
ar
X

iv
:0

80
1.

37
03

v2
  [

cs
.IT

]  
14

 A
pr

 2
00

9
1

On minimality of convolutional ring encoders
Margreta Kuijper and Raquel Pinto

Abstract—Convolutional codes are considered with code se-
quences modelled as semi-infinite Laurent series. It is wellknown
that a convolutional codeC over a finite group G has a minimal
trellis representation that can be derived from code sequences.
It is also wellknown that, for the case thatG is a finite field, any
polynomial encoder of C can be algebraically manipulated to
yield a minimal polynomial encoder whose controller canonical
realization is a minimal trellis. In this paper we seek to extend
this result to the finite ring case G = Zpr by introducing a
socalled “p-encoder”. We show how to manipulate a polynomial
encoding of a noncatastrophic convolutional code overZpr to
produce a particular type of p-encoder (“minimal p-encoder”)
whose controller canonical realization is a minimal trellis with
nonlinear features. The minimum number of trellis states isthen
expressed aspγ , where γ is the sum of the row degrees of the
minimal p-encoder. In particular, we show that any convolutional
code overZpr admits a delay-freep-encoder which implies the
novel result that delay-freeness is not a property of the code but of
the encoder, just as in the field case. We conjecture that a similar
result holds with respect to catastrophicity, i.e., any catastrophic
convolutional code overZpr admits a noncatastrophicp-encoder.

I. I NTRODUCTION

There exists a considerable body of literature on convolu-
tional codes over finite groups. In this paper we are interested
in trellis representations that use a minimum number of states.
Since decoders, such as the Viterbi decoder, are based on trellis
representations, minimality is a desirable property that leads
to low complexity decoding. In [6, Sect. VI-D] a minimal
encoder construction is presented in terms of code sequences
of the code, involving socalled “granule representatives”, see
also [16]. This is a powerful method that applies to con-
volutional codes over any finite groupG. It is wellknown
that, for the case thatG is a field, any polynomial encoder
of a convolutional code can be algebraically manipulated
to yield a so-called “canonical polynomial encoder” (left
prime and row reduced) whose controller canonical realization
yields a minimal trellis representation of the code. This isa
fundamental result that is useful in practice because codes
are usually specified in terms of encoders rather than code
sequences. In this paper we seek to extend this result to the
finite ring caseG = Zpr , wherer is a positive integer and
p is a prime integer. The open problem that we solve is also
mentioned in the 2007 paper [23]. We first tailor the concept of
encoder to theZpr case, making use of the specific algebraic
finite chain structure ofZpr . This leads to concepts of “p-
encoder” and “minimalp-encoder”. We then show how to
construct a minimalp-encoder from a polynomial encoding
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of the code. The minimalp-encoder translates immediately
into a minimal trellis realization. Thus our results allow for
easy construction of a minimal trellis representation froma
polynomial encoding and parallel the field case.

Convolutional codes over rings were introduced in [17], [18]
where they are motivated for use with phase modulation. In
particular, convolutional codes over the ringZM are useful for
M -ary phase modulation (withM a positive integer). By the
Chinese Remainder Theorem, results on codes overZpr can
be extended to codes overZM , see also [19], [1], [2], [9].

Most of the literature on convolutional codes over rings adopts
an approach in which code sequences are semi-infinite Laurent
series [6], [21], [15], [16], [9], [3], [27], [26]. In order to make
a connection with this literature, we adopt this approach inour
definition of a convolutional code: a linear convolutional code
C of lengthn over Zpr is defined as a subset of(Zn

pr )
Z for

which there exists a polynomial matrixG(z) ∈ Z
k×n
pr [z], such

that

C = {c ∈ (Zn
pr )

Z
| ∃ u ∈ (Zk

pr )
Z

: c = uG(z) and

supp u ⊂ [N,∞) for some integerN}. (1)

Here supp u denotes the support ofu, i.e., the set of time-
instantst ∈ Z for which u(t) is nonzero. Further,z denotes
the right shift operatorzu(t) = u(t− 1). Clearly, (1) implies
that C is linear and shift-invariant with respect to bothz and
z−1. If the matrixG(z) has full row rank thenG(z) is called
an encoderof C.

For the field case any linear convolutional code admits a
left prime polynomial encoder, i.e., an encoder that has a
polynomial right inverse. Such an encoderG(z) gives rise to
the following two properties:

1) delay-free property: for anyN ∈ Z

supp c ⊂ [N,∞) =⇒ supp u ⊂ [N,∞)

2) noncatastrophic property:

supp c is finite =⇒ supp u is finite,

where c = uG(z). Clearly, in the field case, “delay-free”-
ness and “catastrophicity” are encoder properties, not code
properties. For the ring case, however, there are codes that
do not admit a noncatastrophic encoder. For example (see [6],
[21], [4]) the convolutional code overZ4 with encoderG(z) =
[1 + z 1 + 3z] does not admit a noncatastrophic encoder.
Similarly, the rotationally invariant convolutional codeoverZ4

with encoderG(z) =
[

3 + 3z + 3z2 3 + z + z2
]

does not
admit a noncatastrophic encoder. The reader is referred to [18]
for motivation and characterization of rotationally invariant
codes over rings. Further, there are codes that do not admit
a delay-free encoder. For example (see [18], [16], [4]) the
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convolutional code overZ4 with encoderG(z) = [2 2 + z]
does not admit a delay-free encoder. Note that some codes
overZpr do not even admit an encoder, for example overZ4

the code given by (1) with

G(z) =

[

1 + z z z2

2 2 2

]

.

