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Information Spectrum Approach to
Second-Order Coding Rate in Channel Coding

Masahito Hayashi

Abstract

Second-order coding rate of channel coding is discussed forgeneral sequence of channels. The optimum second-order
transmission rate with a constant error constraintǫ is obtained by using the information spectrum method. We apply this result to
the discrete memoryless case, the discrete memoryless casewith a cost constraint, the additive Markovian case, and theGaussian
channel case with an energy constraint. We also clarify thatthe Gallager bound does not give the optimum evaluation in the
second-order coding rate.

Index Terms

Second-order coding rate, Channel coding, Information spectrum, Central limit theorem, Gallager bound, additive Markovian
channel

I. I NTRODUCTION

BASED on the channel coding theorem, there exists a sequence of codes for the given channelW such that the average
error probability goes to0 when the transmission rateR is less thanCDM

W . That is, if the numbern of applications of the
channelW is sufficiently large, the average error probability of a good code goes to0. In order to evaluate the average error
probability with finiten, we often use the exponential rate of decrease, which depends on the transmission rateR. However,
such an exponential evaluation ignores the constant factor. Therefore, it is not clear whether exponential evaluationprovides a
good evaluation for the average error probability when the transmission rateR is close to the capacity. In fact, many researchers
believe that, out of the known evaluations, the Gallager bound [1] gives the best upper bound of average error probability in
the channel coding when the transmission rate is greater than the critical rate. This is because the Gallager bound provides
the optimal exponential rate of decrease. In order to clarify this point, we focus on the second-order coding rate in channel
coding, in which, we describe the transmission length byCDM

W n+R2
√
n. From a practical viewpoint, when the coding length

is close toCDM
W n, the second-order coding rate gives a better evaluation of average error probability than the first-order coding

rate. In fact, the second error coding rate has been applied for evaluation of the average error probability of random coding
concerning the phase basis, which is essential to the security of quantum key distribution[2]. Therefore, it is appropriate to
treat the second-order coding rate from the applied viewpoint as well as the theoretical viewpoint. In the case of the discrete
memoryless case, Strassen [3] derived the optimum rateR2 for an arbitrary average error probability0 < ǫ < 1 using the
Gaussian distribution. In the present paper, we extend his result to more general cases, i.e., the discrete memoryless case with
cost constraint, the Gaussian additive noise case with the energy constraint, and the additive Markovian case. Further, our proof
for the discrete memoryless case is much simpler than the original one. Indeed, since his proof is not so simple and his paper
is written in German, it is quite difficult to follow his proof.

In the present paper, in order to treat this problem from a unified viewpoint, we employ the method of information spectrum,
which was initiated by Han-Verdú [4], and was mainly formulated by Han[5]. The second-order coding rate is closely related
to the method of information spectrum because Hayashi[6] treated this problem of fixed-length source coding and intrinsic
randomness using the method of information spectrum. Hayashi[6] discussed the error probability when the compressed size
is H(P )n + a

√
n, wheren is the size of input system andH(P ) is the entropy of the distributionP of the input system.

In the method of information spectrum, we treat the general asymptotic formula, which gives the relationship between the
asymptotic optimal performance and the normalized logarithm of the likelihood of the probability distribution. In order to
treat a special case, we apply the general asymptotic formula to the respective information source and calculate the asymptotic
stochastic behavior of the normalized logarithm of the likelihood. That is, in the information spectrum method, we havetwo
steps, deriving the general asymptotic formula and applying the general asymptotic formula. With respect to fixed-length
source coding and intrinsic randomness, the same relation holds concerning the general asymptotic formula in the second-order
coding rate. However, there is a difference concerning the application of the general asymptotic formula to the independent
and identical distributions. That is, while the normalizedlogarithm of the likelihood approaches the entropyH(P ) in the
probability in the first-order coding rate, the stochastic behavior is asymptotically described by the Gaussian distribution in the
first-order coding rate. In other words, in the second step, the first-order coding rate corresponds to the law of large numbers,
and the second-order coding rate corresponds to the centrallimit theorem.
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In the present paper, we treat the channel coding in the second-order coding rate, i.e., the case in which the transmission length
is CDM

W n+ a
√
n. Similar to the above-mentioned case, we employ the method of information spectrum. That is, we treat the

general channel, which is the general sequence{Wn(y|x)} of probability distributions without structure. As shown by Verdú-
Han [14], this method enables us to characterize the asymptotic performance with only the random variable1n log Wn(y|x)

Wn
Pn

(y)

(the normalized logarithm of the likelihood ratio between the conditional distribution and the non-conditional distribution)
without any further assumption, whereWn

Pn(y)
def
=
∑

x P
n(x)Wn(y|x). Concerning this general asymptotic formula, if we

can suitably formulate theorems in the second-order codingrate and establish an appropriate relationship between thefirst-order
coding rate and the second-order coding rate, we can easily extend proofs concerning the first-order coding rate to thoseof
the second-order coding rate. Therefore, there is no serious difficulty in establishing the general asymptotic formulain the
second-order coding rate. In order to clarify this point, wepresent proofs of some relevant theorems in the first-order coding
rate, even though they are known.

In order to treat the special cases, it is sufficient to apply the general asymptotic formula, i.e., to calculate the asymptotic
behavior of the random variable1n log Wn(y|x)

Wn
Pn

(y) . The additive Markovian case can be treated in the same way asfixed-length
source coding and intrinsic randomness. However, other special cases have another difficulties, which do not appear in fixed-
length source coding or intrinsic randomness. The first difficulty is the optimization concerning the input distribution in the
converse part of the channel coding. This problem commonly appears among the three cases, i.e., the discrete memoryless
case, the discrete memoryless case with cost constraint, and the Gaussian additive noise case with the energy constraint. In the
discrete memoryless case, the second-order coding rate corresponds to simple application of the central limit theorem, while
the first-order coding rate corresponds to the law of large numbers. Hence, the performance in second-order coding rate is
characterized by the variance of the logarithmic likelihood ratio, and the direct part can be easily obtained in this case. This
relationship is summarized in Fig. 5.
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Fig. 1. Relationship between the present result and fixed-length source coding/intrinsic randomness. The→ arrow describes the direct part, and the← arrow
describes the converse part.

However, there is another difficulty in the direct part for the discrete memoryless case with cost constraint and the Gaussian
additive noise case with the energy constraint. In these cases, all of the encoded signals has to satisfy cost constraint. This
kind of difficulty does not appear in the case of first-order coding rate of both of the discrete memoryless case with cost
constraint and the Gaussian additive noise case with the energy constraint. This is because it is sufficient to constructthe code
whose average error probability goes to zero in the case of the first-order coding rate while it is required to construct the code
whose average error probability goes to a given theresholdǫ in the case of the second-order coding rate. When we find a code
satisfying the following; its average error probability goes to zero and its average cost is less than the constraint. Then, there
exists a subcode satisfying the following; its average error probability goes to zero and the costs of all encoded signals are less
than the constraint. However, the same method cannot be applied when we find a code satisfying the following; its average
error probability goes toǫ and its average cost is less than the constraint. In the present paper, we directly construct a code,
in which the costs of all encoded signals are less than the constraint.

Here, we describe the meaning of the second-order coding rate. When the transmission length is described bynCDM
W +

√
nR2,

as shown in Subsection IX-A, the optimal error can be approximately attained by random coding. Since it seems that random
coding cannot be realized, our evaluation seems to be related to only the theoretical best performance. However, in the quantum
key distribution, it can be realized concerning the phase bases [7], [2]. In such a setting, the coding length is on the order of
10,000 or 100,000[8]. In the quantum key distribution, Hayashi [2] has applied the second-order coding rate to evaluatethe
phase error probability, which is directly linked to the security of the final key.

The remainder of the present paper is organized as follows. In Section II, we revisit the second order coding rate in the
stationary discrete memoryless case, and dicuss the secondorder coding rate in the stationary discrete memoryless case with
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cost constraint. In Section III, the Markovian additive channel is treated. In Section IV, the Gaussian additive noise case
with the energy constraint is considered. These results areshown in the Section X by employing the method of information
specturm. In the present result, the performance of information transmission is discussed in terms of second-order coding rate
using two important quantitiesV +

W andV −
W instead of the capacity in the case of discrete memoryless case. In other cases,

similar quantities play the same role.
In Section V, we compare our evaluation with the Gallager bound [1] in the second-order setting. In Section VI, the

properties ofV +
W andV −

W are discussed. In Subsection VI-A, we discuss a typical example such thatV +
W is different from

V −
W . In Subsection VI-B, the additivities concerningV +

W andV −
W are proved. In Section VII, the notations of the information

spectrum are explained. In Section VIII, the performance ofthe information transmission is discussed in terms of the second-
order coding rate using the information spectrum in the general case. That is, we present general formulas for the second-order
coding rate. In Section IX, the theorem presented in the previous section is proved. In Section X, using general formulasfor
the second-order coding rate, we demonstrate our proof of the second order coding rate in the stationary discrete memoryless
case using our general result concerning the second order coding rate. In this proof, the direct part is immediate. The converse
part is the most difficult considered herein because we must treat the information spectrum for the general input distributions
in the sense of the second-order coding rate.

II. SECOND ORDER CODING RATE IN STATIONARY DISCRETE MEMORYLESS CHANNELS

As the most typical case, we revisit the second-order codingrate of stationary discrete memoryless channels, in which,
we use ann-multiple application of the discrete channelW (y|x), which transmits the information from the input system
X to the output systemY. That is, the channel considered here is given as the stationary discrete memoryless channel
W×n(y|x) def

=
∏n
i=1W (yi|xi). Note that, in the present paper,P × P ′ (W ×W ′) denotes the product of two distributionsP

andP ′ (two channelsW andW ′), andP×n (W×n) denotes the product ofn uses of the distributionP (the channelW ), i.e.,
then-th independent and identical distribution (i.i.d.) ofP (then-th stationary memoryless channel ofW ). In this case, when
the transmission rate is less than the capacityCDM

W , the average error probability goes to0 exponentially, if we use a suitable
encoder and the maximum likelihood decoder.

Let N be the size of the transmitted information. The encoder is a mapφ from {1, . . . , N} to Xn, and the decoder is given
by the set of subsets{Di}Ni=1 of Yn, whereDi corresponds to the decoding region ofi ∈ {1, . . . , N}. Then, the code is given
by the triple(N,φ, {Di}Ni=1) and is denoted byΦ. The average error probabilityPe,W×n(Φ) is described as

Pe,W×n(Φ)
def
=

1

Nn

Nn∑

i=1

(1 −W×n
φ(i)(Di)),

whereWx(y)
def
= W (y|x). For simplicity, the sizeNn is denoted by|Φ|. The performance of the codeΦ is given by the pair

of Pe(Φ) and |Φ|. As stated by the channel coding theorem [9], the capacity isgiven by

CDM
W = max

P
I(P,W ) = min

Q
max
x

D(Wx‖Q),

whereQ is the output distribution, and

WP (y)
def
=
∑

x

P (x)W (y|x)

I(P,W )
def
=
∑

x

P (x)D(Wx‖WP )

D(P‖P ′)
def
=
∑

x

P (x) log
P (x)

P ′(x)
.

