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On minimality of convolutional ring encoders

Margreta Kuijper and Raquel Pinto

Abstract—Convolutional codes are considered with code se- of the code. The minimap-encoder translates immediately
quences modelled as semi-infinite Laurent series. It is wédhown  into a minimal trellis realization. Thus our results allowor f

that a convolutional codeC over a finite group G has a minimal = o545y construction of a minimal trellis representation fram
trellis representation that can be derived from code sequetes. | ial di d llel the field
It is also wellknown that, for the case thatg is a finite field, any PO'YNomial encoding and paraileil the field case.

polynomial encoder of C can be algebraically manipulated to  Convolutional codes over rings were introduced[in| [17]][18
yield a minimal polynomial encoder whose controller canorgal where they are motivated for use with phase modulation. In

realization is a minimal trellis. In this paper we seek to exend . - :
this result to the finite ring case G — Z,~ by introducing a particular, convolutional codes over the rifig; are useful for

socalled “p-encoder”. We show how to manipulate a polynomial A/ -ary phase modulation (with/ a positive integer). By the
encoding of a noncatastrophic convolutional code ovefZ,- to Chinese Remainder Theorem, results on codes @Ayercan

produce a particular type of p-encoder (“minimal p-encoder’) pe extended to codes ovEr,, see also[[19],11],[12],19].
whose controller canonical realization is a minimal trellis with i -

nonlinear features. The minimum number of trellis states isthen ~Most of the literature on convolutional codes over ringsgdo
expressed ag”, where v is the sum of the row degrees of the an approach in which code sequences are semi-infinite Lauren
minimal p-encoder. In particular, we show that any convolutional  series|[6], [21], [15],[15],[19],18],127],[25]. In ordert make
code over Z,- admits a delay-free p-encoder which implies the - ,ynection with this literature, we adopt this approacbuin
novel result that delay-freeness is not a property of the coelbut of . . L .
the encoder, just as in the field case. We conjecture that a sitar ~ d€finition of a convolutional code: a linear convolutionatie
result holds with respect to catastrophicity, i.e., any castrophic C of lengthn overZ,. is defined as a subset ¢Z;. )" for
convolutional code overZ,- admits a noncatastrophicp-encoder. \which there exists a polynomial matri%(z) € Z’;f”[z], such
that

n \Z k\Z

C={ce(Zy) |3ue(Z,) :c=uG(z)and

I. INTRODUCTION

There exists a considerable body of literature on convolu- supp w C [N, 00) for some integerV'}. (1)

tional codes over finite groups. In this paper we are intetestHere supp « denotes the support ai, i.e., the set of time-
in trellis representations that use a minimum number oéstatinstantst € Z for which w(¢) is nonzero. Further; denotes
Since decoders, such as the Viterbi decoder, are basedlan tréhe right shift operatoeu(t) = u(t — 1). Clearly, [1) implies
representations, minimality is a desirable property teads thatC is linear and shift-invariant with respect to bothand
to low complexity decoding. In[[6, Sect. VI-D] a minimalz~1. If the matrix G(z) has full row rank therG(z) is called
encoder construction is presented in terms of code seqsenameencoderof C.

of the code, involving socalled “granule representativege For the field case any linear convolutional code admits a

also [16]. This is a powerful method that applies t0 COMaft prime polynomial encoder, i.e., an encoder that has a

vr(])Iutl(f)nthcodes O\;]er any f'fr_"tlz groug. Ilt IS vyelllknowg polynomial right inverse. Such an encodgtz) gives rise to
that, for the case tha§ is a field, any polynomial encodery o"toiowing two properties:

of a convolutional code can be algebraically manipulated 1) delay-free propertyfor any N € Z
to yield a so-called “canonical polynomial encoder” (left
prime and row reduced) whose controller canonical readinat supp ¢ C [N,00) = supp u C [N, 00)
yields a minimal trellis representation of the code. Thisis

fundamental result that is useful in practice because code
are usually specified in terms of encoders rather than code supp c is finite = supp wu is finite,