The literature (see e.g. [4, subsect. V-C]) has declared the
properties of “delay-free” and “catastrophic” to be properties
of the code rather than the encoding procedure. By resortingto
a particular type of polynomial encoder, named “p-encoder”,
we show in section III that delay-freeness is not a property
of the code but of the encoding procedure, just as in the field
case, see also [12]. We conjecture that the same is true for
catastrophicity. To support this argument, in section IV we
examine specific catastrophic convolutional codes overZpr

and show that a noncatastrophicp-encoder exists for these
examples.

A more recent approach [22] (see also [7], [23]) to convo-
lutional codes focuses on so-called “finite support convolu-
tional codes” in which the input sequenceu corresponds to
a polynomial. Thus the natural time axis isZ+ and both
input sequences and code sequences have finite support. Finite
support convolutional codes are, by definition, noncatastrophic
(Property 2 above) and can be interpreted as submodules of
Z
n
pr [z]. For n = 1 connections can be made with polynomial

block codes. For more details the reader is referred to our
paper [11].

II. PRELIMINARIES

A set that plays a fundamental role throughout the paper is
the set of “digits”, denoted byAp = {0, 1, . . . , p− 1} ⊂ Zpr .
Recall that any elementa ∈ Zpr can be written uniquely
as a = θ0 + θ1p + · · · + θr−1p

r−1, where θℓ ∈ Ap

for ℓ = 0, . . . , r − 1 (p-adic expansion). This fundamental
property of the ringZpr essentially expresses a type of linear
independence among the elements1, p, p2, ...,pr−1. It leads to
specific notions of “p-linear independence” and “p-generator
sequence” for modules inZn

pr , as developed in the 1996
paper [24]. For example, for the simplest casen = 1, the
elements1, p, p2, ..., pr−1 are called “p-linearly independent”
in [24] and the moduleZpr = span {1} is written as
Zpr = p−span {1, p, p2, . . . , pr−1}. The moduleZpr is said
to have “p-dimension”r.

In this section we recall the main concepts from [13] on mod-
ules inZ

n
pr [z], that are needed in the sequel. We present the

notions ofp-basis andp-dimension of a submodule ofZn
pr [z],

which are extensions from [24]’s notions for submodules of
Z
n
pr . From [13] we also recall the concept of a reducedp-basis

in Z
n
pr [z] that plays a crucial role in the next section.

Definition II.1. [13] Let {v1(z), . . . , vm(z)} ⊂ Z
n
pr [z].

A p-linear combination of v1(z), . . . , vm(z) is a vector
m
∑

j=1

aj(z)vj(z), whereaj(z) ∈ Zpr [z] is a polynomial with

coefficients inAp for j = 1, . . . ,m. Furthermore, the set
of all p-linear combinations ofv1(z), . . . , vm(z) is denoted

by p-span(v1(z), . . . , vm(z)), whereas the set of all linear
combinations ofv1(z), . . . , vm(z) with coefficients inZpr [z]
is denoted byspan (v1(z), . . . , vm(z)).

Definition II.2. [13] A sequence(v1(z), . . . , vm(z)) of
vectors in Z

n
pr [z] is said to be ap-generator sequence

if p vm(z) = 0 and p vi(z) is a p-linear combination of
vi+1(z), . . . , vm(z) for i = 1, . . . ,m− 1.

The next lemma is a straightforward result that is used in
section III.

Lemma II.3. Let (v1(z), . . . , vm(z)) be a p-generator se-
quence inZn

pr [z]. Then (v1(0), . . . , vm(0)) is a p-generator
sequence inZn

pr .

Theorem II.4. [13] Let v1(z), . . . , vm(z) ∈ Z
n
pr [z]. If

(v1(z), . . . , vm(z)) is a p-generator sequence then

p−span (v1(z), . . . , vm(z)) = span (v1(z), . . . , vm(z)).

In particular, p−span (v1(z), . . . , vm(z)) is a submodule of
Z
n
pr [z].

Definition II.5. [13] The vectorsv1(z), . . . , vm(z) ∈ Z
n
pr [z]

are said to bep-linearly independent if the only p-linear
combination ofv1(z), . . . , vm(z) that equals zero is the trivial
one.

Definition II.6. Let M be a submodule ofZn
pr [z], written as

a p-span of ap-generator sequence(v1(z), v2(z), · · · , vm(z)).
Then (v1(z), v2(z), · · · , vm(z)) is called ap-basis for M

if the vectorsv1(z), . . . , vm(z) are p-linearly independent in
Z
n
pr [z].

