X

n, Zn)

> 0, (75)

where (73) follows from Fatou’s lemma; (74) follows from (70); and (75) follows from (71). In particular,
there must be one particular individual sequence x ∈ X∞ for which the expression inside the curled brackets
of (72) is positive, i.e.,

lim sup
n→∞

E
[
L
X̂n(X

n, Zn)−D0,m(Xn, Zn)|Xn = xn
]
> 0, (76)

which is equivalent to (37). �

8-H Proof of Theorem 6

First, by adding and subtracting the same terms, we obtain

EL
X̂

n,k,m
univ

(Xn, Zn)−D(PXn ,Π)

= EL
X̂

n,k,m
univ

(Xn, Zn)− min
S∈Sn

k,m

EL
X̂n,S(X

n, Zn)

︸ ︷︷ ︸

(i)

+ min
S∈Sn

k,m

EL
X̂n,S(X

n, Zn)− D(PXn ,Π)

︸ ︷︷ ︸

(ii)

. (77)

We will consider term (i) and term (ii) separately. For term (i),

(i) = EL
X̂

n,k,m
univ

(Xn, Zn)− min
S∈Sn

k,m

EL
X̂n,S(X

n, Zn)

≤
2kΛmax

n
+

n− 2k

n
·
[

EL
X̂

n,k,m
univ

(Xn−k
k+1 , Z

n)− min
S∈Sn

k,m

EL
X̂n,S(X

n−k
k+1 , Z

n)
]

(78)

≤
2kΛmax

n
+

n− 2k

n
· E
[

L
X̂

n,k,m
univ

(Xn−k
k+1 , Z

n)− min
S∈Sn

k,m

L
X̂n,S(X

n−k
k+1 , Z

n)
]

(79)

≤
2kΛmax

n
+ E

[

L
X̂

n,k,m
univ

(Xn−k
k+1 , Z

n)−Dk,m(Xn, Zn)
]

, (80)

where (78) follows from upper bounding and omitting the losses for time instances t ≤ k and t > n − k
in the first and second terms of (i), respectively; (79) follows from exchanging the minimum with the
expectation, and (80) follows from the definition (31) and n−2k

n ≤ 1.
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For term (ii), we bound the first term in (ii) as

min
S∈Sn

k,m

EL
X̂n,S(X

n, Zn)

≤
2k(m+ 1)Λmax

n
+

1

n
min

S∈Sn
k,m

E

[

E
[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

Λ(Xj , sk,j(Z
j+k
j−k ))

∣
∣
∣An

]]

, (81)

by upper bounding the losses with Λmax on the boundary of the shifting points. Now, let PXj |Zl
i,A

n ∈ R
|X |

denote the |X |-dimensional probability vector whose x-th component is Pr(Xj = x|Z l
i , A

n). Then, we can
bound the second term in (81) by the following chain of inequalities:

1

n
min

S∈Sn
k,m

E

[

E
[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

Λ(Xj , sk,j(Z
j+k
j−k ))

∣
∣
∣An

]]

(82)

=
1

n
E

[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

min
sk∈Sk

E
[

Λ(Xj , sk(Z
j+k
j−k ))

∣
∣
∣An

]]

(83)

=
1

n
E

[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

∑

zk−k
∈Z2k+1

P (Zj+k
j−k = zk−k|A

n)min
x̂∈X̂

E
[

Λ(Xj , x̂)|Z
j+k
j−k = zk−k, A

n
]]

(84)

=
1

n
E

[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

∑

zk−k
∈Z2k+1

P (Zj+k
j−k = zk−k|A

n)UΛ(PXj |Zj+k

j−k
=zk−k

,An)

]

(85)

=
1

n
E

[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

E
[
UΛ(PXj |Zj+k

j−k
,An)

∣
∣An]

]

=
1

n
E

[ r+1∑

i=1

τi−k∑

j=τi−1+k+1

E
[
UΛ(P

(Aτi
)

X0|Zk
−k

)|An
]
]

(86)

≤
1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

E
[
UΛ(P

(Aτi
)

X0|Zk
−k

)|An
]
]

, (87)

where (83) follows from the stationarity of the distribution in each block as well as the fact that the
combination of the best k-th order sliding window denoiser for each block is in Sn

k,m and achieves the
minimum in (82); (84) follows from conditioning; (85) follows from the definition (2); (86) follows from the
stationarity of the distribution in each i-th block; and (87) follows from adding more nonnegative terms.