sequences. In this paper we seek to extend this result to thhe B Clearlv. in the field «delay-free”
finite ring caseG = Z,-, wherer is a positive integer and wherec = uG(z). Clearly, in the field case, “delay-free”

p is a prime integer. The open problem that we solve is alf§ss a_nd “catastrophicity” are encoder properties, noecod
mentioned in the 2007 papér [23]. We first tailor the concéptBrOpert'eS‘ For the ring case, however, there are codes that

encoder to theZ,~ case, making use of the specific algebraig0 not admit a noncgtastrophic encoder. For example [$ee [6]
finite chain structure ofZ,-. This leads to concepts ofp* [21], [4]) the convolutional code oves with encodeiG(z) =

encoder’ and “minimalp-encoder”. We then show how to [1+ 2z 1+ 3z] does not admit a noncatastrophic encoder.

construct a minimap-encoder from a polynomial encodingS'_m'larly' the rotanonally|nvar|ant;:onvolut|ona2l codeerZ,
with encoderG(z) = [3+3z+32% 3+ 2+ 22| does not
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convolutional code oveF, with encoderG(z) =[2 24 2z] by p-span(vi(z),...,vm(2)), whereas the set of all linear

does not admit a delay-free encoder. Note that some codembinations ofv1(z), ..., v, (z) with coefficients inZ,-[z]
overZ,- do not even admit an encoder, for example dfigr is denoted byspan (vi(2),...,vn(2)).
the code given by[{1) with

Gr) — 142 2z 22 Definition 11.2. [13] A sequence(vi(z),...,vm(z)) of
(2) = 2 2 2 vectors in Zj,[z] is said to be ap-generator sequence

The literature (see e.gl1[4, subsect. V-C]) has declared theP Um(2) =0 a?d pvi(2) Is a p-linear combination of
properties of “delay-free” and “catastrophic” to be prajes vit1(2)- - om(2) fori=1,...,m—1.

of the code rather than the encoding procedure. By restdingrie next lemma is a straightforward result that is used in
a particular type of polynomial encoder, namedéehcoder”, sectior(TIl.

we show in sectiofi_1ll that delay-freeness is not a property

of the code but of the encoding procedure, just as in the fidlgmma 11.3. Let (vi(z),...,vm(2)) be ap-generator se-
case, see alsd [12]. We conjecture that the same is true @&ence inZ;.[z]. Then (v1(0),...,vn(0)) is a p-generator
catastrophicity. To support this argument, in secfion IV weequence i,

examine specific catastrophic convolutional codes d&gr

and show that a noncatastrophieencoder exists for theseTheorem 11.4. [13] Let vi(2),...,vm(2) € Zpel2]. M

examples. (v1(2),...,vm(2)) is ap-generator sequence then

A more recent approach [22] (see al$o [7].1[23]) to convo- j—gpan (v1(2),...,0m(2)) = span (v1(2),...,vm(2)).

lutional codes focuses on so-called “finite support convolﬁl fieul . bmodule of

tional codes” in which the input sequeneecorresponds to Zhnp[a]r icular, p—span (v1(2), ..., vm(2)) is a submodule o
r|Z].

a polynomial. Thus the natural time axis %, and both ~r
input sequences and code sequences have finite suppote. Fini

support convolutional codes are, by definition, noncasasiic  Definition 11.5.  [13] The vectorsv (z2), ..., vm(2) € Zp-[2]
(Property 2 above) and can be interpreted as submodulesitg said to bep-linearly independent if the only p-linear
Z3.|z]. Forn = 1 connections can be made with polynomiatombination ofv; (2), . .., v, (2) that equals zero is the trivial
block codes. For more details the reader is referred to cume.
paper [11].
Definition 11.6. Let M be a submodule ok, [2], written as
Il. PRELIMINARIES ap-span of ap-generator sequence; (2), va(2), - -+ , vy (2)).
A set that plays a fundamental role throughout the paperfigen (vi(z),v2(2),--- ,vm(z)) is called ap-basis for M

the set of “digits”, denoted byl, = {0,1,...,p— 1} C Z,-. if the vectorsuv,(z),...,v,(z) arep-linearly independent in
Recall that any element € Z,- can be written uniquely Zp.[2].

