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Information Spectrum Approach to
Second-Order Coding Rate in Channel Coding

Masahito Hayashi

Abstract

Second-order coding rate of channel coding is discussedydoeral sequence of channels. The optimum second-order
transmission rate with a constant error constraiigt obtained by using the information spectrum method. Weyaiyis result to
the discrete memoryless case, the discrete memorylesswvithsa cost constraint, the additive Markovian case, and@hassian
channel case with an energy constraint. We also clarify thatGallager bound does not give the optimum evaluation én th
second-order coding rate.

Index Terms

Second-order coding rate, Channel coding, Informatiorctspe, Central limit theorem, Gallager bound, additive kisian
channel

|I. INTRODUCTION

ASED on the channel coding theorem, there exists a sequdnmedes for the given channél” such that the average

error probability goes t6 when the transmission rafe is less tharC{M. That is, if the numbern of applications of the
channellW is sufficiently large, the average error probability of a damde goes td. In order to evaluate the average error
probability with finite n, we often use the exponential rate of decrease, which depemdhe transmission rat®. However,
such an exponential evaluation ignores the constant fatharefore, it is not clear whether exponential evaluafioovides a
good evaluation for the average error probability when thegmission raté® is close to the capacity. In fact, many researchers
believe that, out of the known evaluations, the Gallagemiofl] gives the best upper bound of average error probgliilit
the channel coding when the transmission rate is greater tthea critical rate. This is because the Gallager bound fdesvi
the optimal exponential rate of decrease. In order to gldhfs point, we focus on the second-order coding rate in ©hhn
coding, in which, we describe the transmission lengtfCi*n + Ra+/n. From a practical viewpoint, when the coding length
is close toCRMn, the second-order coding rate gives a better evaluationesfige error probability than the first-order coding
rate. In fact, the second error coding rate has been apmiedvialuation of the average error probability of randomiegd
concerning the phase basis, which is essential to the seafrguantum key distribution[2]. Therefore, it is apprizte to
treat the second-order coding rate from the applied vieatpas well as the theoretical viewpoint. In the case of therdie
memoryless case, Strassen [3] derived the optimum Ratéor an arbitrary average error probabilily< ¢ < 1 using the
Gaussian distribution. In the present paper, we extenddsigltrto more general cases, i.e., the discrete memorydssswith
cost constraint, the Gaussian additive noise case withrthegg constraint, and the additive Markovian case. Furtharproof
for the discrete memoryless case is much simpler than tlggnatione. Indeed, since his proof is not so simple and hiepap
is written in German, it is quite difficult to follow his proof

In the present paper, in order to treat this problem from &iechiviewpoint, we employ the method of information spectrum

which was initiated by Han-Verd( [4], and was mainly formugld by Han[5]. The second-order coding rate is closelytadla
to the method of information spectrum because Hayashifgtéd this problem of fixed-length source coding and intrins
randomness using the method of information spectrum. Hef@@sliscussed the error probability when the compressza s
is H(P)n + a/n, wheren is the size of input system anH(P) is the entropy of the distributio® of the input system.
In the method of information spectrum, we treat the genesghgptotic formula, which gives the relationship betweea th
asymptotic optimal performance and the normalized lolgaribf the likelihood of the probability distribution. In ced to
treat a special case, we apply the general asymptotic fartouthe respective information source and calculate thepgytic
stochastic behavior of the normalized logarithm of thelil@od. That is, in the information spectrum method, we hiave
steps, deriving the general asymptotic formula and apglyhe general asymptotic formula. With respect to fixedHkeng
source coding and intrinsic randomness, the same relatilals lsoncerning the general asymptotic formula in the sgender
coding rate. However, there is a difference concerning phi@ation of the general asymptotic formula to the indegeant
and identical distributions. That is, while the normalidedarithm of the likelihood approaches the entrofy P) in the
probability in the first-order coding rate, the stochastbtdwior is asymptotically described by the Gaussian bigtion in the
first-order coding rate. In other words, in the second steg first-order coding rate corresponds to the law of largebars)
and the second-order coding rate corresponds to the cdintratheorem.
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In the present paper, we treat the channel coding in the decter coding rate, i.e., the case in which the transmidsiogth
is ChMn + a+/n. Similar to the above-mentioned case, we employ the methatfarmation spectrum. That is, we treat the
general channel, which is the general sequei®® (y|x)} of probability distributions without structure. As showwn Werdu-
Han [14], this method enables us to characterize the asyimgierformance with only the random varlabi:elog Wn(y(‘y))
(the normalized logarithm of the likelihood ratio betwedre tconditional distribution and the non-conditional dtmnon)
without any further assumption, whef& 2. (y) def >, P"(z)W"(y|x). Concerning this general asymptotic formula, if we
can suitably formulate theorems in the second-order coditegand establish an appropriate relationship betweetfirsite@rder
coding rate and the second-order coding rate, we can eagdiéye proofs concerning the first-order coding rate to thafse
the second-order coding rate. Therefore, there is no sewdificulty in establishing the general asymptotic formirathe
second-order coding rate. In order to clarify this point, present proofs of some relevant theorems in the first-ordding
rate, even though they are known.

In order to treat the special cases, it is sufficient to appe/ deneral asymptotic formula, i.e., to calculate the asgtigp
behavior of the random varlablélog % The additive Markovian case can be treated in the same wéixexslength
source coding and intrinsic randomness. However, othariapeases have another difficulties, which do not appeanxadfi
length source coding or intrinsic randomness. The firstadiffy is the optimization concerning the input distribution the
converse part of the channel coding. This problem commoppears among the three cases, i.e., the discrete memoryless
case, the discrete memoryless case with cost constraththanGaussian additive noise case with the energy conisthaithe
discrete memoryless case, the second-order coding ratesponds to simple application of the central limit theorerhile
the first-order coding rate corresponds to the law of largelmers. Hence, the performance in second-order coding sate i
characterized by the variance of the logarithmic likelilaatio, and the direct part can be easily obtained in thig.c@his
relationship is summarized in Figl 5.
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Fig. 1. Relationship between the present result and fixegthesource coding/intrinsic randomness. Fhearrow describes the direct part, and #hearrow
describes the converse part.

However, there is another difficulty in the direct part foe ttiscrete memoryless case with cost constraint and thesaaus
additive noise case with the energy constraint. In thesesgal of the encoded signals has to satisfy cost constraimis
kind of difficulty does not appear in the case of first-ordediog rate of both of the discrete memoryless case with cost
constraint and the Gaussian additive noise case with theewrenstraint. This is because it is sufficient to constthetcode
whose average error probability goes to zero in the caseedfit$t-order coding rate while it is required to construe tode
whose average error probability goes to a given thereshldhe case of the second-order coding rate. When we find a code
satisfying the following; its average error probabilityegoto zero and its average cost is less than the constraien, Tere
exists a subcode satisfying the following; its averagergurobability goes to zero and the costs of all encoded sigaid less
than the constraint. However, the same method cannot bédpphen we find a code satisfying the following; its average
error probability goes te and its average cost is less than the constraint. In the mresger, we directly construct a code,
in which the costs of all encoded signals are less than theticont.

Here, we describe the meaning of the second-order codiagWéten the transmission length is describedB§;™ +/n Ro,
as shown in Subsectidn TX}A, the optimal error can be appnately attained by random coding. Since it seems that random
coding cannot be realized, our evaluation seems to be deatenly the theoretical best performance. However, in tengum
key distribution, it can be realized concerning the phased47], [2]. In such a setting, the coding length is on theeowf
10,000 or 100,000[8]. In the quantum key distribution, Hahigd2] has applied the second-order coding rate to evalilegte
phase error probability, which is directly linked to the wety of the final key.

The remainder of the present paper is organized as follaw&elktion[Il, we revisit the second order coding rate in the
stationary discrete memoryless case, and dicuss the secdadcoding rate in the stationary discrete memoryless eath



cost constraint. In Section1ll, the Markovian additive ohal is treated. In Section1V, the Gaussian additive nossec
with the energy constraint is considered. These resultslaoen in the Section]X by employing the method of information
specturm. In the present result, the performance of infiomdransmission is discussed in terms of second-ordeingatte
using two important quantitieB"; andVy;, instead of the capacity in the case of discrete memoryless. ¢da other cases,
similar quantities play the same role.

In Section[Y, we compare our evaluation with the Gallagerrtub{l] in the second-order setting. In Section] VI, the
properties ofV;; and V;;; are discussed. In Subsection VI-A, we discuss a typical @larsuch thafl], is different from
Viy- In Subsectiof VI-B, the additivities concernifgy, andV;; are proved. In Section VI, the notations of the information
spectrum are explained. In Section VIII, the performancéhefinformation transmission is discussed in terms of tlerse-
order coding rate using the information spectrum in the garease. That is, we present general formulas for the seocoshet
coding rate. In Section IX, the theorem presented in theipusvsection is proved. In Sectidd X, using general formédas
the second-order coding rate, we demonstrate our proofeo$éicond order coding rate in the stationary discrete mdessy
case using our general result concerning the second ordergceate. In this proof, the direct part is immediate. Thewvase
part is the most difficult considered herein because we meat the information spectrum for the general input digtitns
in the sense of the second-order coding rate.