Thus,QM
def
= argminQmaxxD(Wx‖Q) satisfies

D(Wx‖QM ) ≤ CDM
W . (1)

Throughout the present paper, we choose the base of the logarithm to bee.
Although the above channel coding theorem concerns only thefirst-order coding rate of the transmission lengthlogNn, our

main focus is the analysis of the second-order coding rate. When the transmission lengthlogNn asymptotically behaves as
nCDM

W + a
√
n, the optimal average error is given as follows:

CDM
p (a, CDM

W |W )
def
= inf

{Φn}∞
n=1

{

lim sup
n→∞

Pe,W×n(Φn)

∣
∣
∣
∣
lim inf
n→∞

1√
n
(log |Φn| − nCDM

W ) ≥ a

}

. (2)
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Fixing the average error probability, we obtain the following quantity:

CDM(ǫ, CDM
W |W )

def
= sup

{Φn}∞
n=1

{

lim inf
n→∞

1√
n
(log |Φn| − nCDM

W )

∣
∣
∣
∣
lim sup
n→∞

Pe,W×n(Φn) ≤ ǫ

}

. (3)

We refer to this value the optimum second-order transmission rate with the error probabilityǫ. In order to treat the second-order
coding rate, we need the distribution functionG for the standard Gaussian distribution (with expectation0 and variance1),
which is defined by

G(x)
def
=

∫ x

−∞

1√
2π
e−x

2/2 dx.

In this problem, the quantityVP,W :

VP,W
def
=
∑

x

P (x)
∑

y

Wx(y)

(

log
Wx(y)

WP (y)
−D(Wx‖WP )

)2

plays an important role. By using these quantities,CDM
p (a, CDM

W |W ) andCDM(ǫ, CDM
W |W ) are calculated in the stationary

discrete memoryless case as follows
Theorem 1: (Strassen[3]) When the cardinality|X | is finite andPM

def
= argmaxP I(P,W ) exists uniquely, then

CDM
p (a, CDM

W |W ) = G(a/
√

VPM ,W ) (4)

CDM(ǫ, CDM
W |W ) =

√

VPM ,WG
−1(ǫ). (5)

When {Wx} is linearly independent by regarding distributions as positive vectors, the mapP 7→ WP is a one-to-one map.

Then,PM
def
= argmaxP I(P,W ) exists uniquely. However, when{Wx} is not linearly independent,argmaxP I(P,W ) is not

necessarily unique. In order to treat such a case, we introduce two quantitiesV +
W and V −

W and two distributionsPM+ and
PM−:

V +
W

def
= max

P∈V
VP,W

V −
W

def
= min

P∈V
VP,W

PM+
def
= argmax

P∈V
VP,W

PM−
def
= argmin

P∈V
VP,W ,

whereV def
= {P |I(P,W ) = CDM

W }. In order to treat such a case, Theorem 1 is generalized as follows:
Theorem 2: (Strassen[3]) When the cardinality|X | is finite and the setV has multiple elements, (4) and (5) are generalized

as

CDM
p (a, CDM

W |W ) =







G(a/
√

V +
W ) a ≥ 0

G(a/
√

V −
W ) a < 0

CDM(ǫ, CDM
W |W ) =







√

V +
WG

−1(ǫ) ǫ ≥ 1/2
√

V −
WG

−1(ǫ) ǫ < 1/2.

More precisely, the direct part

CDM
p (a, CDM

W |W ) ≤







G(a/
√

V +
W ) a ≥ 0

G(a/
√

V −
W ) a < 0

(6)

CDM(ǫ, CDM
W |W ) ≥







√

V +
WG

−1(ǫ) ǫ ≥ 1/2
√

V −
WG

−1(ǫ) ǫ < 1/2.
(7)

hold without any assumption, and the converse part

CDM
p (a, CDM

W |W ) ≥







G(a/
√

V +
W ) a ≥ 0

G(a/
√

V −
W ) a < 0

CDM(ǫ, CDM
W |W ) ≤







√

V +
WG

−1(ǫ) ǫ ≥ 1/2
√

V −
WG

−1(ǫ) ǫ < 1/2.
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hold with the assumption|X | <∞.
Next, consider the cost functionc : X 7→ R. In this case, we often assume that all encoded alphabetsφ(i) of the codeΦn

belongs to the set

Xn
c,K

def
=

{

x ∈ Xn

∣
∣
∣
∣
∣

n∑

i=1

c(xi) ≤ K

}

.

The maximum coding rate with the above condition is called the capacity with the cost constraint, and is given by [10]

CDMW,c,K = max
P :EP c(x)≤K

I(P,W ) = min
Q

max
P :EP c(x)≤K

J(P,Q,W ),

where

J(P,Q,W )
def
=
∑

x∈X
P (x)D(Wx‖Q).

In the same way to (2) and (3), we define the following values with the cost constraint:

CDM
p (a, CDM

W |W, c,K)
def
= inf

{Φn}∞
n=1

{

lim sup
n→∞

Pe,W×n(Φn)

∣
∣
∣
∣
lim inf
n→∞

1√
n
(log |Φn| − nCDM

W ) ≥ a, supp(Φn) ⊂ Xn
c,K

}

. (8)

CDM(ǫ, CDM
W |W, c,K)

def
= sup

{Φn}∞
n=1

{

lim inf
n→∞

1√
n
(log |Φn| − nCDM

W )

∣
∣
∣
∣
lim sup
n→∞

Pe,W×n(Φn) ≤ ǫ, supp(Φn) ⊂ Xn
c,K

}

, (9)

wheresupp(Φn) expresses the set{φ(1), . . . , φ(N)} for a codeΦ = (N,φ, {Di}Ni=1). We introduce two quantitiesV +
W,c,K

andV −
W,c,K and two distributionsPM+,c,K andPM−,c,K :

V +
W,c,K

def
= max

P∈Vc,K
VP,W

V −
W,c,K

def
= min

P∈Vc,K
VP,W

PM+,c,K
def
= argmax

P∈Vc,K
VP,W

PM−,c,K
def
= argmin

P∈Vc,K
VP,W ,

whereVc,K def
= {P |I(P,W ) = CDM

W,c,K ,EP c(x) ≤ K}.
Theorem 3: When the cardinality|X | is finite

CDM
p (a, CDM

W,c,K |W, c,K) =







G(a/
√

V +
W,c,K) a ≥ 0

G(a/
√

V −
W,c,K) a < 0

CDM(ǫ, CDM
W,c,K |W, c,K) =







√

V +
W,c,KG

−1(ǫ) ǫ ≥ 1/2
√

V −
W,c,KG

−1(ǫ) ǫ < 1/2.

More precisely, the direct part

CDM
p (a, CDM

W,c,K |W, c,K) ≤







G(a/
√

V +
W,c,K) a ≥ 0

G(a/
√

V −
W,c,K) a < 0

(10)

CDM(ǫ, CDM
W,c,K |W, c,K) ≥







√

V +
W,c,KG

−1(ǫ) ǫ ≥ 1/2
√

V −
W,c,KG

−1(ǫ) ǫ < 1/2.
(11)

hold without any assumption, and the converse part

CDM
p (a, CDM

W,c,K |W, c,K) ≥







G(a/
√

V +
W,c,K) a ≥ 0

G(a/
√

V −
W,c,K) a < 0

CDM(ǫ, CDM
W,c,K |W, c,K) ≤







√

V +
W,c,KG

−1(ǫ) ǫ ≥ 1/2
√

V −
W,c,KG

−1(ǫ) ǫ < 1/2.
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hold with the assumption|X | <∞.
Remark 1: When the setsX andY are given as general probability spaces with generalσ-fields σ(Xn) and σ(Yn), the

above formulation can be extended with the following definition. The channelW is given by the real-valued function fromX
andσ(Y) satisfying the following conditions; (i) For anyx ∈ X , Wn is a probability measure onY, (ii) For anyF ∈ σ(Y),
W·(F ) is a measurable function onX . P take values in probability measures onX . Then, the summands

∑

x∈X P (x) and
∑

y∈Y Wx(y) are replaced by
∫

X P (dx) and
∫

Y Wx(dy), respectively. For any distributionQ on Y, the function Wx(y)
WP (y) is

replaced by the inverse of Radon-Nikodym derivativedWP

dWx
(y) of WP with respect toWx. In this extension, the direct part

(6), (7), (10), and (11) are valid.

III. SECOND ORDER CODING RATE IN ADDITIVEMARKOVIAN CHANNEL

Next, we we focus on the additive Markovian channel, in which, we assume that the additive noise obeys the transition
matrixQ(y|x) on the setX = {1, . . . , d}. Then, the channelW (Q)n(y|x) has the form

∏n
i=1Q(yi − xi|yi−1 − xi−1), where

y0 − x0 is the initial states0 and the arithmetic is based on modd. For simplicity, we assume that the transition matrix
Q(y|x) is irreducible. Then, then-th marginal distributionQn(xn) :=

∑

i1,...,in

∏n
i=1Q(xi|xi−1) approaches the stationary

distributionPQ(x), which is given as the eigenvector ofQ(y|x) associated with the eigenvalue1[12]. When the conditional
distributionQ(y|x) is denoted byQx(y), the normalized entropy of the distributionQn(~xn) :=

∏n
i=1Q(xi|xi−1) goes to

H(Q) :=
∑

x PQ(x)H(Qx). Then, by defining the capacityCAM
W in the same way asCDM

W , the channel capacityCAM
W is

calculated as

CAM
Q = log d−H(Q). (12)

Similar toCDM
p (a, CDM

W |W ) andCDM(ǫ, CDM
W |W ), the second order quantitiesCAM

p (a, CAM
Q |W ) andCAM(ǫ, CAM

Q |W ) are
defined for the additive Markovian case. Then, the followingtheorem holds. In this problem, the varianceV (Q):

V (Q)

:=
∑

y,x

Q(y|x)PQ(x)(− logQ(y|x)−H(Q))2

+ 2
∑

z,y,x

Q(z|y)Q(y|x)PQ(x)(− logQ(z|y)−H(Q))(− logQ(y|x)−H(Q)).

plays an important role. By using these quantities,CAM
p (a, CAM

Q |W ) and CAM(ǫ, CAM
Q |W ) are calculated in the additive

Markovian case as follows
Theorem 4: The relations

CAM
p (a, CAM

Q |W ) = G(a/
√

V (Q))

CAM(ǫ, CAM
Q |W ) =

√

V (Q)G−1(ǫ).

hold.