asa = 0y + O1p + - + 0,_1p"" !, whered, € A,

for £ =0,....,r — 1 (p-adic expansion). This fundamentai emma I1.7. [13] Let M be a submodule oE. [z] and let
property of the rindZ, essentially expresses a type of lineay,, (») v,(z),- - , v, (2)) be ap-basis forM. Then each vec-

independence among the elemehts, p?, ...,p" . Itleads to tor of M1 is written in a unique way as g-linear combination
specific notions of p-linear independence” and“generator of 4, (2), ..., v, (2).
sequence” for modules iZ;., as developed in the 1996
paper [24]. For example, for the simplest case= 1, the All submodules ofZ7. [2] can be written as thg-span of ap-
elementsl, p, p?, ...,p" ! are called p-linearly independent” generator sequence. In fact, M = span (g1(2), ..., gr(2))
in [24] and the mod;JIeZpr = span {1} is written as then M is the p-span of thep-generator sequence

— T— i i
ip}]avé?;g%le{nléigﬁr,.. ..,p""'}. The moduleZ,- is said (91(2),pg1(2)s -+, 791 (2) - g (2), " gk (2)).

In this section we recall the main concepts froml [13] on mo Next, we recall a particulap-basis for a submodule of
P %n [2], called “reducedp-basis”. We first recall the concept

les inZ%.[z], th re n in th |. We presen " . S .
ules Iz, 2] that are _eeded_ the sequel. We pnese t to?“degree" of a vector irZ, [z], which is the same as in the
notions ofp-basis ang-dimension of a submodule &, [z], P

. . - . P fIF|d case.
which are extensions froni_[24]'s notions for submodules o
Zy-. From [13] we also recall the concept of a redupenBsis pefinition 11.8. Letu(z)

. : s . be a nonzero vector i), 2], written
in Zj.[2] that plays a crucial role in the next section.

asv(z) =wvg4viz+ - +vg2% with v; € Loy i=0,...,d,

andvg # 0. Thenw(z) is said to havedegree d, denoted
by deg v(z) = d. Furthermore,v; is called theleading

coefficient vectorof v(z), denoted byv'c.

Definition I1.1.  [13] Let {vi(z),...,vm(2)} C Z3.[z].
A p-linear combination of vi(z),...,v,(z) is a vector

Zaj(z)vj(z), wherea;(z) € Z,-[z] is a polynomial with . o )
= In the sequel, we denote theading row coefficient matrief
coefficients in.A, for j = 1,...,m. Furthermore, the seta polynomial matrixV’'(z) by V7. A matrix V(z) is called
of all p-linear combinations of; (z),...,v,(2) is denoted row-reducedif V"¢ has full row rank.



Lemma I1.9. [L3] Let M be a submodule df;.[z], written result, we recall the definition of canonical trellis in Apyakx
as a p-span of ap-generator sequencév;(z),...,vm,(2)) A.
with oi°,... vk p-linearly independent inZ.. Then

(01.(2) G i basis for A7 Let us recall the wellknown controller canonical form. 17t
v1(2),...,vm(2)) is ap-basis forM.

be a ring. A matrixE(z) € R"*"[z] is realized in controller
canonical form[[10] (see alsd][5, Sect. 5]) as

Definition 11.10. [13] Let M be a submodule df;). [2], writ- I —1

ten as g-span of ap-generator sequende; (z), . .., vm(2)). E(z)=B(:"[-4) C+D, 2
Then (vi(2),...,vm(2)) is called areduced p-basisfor M as follows. Denoting thei'th row of E(z) by e;i(z) =
if the vectorsvi®, ..., vy arep-linearly independent ifZ,. S0 ¢, ,2¢, wheree; , € R1*"™ ande; 5, # 0, the matrices