Il. SECOND ORDER CODING RATE IN STATIONARY DISCRETE MEMORYLESSKANNELS

As the most typical case, we revisit the second-order codatg of stationary discrete memoryless channels, in which,
we use ann-multiple application of the discrete channéf(y|x), which transmits the information from the input system
X to the output systend). That is, the channel considered here is given as the stajiodiscrete memoryless channel
W (y|x) ef [T7_, W(y:|x;). Note that, in the present papét,x P’ (W x W) denotes the product of two distributiofis
and P’ (two channeldV andW’), and P>*™ (W *") denotes the product of uses of the distributio® (the channel?), i.e.,
the n-th independent and identical distribution (i.i.d.) Bf(the n-th stationary memoryless channelidf). In this case, when
the transmission rate is less than the capacii!, the average error probability goesexponentially, if we use a suitable
encoder and the maximum likelihood decoder.

Let NV be the size of the transmitted information. The encoder issp gnfrom {1,..., N} to X", and the decoder is given
by the set of subset&D; }¥ | of Y, whereD; corresponds to the decoding reglonzoi {1,...,N}. Then, the code is given
by the triple(N, ¢, {D;},) and is denoted byp. The average error probabilits, yyx« (P ) is described as

P, yyxn (® :—ZI—W(;(? ),

whereW, (y) = def W (y|z). For simplicity, the sizeV,, is denoted by®|. The performance of the codk is given by the pair

of P.(®) and|®|. As stated by the channel coding theorem [9], the capacigiisn by
CoM = max [(P, W) = ngn max D(W,||Q),

where is the output distribution, and
def Z P 1]|CC

I(P,W) d“ZP D(W,||Wp)

D(PP) Y Pla)log 1];((?)'

Thus, Q& argming max, D(W,[|Q) satisfies
D(W,[|Qn) < CRM. 1)

Throughout the present paper, we choose the base of thdattogdo bee.

Although the above channel coding theorem concerns onlfirsteorder coding rate of the transmission length N,,, our
main focus is the analysis of the second-order coding ratee\the transmission lengthg N,, asymptotically behaves as
nCEM + ay/n, the optimal average error is given as follows:

def

C’DM(a CoMW) = inf {limsupPe wxn (®p)] lim inf L(log |®,,| — nCHM) > a} . 2

, n
{Pn}2, n—oo n—00 \/ﬁ



Fixing the average error probability, we obtain the follng/iquantity'
CPM(e, CRM|W) def sup {hm inf —(1og |®,,| — nCHM) [ lim sup P, yyxn (®,,) < e} . (3)
{®,}22, n—00 \/_ n—00 '

We refer to this value the optimum second-order transmissite with the error probability. In order to treat the second-order
coding rate, we need the distribution functiéhfor the standard Gaussian distribution (with expectatiosnd variancel),

which is defined by
G(z) dZCf/ \/%e—ﬁ/z dz.

In this problem, the quantity’s yy-:

2
Vo % Zp(x) Z W (y) (log S//;((Z)) — D(WI|WP)>

plays an important role. By using these quantltle“gM a, CRM|W) and CPM (e, CRM|W) are calculated in the stationary
discrete memoryless case as follows
Theorem 1: (Strassen[3]) When the cardinality’| is finite and Py, def argmaxp I (P, W) exists uniquely, then

CDM(a C G(a/A/Vpy w (4)
CPM(e ,C]VDVM|W = MVPM,WG . (5)

When {W,} is linearly independent by regarding distributions as l;ime;ivectors, the ma@P — Wp is a one-to-one map.
Then, Py, & argmaxp I(P, W) exists uniquely. However, whefi¥,.} is not linearly independenargmaxp I(P, W) is not
necessarily unique. In order to treat such a case, we inteotuo quantitiesl/‘; and Vy;, and two distributionsP,, and
Py

def
V+ = max VPW
w pPey 7
— def .
Vi = min Vpw
w pey 7’
def
PMJr = argmax Vp_’W
Pey

def .
Py— = argmin Ve,
Pey

wherey < {P|I(P,W) = CREM}. In order to treat such a case, Theolem 1 is generalized lasvéol
Theorem 2: (Strassen[3]) When the cardinality| is finite and the se¥ has multiple elementd,](4) anld (5) are generalized
as

th) a>0
a/A\/Viy) a<0
€) €>1/2

Vir G (e)
VY G e e<1/2

PV (a, CRM W) = {

CDM(

More precisely, the direct part

G(a/\/Vi) a>0
C;?M( (a/\/Viy) = (6)
G(a/\/Vyy) a<0
Vi GT1 >1/2
w () e=1/ )
\VVieG7He) e<1/2.
hold without any assumption, and the converse part
G(a/\/Vi) a>0
CDM(q, CPM IVl =
G(a/\/Vyy) a<0

CDM( CDM|W

i
ey
P R > {
i
|



hold with the assumptiohY| < oo.
Next, consider the cost functian: X — R. In this case, we often assume that all encoded alphaljétf the coded,,
belongs to the set

def

The maximum coding rate with the above condition is callesl ¢hpacity with the cost constraint, and is given by [10]

= I(P. = mi P
Civid e = - (P, W) mé“p;xafi?ﬁgj( ,Q, W),

Zc(:vi) SK}.

=1

where

J(P,Q.W) = " P(x)D(W. Q).

reX
In the same way td {2) andl(3), we define the following valueth he cost constraint:

CDM(a CaM|W, ¢, K) ef s {limsupPe,WXn(q) )

lim inf T(log |®,,| — nCRM) > a,supp(®,,) C XSK} . (8)

{‘I’n}i‘;l n—00 n—o0 n
CPM(e, CRM|W, ¢, K) ' sup {hm1nf—(1og|<l> | — nCHM) [ limsup P, yyxn (®,,) < €, supp(®,,) C XC"K}, 9)
(eay, Lo Vi nooo ’

wheresupp(®,,) expresses the sgip(1),...,¢(N)} for a code® = (N, ¢, {D;}Y ;). We introduce two quantitiek’ﬁ;cyK
and Vivex and two distributionsys 1 . x and Py/— ¢ i
Vi %
W,e, K PIélliXK P,W

_ def .
Vi = min Vpw
We,K PeVe k ’

def
PM+7C7K = argmax Vp_’W
PeV. k

def .
Prr— e,k = argmin Ve,
PeV. k

whereV. i < {P|[I(P,W) = CRM . .Epc(z) < K}.
Theorem 3: When the cardinalityX| is finite
G(a/ VMJ;C k) >0

CPM(q, CRM W, e, K) =
P ek G(a/

~

W7C7K a<0

,/VWCKG Le) e>1/2
Ve kG H(e) e<1/2

ODM(E CWC K|Wa CvK

More precisely, the direct part

Gla/\/Vitex) a=0

CPoM(a, Ot (W, e, K) < (10)
ek Gla/\/Viyex) a<0

CPM (¢, cPM W, e, K) > { V (11)
el VVive kG He) e<1/2

hold without any assumption, and the converse part

ODM(Q OWC K|Wa CvK

CDM(E CWC K|W7 C,K

{
{
{
{ TG ez 12
{
i



hold with the assumptiohY| < oo.

Remark 1: When the setst’ and) are given as general probability spaces with generfields o(X,,) ando(}),,), the
above formulation can be extended with the following ddfinit The channelV is given by the real-valued function frori
ando()) satisfying the following conditions; (i) For any € X', W™ is a probability measure o, (ii) For any F' € (),
W.(F) is a measurable function of. P take values in probability measures éh Then, the summands’__ ( ) and

>-yey Wa(y) are replaced by/,, P(dx) and fy dy), respectively. For any distributio® on Y, the funcUonW ((y)) is

replaced by the inverse of Radon-Nikodym denvat%; y) of Wp with respect tolV,.. In this extension, the direct part
®), (@), [10), and[{21) are valid.

Ill. SECOND ORDER CODING RATE IN ADDITIVEMARKOVIAN CHANNEL

Next, we we focus on the additive Markovian channel, in whisle assume that the additive noise obeys the transition
matrix Q(y|x) on the sett = {1,...,d}. Then, the channélV (Q)"(y|z) has the form[[;" ; Q(v; — z;|yi—1 — zi—1), Where
Yo — xo IS the initial statesy and the arithmetic is based on mdd For simplicity, we assume that the transition matrix
Q(y|z) is irreducible. Then, the:-th marginal distributionQ™(z,,) == >, [T"_, Q(z;|zi—1) approaches the stationary

L1y-e05ln

distribution Py (x), which is given as the eigenvector §f(y|z) associated with the eigenvaligl2]. When the conditional
distribution Q(y|z) is denoted byQ,(y), the normalized entropy of the distributidd™(z,) := [[;—, Q(xi|xi—1) goes to
H(Q) =3, Po(z)H(Q.). Then, by defining the capacitgi™ in the same way ag'hM, the channel capacitgiM i
calculated as

CoM =logd — H(Q). (12)
Similar to CPM(a, CpM|W) and CPM (e, CRM|W), the second order quantiti€d (a, C5M|W) and CAM (e, C5M (W) are
defined for the add|t|ve Markovian case. Then, the followihgorem holds. In this problem, the variancéQ):
V(Q)
= Z Qyl2)Po(x)(~1og Q(ylz) — H(Q))?