Lemma II.7. [13] Let M be a submodule ofZn
pr [z] and let

(v1(z), v2(z), · · · , vm(z)) be ap-basis forM . Then each vec-
tor of M is written in a unique way as ap-linear combination
of v1(z), . . . , vm(z).

All submodules ofZn
pr [z] can be written as thep-span of ap-

generator sequence. In fact, ifM = span (g1(z), . . . , gk(z))
thenM is thep-span of thep-generator sequence

(g1(z), pg1(z), . . . , p
r−1g1(z), . . . , gk(z), . . . , p

r−1gk(z)).

Next, we recall a particularp-basis for a submodule of
Z
n
pr [z], called “reducedp-basis”. We first recall the concept

of “degree” of a vector inZn
pr [z], which is the same as in the

field case.

Definition II.8. Let v(z) be a nonzero vector inZn
pr [z], written

asv(z) = v0 + v1z+ · · ·+ vdz
d, with vi ∈ Z

n
pr , i = 0, . . . , d,

and vd 6= 0. Then v(z) is said to havedegree d, denoted
by deg v(z) = d. Furthermore,vd is called the leading
coefficient vectorof v(z), denoted byvlc.

In the sequel, we denote theleading row coefficient matrixof
a polynomial matrixV (z) by V lrc. A matrix V (z) is called
row-reduced if V lrc has full row rank.
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Lemma II.9. [13] Let M be a submodule ofZn
pr [z], written

as a p-span of ap-generator sequence(v1(z), . . . , vm(z))
with vlc1 , . . . , v

lc
m p-linearly independent in Z

n
pr . Then

(v1(z), . . . , vm(z)) is a p-basis forM .

Definition II.10. [13] Let M be a submodule ofZn
pr [z], writ-

ten as ap-span of ap-generator sequence(v1(z), . . . , vm(z)).
Then (v1(z), . . . , vm(z)) is called areduced p-basis for M

if the vectorsvlc1 , . . . , v
lc
m arep-linearly independent inZn

pr .

A reducedp-basis inZn
pr [z] generalizes the concept of row

reduced basis from the field case. Moreover, it also leads
to the predictable degree property and gives rise to several
invariants ofM , see [13]. In particular, the number of vectors
in a reducedp-basis as well as the degrees of these vectors
(called p-degrees), are invariants ofM . Consequently, their
sum is also an invariant ofM .

Every submoduleM of Z
n
pr [z] has a reducedp-basis. A

constructive proof is given by Algorithm 3.11 in [13] that
takes as its input a set of spanning vectors and produces a
reducedp-basis ofM . It is easy to see that if the input is
already ap-basis ofm vectors, then the algorithm produces a
reducedp-basis of againm vectors. Sincem is an invariant
of the module, it follows that allp-bases ofM have the same
number of elements. As a result, the next definition is well-
defined and not in conflict with the slightly different definition
of [13].

Definition II.11. The number of elements of ap-basis of a
submoduleM of Z

n
pr [z] is called thep-dimension of M ,

denoted asp−dim (M).

In recent work [14] it is shown that computational packages
for computing minimal Gröbner bases can be used to construct
a minimalp-encoder.

III. M INIMAL TRELLIS CONSTRUCTION FROM A

p-ENCODER

Formally, we define atrellis sectionas a three-tupleX =
(Zn

pr , S,K), whereS is the trellis state setandK is the set
of brancheswhich is a subset ofS × Z

n
pr × S, see also [6],

[16]. A trellis is a sequenceX = {Xt}t∈Z of trellis sections
Xt = (Zn

pr , S,Kt). A path through the trellis is a sequence
(· · · , bt−1, bt, bt+1, · · · ) of branchesbt = (st, ct, st+1) ∈ Kt

such thatbt+1 starts in the trellis state wherebt ends for
t ∈ Z. The set of all trellis paths that start at the zero state
is denoted byπ(X ). The mappingλ : π(X ) 7→ (Zn

pr )
Z

assigns to every path(· · · , bt−1, bt, bt+1, · · · ) its label se-
quence(· · · , ct−1, ct, ct+1, · · · ). A trellis X is called atrellis
representationfor a convolutional codeC if C = λ(π(X )).

A trellis representationX for a convolutional codeC is called
minimalif the size of its trellis state setS is minimal among all
trellis representations ofC. It is wellknown how to construct a
minimal trellis representation in terms of the code sequences
of C. In fact, the theory of canonical trellis representations
from the field case carries through to the ring case, see [25],
[6], [16]. Since it plays a crucial role in the proof of our main

result, we recall the definition of canonical trellis in Appendix
A.

Let us recall the wellknown controller canonical form. LetR
be a ring. A matrixE(z) ∈ Rκ×n[z] is realized in controller
canonical form [10] (see also [5, Sect. 5]) as

E(z) = B(z−1I −A)
−1

C +D, (2)

as follows. Denoting thei’th row of E(z) by ei(z) =
∑δi

ℓ=0
ei,ℓz

ℓ, whereei,ℓ ∈ R1×n and ei,δi 6= 0, the matrices
A, B, C andD in (2) are given by

A =







A1

. . .
Aκ






, B =







B1

. . .
Bκ






,

C =







C1

...
Cκ






, D =







e1,0
...

eκ,0






,

whereAi is a δi × δi matrix, Bi is a 1× δi matrix andCi is
a δi × 1 matrix, given by

Ai =













0 1
. . .