- _ A, B, C and D in (@) are given by
A reducedp-basis inZy. [z] generalizes the concept of row

reduced basis from the field case. Moreover, it also leads Ay By
to the predictable degree property and gives rise to several A = ] .
invariants of M, see[[13]. In particular, the number of vectors A, B,
in a reducedp-basis as well as the degrees of these vectors

(called p-degree$, are invariants ofd. Consequently, their Ch €1,0

sum is also an invariant af/. C = :

Every submoduleM of Zj.[z] has a reduceg-basis. A C, €50

constructive proof is given by Algorithm 3.11 in_[13] that \ o 1 i a5 x & matrix. B. is al x 5. matrix andC: is
takes as its input a set of spanning vectors and produce ’ vt T ! !
reducedp-basis of M. It is easy to see that if the input is
already ap-basis ofm vectors, then the algorithm produces a 0 1

reducedp-basis of againn vectors. Sincen is an invariant .. )

of the module, it follows that alp-bases of\/ have the same A; = o , Bi=[10 - 0],
number of elements. As a result, the next definition is well- R

defined and not in conflict with the slightly different defioi 0

of [13].

3& x 1 matrix, given by

Definition 11.11. The number of elements of gbasis of a C; = : for i=1,...,k. 3)
submoduleM of Zp.[z] is called thep-dimension of M,

€i,6;
denoted ap—dim (M).

o _ Whenevew; = 0, theith block in A as well agC is absent and
In recent work [[14] it is shown that computational packages zero row occurs irB. Denoting the sum of thé;'s by 4, it
for computing minimal Grobner bases can be used to cortstriggclear thatd is ad x ¢ nilpotent matrix. The above controller

a minimal p-encoder. canonical realization can be visualized as a feedforwaiftt sh
register withd registers.
Il. M INIMAL TRELLIS CONSTRUCTION FROM A In the case thaR is a field withg elements it is wellknowri 8],
P-ENCODER [16] how to obtain a minimal trellis representation ffrom
Formally, we define drellis sectionas a three-tupleéX = a polynomial encoder. For this, the rows of the polynomial

(Zy-, S, K), whereS is thetrellis state setand K is theset encoder should first be algebraically manipulated (usingtSm
of brancheswhich is a subset of x Zj,. x S, see also[[6], form and row reduction operations) to yield a left prime and
[16]. A trellis is a sequencel’ = {X;}:cz of trellis sections row reduced encodef(z). Then G(z) is called canonical
X = (2., S, Ky). A paththrough the trellis is a sequencein the literature, see [16, App. Il]. A minimal trellis repre
(- ,bt—1,bs,b41,---) of branchesd, = (s¢, ¢, 8041) € Ky sentation ofC is then provided by the controller canonical
such thatb,,; starts in the trellis state wherg ends for realizationG(z) = B(z~ 11 — A)*10+D as in [3). Although

t € Z. The set of all trellis paths that start at the zero stathis result is known, in Appendix B we give a proof by
is denoted byr(X). The mapping\ : n(X) — (Z;}T)Z showing that there exists an isomorphism between thesrelli
assigns to every patf--- ,b:_1,b:,b:41,- -+ ) its label se- state set of the controller canonical realization and te#igr
quence(--- ,ci—1,ct, ceq1,- -+ ). Atrellis X is called atrellis  state set of the canonical trellis (as defined in Appendix fA) o
representatiorfor a convolutional cod€ if C = \(w(X)). C. The set is thus minimal and has elements, where is the
number of elements of the field andis the sum of the row
degrees ofG(z). The invariantv is commonly referred to as
the “degree” of the cod€ (but called the “overall constraint
éength” in the early literature). The row degrees are catledl