+2% QCly)Qylr) Po(z)(~log Q(zly) — H(Q))(~log Q(y|z) — H(Q)).

2,Y,T

plays an important role. By using these quantiti€g;" (a, C5M|W) and C*M(e, C5M|W) are calculated in the additive
Markovian case as follows
Theorem 4: The relations

CoM(a, CHMW) = G(a/\/V(
CAM(e, CAMW) :\/—G
hold.

IV. SECOND ORDER CODING RATE INGAUSSIAN CHANNEL
In this section, we consider the case of additive Gaussiasendn this case, both of the input system and the output
system are given bR, and the output distributiofiV,,(y) is given by 217TN€Jy;]$> for a given noise leveN. If there is no
restriction for input signal, the capacity diverges. Hent& natural to consider the cost constraint. Considercthst function
c(x) 4 22 and the maX|mum cost. Then, the maximum mutual informatianaxp.p,.2<s I(P, W) is attained whenP is

equal toPy (z) & —2_e- %5 In this case,

V2nS
D(W,|[Wpy) = ~log(1+ 2 + N % (13)
AR = BTN T o1t )
Then, the capacity is known to be [9], [11]
S
G _ i =2
CNs= P:]%Egg(gEI(P’ W) = 5 log(1 + N).

Since

o0 Wz(y) 2 s n 2W
/_ N (1og We (y) D(WIIIWPM)) W (y)dy = 22K



Vp,,,w is calculated as
S? S
N2y
2(1+ £)2
Since the cardinality R is infinite, the assumption of sectibn Il does not hold. Tlkaiie cannot apply Theordm 3. However,

the following theorem holds.
Theorem 5: Define the quantitie€’s’ (a, Cf | N, S) andC (e, C§ ¢|N, S) in the same way a§](8) and (9). Then,

CG(G C'N SlN S a/\/ VPA47
C (E,CN_’5|N,S = \/VPIW,WG

V. COMPARISON WITH THE GALLAGER BOUND

At first glance, the Gallager bound [1] seems to work well fgalaating the average error probability, even when the
transmission length is close teCLM. This is because this bound gives the optimal exponentialwden the coding rate is
greater than the critical rate. In this section, we clarifgether the present evaluation or the Gallager bound [1]igesva
better evaluation when the transmission length is closed@™. For this analysis, we describe the transmission length by
nCyM + /nR,. Let us compare the present evaluation with the Gallagendowhich is given by

n < mi . n(Rs+yp(s))
3 |<1>\1<r<lenR Feyn(®) < Mt oes © ’ (14)

Vey,w =

where

() g <ZP Hs)w.

Since the present evaluation is essentially based on Mded(s method[14], this comparison can be regarded as a aoson
between Verd-Han'’s evaluation and the Gallager boundt, Nee substitutenCDM + +/nRy into nR. Then,

min e Bstir(s) _ nmmo<s<1(CW s+22 s+wp<s>)
0<s<1

Taking the derivatives of/(s), we obtain

dwp(s)

| = IEw)
d*¢p(s)

d;S . =Vpw.

WhenCRM = 1(P,W),

R Ry Vi
CDMg 4 77218 +1pp(s) = CPMs + 78 —I(P,W)s + %52
_ Ry Vew o Vew Ry R3
=t T ) T e
Therefore, as is rigorously shown in Appendix, whg < 0,
R R3
nh_)rrgo norgnsln (CDMS + \/—%s + wP(S)) =— QV;W' (15)
Next, we setP as Py;_. Then, the Gallager bound yields
r3
CPM(Ry, CRMIW) < e 2w (16)

for ansz < 0. That is, the gap between our evaluation and the Gallagandisuequal to the difference betweéif \/’%) =
w

_ R%
f_ *12/2d:z: ande 2Yw . Although the former is smaller than the latter, both expuia¢ rates coincide in the limit
Ry — o0. Slnce we can consider that the Gallager bound gives thialtbiound for R, > 0, both evaluations are illustrated
in Fig.[2.

Next, we consider the same comparison for the additive Maakocase. The Gallager bound is given by

RS+¢QJKSD7

min P, »(®) < min min e™(
P:|D|<en? ew (@ (®) < P 0<s<1
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Fig. 2. Comparison between the present evaluation and thleg8abound. The solid line indicates the Gallager boumd] #he dotted line indicates the
present evaluation.

where

10 ZQ"
Since the asymptotic first and second cummulants of the randmablelog Q"(%,) are—H(Q) andV(Q), we have

loa (3" Q" ()" ¥0) = ~H@v + L2 1 o)

Tn

Yo .n(s) def slogd+

ast — 0. Thus,

t 1%
(=) = (~logd + HQ)v + L2 4 of).
SubstitutingnCy + /nR2 and ﬁ into nR ands, we have
Ry
CAMs + =5 + Yo .n(s)
Q n Q.
t R2 t t
=Ryt + @t + 0(t2)
V(Q) Ry |, R3 2
= t+ — .+o(t
> g g )
. _ _R2 .
Therefore, whenk, < 0, choosings = Vo) e obtain
(®) < e i
min P€7W(Q)n P) <e V@,
o @] <o CQ VTR

which has the same form ds {16).

In both cases, wher3 < R, < 2, the difference is not so small. In such a case, it is betterseothe present evaluation.
That is, the Gallager bound does not give the best evaluatidhis case. This conclusion is opposite to the exponential
evaluation when the rate is greater than the critical ran [b] calculated the exponential rate of the present boand,
found that it is worse than that of the Gallager bdlind

Moreover, a similar conclusion was obtained in the LDPC c&sbashima and Saad [13] compared the Gallager upper

bound of the average error probability and the approximatib the average error probability by the replica method.tTha
is, they compared both thresholds of the rate, i.e., bothitmamx transmission rates at which the respective error foidibha
goes to zero. In their study (Table 1 of [13]), they pointed tnat there exists a non-negligible difference betweesdheo
thresholds in the LDPC case. This information may be helfifuldiscussing the performance of the Gallager bound.

1This description was provided in the original Japaneseiaerdut not in the English translation.



VI. PROPERTIES OFVV'[t AND Vy;,
A. Example
In this section, we consider a typical example, in whigl, is different thanl;;,. For this purpose, we choose two parameters
q1, g2 € [0, 1] satisfying
0<2¢1—¢2<1

h(gr) — h(g2) + h(2q1 — g2)

5 < —logmax{q,1—q1}, (17)

whereh(z) def —zlogx — (1 —z)log(1 — x). According to the following three conditions (i), (ii) andi), we define the five
joint distributionsW,, Wy, Ws, Wy, and W5 on two random variablesl = 0,1 and B = 0, 1. In the following, Q4 (Q%)
denotes the marginal distribution aff concerningA (B).
(i) Uniformity on A
All distributions are assumed to satisfy

WA0) =1/2.

(i) Same marginal distribution o8 for i = 1,2
Two random variablest = 0,1 and B = 0,1 are not independent ifl’; and W5, but W; and W, have the same
marginal distribution onB. That is,
WP (0[A=0) =W (0[A=1) = g
WE(0]A=1) =W (0]A=0) = 2¢1 — go.
Thus,W; and W, satisfy
W (0) = Wy (0) = g1

(iii) Independence betweeA and B for i = 3,4,5
Due to the condition[{17), there exist two solutions foin the following equation becaus&z|/q;) is monotone
increasing in(g;, 1) and is monotone decreasing (0, ¢1):

() - LI g,

where

e 1-
d(z||y) Lef xlog% + (1 —z)log 1 y

Letting p; and p, be these two solutions, we define three distributidiig 1W,, and W5, in which two random
variablesA = 0,1 and B = 0,1 are independent, by

W (0) = p1, W (0) = pa, W (0) = a1
From the construction, we can check that

h(g2) + h(2q1 — ¢2)
2

D(W;[|W5) = h(q1) — (18)

for i = 1,2,3,4. Consider the subsets

2, € {QIQ"(0) = 1/2}
2, Q€ 2|Q%(0) = ¢1}

def

2, = {Q € 201Q"(0]A=0) = Q" (0]A = 1)}.

Then, Z; N Z; = {W5}. Hence, the relationship amort®), 21, 2o, Wi, Wa, W3, Wy, andW; is shown in Fig[B. For any
distribution @,

Then, the following lemma holds.