. . .

. . . 1
0













, Bi =
[

1 0 · · · 0
]

,

Ci =







ei,1
...

ei,δi






for i = 1, . . . , κ. (3)

Wheneverδi = 0, theith block inA as well asC is absent and
a zero row occurs inB. Denoting the sum of theδi’s by δ, it
is clear thatA is aδ×δ nilpotent matrix. The above controller
canonical realization can be visualized as a feedforward shift-
register withδ registers.

In the case thatR is a field withq elements it is wellknown [8],
[16] how to obtain a minimal trellis representation forC from
a polynomial encoder. For this, the rows of the polynomial
encoder should first be algebraically manipulated (using Smith
form and row reduction operations) to yield a left prime and
row reduced encoderG(z). Then G(z) is called canonical
in the literature, see [16, App. II]. A minimal trellis repre-
sentation ofC is then provided by the controller canonical
realizationG(z) = B(z−1I −A)

−1
C+D as in (3). Although

this result is known, in Appendix B we give a proof by
showing that there exists an isomorphism between the trellis
state set of the controller canonical realization and the trellis
state set of the canonical trellis (as defined in Appendix A) of
C. The set is thus minimal and hasqν elements, whereq is the
number of elements of the field andν is the sum of the row
degrees ofG(z). The invariantν is commonly referred to as
the “degree” of the codeC (but called the “overall constraint
length” in the early literature). The row degrees are calledthe
“Forney indices” of the code [20].

Below we consider convolutional codes overZpr that admit
a noncatastrophic encoder, for simplicity, we call such codes
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noncatastrophic. We show that such codes admit a particular
type of polynomial encoder (later called “minimalp-encoder”),
whose controller canonical realization provides a minimal
trellis representation, just as in the field case. We are then
also able to express the minimal number of trellis states in
terms of the sum of the row degrees of a minimalp-encoder.

Let us now first introduce the notion of “p-encoder”. Recall
thatAp = {0, 1, . . . , p− 1} ⊂ Zpr .

Definition III.1. Let C be a convolutional code of lengthn
overZpr . Let E(z) ∈ Z

κ×n
pr [z] be a polynomial matrix whose

rows are ap-linearly independentp-generator sequence. Then
E(z) is said to be ap-encoder for C if

C = {c ∈ (Zn
pr )

Z | ∃ u ∈ (Aκ
p )

Z : c = uE(z) and

supp u ⊂ [N,∞) for some integerN}.

The integerκ is called thep-dimension of C. Furthermore,
E(z) is said to be adelay-free p-encoder if for anyN ∈ Z

and anyc ∈ C, written asc = uE(z) with u ∈ (Aκ
p )

Z we
have

supp c ⊂ [N,∞) =⇒ supp u ⊂ [N,∞).

Also, E(z) is said to be anoncatastrophic p-encoder if for
any c ∈ C, written asc = uE(z) with u ∈ (Aκ

p )
Z we have

supp c is finite =⇒ supp u is finite.

Finally, a convolutional codeC that admits a noncatastrophic
p-encoder is callednoncatastrophic.

Thus a difference between ap-encoderE(z) and the encoding
matrixG(z) of (1), is that the inputs ofE(z) take their values
in Ap rather than inZpr . Note that the idea of using ap-adic
expansion for the input sequence is already present in the 1993
paper [6]. It was not until 1996 that the crucial notion ofp-
generator sequence appeared in [24], but only for constant
vectors — it was extended to polynomial vectors in [13]. In
our definition the rows of ap-encoder are required to be a
p-generator sequence consisting of polynomial vectors.

Recall that a convolutional code overZpr is given by (1):

C = {c ∈ (Zn
pr )

Z
| ∃ u ∈ (Zk

pr )
Z

: c = uG(z) and

supp u ⊂ [N,∞) for some integerN}.

Also recall that there exist convolutional codes overZpr that
do not admit aG(z) of full row rank, i.e. an encoder. An
important observation is thatanyconvolutional code overZpr

admits ap-encoder, even ap-encoderE(z), such that the rows
of Elrc arep-linearly independent inZn

pr . Indeed, any reduced
p-basis of the polynomial module spanned by the rows of
G(z), produces the rows of such ap-encoderE(z). This shows
that the concept ofp-encoder is more natural than the concept
of encoder as it is tailored to the algebraic structure ofZpr .
The next lemma is straightforward.

Lemma III.2. Let E(z) ∈ Z
κ×n
pr [z] be a p-encoder for a

convolutional codeC of length n. ThenE(z) is delay-free

property (Definition III.1) if and only if the rows ofE(0) are
p-linearly independent inZn

pr .

Theorem III.3. LetC be a convolutional code of lengthn over
Zpr . ThenC admits a delay-freep-encoderE(z) ∈ Z

κ×n
pr [z]

for some integerκ, such that the rows ofElrc are p-linearly
independent inZn

pr .