IV. SECOND ORDER CODING RATE INGAUSSIAN CHANNEL

In this section, we consider the case of additive Gaussian noise. In this case, both of the input system and the output

system are given byR, and the output distributionWx(y) is given by 1√
2πN

e−
(y−x)2

2N for a given noise levelN . If there is no
restriction for input signal, the capacity diverges. Hence, it is natural to consider the cost constraint. Consider thecost function
c(x)

def
= x2 and the maximum costS. Then, the maximum mutual informationmaxP :EP x2≤S I(P,W ) is attained whenP is

equal toPM (x)
def
= 1√

2πS
e−

x2

2S . In this case,

D(Wx‖WPM ) =
1

2
log(1 +

S

N
) +

x2

N − S
N

2(1 + S
N )

. (13)

Then, the capacity is known to be [9], [11]

CGN,S = max
P :EPx2≤E

I(P,W ) =
1

2
log(1 +

S

N
).

Since
∫ ∞

−∞

(

log
Wx(y)

WPM (y)
−D(Wx‖WPM )

)2

Wx(y)dy =
S2

N2 + 2x
2

N

2(1 + S
N )2

,
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VPM ,W is calculated as

VPM ,W =
S2

N2 + 2 SN
2(1 + S

N )2
.

Since the cardinality ofR is infinite, the assumption of section II does not hold. That is, we cannot apply Theorem 3. However,
the following theorem holds.

Theorem 5: Define the quantitiesCGp (a, C
G
N,S|N,S) andCG(ǫ, CGN,S |N,S) in the same way as (8) and (9). Then,

CGp (a, CGN,S|N,S) = G(a/
√

VPM ,W )

CG(ǫ, CGN,S|N,S) =
√

VPM ,WG
−1(ǫ).

V. COMPARISON WITH THEGALLAGER BOUND

At first glance, the Gallager bound [1] seems to work well for evaluating the average error probability, even when the
transmission length is close tonCDM

W . This is because this bound gives the optimal exponential rate when the coding rate is
greater than the critical rate. In this section, we clarify whether the present evaluation or the Gallager bound [1] provides a
better evaluation when the transmission length is close tonCDM

W . For this analysis, we describe the transmission length by
nCDM

W +
√
nR2. Let us compare the present evaluation with the Gallager bound, which is given by

min
Φ:|Φ|≤enR

Pe,W×n(Φ) ≤ min
P

min
0≤s≤1

en(Rs+ψP (s)), (14)

where

ψP (s)
def
= log

∑

y

(
∑

x

P (x)Wx(y)
1

1+s

)1+s

.

Since the present evaluation is essentially based on Verdú-Han’s method[14], this comparison can be regarded as a comparison
between Verdú-Han’s evaluation and the Gallager bound. Next, we substitutenCDM

W +
√
nR2 into nR. Then,

min
0≤s≤1

en(Rs+ψP (s)) = e
nmin0≤s≤1(C

DM
W s+

R2√
n
s+ψP (s))

.

Taking the derivatives ofψP (s), we obtain

dψP (s)

ds

∣
∣
∣
∣
s=0

= −I(P,W )

d2ψP (s)

ds2

∣
∣
∣
∣
s=0

= VP,W .

WhenCDM
W = I(P,W ),

CDM
W s+

R2√
n
s+ ψP (s) ∼= CDM

W s+
R2√
n
s− I(P,W )s+

VP,W
2

s2

=
R2√
n
s+

VP,W
2

s2 =
VP,W
2

(s+
R2√
nVP,W

)2 − R2
2

2nVP,W
.

Therefore, as is rigorously shown in Appendix, whenR2 < 0,

lim
n→∞

n min
0≤s≤1

(

CDM
W s+

R2√
n
s+ ψP (s)

)

= − R2
2

2VP,W
. (15)

Next, we setP asPM−. Then, the Gallager bound yields

CDM
p (R2, C

DM
W |W ) ≤ e

− R2
2

2V
−
W (16)

for anyR2 < 0. That is, the gap between our evaluation and the Gallager bound is equal to the difference betweenF ( R2√
V −
W

) =

∫
R2√
V

−
W

−∞
1√
2π
e−x

2/2dx ande
− R2

2

2V
−
W . Although the former is smaller than the latter, both exponential rates coincide in the limit

R2 → ∞. Since we can consider that the Gallager bound gives the trivial bound forR2 > 0, both evaluations are illustrated
in Fig. 2.

Next, we consider the same comparison for the additive Markovian case. The Gallager bound is given by

min
Φ:|Φ|≤enR

Pe,W (Q)n(Φ) ≤ min
P

min
0≤s≤1

en(Rs+ψQ,n(s)),
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Fig. 2. Comparison between the present evaluation and the Gallager bound. The solid line indicates the Gallager bound, and the dotted line indicates the
present evaluation.

where

ψQ,n(s)
def
= − s log d+

1 + s

n
log(

∑

~xn

Qn(~xn)
1

1+s ).

Since the asymptotic first and second cummulants of the random variablelogQn(~xn) are−H(Q) andV (Q), we have

log(
∑

~xn

Qn(~xn)
1+ t√

n ) = −H(Q)t
√
n+

V (Q)

2
t2 + o(t2)

as t→ 0. Thus,

nψQ,n(
t√
n
) = (− log d+H(Q))t

√
n+

V (Q)

2
t2 + o(t2).

SubstitutingnCW +
√
nR2 and t√

n
into nR ands, we have

CAM
Q s+

R2√
n
s+ ψQ,n(s)

=n(CAM
Q

t√
n
+
R2√
n

t√
n
+ ψQ,n(

t√
n
))

=R2t+
V (Q)

2
t2 + o(t2)

=
V (Q)

2
(t+

R2

V (Q)
)2 − R2

2

2V (Q)
.+ o(t2)

Therefore, whenR2 < 0, choosings = −R2

V (Q)
√
n

, we obtain

min
Φ:|Φ|≤enC

AM
Q

+
√
nR2

Pe,W (Q)n(Φ) ≤ e−
R2

2
2V (Q) ,

which has the same form as (16).
In both cases, when−3 ≤ R2 ≤ 2, the difference is not so small. In such a case, it is better touse the present evaluation.

That is, the Gallager bound does not give the best evaluationin this case. This conclusion is opposite to the exponential
evaluation when the rate is greater than the critical rate. Han [5] calculated the exponential rate of the present bound,and
found that it is worse than that of the Gallager bound1.

Moreover, a similar conclusion was obtained in the LDPC case. Kabashima and Saad [13] compared the Gallager upper
bound of the average error probability and the approximation of the average error probability by the replica method. That
is, they compared both thresholds of the rate, i.e., both maximum transmission rates at which the respective error probability
goes to zero. In their study (Table 1 of [13]), they pointed out that there exists a non-negligible difference between these two
thresholds in the LDPC case. This information may be helpfulfor discussing the performance of the Gallager bound.

1This description was provided in the original Japanese version, but not in the English translation.
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VI. PROPERTIES OFV +
W AND V −

W

A. Example

In this section, we consider a typical example, in which,V +
W is different thanV −

W . For this purpose, we choose two parameters
q1, q2 ∈ [0, 1] satisfying

0 ≤ 2q1 − q2 ≤ 1

h(q1)−
h(q2) + h(2q1 − q2)

2
≤ − logmax{q1, 1− q1}, (17)

whereh(x)
def
= −x log x− (1− x) log(1− x). According to the following three conditions (i), (ii) and (iii), we define the five

joint distributionsW1, W2, W3, W4, andW5 on two random variablesA = 0, 1 andB = 0, 1. In the following,QA (QB)
denotes the marginal distribution ofA concerningA (B).

(i) Uniformity on A
All distributions are assumed to satisfy

WA
i (0) = 1/2.

(ii) Same marginal distribution onB for i = 1, 2
Two random variablesA = 0, 1 andB = 0, 1 are not independent inW1 andW2, but W1 andW2 have the same
marginal distribution onB. That is,

WB
1 (0|A = 0) =WB

2 (0|A = 1) = q2

WB
1 (0|A = 1) =WB

2 (0|A = 0) = 2q1 − q2.

Thus,W1 andW2 satisfy

WB
1 (0) =WB

2 (0) = q1.

(iii) Independence betweenA andB for i = 3, 4, 5
Due to the condition (17), there exist two solutions forx in the following equation becaused(x‖q1) is monotone
increasing in(q1, 1) and is monotone decreasing in(0, q1):

h(q1)−
h(q2) + h(2q1 − q2)

2
= d(x‖q1),

where

d(x‖y) def
= x log

x

y
+ (1− x) log

1− x

1− y
.

Letting p1 and p2 be these two solutions, we define three distributionsW3, W4, andW5, in which two random
variablesA = 0, 1 andB = 0, 1 are independent, by

WB
3 (0) = p1, W

B
4 (0) = p2, W

B
5 (0) = q1.

From the construction, we can check that

D(Wi‖W5) = h(q1)−
h(q2) + h(2q1 − q2)

2
(18)

for i = 1, 2, 3, 4. Consider the subsets

Z0
def
= {Q|QA(0) = 1/2}

Z1
def
= {Q ∈ Z0|QB(0) = q1}

Z2
def
= {Q ∈ Z0|QB(0|A = 0) = QB(0|A = 1)}.

Then,Z1 ∩ Z2 = {W5}. Hence, the relationship amongZ0, Z1, Z2, W1, W2, W3, W4, andW5 is shown in Fig. 3. For any
distributionQ,

Then, the following lemma holds.
Lemma 1:

argmax
Q

min
x=1,2

D(Wx‖Q) = argmax
Q∈Z1

min
x=1,2

D(Wx‖Q) (19)

argmax
Q

min
x=3,4

D(Wx‖Q) = argmax
Q∈Z2

min
x=3,4

D(Wx‖Q). (20)
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Fig. 3. Z0, Z1, Z2, W1, W2, W3, W4, andW5

Therefore, (18) implies that

argmax
Q

min
x=1,2,3,4

D(Wx‖Q) =W5.

and

max
Q

min
x=1,2

D(Wx‖Q) = max
Q∈Z1

min
x=1,2

D(Wx‖Q) = h(q1)−
h(q2) + h(2q1 − q2)

2

max
Q

min
x=3,4

D(Wx‖Q) = max
Q∈Z2

min
x=3,4

D(Wx‖Q) = h(q1)−
h(q2) + h(2q1 − q2)

2
.

That is, the capacity of the channelx = 1, 2, 3, 4 7→Wx is calculated as

CDM
W = max

Q
min

x=1,2,3,4
D(Wx‖Q) = h(q1)−

h(q2) + h(2q1 − q2)

2
.

Then, the setV is given by the convex hull ofP = (1/2, 1/2, 0, 0) andP ′ = (0, 0, q1−p2p1−p2 ,
q1−p1
p2−p1 ). Thus,VλP+(1−λ)P ′,W =

λVP,W + (1− λ)VP ′,W . WhenVP,W ≤ VP ′,W ,

V +
W = VP ′,W , V

−
W = VP,W .

Otherwise,

V +
W = VP,W , V

−
W = VP ′,W .

Our numerical analysis (Fig. 4) suggests the relationVP,W ≤ VP ′,W .