Lemma 1:

argmax min D(W,.||Q) = argmax min D(W,||Q) (19)
Q x=1,2 QeZ, x=1,2

argmax min D(W,||@) = argmax min D(W,.||Q). (20)
Q r=3,4 QEZ, r=3,4
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Fig. 3. 2o, Z1, Z2, W1, W2, W3, Wy, andWs

Therefore, [(IB) implies that

argmax min 4D(WIHQ) = Ws.
Q =

—1,459,

and

max min D(W2[|Q) = max min D(W2[|Q) = h(q) —

max min D(W,[|Q) = max min D(W.[|Q) = h(q) —

That is, the capacity of the channek= 1,2, 3,4 — W, is calculated as

: h(gz) +h(2q1 — ¢2)

DM __ — —

Cw" =max min  D(W[|Q)=h(q) ) :

Then, the seV is given by the convex hull of = (1/2,1/2,0,0) and P’ = (0,0, ﬁ, ﬁ). Thus,Vapia—xpw =
AVpw + (1 — /\)Vp/yw. Wheanyw < Vp w,

VV-’I; =Vp w, VI/I_/ =Vpw.
Otherwise,
V‘; =Vew,Viy = Ve w.

Our numerical analysis (Fi§] 4) suggests the relafigny < Ve .

0.035 |
0.8 0. 03
o6 0.025
S < 0.02
0.4 s0.015
o 0.01
0.005 |
0 0 A -
0 0 0.1 02 03 04 0.5

Fig. 4. Comparison betweevii = Vp - (dotted line) andiz = Vp/ - (solid line).

Proof of Lemma[l  For this proof, we define the mags and&p as

(E4Q)(A = a,B =1b) :=P*(a)Q(B = b|A = a)
(EpQ)(A = a, B =1b) :==P?(b)Q(A = a|B =),
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where PA(0) = 1/2 and PB(0) = ¢;. when the distributiony)’ satisfies that)’** = P4, the following Pythagorean type
inequality

D(Q'IQ) = D(Q'[€a(Q)) + D(£4(Q)NIQ) (21)
holds. Similarly, when the distributio@’ satisfies thaQ’B = P?5, the following Pythagorean type inequality
D(Q'|Q) = D(Q'[€:(Q)) + D(EBQIIQ) (22)

holds. DefineQqor := Egofpo0---0Ep0€aQ and Qaox11 = Eao0Epoao---0Ep o0& Q. Then, D(Q2p+1||Q2) =

2% 2%t 1
D(EaQ2k||EaQ21-1) < D(Q2k]|Q2k—1), and D(Qax||Q2—1) < D(Q2k—1||Q2r—2). For any@’ € Z;, we have

D(Q'Q) = D(Q'|Qn) + Z D(Qk||Qx-1)-

Thus, D(Q«||Qx—1) converges to zero. Therefore, there exists a distribuflgn such thatQ, — Q.. Hence,

D(Q'Q) = D(Q'Qx) + > D(Qrl|Qr-1),

k=1
which implies [19).
Further, for anyP, € Z,, we assume thaf) satisfiesQ4 = P4. Since the concavity ofog implies the inequality
log", PA(a)Q(B =bA=a)>), PA(a) log Q(B = b|A = a), the following Pythagorean type inequality

D(P,||Q) = ZZ% b)log Q(a, b)

ZPQ 1ogQ“‘ ZZ% b)log Q(B = b|A = a)
Z Ps*(a)log Q*(a) Z PP (b)log Q" (b) + Z Py (b)log Q% (b) Z Z Ps'(a)Py’ (b)log Q(B = b|A = a)
D(Py||P$* x PP) Z PE(b)log QB ZP2 ZP2 Ylog Q(B = b|A = a)

=D(P||Ps* x PP)+ Y _ PP (b) <1ogZPA(a)Q(B =blA =a) ZPA Y log Q(B = b|A = a))
b a

>D(P| Py x Py) (23)
holds. Combination of{22) an@ (P3) yields {20).

B. Additivity

The capacity satisfies the additivity condition. That ig, day two channel§W,(y)} and{W_.,(y)}, the combined channel
{(W x W) wr(y,y') = Wa(y)W.(y')} satisfies the following:

DM DM
OW X W/ CW + OW/ .

Similarly, as mentioned in the following Iemmia(;,; andVy;, satisfy the additivity condition.
Lemma 2: The equations

Vivsw = Viy + Vi (25)

hold.
Proof of Lemma[Z  We choose the distribution@ andQ’ as

Q def argmin max D(W,||Q)
Q xT

Q' def argmin max D(W;/ I Ql)
Q

Then,

QxQ = argmmmaxD(W x W Q").
Q//
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Assume that a distributio®® with the random variables andz’ satisfies the following:

> Pz, )Wa x W) =Q x Q) (26)
I(P,W x W') = OpM + CRM (27)

Then, the marginal distribution8, and P, of P concerningr andz’ satisfy
I(PL,W) = CM, I(P, W) = O,
which implies
D(W,|Q) = Cy", DWW, Q") = Cy!
for x € supp(P1) andz’ € supp(Ps), wheresupp(P) denotes the support of the distributidh Hence,

We(y) W ') 2 o2
Vewxw: P( Wa( )(1 1 — (D(W, DWW,
PW xW ; z,x") Z y')(log o) + log W) )? = (D(W,|Q) + D(W,,1Q"))
We() 2 W (') o W (y) W;f(y’)>
=>» P( W ( 1 1 1 1
2 P ) (< “aw ) T T Rw )
—( (WIIIQ) +D(W’/IIQ) +2D(W,[|Q)D(W [1Q))
Wa(y) o W (') 2) 2 / N2
= 1 1 — ft — -
=3 Pl S W 20 (w222 4 tog 2 L) - D@ - DOV Q)
ZVP1,W + VPg,W’-
Therefore, when the conditioris {26) andl(27) are satisflentaximum ofVp 1 - is equal toVMJ; +VVT,,, which implies
(24). Similarly, we obtain[(Z5). [ ]

The same fact holds with the cost constraint. The capacitly thie cost constraint satisfies the additivity conditiohafis,

for any two cost fucntions and¢’ for channels{W,.(y)} and {W/,(y')}, the combined cosic + ¢')(z, 2') def c(z) + ' (2)
satisfies the following:

DM _ DM DM
CWXW’,C+C’,K+K’ == CW,C,K + CW’,C’,K"

The quantities);}; , ,- andVy, _ . satisfy the additivity condition.
Lemma 3: The equations

+ _yt +
VWXW’,c+c/,K+K/ - VW,C,K +V ’e!  K! (28)
VWxW',c+c/,K+K/ = VW,c,K +V e K (29)

hold.
This lemma can be proven in the same way as Lefma 2 by repl#uindefinitions ofQ andQ’ by

Q % argmin  max Z P(z)D(W,||Q)
Q

P:Epc(z)<K

Q' def argQr{nn P’:EP{Icl’%;(’)gK’ ; P'(z"YD(W.L|Q").
VII. N OTATIONS OF THE INFORMATION SPECTRUM
A. Information Spectrum
In the present paper, we treat general channels. First, wesfon two sequences of probability spages,}>> , of the
input signal and thos€y,, }°2 ; of the output signal, and a sequence of probability tressithatrixesWw def {W™(y|z)}22,.
We also focus on a sequence of distributions on input systE'erinéf {P™}52,. The asymptotic behavior of the logarithmic

likelihood ratio betweerV!(y) = def W™ (ylz) and W3, (y) def > wex, PM(x)W"(ylz) can be characterized by the following
guantities

I,(R|P, W) X Jim sup Z P (z)W7 {—l og Wn ) <R}
n—oo TEX,, an( )

I(e| P, W) < sup{R|L,(R|P,W) < ¢}

= inf{R|I,(R|P,W) > ¢}
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for 0 < e < 1. Focusing on a sequence of distributions on output sys'@rf'%%f {Q"}22_,, we can define

n=1"

J,(R|IP,Q. W) ¥ hgls;p > P'x W"{ lo g:(( )) < R}

reX),

J(e[P,Q, W) < sup{R|J,(R|P,Q, W) < ¢}

= inf{R|J,(R|P,Q,W) > ¢}

for0<e<1.