Proof: As noted above,C admits ap-encoderE(z), such
that the rows ofElrc arep-linearly independent inZn

pr , i.e.,
they constitute a reducedp-basis. Without loss of generality we
may assume that the row degrees ofE(z) are nonincreasing.
Let L be the smallest nonnegative integer such that the last
κ− L rows ofE(z) are a delay-freep-encoder.

Now assume thatL > 0 (otherwise we are done). IfL = κ it
means that the last roweκ(z) of E(z) can be written as

eκ(z) = zℓēκ(z),

whereℓ > 0 and ēκ(z) ∈ Z
n
pr [z] with ēκ(0) 6= 0. Note that

deg ēκ(z) < deg eκ(z). Clearly, (e1(z), . . . , eκ−1(z), ēκ(z))
is a p-encoder ofC, whose rows are still a reducedp-basis.

If L < κ, then, by construction, there existαj ∈ Ap for
j = L+ 1, . . . , κ, such that

eL(0) +
∑

j>L

αjej(0) = 0

(use the fact that (e1(0), . . . , eκ(0)) is a p-generator
sequence by Lemma II.3). ReplacingeL(z) by
ẽL(z) := eL(z) +

∑

j>L αjej(z) obviously gives a
p-basis (e1(z), . . . , eL−1(z), ẽL(z), eL+1(z), . . . , eκ(z))
of the module spanned bye1(z), . . . , eL(z), . . . , eκ(z)
and, consequently, a p-encoder of C. Moreover,
by the p-predictable degree property (Theorem 3.8
of [13]), deg ẽL(z) = deg eL(z), which means that
(e1(z), . . . , ẽL(z), . . . , eκ(z)) is still a reduced p-basis.
Since ẽL(0) = 0, we can write ẽL(z) = z ℓ̃ēL(z),
with ēL(0) 6= 0 and ℓ̃ > 0. Note that pẽL(z) is a
p-linear combination pẽL(z) =

∑

j>L βj(z)ej(z) with
βj(z) ∈ Ap[z]. Because of thep-linear independence of
eL+1(0), . . . , eκ(0), we must have that the coefficients
βj(z) are of the formβj(z) = zℓj β̄j(z) with ℓj ≥ ℓ̃

for L + 1 ≤ j ≤ κ. Consequently, the sequence
(e1(z), . . . , eL−1(z), ēL(z), eL+1(z), . . . , eκ(z)) is a p-
encoder ofC, which is still a reducedp-basis withdeg ēL(z) <
deg eL(z). If (e1(z), . . . , ēL(z), eL+1(z), . . . , eκ(z)) is not a
delay-freep-encoder, then re-order the vectors so that their
degrees are nonincreasing and repeat this procedure until a
delay-freep-encoder forC is obtained. Since the sum of the
row degrees ofp-bases obtained at each step of the procedure
is lower than in the previous step, a delay-freep-encoder is
obtained after finitely many iterations.

The next example is a simple example that illustrates the
above theorem.

Example III.4. Over Z4: consider the(2, 1) convolutional
codeC of [16, p. 1668] given by the polynomial encoder

G(z) = [2 2 + z] .
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A delay-freep-encoder forC is given by

E(z) =

[

2 2 + z

0 2

]

.

Theorem III.5. Let C be a noncatastrophic convolutional
code of lengthn over Zpr . Then C admits a delay-free
noncatastrophicp-encoderE(z) ∈ Z

κ×n
pr [z] for some integer

κ, such that the rows ofElrc are p-linearly independent in
Z
n
pr .

Proof: By definition there exists a noncatastrophicp-
encoderE1(z) for C. Apply Algorithm 3.11 of [13] to the rows
of E1(z). This gives us a reducedp-basise1(z), . . . , eκ(z) for
the module spanned by the rows ofE1(z). DefineE2(z) as
the κ × n polynomial matrix withe1(z), . . . , eκ(z) as rows.
By construction the rows ofElrc

2 are p-linearly independent
in Z

n
pr . It is easy to see thatE2(z) is still noncatastrophic. If

E2(z) is not delay-free apply the procedure of the proof of
Theorem III.3 toE2(z) to obtain a delay-freep-encoderE(z),
such that the rows ofElrc arep-linearly independent inZn

pr .
It is easy to see thatE(z) is still noncatastrophic.

Definition III.6. Let C be a noncatastrophic convolutional
code of lengthn over Zpr . Let E(z) ∈ Z

κ×n
pr [z] be a delay-

free noncatastrophicp-encoder forC, such that the rows of
Elrc are p-linearly independent inZn

pr . ThenE(z) is called
a minimal p-encoderof C. Furthermore, thep-indices of C
are defined as the row degrees ofE(z) and thep-degreeof
C is defined as the sum of thep-indices ofC.