0 0.1 0.2 0.3 0.4 0.5
q1 Hq2=0.1L

0

0.2

0.4

0.6

0.8

V
1
,
V
2

0 0.1 0.2 0.3 0.4 0.5
q1 Hq2=0.1L

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

V
2
-
V
1

Fig. 4. Comparison betweenV1 = VP,W (dotted line) andV2 = VP ′,W (solid line).

Proof of Lemma 1: For this proof, we define the mapsEA andEB as

(EAQ)(A = a,B = b) :=PA(a)Q(B = b|A = a)

(EBQ)(A = a,B = b) :=PB(b)Q(A = a|B = b),
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wherePA(0) = 1/2 andPB(0) = q1. when the distributionQ′ satisfies thatQ′A = PA, the following Pythagorean type
inequality

D(Q′‖Q) = D(Q′‖EA(Q)) +D(EA(Q)‖Q) (21)

holds. Similarly, when the distributionQ′ satisfies thatQ′B = PB, the following Pythagorean type inequality

D(Q′‖Q) = D(Q′‖EB(Q)) +D(EBQ‖Q) (22)

holds. DefineQ2k := EB ◦ EA ◦ · · · ◦ EB ◦ EA
︸ ︷︷ ︸

2k

Q andQ2k+1 := EA ◦ EB ◦ EA ◦ · · · ◦ EB ◦ EA
︸ ︷︷ ︸

2k+1

Q. Then,D(Q2k+1‖Q2k) =

D(EAQ2k‖EAQ2k−1) ≤ D(Q2k‖Q2k−1), andD(Q2k‖Q2k−1) ≤ D(Q2k−1‖Q2k−2). For anyQ′ ∈ Z1, we have

D(Q′‖Q) = D(Q′‖Qn) +
n∑

k=1

D(Qk‖Qk−1).

Thus,D(Qk‖Qk−1) converges to zero. Therefore, there exists a distributionQ∞ such thatQk → Q∞. Hence,

D(Q′‖Q) = D(Q′‖Q∞) +

∞∑

k=1

D(Qk‖Qk−1),

which implies (19).
Further, for anyP2 ∈ Z2, we assume thatQ satisfiesQA = PA. Since the concavity oflog implies the inequality

log
∑

a P
A(a)Q(B = b|A = a) ≥∑a P

A(a) logQ(B = b|A = a), the following Pythagorean type inequality

D(P2‖Q) = H(P2)−
∑

a

∑

b

PA2 (a)PB2 (b) logQ(a, b)

=H(P2)−
∑

a

PA2 (a) logQA(a)−
∑

a

∑

b

PA2 (a)PB2 (b) logQ(B = b|A = a)

=H(P2)−
∑

a

PA2 (a) logQA(a)−
∑

b

PB2 (b) logQB(b) +
∑

b

PB2 (b) logQB(b)−
∑

a

∑

b

PA2 (a)PB2 (b) logQ(B = b|A = a)

=D(P2‖PA2 × PB2 ) +
∑

b

PB2 (b) logQB(b)−
∑

b

PB2 (b)
∑

a

PA2 (a) logQ(B = b|A = a)

=D(P2‖PA2 × PB2 ) +
∑

b

PB2 (b)

(

log
∑

a

PA(a)Q(B = b|A = a)−
∑

a

PA(a) logQ(B = b|A = a)

)

≥D(P2‖PA2 × PB2 ) (23)

holds. Combination of (22) and (23) yields (20).

B. Additivity

The capacity satisfies the additivity condition. That is, for any two channels{Wx(y)} and{W ′
x′(y′)}, the combined channel

{(W ×W ′)x,x′(y, y′) =Wx(y)W
′
x′(y′)} satisfies the following:

CDM
W×W ′ = CDM

W + CDM
W ′ .

Similarly, as mentioned in the following lemma,V +
W andV −

W satisfy the additivity condition.
Lemma 2: The equations

V +
W×W ′ = V +

W + V +
W ′ (24)

V −
W×W ′ = V −

W + V −
W ′ (25)

hold.
Proof of Lemma 2: We choose the distributionsQ andQ′ as

Q
def
= argmin

Q
max
x

D(Wx‖Q)

Q′ def
= argmin

Q′
max
x′

D(W ′
x′‖Q′).

Then,

Q×Q′ = argmin
Q′′

max
x,x′

D(Wx ×W ′
x′‖Q′′).
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Assume that a distributionP with the random variablesx andx′ satisfies the following:
∑

x,x′

P (x, x′)Wx ×W ′
x′ = Q×Q′, (26)

I(P,W ×W ′) = CDM
W + CDM

W ′ . (27)

Then, the marginal distributionsP1 andP1 of P concerningx andx′ satisfy

I(P1,W ) = CDM
W , I(P2,W

′) = CDM
W ′ ,

which implies

D(Wx‖Q) = CDM
W , D(W ′

x′‖Q′) = CDM
W ′

for x ∈ supp(P1) andx′ ∈ supp(P2), wheresupp(P ) denotes the support of the distributionP . Hence,

VP,W×W ′ =
∑

x,x′

P (x, x′)
∑

y,y′

Wx(y)W
′
x′(y′)(log

Wx(y)

Q(y)
+ log

W ′
x′(y′)

Q′(y′)
)2 − (D(Wx‖Q) +D(W ′

x′‖Q′))2

=
∑

x,x′

P (x, x′)
∑

y,y′

Wx(y)W
′
x′(y′)

(

(log
Wx(y)

Q(y)
)2 + (log

W ′
x′(y′)

Q′(y′)
)2 + 2 log

Wx(y)

Q(y)
log

W ′
x′(y′)

Q′(y′)

)

− (D(Wx‖Q)2 +D(W ′
x′‖Q′)2 + 2D(Wx‖Q)D(W ′

x′‖Q′))

=
∑

x,x′

P (x, x′)
∑

y,y′

Wx(y)W
′
x′(y′)

(

(log
Wx(y)

Q(y)
)2 + (log

W ′
x′(y′)

Q′(y′)
)2
)

−D(Wx‖Q)2 −D(W ′
x′‖Q′)2

=VP1,W + VP2,W ′ .

Therefore, when the conditions (26) and (27) are satisfied, the maximum ofVP,W×W ′ is equal toV +
W +V +

W ′ , which implies
(24). Similarly, we obtain (25).

The same fact holds with the cost constraint. The capacity with the cost constraint satisfies the additivity condition. That is,
for any two cost fucntionsc andc′ for channels{Wx(y)} and{W ′

x′(y′)}, the combined cost(c+ c′)(x, x′)
def
= c(x) + c′(x′)

satisfies the following:

CDM
W×W ′,c+c′,K+K′ = CDM

W,c,K + CDM
W ′,c′,K′ .

The quantitiesV +
W,c,K andV −

W,c,K satisfy the additivity condition.
Lemma 3: The equations

V +
W×W ′,c+c′,K+K′ = V +

W,c,K + V +
W ′,c′,K′ (28)

V −
W×W ′,c+c′,K+K′ = V −

W,c,K + V −
W ′,c′,K′ (29)

hold.
This lemma can be proven in the same way as Lemma 2 by replacingthe definitions ofQ andQ′ by

Q
def
= argmin

Q
max

P :EP c(x)≤K

∑

x

P (x)D(Wx‖Q)

Q′ def
= argmin

Q′
max

P ′:EP ′c′(x′)≤K′

∑

x′

P ′(x′)D(W ′
x′‖Q′).

VII. N OTATIONS OF THE INFORMATION SPECTRUM

A. Information Spectrum

In the present paper, we treat general channels. First, we focus on two sequences of probability spaces{Xn}∞n=1 of the

input signal and those{Yn}∞n=1 of the output signal, and a sequence of probability transition matrixesW
def
= {Wn(y|x)}∞n=1.

We also focus on a sequence of distributions on input systemsP
def
= {Pn}∞n=1. The asymptotic behavior of the logarithmic

likelihood ratio betweenWn
x (y)

def
= Wn(y|x) andWn

Pn(y)
def
=
∑

x∈Xn P
n(x)Wn(y|x) can be characterized by the following

quantities

Ip(R|P ,W )
def
= lim sup

n→∞

∑

x∈Xn
Pn(x)Wn

x

{
1

n
log

Wn
x (y)

Wn
Pn(y)

< R

}

I(ǫ|P ,W )
def
= sup{R|Ip(R|P ,W ) ≤ ǫ}
= inf{R|Ip(R|P ,W ) ≥ ǫ}



13

for 0 ≤ ǫ < 1. Focusing on a sequence of distributions on output systemsQ
def
= {Qn}∞n=1, we can define

Jp(R|P ,Q,W )
def
= lim sup

n→∞

∑

x∈Xn
Pn(x)Wn

x

{
1

n
log

Wn
x (y)

Qn(y)
< R

}

J(ǫ|P ,Q,W )
def
= sup{R|Jp(R|P ,Q,W ) ≤ ǫ}
= inf{R|Jp(R|P ,Q,W ) ≥ ǫ}

for 0 ≤ ǫ < 1.
When the channelWn is then-th stationary discrete memoryless channelW×n of W (y|x) and the probability distribution

P = {Pn} is then-th independent and identical distributionP×n of P , the law of large numbers guarantees thatI(ǫ|P ,W )

coincides with the mutual informationI(P,W ) =
∑

x,y P (x)Wx(y) log
Wx(y)
WP (y) . For a more detailed description of asymptotic

behavior, we focus on the second order of the coding lengthnβ for β < 1. In order to characterize the coefficient of the second
ordernβ , we introduce the following quantities:

Ip(R2, R1|P ,W )
def
= lim sup

n→∞

∑

x∈Xn
Pn(x)Wn

x

{
1

nβ
(log

Wn
x (y)

Wn
Pn(y)

− nR1) < R2

}

I(ǫ, R1|P ,W )
def
= sup{R2|Ip(R2, R1|P ,W ) ≤ ǫ}
= inf{R2|Ip(R2, R1|P ,W ) ≥ ǫ}

for 0 ≤ ǫ < 1. Similarly, Jp(R2, R1|P ,Q,W ) and J(ǫ, R1|P ,Q,W ) are defined for0 ≤ ǫ < 1. WhenW is W× =
{W×n} andP is P× = {P×n}, the second order of the coding length isn

1
2 and the central limit theorem guarantees that

1

n
1
2
(log

Wn
x (y)

Wn
Pn

(y) − nI(P,W )) asymptotically obeys the Gaussian distribution with expectation 0 and variance:

VP,W
def
=
∑

x

P (x)
∑

y

Wx(y)

(

log
Wx(y)

WP (y)
− I(P,W )

)2

.

Therefore, using the distribution functionF for the standard Gaussian distribution, we can express the above quantities as
follows:

I(ǫ, I(P,W )|P×,W×) =
√

VP,WG
−1(ǫ). (30)

In the case of additive channels, we focus on the limiting behavior of the entropy rate of the distributionsQ = {Qn}∞n=1

describing the additive noise. Similar to the above, we define the following.