When the channdlV" is then-th stationary discrete memoryless chaniiét™ of W (y|x) and the probability distribution
P = {P"} is then-th independent and identical distributidt™ of P, the law of large numbers guarantees th@ P, W)
coincides with the mutual information(P, W) =3  P(z)W.(y ) log - e (( )) For a more detailed description of asymptotic
behavior, we focus on the second order of the coding lengtfor 5 < 1. In order to characterize the coefficient of the second
ordern?, we introduce the following quantities:

1 wr
L(Ry, Ry | P, W) % lim sup > Py {m(log = () —nRy) < RQ}

n—00 2EX, Wgn (y)

I(e,Ry|P, W) < sup{Ro|L,(Ro, R |P,W) < ¢}
:inf{R2|I (RQ,R1|P W > 6}

for 0 < e < 1. Similarly, J,(Rs, R1|P,Q,W) and J(¢, R1|P,Q, W) are defined fol0 < ¢ < 1. When W is W* =

{W>*n} and P is P* = {P*"}, the second order of the coding lengthris and the central limit theorem guarantees that

nié(log vﬁ(z) —nI(P,WW)) asymptotically obeys the Gaussian distribution with expiéen 0 and variance:

Ve 3 Pa) Y Waly) (10g x;((z)) —I(P, W)) :

Therefore, using the distribution functiafl for the standard Gaussian distribution, we can express ltbgeaquantities as
follows:

I(e, (P,W)|P*,W*) = /VpwG (e). (30)

In the case of additive channels, we focus on the limitingavedr of the entropy rate of the distributio@ = {Q"}>2
describing the additive noise. Similar to the above, we @effire following.

Hy(R|Q) = Timinf Y Q" {‘71 log Q"(x) < R}

reX),
H(e|Q) = sup{R|H,(R|Q) < ¢}
= inf{R|H,(R|Q) > €}

(RQ,R1|Q = hmlnf Z Q”{ —logQ"(z) —nRy) < Rg}
reX),

H(e, R1|Q) = sup{ Ro| Hy (R, R1|Q) < €}

= 1Hf{R2|Hp(R2,R1|Q) Z 6}

for 0 < e < 1. As is discussed in Section VIl in [6], whe® is given by a Markovian proce<3(y|x), the relationships

H(elQ) = H(Q) (31)
H(e, HQ)IQ) = VV(Q)G™(e) (32)
Hy(Re, H(Q)|Q) = G(R2//V(Q)) (33)

hold with 8 = 1/2.

B. Stochastic limits
In order to treat the relationship between the above quesititve consider the limit superior in probabilitylpn sup,,_, .
and the limit inferior in probability plim inf,,_, .., which are defined by

p-limsup Z,|p, def inf{a| lim P,{Z, > a} =0}
n—oo

n—oo

p-liminf Z,|p, et sup{a| lim P,{Z, < a} =0}.
n—00 n—00
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In particular, when pimsup,, . Zn|p, = p-liminf, .o Z,|p, = a, we write
p- im Z,|p, = a.
n—o0
The concept pliminf,,_,,, can be generalized as
e-p-liminf Z,|p, et sup{a|limsup P,,{Z,, < a} < €}.
n—oo n—o00

From the definitions, we can check the following properties:

e-p-lim inf Zn+Yalp, ze-p-lim inf Znlp, + p-lim inf Y.lp,- (34)
ephmlan +Y.lp, <ephm1an |p, —|—phmsqu|p (35)
n—oo

As shown by Han [5], the relation

1 P™(x)
PR e B By 2 (%)
holds fora > 0 and any two sequenceB = {P"} and P’ = {P"'} of distributions with the variable.
By using this conceptl(e| P, W), J(e|P,Q, W), I(¢, R1|P,W), and J (e, R, |P,Q, W) are characterized by
Wi ()
I(e|P,W) = e-p- hmmf—log
n— Wg. (y) Ppn wn
J(e|P,Q,W) = e-p- hmlnflloan( v)
Q"W pp o
I(e, R1|P,W) = e-p- hmlnf (l Wn( y) —nRy)
oo an( ) Ppn wn
J(e, R1|P,Q, W) = e-p-lim inf —(log Wily) _ nRy)
n—oo nb Qn(y) P n
Substituting’s, and Q™ into P* and P’ in (38), and using[{34), we obtain
I(e|P,W) < J(e|P,Q, W)
1(61R1|P1 W) S J(61R1|P7Q1W)'
Sincel — H,(R|Q) = liminf,_,o Q{2 log Q" (z) < —R}, H(e|Q) is characterized as
— H(e|lQ) = — nf{R|H,(R|Q) > €}
—sup{—R[1 - H,(RIQ) <1 - ¢} = (1 — )-p-liminf ~log Q" () |qn- 37)
n—,oo M
Similarly,
1
H(e, R1]1Q) = (1 — €)-p-liminf — (logQ"(x) + nRy)| . (38)
n—oo nb Qn
In the following, we discuss the relationship between thevakmentioned quantities and channel capacities.
VIIl. GENERAL ASYMPTOTIC FORMULAS
A. General case
Next, we consider the capacity and its related quantity, which are defined by
Cp(R|W) déf{ inf {1imsupP€7wn(<I> ) hmlnf 1og|(I> | > R}
nfn=1 n—oo
C(e|W) def sup {hmmf — log |®, || lim sup P, yn (®,,) < e} .
{n}i, n—oo
Concerning these quantities, the following general asgtigpformulas hold.
Theorem 6: (Verdd & Han[14], Hayashi & Nagaoka [15]) The relations
Cp(RIW) = inflim I,(R —~v|P,W) = inf suplim J,(R — v|P,Q, W) (39)
P ~l0 P qQ 0

C(e|W) = sup I(e| P, W) = sup igf J(e|P,Q, W) (40)
P P
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hold for0 < e < 1.

Remark 2: Historically, Verd( & Han [14] proved the first equation Q). Hayashi & Nagaoka [15] established the second
equation in[(4D) withe = 0 for the first time, even for the classical case, althoughrtimgiin topic was the quantum case. The
relation [39) is proven for the first time in this paper.

Next, we proceed to the second-order coding rate. As a girsian of (2) and [(B), we define the following:

n

Cp(Ra, Ri|W) < inf {lim sup P.yn (®,,)

{(I)n};:o:1 n—oo

1
lim inf — (log |®,| — nRy) > Rg} (41)
n—oo
def P
Ce, R1|W) = sup {hmlnf —B(log |®,| — nRy)
{q>"}:,o:1 n—oo M

Similar to Theorenil6, the following general formulas for $econd-order coding rate hold.
Theorem 7: The relations

Cp(Rg, R1|W) = inflim I,(Ry — 7, R1|P, W) = inf sup lim J,(Rz — 7, R1| P, Q, W) (43)
P ~l0 P qQ ~l0

lim sup P, wn (®,,) < e} . (42)

n—oo

O(G, R1|W) = sup](e, R1|Pa W) = Sup lgf J(G, R1|P7 Q7 W) (44)
P P

hold for0 < e < 1.

Indeed, Theorernl7 has greater significance than generatizathis theorem provides a unified viewpoint concerning th
second order asymptotic rate in channel coding and thewioltlp merits. First, it shortens the proof of TheorEn 3. Secibn
enables us to extend Theoréin 3 to the case of cost consiFaind, it yields the extension to Gaussian noise case, whizh
continuous input signals. Fourth, it allows us to extendshme treatment to the Markovian case with the additive noise

B. Cost constraint

We focus on a sequence of cost functiors: {c,}22; wherec, is a function fromX,, to R. In this case, all alphabets are
assumed to belong to the set

def
Xn,c,K = {I € Xn

ch(:c) < nK} .

=1
That is, our codg®,,} is assumed to satisfy thatipp(®,,) C X, ., k. Then, the capacities with cost constraint are given by

Cp(RIW, ¢, K) ef g {hmsup P,y (®,)|liminf — log |®,| > R,supp(®,,) C Xn7c7K}

{‘bn}zczl n—oo n—oo M

n—r oo

e .o .1
C’(e|W,c,K)d:f sup {hm1nf—1og|<1>n|

{@a)z, L N7 1

lim sup Pe,W" ((I)n) < €, supp(@n) - Xn,c,K}

ef . . . 1
Cp(Ra, Ri1|W, ¢, K) definf {hm sup Pewn (®y,)| lim inf — (log |®,,| — nRy) > Ra,supp(P,) C Xn_,c_,K} . (45)

{‘bn}zczl n—o0 n—00 nﬁ

e .. 1
C(e, R1|W,e, K) def sup {hmmf —ﬁ(log |®,,| — nRy)
{@n}pz, L0 1

lim sup Pe wn (®r) < €,supp(®,) C Xn,c,K} . (46)
n—oo

Concerning these quantities, the following general asgtigppformulas hold.

Theorem 8: (Han[5], Hayashi & Nagaoka [15]) The relations

C,(RIW, ¢, K) = inf lim I,(R — ~|P, W) = inf suplim .J,(R — 7| P, Q, W 47

P EIW. e K) = e, . I Tp(R =P, W) = infsuplim Jy (R —1|P, Q, W) (47)

C(elW,¢,K) = sup I(e|P,W) = sup inf J(e|P,Q, W) (48)
P:supp(Pn)CXn, e,k P:supp(Pn)C X,k

hold for0 < e < 1.

Remark 3: Historically, Han [5] proved the first equation in_{48). Haha& Nagaoka [15] established the second equation
in (48) with ¢ = 0 for the first time, even for the classical case, althoughr timgiin topic was the quantum case. The relation
(47) is proven for the first time in this paper.

Similar to Theoren]7, the following general formulas for $econd-order coding rate hold.