Thus, in the terminology of section II, the rows of a minimal
p-encoder are a reducedp-basis. If the codeC has a canonical
encoderG(z), then bothGlrc mod p andG(0) mod p have
full row rank inZ

k×n
p , so that a minimalp-encoder is trivially

constructed as

E(z) =











G(z)
pG(z)

...
pr−1G(z)











. (4)

An important observation is that all noncatastrophic codes
admit a minimalp-encoderE(z) but not all such codes admit
an encoderG(z) that is row reduced and/or delay-free.

Definition III.7. Let C be a convolutional code of lengthn
with p-encoderE(z) ∈ Z

κ×n
pr [z]. Denote the sum of the row

degrees ofE(z) by γ and let

(A,B,C,D) ∈ Z
γ×γ
pr × Z

κ×γ
pr × Z

γ×n
pr × Z

κ×n
pr

be a controller canonical realization ofE(z). Then thecon-
troller canonical trellis corresponding toE(z) is defined as
X = {Xt}t∈Z, whereXt = (Zn

pr ,Aγ
p ,Kt) with

Kt = {(s(t), s(t)C + u(t)D, s(t)A+ u(t)B such that

s(t) ∈ Aγ
p , u(t) ∈ Aκ

p}.

Note that the states take their values in the nonlinear set
Aγ

p , which is not closed with respect to addition or scalar
multiplication. Similarly, the inputs take their values inthe
nonlinear setAκ

p . The next theorem presents our main result.

Theorem III.8. LetC be a noncatastrophic convolutional code
of lengthn with minimalp-encoderE(z) ∈ Z

κ×n
pr [z]. Denote

the p-degree ofC by γ. Then the controller canonical trellis
corresponding toE(z) is a minimal trellis representation for
C. In particular, the minimum number of trellis states equals
pγ .

Proof: see Appendix B.

In the field caser = 1 the above theorem coincides with
the classical result, i.e., the minimum number of trellis states
equalspγ , whereγ is the degree of the code.

For convolutional codes that admit a canonical encoder, we
have the following corollary, which follows immediately from
applying Theorem III.8 to the minimalp-encoder given by (4).
Note that the result coincides with results in [26, Sect. 7.4],
where a canonical encoder is called “minimal-basic”.

Corollary III.9. Let C be a(n, k) convolutional code that has
a canonical encoderG(z) ∈ Z

k×n
pr [z]. Then therk p-indices

of C are thek row degrees ofG(z), each occurringr times.
The minimum number of trellis states equalsqν , whereν is
the sum of the row degrees ofG(z) and whereq = pr.

The next example illustrates our theory for the more inter-
esting case where the code does not admit a canonical encoder.

Example III.10. Over Z4: consider the(3, 2) convolutional
codeC given by the polynomial encoder

G(z) =

[

g1(z)
g2(z)

]

, where

g1(z) =
[

z2 + 1 1 0
]

andg2(z) =
[

2z 2 1
]

.

Clearly,G(z) is a left prime encoder whose controller canon-
ical trellis has43 = 64 trellis states. Note thatGlrc does not
have full row rank and thereforeG(z) is not canonical. Denote
by im G(z) the polynomial module spanned by the rows of
G(z). A p-basis for the module imG(z) is provided by the
rows of the matrix









g1(z)
2g1(z)
g2(z)
2g2(z)









=









z2 + 1 1 0
2z2 + 2 2 0

2z 2 1
0 0 2









,

which has leading row coefficient matrix








1 0 0
2 0 0
2 0 0
0 0 2









.

The row reduction algorithm of [13, Algorithm 3.11] is
particularly simple in this case: by addingz times the third
row to the second row, we obtain the matrixE(z), given by

E(z) =









z2 + 1 1 0
2 2z + 2 z

2z 2 1
0 0 2









,
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whose rows are a reducedp-basis for the module imG(z).
Indeed, the rows of its leading row coefficient matrix, given
by









1 0 0
0 2 1
2 0 0
0 0 2









,

arep-linearly independent. As a result, thep-indices ofC are2,
1, 1, 0 and thep-degree ofC equals4. The controller canonical
trellis corresponding toE(z) is given by

A =









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









; B =









1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0









;

C =









0 0 0
1 0 0
0 2 1
2 0 0









; D =









1 1 0
2 2 0
0 2 1
0 0 2









.

This trellis is minimal with24 = 16 trellis states.

Example III.11. Over Z4: consider the(2, 1) convolutional
code C of Example III.4, given by the polynomial encoder
G(z) = [2 2 + z] (note thatG(z) is not delay-free). The
delay-freep-encoder

E(z) =

[

2 2 + z

0 2

]

.

of Example III.4 is clearly minimal, so that its corresponding
trellis is minimal with2 states which concurs with [6].

IV. CONCLUSIONS

An important class of polynomial encoders for convo-
lutional codes over a field are the canonical ones. Their
feedforward shift register implementations are minimal trellis
representations of the code. The trellis state space is linear.
However, for convolutional codes over the finite ringZpr ,
the literature has generalized this result only for restricted
cases. In this paper we introduce the concept ofp-encoder
and defineminimalp-encoderfor the class of noncatastrophic
convolutional codes. We show how to obtain a minimalp-
encoder from a polynomial encoding of the code. We show
that the feedforward shift register implementation of sucha
minimal p-encoder is a minimal trellis representation of the
code. Its trellis state space is nonlinear. We also express the
minimal number of states in terms of the row degrees of the
minimal p-encoder. In our view a minimalp-encoder is the
ring analogon of the “canonical polynomial encoder” from
the field case. We also present the novel concepts ofp-indices
and p-degree of a code as analogons of the field notions of
“Forney indices” and “degree”, respectively.