Hp(R|Q)
def
= lim inf

n→∞

∑

x∈Xn
Qn
{−1

n
logQn(x) < R

}

H(ǫ|Q)
def
= sup{R|Hp(R|Q) ≤ ǫ}
= inf{R|Hp(R|Q) ≥ ǫ}

Hp(R2, R1|Q)
def
= lim inf

n→∞

∑

x∈Xn
Qn
{

1

nβ
(− logQn(x)− nR1) < R2

}

H(ǫ, R1|Q)
def
= sup{R2|Hp(R2, R1|Q) ≤ ǫ}
= inf{R2|Hp(R2, R1|Q) ≥ ǫ}

for 0 ≤ ǫ < 1. As is discussed in Section VII in [6], whenQ is given by a Markovian processQ(y|x), the relationships

H(ǫ|Q) = H(Q) (31)

H(ǫ,H(Q)|Q) =
√

V (Q)G−1(ǫ) (32)

Hp(R2, H(Q)|Q) = G(R2/
√

V (Q)) (33)

hold with β = 1/2.

B. Stochastic limits

In order to treat the relationship between the above quantities, we consider the limit superior in probability p-lim supn→∞
and the limit inferior in probability p-lim infn→∞, which are defined by

p- lim sup
n→∞

Zn|Pn
def
= inf{a| lim

n→∞
Pn{Zn > a} = 0}

p- lim inf
n→∞

Zn|Pn
def
= sup{a| lim

n→∞
Pn{Zn < a} = 0}.
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In particular, when p-lim supn→∞ Zn|Pn = p- lim infn→∞ Zn|Pn = a, we write

p- lim
n→∞

Zn|Pn = a.

The concept p-lim infn→∞ can be generalized as

ǫ-p- lim inf
n→∞

Zn|Pn
def
= sup{a| lim sup

n→∞
Pn{Zn < a} ≤ ǫ}.

From the definitions, we can check the following properties:

ǫ-p- lim inf
n→∞

Zn + Yn|Pn ≥ǫ-p- lim inf
n→∞

Zn|Pn + p- lim inf
n→∞

Yn|Pn . (34)

ǫ-p- lim inf
n→∞

Zn + Yn|Pn ≤ǫ-p- lim inf
n→∞

Zn|Pn + p- lim sup
n→∞

Yn|Pn . (35)

As shown by Han [5], the relation

p- lim inf
n→∞

1

nα
log

Pn(x)

Pn′(x)

∣
∣
∣
∣
Pn

≥ 0 (36)

holds forα > 0 and any two sequencesP = {Pn} andP ′ = {Pn′} of distributions with the variablex.
By using this concept,I(ǫ|P ,W ), J(ǫ|P ,Q,W ), I(ǫ, R1|P ,W ), andJ(ǫ, R1|P ,Q,W ) are characterized by

I(ǫ|P ,W ) = ǫ-p- lim inf
n→∞

1

n
log

Wn
x (y)

Wn
Pn(y)

∣
∣
∣
∣
PPn,Wn

J(ǫ|P ,Q,W ) = ǫ-p- lim inf
n→∞

1

n
log

Wn
x (y)

Qn(y)

∣
∣
∣
∣
PPn,Wn

I(ǫ, R1|P ,W ) = ǫ-p- lim inf
n→∞

1

nβ
(log

Wn
x (y)

Wn
Pn(y)

− nR1)

∣
∣
∣
∣
PPn,Wn

J(ǫ, R1|P ,Q,W ) = ǫ-p- lim inf
n→∞

1

nβ
(log

Wn
x (y)

Qn(y)
− nR1)

∣
∣
∣
∣
PPn,Wn

.

SubstitutingWn
Pn andQn into Pn andPn′ in (36), and using (34), we obtain

I(ǫ|P ,W ) ≤ J(ǫ|P ,Q,W )

I(ǫ, R1|P ,W ) ≤ J(ǫ, R1|P ,Q,W ).

Since1−Hp(R|Q) = lim infn→∞Qn{ 1
n logQn(x) < −R}, H(ǫ|Q) is characterized as

−H(ǫ|Q) = − inf{R|Hp(R|Q) ≥ ǫ}

=sup{−R|1−Hp(R|Q) ≤ 1− ǫ} = (1− ǫ)-p- lim inf
n→∞

1

n
logQn(x) |Qn . (37)

Similarly,

−H(ǫ, R1|Q) = (1− ǫ)-p- lim inf
n→∞

1

nβ
(logQn(x) + nR1)

∣
∣
∣
∣
Qn

. (38)

In the following, we discuss the relationship between the above-mentioned quantities and channel capacities.

VIII. G ENERAL ASYMPTOTIC FORMULAS

A. General case

Next, we consider theǫ capacity and its related quantity, which are defined by

Cp(R|W )
def
= inf

{Φn}∞
n=1

{

lim sup
n→∞

Pe,Wn(Φn)

∣
∣
∣
∣
lim inf
n→∞

1

n
log |Φn| ≥ R

}

C(ǫ|W )
def
= sup

{Φn}∞
n=1

{

lim inf
n→∞

1

n
log |Φn|

∣
∣
∣
∣
lim sup
n→∞

Pe,Wn(Φn) ≤ ǫ

}

.

Concerning these quantities, the following general asymptotic formulas hold.
Theorem 6: (Verdú & Han[14], Hayashi & Nagaoka [15]) The relations

Cp(R|W ) = inf
P

lim
γ↓0

Ip(R − γ|P ,W ) = inf
P

sup
Q

lim
γ↓0

Jp(R− γ|P ,Q,W ) (39)

C(ǫ|W ) = sup
P

I(ǫ|P ,W ) = sup
P

inf
Q
J(ǫ|P ,Q,W ) (40)
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hold for 0 ≤ ǫ < 1.
Remark 2: Historically, Verdú & Han [14] proved the first equation in (40). Hayashi & Nagaoka [15] established the second

equation in (40) withǫ = 0 for the first time, even for the classical case, although their main topic was the quantum case. The
relation (39) is proven for the first time in this paper.

Next, we proceed to the second-order coding rate. As a generalization of (2) and (3), we define the following:

Cp(R2, R1|W )
def
= inf

{Φn}∞
n=1

{

lim sup
n→∞

Pe,Wn(Φn)

∣
∣
∣
∣
lim inf
n→∞

1

nβ
(log |Φn| − nR1) ≥ R2

}

(41)

C(ǫ, R1|W )
def
= sup

{Φn}∞
n=1

{

lim inf
n→∞

1

nβ
(log |Φn| − nR1)

∣
∣
∣
∣
lim sup
n→∞

Pe,Wn(Φn) ≤ ǫ

}

. (42)

Similar to Theorem 6, the following general formulas for thesecond-order coding rate hold.
Theorem 7: The relations

Cp(R2, R1|W ) = inf
P

lim
γ↓0

Ip(R2 − γ,R1|P ,W ) = inf
P

sup
Q

lim
γ↓0

Jp(R2 − γ,R1|P ,Q,W ) (43)

C(ǫ, R1|W ) = sup
P

I(ǫ, R1|P ,W ) = sup
P

inf
Q
J(ǫ, R1|P ,Q,W ) (44)

hold for 0 ≤ ǫ < 1.
Indeed, Theorem 7 has greater significance than generalization. This theorem provides a unified viewpoint concerning the

second order asymptotic rate in channel coding and the following merits. First, it shortens the proof of Theorem 3. Second it
enables us to extend Theorem 3 to the case of cost constraint.Third, it yields the extension to Gaussian noise case, whichhas
continuous input signals. Fourth, it allows us to extend thesame treatment to the Markovian case with the additive noise.

B. Cost constraint

We focus on a sequence of cost functionc = {cn}∞n=1 wherecn is a function fromXn to R. In this case, all alphabets are
assumed to belong to the set

Xn,c,K def
=

{

x ∈ Xn

∣
∣
∣
∣
∣

n∑

i=1

cn(x) ≤ nK

}

.

That is, our code{Φn} is assumed to satisfy thatsupp(Φn) ⊂ Xn,c,K . Then, the capacities with cost constraint are given by

Cp(R|W , c,K)
def
= inf

{Φn}∞
n=1

{

lim sup
n→∞

Pe,Wn(Φn)

∣
∣
∣
∣
lim inf
n→∞

1

n
log |Φn| ≥ R, supp(Φn) ⊂ Xn,c,K

}

C(ǫ|W , c,K)
def
= sup

{Φn}∞
n=1

{

lim inf
n→∞

1

n
log |Φn|

∣
∣
∣
∣
lim sup
n→∞

Pe,Wn(Φn) ≤ ǫ, supp(Φn) ⊂ Xn,c,K
}

Cp(R2, R1|W , c,K)
def
= inf

{Φn}∞
n=1

{

lim sup
n→∞

Pe,Wn(Φn)

∣
∣
∣
∣
lim inf
n→∞

1

nβ
(log |Φn| − nR1) ≥ R2, supp(Φn) ⊂ Xn,c,K

}

. (45)

C(ǫ, R1|W , c,K)
def
= sup

{Φn}∞
n=1

{

lim inf
n→∞

1

nβ
(log |Φn| − nR1)

∣
∣
∣
∣
lim sup
n→∞

Pe,Wn(Φn) ≤ ǫ, supp(Φn) ⊂ Xn,c,K
}

. (46)

Concerning these quantities, the following general asymptotic formulas hold.
Theorem 8: (Han[5], Hayashi & Nagaoka [15]) The relations

Cp(R|W , c,K) = inf
P :supp(Pn)⊂Xn,c,K

lim
γ↓0

Ip(R − γ|P ,W ) = inf
P

sup
Q

lim
γ↓0

Jp(R− γ|P ,Q,W ) (47)

C(ǫ|W , c,K) = sup
P :supp(Pn)⊂Xn,c,K

I(ǫ|P ,W ) = sup
P :supp(Pn)⊂Xn,c,K

inf
Q
J(ǫ|P ,Q,W ) (48)

hold for 0 ≤ ǫ < 1.
Remark 3: Historically, Han [5] proved the first equation in (48). Hayashi & Nagaoka [15] established the second equation

in (48) with ǫ = 0 for the first time, even for the classical case, although their main topic was the quantum case. The relation
(47) is proven for the first time in this paper.
Similar to Theorem 7, the following general formulas for thesecond-order coding rate hold.

Theorem 9: The relations

Cp(R2, R1|W , c,K) = inf
P :supp(Pn)⊂Xn,c,K

lim
γ↓0

Ip(R2 − γ,R1|P ,W ) = inf
P :supp(Pn)⊂Xn,c,K

sup
Q

lim
γ↓0

Jp(R2 − γ,R1|P ,Q,W )

(49)

C(ǫ, R1|W , c,K) = sup
P :supp(Pn)⊂Xn,c,K

I(ǫ, R1|P ,W ) = sup
P :supp(Pn)⊂Xn,c,K

inf
Q
J(ǫ, R1|P ,Q,W ) (50)
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hold for 0 ≤ ǫ < 1.
The above theorems can be regarded as special cases of Theorems 6 and 7 by substituting the setXn,c,K into the setXn.