Theorem 9: The relations

Cp(Ro, R1|W,c,K) = inf limI,(Ry — v, R1|P,W) = inf lim J,(Rs — v, R1|P w
p( z 1| ' ) P:supp(}"I:)CXn,c,K ’;?8 p( 2 7 1| ’ ) P:supp(lleS)CXn,c,K Sgp ’;?8 p( 2 o 1| 7Q’ )
(49)
C(e, Ri|W,e,K) = sup I(e, R1|P,W) = sup inf J(e, R1|P,Q, W) (50)
P:supp(Pr)CXn, e,k P:supp(Pp)CXn e,k Q
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hold for0 < e < 1.
The above theorems can be regarded as special cases of Misg@rendl7 by substituting the s&}, . x into the set¥,,.
Hence, it is sufficient to show Theoremls 6 afd 7.

C. Additive case

Next, we consider the case where the channel is given as @msegwf additive channdV (Q) = {W™(Q")(y|z) =
Q" (y — )} on the setX™ with the cardinalityd. Verd & Han proved the following theorem.
Theorem 10: (Verdd & Han [14]) The relations

Co(RIW (@) = 1 = lim Hy(logd ~ R +1|Q) 1)
CW(Q)) = logd = H(1 - €[Q) 52

hold for0 < e < 1.
This theorem and (55) imply (54).
Remark 4: Verdl & Han proved[(52) in the case ef= 0 at (7.2) in [14]. Other cases are proven at the first time in thi
paper.
Similar to Theoreni_10, the following formulas for the secamder coding rate hold for general additive channels.
Theorem 11: The relations

CP(R27R1|W) = 1—1iir(Jal(—R2+’7,1Ogd—R1|Q) (53)
v
Cle, Ri[W) = —H(1 — ¢, logd — R1|Q) (54)

hold for0 < e < 1.
Hence, we obtain Theorel 4 froi {32) ahd](33).
Now, using Theoremis] 6 arfid 7, we prove Theorénjs 10[ahd 11. Sifiqg) = Q" (y — =), we have

1 wrn
I(e|P,W) = e-p-liminf — log jj(y)
n—oo mn WP" (y) Ppnywn
1 -1
< e-p-lim inf — log W' (y) + p-limsup — log W5, (y) (55)
n—eo 1 Ppn wn n—00 n Ppn wn
1
< e-p-liminf —log Q" (z)| +logd
n—oo N on
~logd — H(1 - €Q), (56)

where [G5) and[(86) follow froni(35) and (37), respectivEince the equality holds wheR" is the uniform distribution, we
obtain

sup I(e|P,W) =logd — H(1 — €|Q),
P

which implies [B2). Similarly, we can show _(54).
Since pdimsup,, ., = log Wg. (y)|wz, < d, we have

: n w1l W
lim sup Z P (z)W,, {Elog Wﬁn((yy)) < R}

n—oo reEX,

1
> lim sup Z P ()W} {ﬁ log W} (y) +logd < R}
oo TeEX,

n—oo

=lim sup Q" {% logQ"(z) < R —log d}

=1 — liminf Q" {_—1 log Q" (z) < logd — R} ,
n—oo n
which implies that
I,(RIP,W)>1-H,(logd — R|Q).

Thus, we obtain[{31). Similarly, we obtain {53).
Remark 5: When the setst,, and)),, are given as general probability spaces with generidlds o(X,,) ando(),), the
above formulation can be extended with the following ddfinit Then-th channellW™ is given by the real-valued function
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from X, ando()),) satisfying the following conditions; (i) For any € &,,, W/ is a probability measure oW, (ii) For
any F' € o(),), W™(F) is a measurable function of,,. P and Q take values in sequence of probability measurestgn
and Yy, respectively. Then, the summany$, ., P"(z) and>_ ., W (y) are replaced bny P"(dx) andfy W (dy),

respectively. For any distributiof on)/,,, the funct|on Q(fj)’) is replaced by the inverse of Radon-Nikodym derlvag%;
of ) with respect tolV}. In the above definitionsnfp, supp, 1an, andsupg are given as the infimum and supremum
among all sequences of probability measureg ah}>2 ; and{),}>2 ;. The following proof is also valid in this extension.

IX. PROOF OF THE GENERAL FORMULAS FOR THE SECONDRDER CODING RATE

In this section, we prove Theoremk 6 ddd 7. That is, for thele@es convenience, we present a proof for the first-order
coding rate, as well as that for the second-order coding rate

A. Direct Part
We prove the direct part, i.e., the inequalities
Co(RIW) < nf lim I,(R—~|P,W) (57)
Clelw) = upI( |P.W) (58)
Cp(Ra, R1|W) < nfhmI »(R2 — v, Ri|P,W) (59)
Cle, A|W) > SUPI(€ Ri|P,W). (60)

For arbitraryR, using the random coding method, we show that there existgzesice of codegp,, } such that- log |®,,| - R
andlimsup,,_, o, Pewn (@) < I,(R|P,W). This method is essentially the same as Verdu & Han’s mefhd{

First, we set the size ob,, z r to be N,, = enf=n""? \yith the random variableZ. We generate the encodeg, in which
x € X™ is chosen agz (i) with the probabilityP(z). Here, the choice op; (i) is independent of the choice of othég (j).
The decoder{Dl-_,Z}f\;“1 is chosen by the following inductive method:

1—1
det 1. W (l)(y)
Dizp ™ { —log —22 D,
{ iy > (Ui

Thus, the average error probability is evaluated as

N, n ¢ 1—1 n
I o 1 W oW 1. W)
EZPe,Wn(‘I)n,Z,R) < EZN_n ;:1 H/tbz(i) {ﬁ 1Og7ﬂ’£n(y) >R I I I I " log ——=—— >R

N, N, i—1 n
U n 1, W <z>(y) og oz W)
SEZN—H;WW{ o 20 b 5SS W o )

11_]1

N, i—1 n
Wry) _ } 1 W
= P (x —log —= + — Ez(EzW3 ) 1 g —— =R,
Z { an( ) Np 1 ¢z (0 Wen (y)

=1 j=

The second term is evaluated as

Np i—1 n
- 1 W¢>z(j)(y)

1= 13 1
1 N 1. Wnry)
_ P wn x >R
Nu Z {n SWi () ~ }
N

(y)e ™ > Wg.(y)}

B/2

—n

— 0.

Since liminf,, o, 32, P"(z)W? {%log el < R} — I,(R|P,W), (38) implies thatliminf, o EzPewn(Ppz) <
e
I,(R|P,W). Thus, the convergencelog |N,| — R implies the inequalityC, (R|W) < infp I,,(R|P, W).
Next, in order to prové(57), for any sequerfeewe construct a code,, such thatimsup,,_, . Pe.wn (®,,) < lim. o I, (Ro—
v|P,W). For any k, we choose the integeN;, such thatEz P, wn (P, 7 ry-1/k) < I(Ro — 1/k|P,W) + 1/k for



18

VYn > Ng. Then, for anyn, we choosek(n) to be the maximumk satisfyingn > Ni. Then, k(n) — co asn — oo.
Thus, Ez®,, 2 ry—1/k(n) 90€S tolim, o I,(Ry — 7| P, W), and%log|<1>n7Z,R0_1/k(n)| goes toRy. Hence, we obtain the
inequality C, (R|W) < infp lim, o I,(Ry — 7| P, W), i.e., [5T).

For proving [[59), we choos®/,, = enRutn Ry—n?/% SubstitutingnR; +n® R, into nR in the above discussion, we denote
the COde(I)n,ZR by cI)n,Z,Rl,Rg- Then,

ez ()N
pn (y)

x

W5, W) N,
EzP, JWn ((I)n Z,Rq, R2 < ZP" Wn { (10g Wn —nRi | < Ry p + 787(HR1+HBR2).

Sincee e~ (nRatn’R2) < 6’";/2 — 0and-1; log el 5 Ry, we obtain the inequalitg’,(Ra, R |W) < infp I,(Ra, R [P, W).
For anyk, we choose the integeY;. such thatEz P. ywn (®,, 2 r, ry—1/k) < Ip(R2 —1/k, Ri|P,W) +1/k for ¥n > Nj.
Then, defining:(n) similarly, we obtainEz ®,, 7 r, r,—1/k(n) — limyyo I(R2—v, R1|P, W), and-L: log M+’“W

R,. Hence, we obtain the inequality,,(R2, R1|W) < infp limy o I,(R2 — 7, R1|P, W), i.e., [59).
For an arbitrary numbeR < supp I(e| P, W), there exists a sequence of input distributiddsuch thatl,(R|P, W) < e
Therefore, the inequality_(58) holds. Similarly, we canwhbe inequality [(6D).