Our approach allows us to view “delay-freeness” as a property
of thep-encoder. Thus we arrive at the novel result that delay-
freeness is a property of the encoding (just as in the field
case) rather than a property of the code, as in the literature
so far (see e.g. [4, subsect. V-C]). We conjecture that a
similar phenomenon occurs with respect to catastrophicity, i.e.,

“noncatastrophic” is a property of thep-encoder, not the code.
This would imply that minimalp-encoders can be obtained for
all convolutional codes overZpr , including the catastrophic
codes. This is of particular importance for rotationally invari-
ant catastrophic codes, see e.g. [18]. It is a topic of future
research to investigate this conjecture which is likely to involve
a generalization of a type of “normal form” for polynomial
matrices overZpr . To support our conjecture, let us examine
the rotationally invariant catastrophic codeC1 over Z4 given
by the encoderG1(z) =

[

3 + 3z + 3z2 3 + z + z2
]

. A
noncatastrophic minimalp-encoder forC1 is given by

E1(z) =

[

3 + 3z + 3z2 3 + z + z2

2 2

]

,

yielding a minimal trellis representation ofC1 with 4 states.
Similarly the catastrophic codeC2 over Z4 with encoder
G2(z) = [1 + z 1 + 3z] has a noncatastrophic minimalp-
encoder

E2(z) =

[

1 + z 1 + 3z
2 2

]

,

yielding a minimal trellis representation ofC2 with 2 states.
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APPENDIX A

In this appendix we recall the construction of a minimal
trellis for a convolutional codeC as a so-calledtwo-sided
realizationof C, see [25], [6], [21], [15], [16], [26]. Consider
two code sequencesc ∈ C and c̃ ∈ C. Conform [25], the
concatenationat time t ∈ Z of c and c̃, denoted byc∧t c̃, is
defined as

c ∧t c̃(t
′) :=

{

c(t′) for t′ < t

c̃(t′) for t′ ≥ t
.

The code sequencesc andc̃ are calledequivalent, denoted by
c ≃ c̃, if

c ∧0 c̃ ∈ C.

Definition A.1. Let C be a linear convolutional code of length
n over a finite ringR. Thecanonical trellis of C is defined as
X = {Xt}t∈Z, whereXt = (Rn, S,Kt) with S := C mod≃
and

Kt := {(s(t), c(t), s(t+ 1)) | s(t) = z−t
c mod≃ and

s(t+ 1) = z−t−1
c mod≃}.

It has been shown in [25] that the above trellis is minimal.
Intuitively this is explained from the fact that, by construction,
states cannot be merged.
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APPENDIX B

In this appendix we prove Theorem III.8 via a bijective
mapping from the controller canonical trellis state set to the
trellis state set of the canonical trellis that is defined in
Appendix A. We first provide the proof for the field case.
In our proof of Theorem III.8, which is the ring case, we are
then able to highlight the parts that are different from the proof
for the field case.

Theorem B.1. Let C be a(n, k) convolutional code of degree
ν over a finite fieldR with canonical encoderG(z) ∈
Rk×n[z]. Then the controller canonical trellis corresponding
to G(z) is a minimal trellis representation forC. In particular,
the minimum number of trellis states equalsqν , whereq is the
size of the fieldR.

Proof: Denote the memory ofC by ν∗, i.e., ν∗ is the
maximal Forney index ofC. Consider the mappingΘ : Rν 7→
C mod≃, given by

Θ(s) := [c]
≃
,

wherec ∈ C passes through states at time 0. The mapping
Θ is well-defined since for anys there exists such a code
sequence and any two code sequences that pass through state
s at time0 are obviously equivalent.

Since the trellis state setC mod ≃ of the canonical trellis
of Appendix A is minimal, it suffices to prove thatΘ is
an isomorphism, as follows. Surjectivity follows immediately
from the fact that all code sequences pass through some
state at time0. Furthermore, the mappingΘ is linear since
Θ(s1 + s2) = [c1 + c2]≃. It remains to prove thatΘ is
injective.

For this, let s ∈ Rν be such thatΘ(s) = 0. Define
u(−ν∗),...,u(−2), u(−1) as elements ofRk for which

[

u(−ν∗) · · · u(−2) u(−1)
]











BAν∗−1

...
BA

B











= s.

Define u := (· · · , 0, 0, u(−ν∗), · · · , u(−2), u(−1), 0, 0, · · · )
and letc := G(z)u be the corresponding code sequence. Then
clearlyc passes throughs. FromΘ(s) = 0 it now follows that
the sequencec∧00 is a code sequence. Denote its state at time
0 by s′ and its input sequence byu′. Then clearly

[

u′(−ν∗) · · · u′(−2) u′(−1)
]











BAν∗−1

...
BA

B











= s′.