Hence, it is sufficient to show Theorems 6 and 7.

C. Additive case

Next, we consider the case where the channel is given as a sequence of additive channelW (Q) = {Wn(Qn)(y|x) =
Qn(y − x)} on the setXn with the cardinalityd. Verdú & Han proved the following theorem.

Theorem 10: (Verdú & Han [14]) The relations

Cp(R|W (Q)) = 1− lim
γ↓0

Hp(log d−R+ γ|Q) (51)

C(ǫ|W (Q)) = log d−H(1− ǫ|Q) (52)

hold for 0 ≤ ǫ < 1.
This theorem and (55) imply (54).

Remark 4: Verdú & Han proved (52) in the case ofǫ = 0 at (7.2) in [14]. Other cases are proven at the first time in this
paper.
Similar to Theorem 10, the following formulas for the second-order coding rate hold for general additive channels.

Theorem 11: The relations

Cp(R2, R1|W ) = 1− lim
γ↓0

Hp(−R2 + γ, log d−R1|Q) (53)

C(ǫ, R1|W ) = −H(1− ǫ, log d−R1|Q) (54)

hold for 0 ≤ ǫ < 1.
Hence, we obtain Theorem 4 from (32) and (33).

Now, using Theorems 6 and 7, we prove Theorems 10 and 11. SinceWn
x (y) = Qn(y − x), we have

I(ǫ|P ,W ) = ǫ-p- lim inf
n→∞

1

n
log

Wn
x (y)

Wn
Pn(y)

∣
∣
∣
∣
PPn,Wn

≤ ǫ-p- lim inf
n→∞

1

n
logWn

x (y)

∣
∣
∣
∣
PPn,Wn

+ p- lim sup
n→∞

−1

n
logWn

Pn(y)

∣
∣
∣
∣
PPn,Wn

(55)

≤ ǫ-p- lim inf
n→∞

1

n
logQn(x)

∣
∣
∣
∣
Qn

+ log d

= log d−H(1− ǫ|Q), (56)

where (55) and (56) follow from (35) and (37), respectively.Since the equality holds whenPn is the uniform distribution, we
obtain

sup
P

I(ǫ|P ,W ) = log d−H(1− ǫ|Q),

which implies (52). Similarly, we can show (54).
Since p-lim supn→∞

−1
n logWn

Pn(y)|Wn
Pn

≤ d, we have

lim sup
n→∞

∑

x∈Xn
Pn(x)Wn

x

{
1

n
log

Wn
x (y)

Wn
Pn(y)

< R

}

≥ lim sup
n→∞

∑

x∈Xn
Pn(x)Wn

x

{
1

n
logWn

x (y) + log d < R

}

= lim sup
n→∞

Qn
{
1

n
logQn(x) < R− log d

}

=1− lim inf
n→∞

Qn
{−1

n
logQn(x) < log d−R

}

,

which implies that

Ip(R|P ,W ) ≥ 1−Hp(log d−R|Q).

Thus, we obtain (51). Similarly, we obtain (53).
Remark 5: When the setsXn andYn are given as general probability spaces with generalσ-fields σ(Xn) andσ(Yn), the

above formulation can be extended with the following definition. Then-th channelWn is given by the real-valued function
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from Xn andσ(Yn) satisfying the following conditions; (i) For anyx ∈ Xn, Wn
x is a probability measure onYn, (ii) For

any F ∈ σ(Yn), Wn
· (F ) is a measurable function onXn. P andQ take values in sequence of probability measures onXn

andYn, respectively. Then, the summands
∑

x∈Xn P
n(x) and

∑

y∈YnW
n
x (y) are replaced by

∫

Xn P
n(dx) and

∫

Yn W
n
x (dy),

respectively. For any distributionQ onYn, the functionW
n
x (y)
Q(y) is replaced by the inverse of Radon-Nikodym derivativedQdWn

x
(y)

of Q with respect toWn
x . In the above definitions,infP , supP , infQ, and supQ are given as the infimum and supremum

among all sequences of probability measures on{Xn}∞n=1 and{Yn}∞n=1. The following proof is also valid in this extension.

IX. PROOF OF THE GENERAL FORMULAS FOR THE SECOND-ORDER CODING RATE

In this section, we prove Theorems 6 and 7. That is, for the reader’s convenience, we present a proof for the first-order
coding rate, as well as that for the second-order coding rate.

A. Direct Part

We prove the direct part, i.e., the inequalities

Cp(R|W ) ≤ inf
P

lim
γ↓0

Ip(R− γ|P ,W ) (57)

C(ǫ|W ) ≥ sup
P

I(ǫ|P ,W ) (58)

Cp(R2, R1|W ) ≤ inf
P

lim
γ↓0

Ip(R2 − γ,R1|P ,W ) (59)

C(ǫ, R1|W ) ≥ sup
P

I(ǫ, R1|P ,W ). (60)

For arbitraryR, using the random coding method, we show that there exists a sequence of codes{Φn} such that1n log |Φn| → R
and lim supn→∞ Pe,Wn(Φn) ≤ Ip(R|P ,W ). This method is essentially the same as Verdú & Han’s method[14].

First, we set the size ofΦn,Z,R to beNn = enR−nβ/2 with the random variableZ. We generate the encoderφZ , in which
x ∈ Xn is chosen asφZ(i) with the probabilityP (x). Here, the choice ofφZ(i) is independent of the choice of otherφZ(j).
The decoder{Di,Z}Nni=1 is chosen by the following inductive method:

Di,Z,R def
=

{

1

n
log

Wn
φZ (i)(y)

Wn
Pn(y)

> R

}

\





i−1⋃

j=1

Dj,Z



 .

Thus, the average error probability is evaluated as

EZPe,Wn(Φn,Z,R) ≤ EZ
1

Nn

Nn∑

i=1

Wn
φZ(i)





{

1

n
log

Wn
φZ(i)(y)

Wn
Pn(y)

> R

}c
⋃





i−1⋃

j=1

{

1

n
log

Wn
φZ(j)(y)

Wn
Pn(y)

> R

}







≤EZ
1

Nn

Nn∑

i=1

Wn
φZ(i)

{

1

n
log

Wn
φZ(i)(y)

Wn
Pn(y)

< R

}

+ EZ
1

Nn

Nn∑

i=1

i−1∑

j=1

Wn
φZ(i)

{

1

n
log

Wn
φZ (j)(y)

Wn
Pn(y)

≥ R

}

=
∑

x

Pn(x)Wn
x

{
1

n
log

Wn
x (y)

Wn
Pn(y)

≤ R

}

+
1

Nn

Nn∑

i=1

i−1∑

j=1

EZ(EZW
n
φZ(i))

{

1

n
log

Wn
φZ (j)(y)

Wn
Pn(y)

≥ R

}

.

The second term is evaluated as

1

Nn

Nn∑

i=1

i−1∑

j=1

EZ(EZW
n
φZ(i))

{

1

n
log

Wn
φZ (j)(y)

Wn
Pn(y)

≥ R

}

=
1

Nn

Nn(Nn − 1)

2

∑

x

P (x)Wn
P

{
1

n
log

Wn
x (y)

Wn
Pn(y)

≥ R

}

=
Nn − 1

2

∑

x

P (x)Wn
P {Wn

x (y)e
−nR ≥Wn

Pn(y)}

≤Nn
2
e−nR ≤ e−n

β/2

2
→ 0.

Since lim infn→∞
∑

x P
n(x)Wn

x

{
1
n log

Wn
x (y)

Wn
Pn

(y) ≤ R
}

= Ip(R|P ,W ), (35) implies thatlim infn→∞ EZPe,Wn(Φn,Z) ≤
Ip(R|P ,W ). Thus, the convergence1n log |Nn| → R implies the inequalityCp(R|W ) ≤ infP Ip(R|P ,W ).

Next, in order to prove (57), for any sequenceP , we construct a codeΦn such thatlim supn→∞ Pe,Wn(Φn) ≤ limγ↓0 Ip(R0−
γ|P ,W ). For any k, we choose the integerNk such thatEZPe,Wn(Φn,Z,R0−1/k) ≤ Ip(R0 − 1/k|P ,W ) + 1/k for
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∀n ≥ Nk. Then, for anyn, we choosek(n) to be the maximumk satisfyingn ≥ Nk. Then, k(n) → ∞ as n → ∞.
Thus,EZΦn,Z,R0−1/k(n) goes tolimγ↓0 Ip(R0 − γ|P ,W ), and 1

n log |Φn,Z,R0−1/k(n)| goes toR0. Hence, we obtain the
inequalityCp(R|W ) ≤ infP limγ↓0 Ip(R0 − γ|P ,W ), i.e., (57).

For proving (59), we chooseNn = enR1+n
βR2−nβ/2 . SubstitutingnR1 +nβR2 into nR in the above discussion, we denote

the codeΦn,Z,R by Φn,Z,R1,R2 . Then,

EZPe,Wn(Φn,Z,R1,R2) ≤
∑

x

Pn(x)Wn
x

{

1

nβ

(

log
Wn
φZ(i)(y)

Wn
Pn(y)

− nR1

)

< R2

}

+
Nn
2
e−(nR1+n

βR2).

SinceNn2 e
−(nR1+n

βR2) ≤ e−n
β/2

2 → 0 and 1
nβ

log |Nn|
enR1

→ R2, we obtain the inequalityCp(R2, R1|W ) ≤ infP Ip(R2, R1|P ,W ).
For anyk, we choose the integerNk such thatEZPe,Wn(Φn,Z,R1,R2−1/k) ≤ Ip(R2 − 1/k,R1|P ,W ) + 1/k for ∀n ≥ Nk.

Then, definingk(n) similarly, we obtainEZΦn,Z,R1,R2−1/k(n) → limγ↓0 Ip(R2−γ,R1|P ,W ), and 1
nβ

log
|Φn,Z,R1,R2−1/k(n)|

enR1
→

R2. Hence, we obtain the inequalityCp(R2, R1|W ) ≤ infP limγ↓0 Ip(R2 − γ,R1|P ,W ), i.e., (59).
For an arbitrary numberR < supP I(ǫ|P ,W ), there exists a sequence of input distributionsP such thatIp(R|P ,W ) ≤ ǫ.

Therefore, the inequality (58) holds. Similarly, we can show the inequality (60).