%

B. Converse part
Next, we prove the converse part, i.e.,

Cp(RIW) > infsuplim J,(R — v|P,Q, W) (61)
P Q 40
C(e|lW) < sup igf J(e|P,Q, W) (62)
P
Cp(R2, R1|W) > inf suplim J,(R2 — v, R1| P, Q, W) (63)
P Q 40
C(Ev Rl |W) < sup lgf J(G, R1|P7 Qa W)7 (64)
P

which complete our proof, because the other inequalities
e B < infsupli B
1gf l’;ﬁ}lp(R v P,W) < lgfblépl’yl% Jp(R—7P,Q,W)
sup I(e| P, W) > supinf J(¢|P,Q, W)
P P Q
e B < . _
1rlgf171JI/r01]p(R2 v, Ri|P,W) < 1rlgfsgplvlir01 Jp(R2 — 7, R1|P,Q, W)
sup I(e, R1|P,W) > supinf J(¢, R1|P,Q, W)
P P Q

are trivial based on their definitions. In the converse pae,essentially employ Hayashi-Nagaoka's[15] method. Waosk
an arbitrary sequence of codé®,,}°° ;. Let R be liminf,, %log |®,,|. Assume that the cod®,, consists of the triplet
(N, 6, {D;} ). Then, for any sequence of output distributia@s= {Q™}2, and any realy > 0, the inequality

W (y) } en(B—7)

P.wn Py log R—~b— 65
S EPPRLAL Wi gl gy < A7), (©9)

holds, wherePs,, is the empirical distribution for théd,,| points (¢(1), ..., d(N,)).

Since<" " — 0, the relationim inf,, oo Poywn (®,) > J,(R—+|P’,Q, W) holds for anyQ, whereP’ = { P }. Thus,

liminf,, o ?67Wn (@) > supg lim, o Jp(R—~|P’,Q,W). Thereforelim inf,,_, o Pe,wn(®,) > infp supg lim, o Jp(R—

~|P’,Q, W), which implies [(61).

Now, assume thatimsup,,_,., P.wn(®,) = €. Since en(;n — 0, (€8) implies thatkR — v < J(¢|P,Q,W). Thus,
R—~ <suppinfg J(¢| P, Q, W), which implies Sincey is an arbitrary positive real numbe®, < supp infg J(¢| P, Q, W),
which implies [62).

Next, consider the case in whidiminf,_,o 25 —7 log ‘f;l‘ = Ry. ReplacingR — v by Ry + n®~1(Ry; — ) in (€8), we

n ’Vlﬂ —
obtain R”Niw 0. Thus,liminf,, . Pewn (®,) > infp supg lim, o J,(R2 — 7, R1| P, Q, W), which implies [63B).

replacingR; + Ron®~! into R — v in (65), similar to [GR), we can show (64).

=)
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The inequality [6b) is shown as follows. We focus on the iradigjes:
Wi (Ds) — " Qr(D;)
<Wi ((Wa (v) — e Q" (y) 2 0}) — e Q" ({W, (y) — €™ Q" (y) = 0})
Wi (Wi (y) — " Q™ (y) > 0})

Lo Wiaw
=W¢<z‘>{—1 QiZ)ZR}v

where the first inequality follows from the fact that any twistdbutions P and @ and any positive constant satisfy

maxp[P(D) — aQ(D)] = P{P(w) — aQ(w) > 0} — aQ{P(w) — aQ(w) > 0}.
Thus,

1— Pewn(® ZWM

N,

1 2 o 1 Wi W)
<_— nR nn . n. > R!
o wmw{ on gt 2T

B 1. W2y
“ 2 Pu(@) {nngn<y><R}’

reEX™

which implies [65).

X. PROOF OF THE STATIONARY MEMORYLESS CASE
A. Proof of Theorem[2

In this subsection, using Theordth 7, we prove Thedrem 2 whermrardinality|X'| is finite. For this purpose, we show the

following relations in the stationary discrete memorylesase, i.e., the case in whidlV?(y) = W)™ (y) = def [T, Wa, (vi)
for z = (z1,...,2,) andy = (y1,...,y»). In this section, abbreviatingZ™ asC, we will prove that
G(R2/\/Vif:) R2>0
inf lim I,(Ry — v, C|P,W) < (Bo/ V) Boz (66)
P 7o G(R2/\/Viy) Rz <O.

and

G(R2/ VMJS) Ry >0
inf suplim J,(R2 —v,C|P,Q, W) > (67)
P g 70 G(R2/\/Vyyy) R2<O.
Showing both inequalities and using Theorlem 7, we obtain
G(R V&) R.>0
C(Ro, mafwr)y = { SRV T T = (68)
G(R2/\/Viyy) R2<O.
Since the rhs of (88) is continuous with respecttd68) implies that
G le) €>1/2

V+
\VVieG e e<1/2.
That is, we can show Theordm 2.

In fact, whenP is the i.i.d. of Pyry or Py, I(e,C|P, W) is equal toMF*l(e) or \/V>V;F*1(e). Thus, [66) holds.
Therefore, the achievability part (the direct part) of Theeo[2 hold. Therefore, it is sufficient to prove the converad [617).

We focus on the sef;, of empirical distributions withe outcomes. Its cardinalityT},| is evaluated a$T;,| < (n + 1)!*1.
In this proof, we use the distribution

(6 R1|W

n def Z xn 1 xXn
= We) " ol
et Tul +1 |+1 |T.| +1
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Normal distribution
with variance VW

- - ) 1 "(y) . T . S
Fig. 5.  Limiting behavior ofﬁ (log WX"( ) nC) and the Gaussian distribution with the variaricg,

and the sets

V. Y UPII(P,W) > C +e)
Q€ {z € X" |ep(z) € Ve,

whereep(x) is the empirical distribution of € X™.
Since Q7 (y) = ﬁ(wep(w))xn(y) and Q7 (y) > ﬁ@]@n(y)i

e

’z}
=3 P"(x)PWmm{ <

€,

n 1 W2 (y) ) }
P( xn < — | lo —nC R
+Z Fw: { n( Qb0
n 1 W (y) ) }
pP( xn ¢ — [ log ——F— + 1 T, —-nC | <R
z 2, PP {f< B Quyn(y) T BTl H ) € ) <
n 1 W (y) ) }
P ( xn ¢ — [ log ———"—— +1 T, H—nC ) <R;.
+x§; P ﬁ(og(wep@))wy)“g(' [+ 1) =n
Whenz € V¢,
1 WXTL
Vw7 (lgﬁ% 1) = Vi < g Ve
By on <logM +log(T| + 1) — nC'> = L tartep(a), W) + log(|T| + 1) — nC)
S%—e\/ﬁ.

Thus, Chebyshev inequality implies

Pryse {% <10g % +log(|T| 4 1) — nC'> < R}

maxp Vp %%

>
>1— Rt evi— log\TnH-l)

Define the quantity/;, ;- ef EpEw, (log o~ O (( )) D(W.||Qa))?. Whenz € V., since the random variableg QX)#

™ (y)
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S log (QL)(EZ)) has the varianceV

ep(z),W?
1 W) .
Puce { 75 (o8 uegeogyy * oeIB +1) =) <&}
L (1oe V") _ nlen(s
2Py xn {\/ﬁ <1 & O () +log(|T| + 1) — nl(ep( )7W)> < R}
= L > min G i

‘/(:Ip(z),W peve \/ VI—{’W

Since the random variableg # Yo log =W s written as a combination of finite number of random vaksbl

m(y) (QM)(U )
{1og }mGXn the above convergence is uniform. That is, for any 0, there existsV > 0 such that forn > N,
1 W (y) ) }
Pxn{ — (log —5—— +log(|T,| +1) —nC | <R
wee { 75 (o8 gagentyy +1os(ul+ )
> min G R — 0.

PeVv. /VI/D -

1 WXy ) }
oo { 75 (1o opw ") ="

maxp Vp w

n C : R
Rtevi— MHP(Q”E&G( /—Vlg_w>‘5

. R
Z min G| ———
€V, !/
VP,W

where()¢ is the complement of2,,.
Thus,

Therefore,

>P"(Q,)(1 -

_5’

1
limsup P pn yyxn
n—oo

o (o) ) <k}

) 5
Sinced > 0 ande > 0 are arbitrary, wher@Q = {Q7,}
']P(Rv C|P7 Qa W)

. 1 Wx(y)
=] Pon jyxn ¢ — [ 1 x —nC ) <R
S e w {ﬁ(og Qi) )=

. R G(R/\/Viy) R>0
>min G =
pev o\ Vew G(R/\/Vyy) R<O.

which implies [6¥) because of the continuity of the r.h.s.

B. Proof of Theorem[3
In this subsection, using Theorém 9, we prove Thedrem 3 whercardinality|.X| is finite. For this purpose, we show the
following relations in the stationary discrete memorylease, i.e., the case in whiék" (y) = W, " (y) ef 17, Wa, (y;) for

n

= (21,...,2,) andy = (y1,...,Yn), ande,(z) = >, ¢(x;). In this section, abbreviatingR™ asC, we will prove that

G(R v Ry >0
inf hm] »(Ry — 7, Ri|P,W) < ( Q/W 2 2
G(R2/

)
P:supp(Pp)CXn e,k 740 2/ Viver) R2<O.