A trellis representatiort’ for a convolutional cod€ is called
minimalif the size of its trellis state set is minimal among all
trellis representations @f. It is wellknown how to construct a
minimal trellis representation in terms of the code segasn
of C. In fact, the theory of canonical trellis representation
from the field case carries through to the ring case, [sele [2BElow we consider convolutional codes ovéy- that admit
[6], [16]. Since it plays a crucial role in the proof of our mai a noncatastrophic encoder, for simplicity, we call suchesod

[

Forney indices” of the code [20].



noncatastrophic. We show that such codes admit a particuyteoperty (Definitior1IL.1) if and only if the rows aFf(0) are
type of polynomial encoder (later called “minimakncoder”), p-linearly independent irZ;, .

whose controller canonical realization provides a minimal

trellis representation, just as in the field case. We are thefe, e 1113, Letc be a convolutional code of lengthover
also able to express the minimal number of trellis states %1

- pr- ThenC admits a delay-freg-encoderE(z) € Z; " [z]
terms of the sum of the row degrees of a minimpancoder. for some integek, such that the rows of'e are p-linearly

Let us now first introduce the notion op-encoder”. Recall independent irZ;..

that A, = {0,1,...,p— 1} C Zyr. Proof: As noted above; admits ap-encoderE(z), such

that the rows ofE!"® are p-linearly independent iy, i.e.,
they constitute a reducedbasis. Without loss of generality we
[nay assume that the row degreesHjyfz) are nonincreasing.
Let L be the smallest nonnegative integer such that the last
k — L rows of E(z) are a delay-fre@-encoder.

n Z K Z . — - .
C={ce(Zy)" | Fuc(4})": c=uE(z)and Now assume thak > 0 (otherwise we are done). = « it
means that the last row,(z) of E(z) can be written as

Definition 1ll.1. Let C be a convolutional code of length
overZ,-. Let E(z) € Z,""[2] be a polynomial matrix whose
rows are gp-linearly independeng-generator sequence. The
E(z) is said to be g-encoderfor C if

supp u C [N, co) for some integeiV}.

_ s
The integerx is called thep-dimension of C. Furthermore, en(2) = z'en(2),

E(z) is said to be adelay-free p-encoder if for anyN € Z  wherel > 0 andé,(z) € Z;.[z] with €,(0) # 0. Note that
and anyc € C, written asc = uFE(z) with u € (.Ag)Z we degé.(z) < degeq(z). Clearly, (e1(2),...,ex—1(2),8x(2))

have is ap-encoder ofC, whose rows are still a reducedbasis.
supp ¢ C [N, 00) == supp u C [N, 00). If L < &, then, by construction, there exist, € A, for
Also, E(z) is said to be anoncatastrophic p-encoder if for 7 = L+1,...,k, such that
any c € C, written asc = uE(z) with u € (A;)Z we have er(0) + Z a;ej(0) =0
j>L

supp c is finite = supp w is finite.

] ) ] _(use the fact that(e;(0),...,e.(0)) is a p-generator
Finally, a convolutional cod€ that admits a noncatastrophlcSequence by Lemma[_1.3). Replacinge;(z) by

p-encoder is calleshoncatastrophic

er(z) = er(z) + > ;. ajei(z) obviously gives a
-basi cesern— e .
Thus a difference betweenpaencoderE(z) and the encoding gf atilz mo((jﬁgz},spa,niLedl(?);@iL(S% eH@lﬁ% 76@ (2;

.mzﬁrix G(hz) ofh(EIJ),_;s%thatNthe inhDUIShOEéZ) tal;e theirval(jqes and, consequently, ap-encoder of C. Moreover,

N Ap “’?“ ert an ey - ote t at_t € ldea of usingaadic y the p-predictable degree property (Theorem 3.8
expansion for the input sequence is already present in 8@ 1 f [3]), degér(z) = deger(z), which means that
paper [6]. It was not until 1996 that the crucial notionef elt(z) ’ éL%Z)L en(2)) :g{s Lstill’ a reduced p-basis

generator sequence appeared/[inl [24], but only for const thce é.(0) = 0, we can write é1(z) — zles(2),

vectors — it was extended to polynomial vectors(in/[13]. In ...~ _ ~ _ .
our definition the rows of a-encoder are required to be aWIth c(0) # 0 and £ > 0. Note thatpe.(z) is a