B. Converse part

Next, we prove the converse part, i.e.,

Cp(R|W ) ≥ inf
P

sup
Q

lim
γ↓0

Jp(R− γ|P ,Q,W ) (61)

C(ǫ|W ) ≤ sup
P

inf
Q
J(ǫ|P ,Q,W ) (62)

Cp(R2, R1|W ) ≥ inf
P

sup
Q

lim
γ↓0

Jp(R2 − γ,R1|P ,Q,W ) (63)

C(ǫ, R1|W ) ≤ sup
P

inf
Q
J(ǫ, R1|P ,Q,W ), (64)

which complete our proof, because the other inequalities

inf
P

lim
γ↓0

Ip(R − γ|P ,W ) ≤ inf
P

sup
Q

lim
γ↓0

Jp(R− γ|P ,Q,W )

sup
P

I(ǫ|P ,W ) ≥ sup
P

inf
Q
J(ǫ|P ,Q,W )

inf
P

lim
γ↓0

Ip(R2 − γ,R1|P ,W ) ≤ inf
P

sup
Q

lim
γ↓0

Jp(R2 − γ,R1|P ,Q,W )

sup
P

I(ǫ, R1|P ,W ) ≥ sup
P

inf
Q
J(ǫ, R1|P ,Q,W )

are trivial based on their definitions. In the converse part,we essentially employ Hayashi-Nagaoka’s[15] method. We choose
an arbitrary sequence of codes{Φn}∞n=1. Let R be lim infn→∞

1
n log |Φn|. Assume that the codeΦn consists of the triplet

(Nn, φ, {Di}Nni=1). Then, for any sequence of output distributionsQ = {Qn}∞n=1 and any realγ > 0, the inequality

Pe,Wn(Φn) ≥
∑

x∈Xn

PΦn(x)W
n
x

{
1

n
log

Wn
x (y)

Qn(y)
< R − γ

}

− en(R−γ)

Nn
(65)

holds, wherePΦn is the empirical distribution for the|Φn| points(φ(1), . . . , φ(Nn)).
Sincee

n(R−γ)

Nn
→ 0, the relationlim infn→∞ Pe,Wn(Φn) ≥ Jp(R−γ|P ′,Q,W ) holds for anyQ, whereP ′ = {PΦn}. Thus,

lim infn→∞ Pe,Wn(Φn) ≥ supQ limγ↓0 Jp(R−γ|P ′,Q,W ). Therefore,lim infn→∞ Pe,Wn(Φn) ≥ infP supQ limγ↓0 Jp(R−
γ|P ′,Q,W ), which implies (61).

Now, assume thatlim supn→∞ Pe,Wn(Φn) = ǫ. Since en(R−γ)

Nn
→ 0, (65) implies thatR − γ ≤ J(ǫ|P ,Q,W ). Thus,

R−γ ≤ supP infQ J(ǫ|P ,Q,W ), which implies Sinceγ is an arbitrary positive real number,R ≤ supP infQ J(ǫ|P ,Q,W ),
which implies (62).

Next, consider the case in whichlim infn→∞
1
nβ log |Φn|

enR1
= R2. ReplacingR − γ by R1 + nβ−1(R2 − γ) in (65), we

obtain enR1+nβ(R2−γ)

Nn
→ 0. Thus,lim infn→∞ Pe,Wn(Φn) ≥ infP supQ limγ↓0 Jp(R2 − γ,R1|P ,Q,W ), which implies (63).

replacingR1 +R2n
β−1 into R− γ in (65), similar to (62), we can show (64).
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The inequality (65) is shown as follows. We focus on the inequalities:

Wn
φ(i)(Di)− enR

′
Qn(Di)

≤Wn
φ(i)({Wn

φ(i)(y)− enR
′
Qn(y) ≥ 0})− enR

′
Qn({Wn

φ(i)(y)− enR
′
Qn(y) ≥ 0})

≤Wn
φ(i)({Wn

φ(i)(y)− enR
′
Qn(y) ≥ 0})

=Wn
φ(i)

{

1

n
log

Wn
φ(i)(y)

Qn(y)
≥ R′

}

,

where the first inequality follows from the fact that any two distributions P and Q and any positive constanta satisfy
maxD[P (D)− aQ(D)] = P{P (ω)− aQ(ω) ≥ 0} − aQ{P (ω)− aQ(ω) ≥ 0}.

Thus,

1− Pe,Wn(Φn) =
1

Nn

Nn∑

i=1

Wn
φ(i)(Di)

≤ 1

Nn

Nn∑

i=1

enR
′
Qn(Di) +Wn

φ(i)

{

1

n
log

Wn
φ(i)(y)

Qn(y)
≥ R′

}

=
enR

′

Nn
+ 1−

∑

x∈Xn

PΦn(x)W
n
x

{
1

n
log

Wn
x (y)

Qn(y)
< R′

}

,

which implies (65).

X. PROOF OF THE STATIONARY MEMORYLESS CASE

A. Proof of Theorem 2

In this subsection, using Theorem 7, we prove Theorem 2 when the cardinality|X | is finite. For this purpose, we show the

following relations in the stationary discrete memorylesscase, i.e., the case in whichWn
x (y) = W×n

x (y)
def
=
∏n
i=1Wxi(yi)

for x = (x1, . . . , xn) andy = (y1, . . . , yn). In this section, abbreviatingCDM
W asC, we will prove that

inf
P

lim
γ↓0

Ip(R2 − γ, C|P ,W ) ≤







G(R2/
√

V +
W ) R2 ≥ 0

G(R2/
√

V −
W ) R2 < 0.

(66)

and

inf
P

sup
Q

lim
γ↓0

Jp(R2 − γ, C|P ,Q,W ) ≥







G(R2/
√

V +
W ) R2 ≥ 0

G(R2/
√

V −
W ) R2 < 0.

(67)

Showing both inequalities and using Theorem 7, we obtain

Cp(R2, R1|W ) =







G(R2/
√

V +
W ) R2 ≥ 0

G(R2/
√

V −
W ) R2 < 0.

(68)

Since the rhs of (68) is continuous with respect toǫ, (68) implies that

C(ǫ, R1|W ) =







√

V +
WG

−1(ǫ) ǫ ≥ 1/2
√

V −
WG

−1(ǫ) ǫ < 1/2.

That is, we can show Theorem 2.

In fact, whenP is the i.i.d. ofPM+ or PM−, I(ǫ, C|P ,W ) is equal to
√

V +
WF

−1(ǫ) or
√

V −
WF

−1(ǫ). Thus, (66) holds.
Therefore, the achievability part (the direct part) of Theorem 2 hold. Therefore, it is sufficient to prove the converse part (67).

We focus on the setTn of empirical distributions withn outcomes. Its cardinality|Tn| is evaluated as|Tn| ≤ (n + 1)|X |.
In this proof, we use the distribution

QnU
def
=
∑

P∈Tn

1

|Tn|+ 1
(WP )

×n +
1

|Tn|+ 1
Q×n
M
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Fig. 5. Limiting behavior of 1
√

n

„

log
W×n
x (y)

W
×n
Pn

(y)
− nC

«

and the Gaussian distribution with the varianceV
−

W

and the sets

Vǫ def
= {P |I(P,W ) ≥ C + ǫ}

Ωn
def
= {x ∈ Xn |ep(x) ∈ Vǫ } ,

whereep(x) is the empirical distribution ofx ∈ Xn.
SinceQnU (y) ≥ 1

|Tn|+1 (Wep(x))
×n(y) andQnU (y) ≥ 1

|Tn|+1Q
×n
M (y),

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

=
∑

x∈Ωn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

+
∑

x∈Ωcn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥
∑

x∈Ωn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

(QM )×n(y)
+ log(|Tn|+ 1)− nC

)

≤ R

}

+
∑

x∈Ωcn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

(Wep(x))×n(y)
+ log(|Tn|+ 1)− nC

)

≤ R

}

.

Whenx ∈ Vcǫ ,

VW×n
x

1√
n

(

log
W×n
x (y)

(Wep(x))×n(y)
− nC

)

= Vep(x),W < max
P

VP,W

EW×n
x

1√
n

(

log
W×n
x (y)

(Wep(x))×n(y)
+ log(|Tn|+ 1)− nC

)

=
1√
n
(nI(ep(x),W ) + log(|Tn|+ 1)− nC)

≤ log(|Tn|+ 1)√
n

− ǫ
√
n.

Thus, Chebyshev inequality implies

PW×n
x

{
1√
n

(

log
W×n
x (y)

(Wep(x))×n(y)
+ log(|Tn|+ 1)− nC

)

≤ R

}

≥1− maxP VP,W

R+ ǫ
√
n− log(|Tn|+1)√

n

.

Define the quantityV ′
P,W

def
= EPEWx(log

Wx(y)
QM (y) −D(Wx‖QM))2. Whenx ∈ Vǫ, since the random variablelog W×n

x (y)
(QM )×n(y) =
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∑n
i=1 log

Wxi
(yi)

(QM )(yi)
has the variancenV ′

ep(x),W ,

PW×n
x

{
1√
n

(

log
W×n
x (y)

(QM )×n(y)
+ log(|Tn|+ 1)− nC

)

≤ R

}

≥PW×n
x

{
1√
n

(

log
W×n
x (y)

(QM )×n(y)
+ log(|Tn|+ 1)− nI(ep(x),W )

)

≤ R

}

∼=G




R

√

V ′
ep(x),W



 ≥ min
P∈Vǫ

G




R

√

V ′
P,W



 .

Since the random variablelog W×n
x (y)

(QM )×n(y) =
∑n

i=1 log
Wxi

(yi)

(QM )(yi)
is written as a combination of finite number of random variables

{log Wx(y)
(QM )(y)}x∈X , the above convergence is uniform. That is, for anyδ > 0, there existsN > 0 such that forn ≥ N ,

PW×n
x

{
1√
n

(

log
W×n
x (y)

(QM )×n(y)
+ log(|Tn|+ 1)− nC

)

≤ R

}

≥ min
P∈Vǫ

G




R

√

V ′
P,W



− δ.

Therefore,

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥Pn(Ωn)(1 −
maxP VP,W

R+ ǫ
√
n− log(|Tn|+1)√

n

) + Pn(Ωcn) min
P∈Vǫ

G




R

√

V ′
P,W



− δ

≥ min
P∈Vǫ

G




R

√

V ′
P,W



 − δ,

whereΩcn is the complement ofΩn.
Thus,

lim sup
n→∞

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥ min
P∈Vǫ

G

(

R
√
VP,W

)

− δ.

Sinceδ > 0 andǫ > 0 are arbitrary, whenQ = {QnU},

Jp(R,C|P ,Q,W )

= lim sup
n→∞

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥min
P∈V

G

(

R
√
VP,W

)

=







G(R/
√

V +
W ) R ≥ 0

G(R/
√

V −
W ) R < 0.

which implies (67) because of the continuity of the r.h.s.

B. Proof of Theorem 3

In this subsection, using Theorem 9, we prove Theorem 3 when the cardinality|X | is finite. For this purpose, we show the

following relations in the stationary discrete memorylesscase, i.e., the case in whichWn
x (y) =W×n

x (y)
def
=
∏n
i=1Wxi(yi) for

x = (x1, . . . , xn) andy = (y1, . . . , yn), andcn(x) =
∑n
i=1 c(xi). In this section, abbreviatingCDM

W asC, we will prove that

inf
P :supp(Pn)⊂Xn,c,K

lim
γ↓0

Ip(R2 − γ,R1|P ,W ) ≤







G(R2/
√

V +
W,c,K) R2 ≥ 0

G(R2/
√

V −
W,c,K) R2 < 0.