(69)
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and

in suplim J,(Rz 7. Ba|P.Q. W) > (70)

G(Re/\/Vifex) R2=0
m —
P:supp(Pp)CXn e,k Q 7

G(R2/\/Viy.x) R2<O0.
Showing both inequalities and using Theorem 9, we obtain

¥
CP(R27R1|W,C, K) = { G(Rg/\/ij) R2 > 0 (71)

G(R2/\/Viy.x) B2 <O0.

Since the rhs of[{41) is continuous with respecttq71) implies that

VE G e>1/92
C(e,R1|W,c,K):{\/@ (€) e>1/

VVI_CC,KGil(E) e<1/2.

That is, we can show Theordm 3.

The inequality [[7D) can be proven in the same waylaé (67) bhacew 7;, and Q,, by the set of empirical distributions

The i def {P € T,|Epc(x) < K}. andQs,c,x - Therefore, the converse part of Theorem 3 hold. Thereforg sufficient to

prove the direct parf(69).

For any distributionP satisfyingEpc(z) < K, we choose the closet empirical distributiéh € T), . . Let P = {P"} be

the uniform distributions on the sé@tp, ef {z € X"|ep(x) = P,}. It is sufficient to show that

L(R,C|P,W) <G(R/\/VPw). (72)
Since
P (z) < |T|(Pn) " (2), (73)
we have
IP(RaO|Pa W)
. 1 WX (y) ) }
imsup Ppn {\/ﬁ <0g ) "C) =
. 1 W (y)
< n T xn 4 —— __xr IS o = <
_117rln_>solipPp w {\/ﬁ <1og W % (3) log | T}, nC) < R}
<a—Z2_), (74)
Vew

which implies [72).
In order to prove[(72) without conditioht| < oo, we choose a sequence of input distributi({riikg(tk)}ZOZ1 with finite
supports such that
P(k) S Tn,c,K

I(P® Wy — I(P,W
( + > ) P:EIIE%;{)SK ( ) )
+

VPS),W — VW,c,K'

Choose the distributio®™ as the uniform distributions on the SE}3< " Then, in stead of (73), the relation
1 1
PM(x) < (n+1)"" (P (x)

holds. Since\/iﬁ log(n + 1)"i goes to zero, the same discussion[as (74) yiélds (72).
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C. Proof of TheoremE
As is shown in Subsectidn X}B, we obtain the direct part, i.e.

Cy(a,CF sIN,S) < Gla/\/Veyw).
Hence, where, (z) = >, 22, it is sufficient to prove

inf suphmJ (Re — v, R1|P,Q, W) > G(a//Vp,, . w)- (75)

P:supp(Ppn)CXn,e,s Q Y

In the following discussion, we use the distribution

n def 1 n 1 n
QU - (WPM)X + §(WP]\/I,€)><
Py e dof ;e_mgii”
’ 27(S —€)

and the sets

Ve Y IPIEpa? < S — ¢}

Q, ¥ {z € X" |ep(z) € V. }.

We obtain
1 W (y) ) }
Ppnywxn{d—|lo —-nC ) <R
e {f ( Qply) -
1 WX (y)
= Z P"(:E)PWVXTL{ (log - nC) < R}
o vn Q)
1 W ()
+ Z P"(a:)PWIXn{ (log - —nC
. vn Qy(y)
1 W (y)
> P (x)P Xn{— (10g””7+10g2—n0 <R
zezﬂ We \/ﬁ (WPM)Xﬂ(y)
1 W (y)
+ P"(x)P Xn{—(logwi+log2—n0 <R;.
zgc ( ) We \/ﬁ (WPNI,E)Xn(y)
Whenz € V¢, the random variabl% (log W +log2 — nO) has the expectation
llzll? _S—e o . (5= +2H x|
\} 2log(1+ £55) + W Zlog(l+ %) +10g2> (< 1\/‘552 - Llog lfsNe), and the vananceWK
(S— e) +25‘ € i . . i
W) Thus, Chebyshev inequality implies

o

1 y) ) }
Poxnd—|[log——"2"2" _+log2—nC ) <R
w {ﬁ( S Wew ) "(y) 8

2
(S];;) +2 S;Vs
2(1+55°)?

V/n 1+5 log 2
R + %5~ log H_% -k

>1 -

— 1.

Whenzx € V., under then-variable Gaussian distributioi’,*™, the random variablég Wf)i%% is calculated to be

1 Slyl* | 22y | |l
—~ ~log(1 :
2(1+%)( NCRR R ) R SR

2
S+HH

I=)® _,, s
The expectation isﬁTéTN + 5 log(1+ % ) and the variance IS]\(’—12+§— The random variable
N
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1 W " (y+) I ng 4 s istributi infini
= log Wre T (yra) ;{H%;V — S log(1 + %) ) converges the normal distribution whengoes to infinity. Due to

the property of Gaussian distribution, this convergenagniform whenl||z|| is bounded. Hence,

( +1og2—nC) SR}
=Py § = (108 Sy +low2 - NN e+ 2)) <R

vn Wpy, )™ (y) 21+ %) 2 N
R
~@G - =
25 +alnl-
4(1+ 5 )2
R
—_—— <
G 2%“5&6 R<O0
> 4<1+W3 )2
¢l-—2—_| r>o
2%5+4%
141+ %)2
Therefore,
1 WXTI
limsup P pn pyrxn {— (10g””717(y) — nC) < R}
n— oo ’ n U(U)
R
_ <
G 2n%22-+4n S5< R<0
- T
¢|——2—1| Rr>o0
2nﬁ2—+4nﬁ
V Taar 2

Sincee > 0 is arbitrary, whenQ = {Q7 },
']P(Rv C|P7 Qa W)

n—oo

Bl

=limsup Ppn yyxn {

which implies [75).

XI. CONCLUDING REMARKS AND FUTURE STUDY

We have obtained a general asymptotic formula for chanrdhgan the sense of the second-order coding rate. Thathssit
been shown that the optimum second-order transmissionwigtiethe error probability is characterized by the second-order
asymptotic behavior of the logarithmic likelihood ratiotlveen the conditional output distribution and the non-étowal
output distribution. Using this result, we have derivedttyipe of optimal transmission rate for the discrete menes/case,
the discrete memoryless case with a cost constraint, théwediarkovian case, and the Gaussian channel case witmenyyg
constraint. The performance in the second-order codirgisatharacterized by the average of the variance of theitbgac
likelihood ratio with the single letterized expression. &dhthe input distribution producing the capacity is not ueigit is
characterized by its minimum and its maximum. We give a @gpexample such that the minimum is different from the
maximum. Furthermore, both quantities have been verifieshtsfy the additivity.

The main results of the present study are as follows. Whike application of the information spectrum method to the
second-order coding rate was initiated by Hayashi [6], Bsearch indicated that there is no difficulty in extendingegel
formulas to the second-order coding rate. Therefore, ini.thie case, the second-order coding rate of the sourcengaaid
intrinsic randomness are solved by the central limit theorelowever, channel coding cannot been treated using theatiet
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of Hayashi[6] except for the additive noise case with no cosistraint because the present problem contains the aptiion
concerning the input distribution in the non-additive mogase. In the converse part, we have to treat the generadrsez)of
input distributions. In order to resolve this difficulty, wave treated the logarithmic likelihood ratio between thaditional
output distribution and the distributio®7;, which is introduced in SubsectiGn X-A.

Furthermore, we can consider the quantum extension of aultse There is considerable difficulty concerning non-
commutativity in this direction. In addition, the thirddmr coding rate is expected but appears difficult. The secwddr
is the order,/n, and it is not clear whether the third order is a constantood¢he ordeflogn. This is an interesting problem
for future study.
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APPENDIX

For a givenR < 0, we prove [(Ib). Sincéi%(s) > 0, the functionyp is convex. Choosing,, such thatChM + f =
—due (g ) = —d¥e () — [ Lur(1)qt, we have the relation

Ry [ dup

\/ﬁ a 0 d52

Then, the minimum oCRM s+ %sﬂbp(s) is attained whes = s,,. Sincedfﬂ’;’( ) is continuous and boundes, approaches

(t)dt. (76)

zero asn goes to infinity. More precisely[{V6) implieB; = — lim,,_, oo \/_fS” & YE(t)dt = —llmnﬁoo(\/ﬁsn)dflj’f (0).
That is, lim,, o0 (v/715,) = 22—, When the functior(u) is chosen to be-%= (u ) d L2 (0), e(u) approaches zero as

A2
.20

goes to zero.
Thus, we have

2
"2, <C$VMS+ %Hiﬁp(s)) =n (C%Msn - %sn +1/)p(sn)> = fsn / / dd;ép )dudt)

d1/)p —R%
=/ Rysp +nin w)dudt = ——2—,
ViRasn ¥y g ( / / T ST )

which implies [I5).
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