" ) p-linear combinationpér(z) = > .., Bj(2)ej(z) with
p-generator sequence consisting of polynomial vectors. B,(z) € A:]. Because of th@-linjear independence of
Recall that a convolutional code ovE. is given by [1): er+1(0),...,e.(0), we must have that the coefficients

63 ; ;
A2 7 Bj(z) are of the formg;(z) = 2%8;(z) with ¢; > ¢
C={ce ()" |Fue(Zy) :ec=uG(z)and for L +1 < j < k. Consequently, the sequence
: i (e1(2),....er—1(2),er(z),er+1(2),...,ex(2)) is a p-
supp w C [N, 00) for some integerV}. encoder of’, which is still a reduceg@-basis withdeg e, (z) <
Also recall that there exist convolutional codes offgr that deger(z). If (e1(2),...,eL(2),eL41(2), ... ex(2)) is nOt &

do not admit aG(z) of full row rank, i.e. an encoder. An delay-freep-encoder, then re-order the vectors so that their
important observation is thany convolutional code oveZ,» degrees are nonincreasing and repeat this procedure until a
admits ap-encoder, even a-encoder(z), such that the rows delay-freep-encoder forC is obtained. Since the sum of the

of E'r arep-linearly independent iZ”, . Indeed, any reduced row degrees op-bases obtained at each step of the procedure
p-basis of the polynomial module spanned by the rows &f lower than in the previous step, a delay-freencoder is
G(z), produces the rows of suchpaencodet(z). This shows obtained after finitely many iterations. u

that the concept of-encoder is more natural than the concept The next example is a simple example that illustrates the
of encoder as it is tailored to the algebraic structuréZgf. above theorem.

The next lemma is straightforward. Example 111.4. Over Z,: consider the(2,1) convolutional

codeC of [16, p. 1668] given by the polynomial encoder
Lemma II1.2. Let E(z) € ZL*"[2] be ap-encoder for a [16. p 19 y Ihe poly

convolutional codeC of lengthn. Then E(z) is delay-free Gz)=[2 2+27.



A delay-freep-encoder forC is given by Theorem 111.8. LetC be a noncatastrophic convolutional code
2 9242 of lengthn with minimalp-encoderE(z) € Z;"[z]. Denote
E(z) = { 0 9 ] the p-degree ofC by ~. Then the controller canonical trellis
corresponding toE(z) is a minimal trellis representation for

Theorem 1IL.5. Let C be a noncatastrophic convolutionalc, |n particular, the minimum number of trellis states equals
code of lengthn over Z,-. ThenC admits a delay-free ;v

noncatastrophig-encoderE(z) € Z,~"[z] for some integer )
k, such that the rows oE!"° are p-linearly independent in Proof: see Appendix B. u

L In the field caser = 1 the above theorem coincides with
Proof: By definition there exists a noncatastrophic the classical result, i.e., the minimum number of trellistes

encodet?; () for C. Apply Algorithm 3.11 of [13] to the rows €dualsp”, where~ is the degree of the code.

of E,(z). This gives us a reducesbasise; (z), ..., e.(z) for  For convolutional codes that admit a canonical encoder, we
the module spanned by the rows Bi(z). Define E»(z) as have the following corollary, which follows immediatelyofn

the x x n polynomial matrix withe;(z),...,e.(z) as rows. applying Theoreri IILB to the minimakencoder given by{4).
By construction the rows of{ are p-linearly independent Note that the result coincides with results in [26, Sect],7.4
in Zy.. It is easy to see thal;(z) is still noncatastrophic. If where a canonical encoder is called “minimal-basic”.