We now prove thats = s′, as follows. Firstly, it is clear that
[

c(−ν∗) · · · c(−2) c(−1)
]

=

[

u(−ν∗) · · · u(−2) u(−1)
]











D BC BAC · · ·
0 D BC · · ·
0 0 D · · ·

. . .











.

(5)

Furthermore, from the fact that the encoder is delay-free
(Property 1 in section I) it follows thatD = G(0) has full
row rank and thatu′(ℓ) = 0 for ℓ < −ν∗. As a result,

ˆ

c(−ν∗) · · · c(−2) c(−1)
˜

=

ˆ

u′(−ν∗) · · · u′(−2) u′(−1)
˜

2

6

6

4

D BC BAC · · ·

0 D BC · · ·

0 0 D · · ·

. . .

3

7

7

5

.

(6)
SinceD has full row rank, the matrix in the above equation

also has full row rank. Since the right-hand sides of equa-
tions (5) and (6) are equal, it then follows thatu(ℓ) = u′(ℓ)
for −ν∗ ≤ ℓ ≤ −1. As a results = s′.

We now prove thats = 0. By the above,c ∧0 0 is a code
sequence that passes throughs at time 0. Its input sequence
u
′ is of the form

(· · · , 0, 0, u′(−ν∗), · · · , u
′(M), 0, 0, · · · ),

whereM ≥ 0. Here we used the fact that the encoder is
noncatastrophic (Property 2 in section I). By constructionthe
state ofc∧0 0 at timeM + ν∗ + 1 then equals zero. We now
use the row reducedness ofG(z) to conclude thats = 0, as
follows. Denote the state at timeM + ν∗ by s̄. Now recall the
formula (3) for the controller canonical form. SincēsA = 0,
the nonzero components of̄s must be last components in a
(1 × νi)-block in s̄. Also, c(M + ν∗) = 0, so thats̄C = 0.
By construction, the last rows of the(νi×n)-blocks ofC are
rows fromGlrc and are therefore linearly independent. As a
result, s̄ = 0. Repeating this argument again and again, we
conclude thatu′(0) = ... = u′(M) = 0 and all states for time
≥ 0 are zero, so that, in particulars = 0, which proves the
theorem. Obviously, the size of the trellis state setS equals
qν .

We now turn to the ring case to prove the analogon of
the above theorem. As compared to the field case, the proof
requires some care because the trellis state setAγ

p is not linear.

Proof of Theorem III.8:

Defineν∗ as the maximalp-index ofC. Consider the mapping
Θ : Aγ

p 7→ C mod≃, given by

Θ(s) := [c]
≃
,

wherec ∈ C passes through states at time 0. ThenΘ can
be shown to be well-defined and surjective, as in the proof of
Theorem B.1. Note thatΘ is not necessarily a linear mapping.
As a result, injectivity can no longer be proven by showing
thatΘ(s) = 0 only for s = 0, as in the proof of Theorem B.1.
Thus, to show thatΘ is injective, lets ands̃ ∈ Aγ

p be such that
Θ(s) = Θ(s̃). Let c be the code sequence that passes through
s at time0, as defined in the proof of Theorem B.1. Letc̃ be
the analogous code sequence that passes throughs̃ at time0.
Note that bothc andc̃ have finite support. FromΘ(s) = Θ(s̃)
it now follows that the sequencec ∧0 c̃ is a code sequence.
Denote its state at time0 by s′ and its input sequence by
u
′ ∈ (Aκ

p )
Z. SinceE(z) is a delay-freep-encoder, the rows

of E(0) are ap-basis (use also Lemma II.3). By Lemma 2.8
of [13] (see also [24]), it now follows from the fact that inputs
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only take values inAp that s = s′. The reasoning is as in the
proof of Theorem B.1.

We now prove thats = s̃. By the above,c ∧0 c̃ is a code
sequence that passes throughs at time 0. As in the proof
of Theorem B.1, it follows that its state equals zero at time
M + ν∗ + 1 for someM ≥ 0. SinceE(z) is a minimalp-
encoder, the rows ofElrc arep-linearly independent. It now
follows from the fact that states only take values inAp that
the state at timeM + ν∗ must also be zero. The reasoning
is as in the proof of Theorem B.1. Repeating this argument
again and again, we conclude that all states for time≥ ν∗ are
zero. As a result,u′(0) = u′(1) = · · · = u′(ν∗ − 1) = 0, so
that

s
[

C AC · · · Aν∗−1C
]

= s̃
[

C AC · · · Aν∗−1C
]

.

We now prove that the above equation implies thats = s̃.
By Theorem 3.10 of [13], the rows ofElrc are not only
p-linearly independent but also ap-generator sequence. By
Lemma 2.8 of [13] anyp-linear combination of these rows
is then unique. By construction, this property is inheritedby
the rows of

[

C AC · · · Aν∗−1C
]

. Since boths and s̃
take their values inAp, it therefore follows thats = s̃, which
proves the theorem. Obviously, the size of the trellis stateset
S equalspγ . ✷
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