(69)
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and

inf
P :supp(Pn)⊂Xn,c,K

sup
Q

lim
γ↓0

Jp(R2 − γ,R1|P ,Q,W ) ≥







G(R2/
√

V +
W,c,K) R2 ≥ 0

G(R2/
√

V −
W,c,K) R2 < 0.

(70)

Showing both inequalities and using Theorem 9, we obtain

Cp(R2, R1|W , c,K) =







G(R2/
√

V +
W,c,K) R2 ≥ 0

G(R2/
√

V −
W,c,K) R2 < 0.

(71)

Since the rhs of (71) is continuous with respect toǫ, (71) implies that

C(ǫ, R1|W , c,K) =







√

V +
W,c,KG

−1(ǫ) ǫ ≥ 1/2
√

V −
W,c,KG

−1(ǫ) ǫ < 1/2.

That is, we can show Theorem 3.
The inequality (70) can be proven in the same way as (67) by replacing Tn andQM by the set of empirical distributions

Tn,c,K
def
= {P ∈ Tn|EP c(x) ≤ K}. andQM,c,K . Therefore, the converse part of Theorem 3 hold. Therefore,it is sufficient to

prove the direct part (69).
For any distributionP satisfyingEP c(x) ≤ K, we choose the closet empirical distributionPn ∈ Tn,c,K . Let P = {Pn} be

the uniform distributions on the setTPn
def
= {x ∈ Xn|ep(x) = Pn}. It is sufficient to show that

Ip(R,C|P ,W ) ≤ G(R/
√

VP,W ). (72)

Since

Pn(x) ≤ |Tn|(Pn)×n(x), (73)

we have

Ip(R,C|P ,W )

= lim sup
n→∞

PPn,W×n

{
1√
n

(

log
W×n
x (y)

W×n
Pn (y)

− nC

)

≤ R

}

≤ lim sup
n→∞

PPn,W×n

{
1√
n

(

log
W×n
x (y)

(WPn)
×n(y)

− log |Tn| − nC

)

≤ R

}

≤G
(

R
√
VP,W

)

, (74)

which implies (72).
In order to prove (72) without condition|X | < ∞, we choose a sequence of input distributions{P (k)

± }∞k=1 with finite
supports such that

P (k) ∈ Tn,c,K

I(P
(k)
± ,W ) → max

P :EP c(x)≤K
I(P,W )

V
P

(k)
± ,W

→ V ±
W,c,K .

Choose the distributionPn as the uniform distributions on the setT
P (n

1
4 )

. Then, in stead of (73), the relation

Pn(x) ≤ (n+ 1)n
1
4 (P (n

1
4 ))×n(x)

holds. Since 1√
n
log(n+ 1)n

1
4 goes to zero, the same discussion as (74) yields (72).
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C. Proof of Theorem 5

As is shown in Subsection X-B, we obtain the direct part, i.e.,

CGp (a, C
G
N,S |N,S) ≤ G(a/

√

VPM ,W ).

Hence, whencn(x) =
∑n
i=1 x

2
i , it is sufficient to prove

inf
P :supp(Pn)⊂Xn,c,S

sup
Q

lim
γ↓0

Jp(R2 − γ,R1|P ,Q,W ) ≥ G(a/
√

VPM ,W ). (75)

In the following discussion, we use the distribution

QnU
def
=

1

2
(WPM )×n +

1

2
(WPM,ǫ)

×n

PM,ǫ
def
=

1
√

2π(S − ǫ)
e−

x2

2(S−ǫ)

and the sets

Vǫ def
= {P |EPx2 ≤ S − ǫ}

Ωn
def
= {x ∈ Xn |ep(x) ∈ Vǫ } .

We obtain

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

=
∑

x∈Ωn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

+
∑

x∈Ωcn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥
∑

x∈Ωn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

(WPM )×n(y)
+ log 2− nC

)

≤ R

}

+
∑

x∈Ωcn

Pn(x)PW×n
x

{
1√
n

(

log
W×n
x (y)

(WPM,ǫ)
×n(y)

+ log 2− nC

)

≤ R

}

.

Whenx ∈ Vcǫ , the random variable1√
n

(

log
W×n
x (y)

(WPM,ǫ
)×n(y) + log 2− nC

)

has the expectation

1√
n

(

n
2 log(1 + S−ǫ

N ) +
‖x‖2
nN −S−ǫ

N

2(1+S−ǫ
N )

− n
2 log(1 + S

N ) + log 2

)

(≤ log 2√
n

−
√
n
2 log

1+ S
N

1+S−ǫ
N

), and the variance
(S−ǫ)2
N2 +2 ‖x‖2

nN

2(1+S−ǫ
N )2

(≤
(S−ǫ)2
N2 +2S−ǫ

N

2(1+S−ǫ
N )2

). Thus, Chebyshev inequality implies

PW×n
x

{
1√
n

(

log
W×n
x (y)

(WPM,ǫ)
×n(y)

+ log 2− nC

)

≤ R

}

≥1−

(S−ǫ)2
N2 +2S−ǫ

nN

2(1+S−ǫ
N )2

R +
√
n
2 log

1+ S
N

1+S−ǫ
N

− log 2√
n

→ 1.

Whenx ∈ Vǫ, under then-variable Gaussian distributionW×n
x , the random variablelog W×n

x (y+x)
(WPM

)×n(y+x) is calculated to be

1

2(1 + S
N )

(

−S‖y‖
2

N2
+

2x · y
N

+
‖x‖2
N

)
n

2
log(1 +

S

N
).

The expectation is
‖x‖2
N −n SN
2(1+ S

N )
+ n

2 log(1 + S
N ), and the variance is

2n S
2

N2 +4 ‖x‖2
N

4(1+ S
N )2

. The random variable
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1√
n

(

log
W×n
x (y+x)

(WPM
)×n(y+x) −

‖x‖2
N −n SN
2(1+ S

N )
− n

2 log(1 + S
N )

)

converges the normal distribution whenn goes to infinity. Due to

the property of Gaussian distribution, this convergence isuniform when‖x‖ is bounded. Hence,

PW×n
x

{
1√
n

(

log
W×n
x (y)

(WPM )×n(y)
+ log 2− nC

)

≤ R

}

≥PW×n
x

{

1√
n

(

log
W×n
x (y)

(WPM )×n(y)
+ log 2−

‖x‖2

N − n SN
2(1 + S

N )
− n

2
log(1 +

S

N
)

)

≤ R

}

∼=G







R
√

2 S
2

N2 +4 ‖x‖2
nN

4(1+ S
N )2







≥







G






R
s

2 S
2

N2 +4S−ǫ
N

4(1+ S
N

)2




 R ≤ 0

G






R
s

2 S
2

N2 +4 S
N

4(1+ S
N

)2




 R > 0.

Therefore,

lim sup
n→∞

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥







G






R
s

2n S
2

N2 +4nS−ǫ
N

4(1+ S
N

)2




 R ≤ 0

G






R
s

2n S
2

N2 +4n S
N

4(1+ S
N

)2




 R > 0

Sinceǫ > 0 is arbitrary, whenQ = {QnU},

Jp(R,C|P ,Q,W )

= lim sup
n→∞

PPn,W×n

{
1√
n

(

log
W×n
x (y)

QnU (y)
− nC

)

≤ R

}

≥G







R
√

2 S
2

N2 +4 SN
4(1+ S

N )2






,

which implies (75).

XI. CONCLUDING REMARKS AND FUTURE STUDY

We have obtained a general asymptotic formula for channel coding in the sense of the second-order coding rate. That is, ithas
been shown that the optimum second-order transmission ratewith the error probabilityǫ is characterized by the second-order
asymptotic behavior of the logarithmic likelihood ratio between the conditional output distribution and the non-conditional
output distribution. Using this result, we have derived this type of optimal transmission rate for the discrete memoryless case,
the discrete memoryless case with a cost constraint, the additive Markovian case, and the Gaussian channel case with an energy
constraint. The performance in the second-order coding rate is characterized by the average of the variance of the logarithmic
likelihood ratio with the single letterized expression. When the input distribution producing the capacity is not unique, it is
characterized by its minimum and its maximum. We give a typical example such that the minimum is different from the
maximum. Furthermore, both quantities have been verified tosatisfy the additivity.

The main results of the present study are as follows. While the application of the information spectrum method to the
second-order coding rate was initiated by Hayashi [6], his research indicated that there is no difficulty in extending general
formulas to the second-order coding rate. Therefore, in thei.i.d. case, the second-order coding rate of the source coding and
intrinsic randomness are solved by the central limit theorem. However, channel coding cannot been treated using the method
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of Hayashi[6] except for the additive noise case with no costconstraint because the present problem contains the optimization
concerning the input distribution in the non-additive noise case. In the converse part, we have to treat the general sequence of
input distributions. In order to resolve this difficulty, wehave treated the logarithmic likelihood ratio between the conditional
output distribution and the distributionQnU , which is introduced in Subsection X-A.

Furthermore, we can consider the quantum extension of our results. There is considerable difficulty concerning non-
commutativity in this direction. In addition, the third-order coding rate is expected but appears difficult. The secondorder
is the order

√
n, and it is not clear whether the third order is a constant order or the orderlogn. This is an interesting problem

for future study.
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APPENDIX

For a givenR < 0, we prove (15). Sinced
2ψP
ds2 (s) > 0, the functionψP is convex. Choosingsn such thatCDM

W + R2√
n
=

− dψP
ds (sn) = − dψP

ds (0)−
∫ sn
0

d2ψP
ds2 (t)dt, we have the relation

R2√
n
= −

∫ sn

0

d2ψP
ds2

(t)dt. (76)

Then, the minimum ofCDM
W s+ R2√

n
s+ψP (s) is attained whens = sn. Sinced

2ψP
ds2 (s) is continuous and bounded,sn approaches

zero asn goes to infinity. More precisely, (76) impliesR2 = − limn→∞
√
n
∫ sn
0

d2ψP
ds2 (t)dt = − limn→∞(

√
nsn)

d2ψP
ds2 (0).

That is, limn→∞(
√
nsn) =

−R2
d2ψP
ds2

(0)
. When the functionǫ(u) is chosen to bed

2ψP
ds2 (u)− d2ψP

ds2 (0), ǫ(u) approaches zero asu

goes to zero.
Thus, we have

n min
0≤s≤1

(

CDM
W s+

R2√
n
s+ ψP (s)

)

= n

(

CDM
W sn +

R2√
n
sn + ψP (sn)

)

= n(
R2√
n
sn +

∫ sn

0

∫ t

0

d2ψP
ds2

(u)dudt)

=
√
nR2sn + n

s2n
2

d2ψP
ds2

(0) + n

∫ sn

0

∫ t

0

ǫ(u)dudt→ −R2
2

2 d
2ψP
ds2 (0)

,

which implies (15).
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