For the second term in (ii), we first define

ni(A
n) , τi(A

n)− τi−1(A
n)

as the length of the i-th block, for 1 ≤ i ≤ r(An) + 1. Obviously, ni(A
n) also depends on An, and, thus,

is a random variable, but we again suppress An for brevity and denote it as ni. Then, similar to the first
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term above, we obtain

D(PXn ,Π) = min
X̂n∈Dn

EL
X̂n(X

n, Zn)

=
1

n
min

X̂n∈Dn

E

[

E
[ r+1∑

i=1

τi∑

j=τi−1+1

Λ(Xj , X̂j(Z
n))
∣
∣
∣An

]]

=
1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

min
X̂:Zn→X̂

E
[

Λ(Xj , X̂(Zn))
∣
∣
∣An

]]

=
1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

min
X̂:Zni→X̂

E
[

Λ(Xj , X̂(Zτi
τi−1+1))

∣
∣
∣An

]]

(88)

=
1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

E
[
UΛ(PXj |Zτi

τi−1+1,A
n)
∣
∣An

]
]

=
1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

E
[
UΛ(P

(Aτi
)

X0|Zni−j

1−j

)
∣
∣An

]
]

(89)

≥
1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

E
[
UΛ(P

(Aτi
)

X0|Z∞
−∞

)
∣
∣An

]
]

, (90)

where (88) follows from the conditional independence between different blocks, given An; (89) follows from
the stationarity of the distribution in each block, and (90) follows from [1, Lemma 4(1)]. Therefore, from
(81),(87), and (90), we obtain

(b) = min
S∈Sn

k,m

EL
X̂n,S(X

n, Zn)− D(PXn ,Π)

≤
2k(m+ 1)Λmax

n
+

1

n
E

[ r+1∑

i=1

τi∑

j=τi−1+1

E
[
UΛ(P

(Aτi
)

X0|Zk
−k

)|An
]
− E

[
UΛ(P

(Aτi
)

X0|Z∞
−∞

)
∣
∣An

]
]

=
2k(m+ 1)Λmax

n
+ E

[ r+1∑

i=1

ni

n
·
{

E
[
UΛ(P

(Aτi
)

X0|Zk
−k

)|An
]
− E

[
UΛ(P

(Aτi
)

X0|Z∞
−∞

)
∣
∣An

]}
]

. (91)

Now, observe that, regardless of An, the sequence of numbers {ni

n }r+1
i=1 form a probability distribution, since

∑r+1
i=1

ni

n = 1 and ni

n ≥ 0 for all i, with probability 1. Then, based on the fact that the average is less than
the maximum, we obtain the further upper bound

(91) ≤
2k(m+ 1)Λmax

n
+ E

[

max
i∈{1,··· ,M}

{

E
[
UΛ(P

(i)

X0|Zk
−k

)
]
− E

[
UΛ(P

(i)
X0|Z∞

−∞
)
]}
]

. (92)

The remaining argument to prove the theorem is to show that the upper bounds (80) and (92) converge
to 0 as n tends to infinity. First, from the given condition on k = kn and m = mn, the maximal allowable
growth rate for k is k = c1 log n, which leads to limn→∞

2kΛmax

n = 0. In addition, the condition requires
m = o(n), and k to be sufficiently slow, such that k|Z|2k = o

(
( n
m )1−δ

)
, which implies k = o( n

m ). Therefore,

limn→∞
2k(m+1)Λmax

n = 0. Furthermore, from conditioning on Xn, bounded convergence theorem, and part
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b) of Theorem 4, we obtain limn→∞E[L
X̂

n,k,m
univ

(Xn−k
k+1 , Z

n)−Dk,m(Xn, Zn)] = 0. Thus, we have

lim sup
n→∞

[

EL
X̂

n,k,m
univ

(Xn, Zn)− D(PXn ,Π)
]

≤ lim sup
n→∞

E

[

max
i∈{1,··· ,M}

{

E
[
UΛ(P

(i)

X0|Zk
−k

)
]
− E

[
UΛ(P

(i)
X0|Z∞

−∞
)
]}
]

≤ E

[

lim sup
n→∞

max
i∈{1,··· ,M}

{

E
[
UΛ(P

(i)

X0|Zk
−k

)
]
− E

[
UΛ(P

(i)
X0|Z∞

−∞
)
]}
]

(93)

= 0, (94)

where (93) follows from the reverse Fatou’s lemma, and (94) follows from [1, Lemma 4(2)] and M being
finite. Since it is clear that lim infn→∞[EL

X̂
n,k,m
univ

(Xn, Zn) − D(PXn ,Π)] ≥ 0 by definition of D(PXn ,Π),

the theorem is proved. �

Remark: As in [1, Theorem 3], the convergence rate in (44) may depend on PX, and there is no vanishing
upper bound on this rate that holds for all PX ∈ P{mn}. However, we can glean some insight into the
convergence rate from (i) and (ii): whereas the term (i) is uniformly upper bounded for all PX ∈ P{mn},

8

the rate at which term (ii) vanishes depends on PX. In general, we observe that the slower the rate of
increase of k = kn, the faster the convergence in (i), but the convergence in (ii) is slower. With respect
to the rate of increase of mn, the slower it is, the faster the convergence in (i), but whether or not the
convergence in (ii) is accelerated by a slower rate of increase of mn may depend on the underlying process
distribution PX.
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