E»(2) is not delay-free apply the procedure of the proof of )

TheorentIIL3 toF, (=) to obtain a delay-frep-encodert (=), Corollary l.9. LetC be a(n,]l::ifonvolutlonal code.thgt has
such that the rows of!™ arep-linearly independent ifZ., . a canonical encodet(z) € Z,""[z]. Then therk p-indices

It is easy to see thak(z) is still noncatastrophic. m Of C are thek row degrees ofx(z), each occurring- times.

The minimum number of trellis states equafs wherev is
Definition 111.6. Let C be a noncatastrophic convolutionathe sum of the row degrees 6fz) and whereg = p".
code of lengthn overZ,-. Let E(z) € Z,~"[z] be a delay- . i
free noncatastrophip-encoder forC, such that the rows of The next example illustrates our theory for the more inter-
E'¢ are p-linearly independent irZ”.. Then E(z) is called esting case where the code does not admit a canonical encoder

Pt

a minimal p-encoderof C. Furthermore, the-indices of C

are defined as the row degreesofz) and thep-degreeof Example 111.10. Over Z,: consider the(3,2) convolutional

C is defined as the sum of theindices ofC. codeC given by the polynomial encoder
Thus, in the terminology of sectidn I, the rows of a minimal G(z) = { Z;Ez; ] , Wwhere

p-encoder are a reduceebasis. If the cod€ has a canonical
encoderG(z), then bothG'"¢ mod p and G(0) mod p have

! - =[22+1 1 0] and =[2z 2 1].
full rowranka’;X”,sothatam|n|ma,b—encoder|str|V|aIIy 91(2) [Z * } 92(2) [ ¥ ]

constructed as Clearly, G(z) is a left prime encoder whose controller canon-
G(z) ical trellis has4® = 64 trellis states. Note that'"* does not
pG(z) have full row rank and therefoi@(z) is not canonical. Denote
E(z) = . . (4) by im G(z) the polynomial module spanned by the rows of
p’”*llG(z) G(z). A p-basis _for the module int7(z) is provided by the
rows of the matrix
An important observation is that all noncatastrophic codes 9
admit a minimalp-encoderE(z) but not all such codes admit 91(2) c 2+ L 1o
an encodel=(z) that is row reduced and/or delay-free. 201(2) | _ | 22742 20 ,
g2(2) 2z 2 1
Definition IIl.7. Let C be a convolutional code of length 2g2(2) 0 0 2
with p-encoderE(z) € Z; "[z]. Denote the sum of the row ) . .
degrees off(z) by ~ and let which has leading row coefficient matrix
(A,B,C,D) € )" x ZyX" x ZIX™ x ZEX™ ; 8 8
be a controller canonical realization &f(z). Then thecon- 20 0
troller canonical trellis corresponding tdZ(z) is defined as 0 0 2

X = {Xt}tEZ1 Whel’eXt = (ZZT‘,A;,Kt) W|th

The row reduction algorithm of[[13, Algorithm 3.11] is
K; = {(s(t), s(t)C + u(t)D, s(t)A + u(t)B_such that g 1, A9 ]

particularly simple in this case: by addingtimes the third

s(t) € Al u(t) € Az}, row to the second row, we obtain the matiiXz), given by
Note that the states take their values in the nonlinear set 2241 1 0
A}, which is not closed with respect to addition or scalar Bz) = 2 2z+2 =z
multiplication. Similarly, the inputs take their values ihe (2) = 2z 2 1]’
nonlinear setAy. The next theorem presents our main result. 0 0 2



whose rows are a reducedbasis for the module inGG(z). “noncatastrophic” is a property of theencoder, not the code.
Indeed, the rows of its leading row coefficient matrix, giveirhis would imply that minimap-encoders can be obtained for
by all convolutional codes oveZ,-, including the catastrophic

1 00 codes. This is of particular importance for rotationallyan-

0 2 1 ant catastrophic codes, see elg.[18]. It is a topic of future
2 0 0| research to investigate this conjecture which is likelyntamive

0 0 2 a generalization of a type of “normal form” for polynomial

arep-linearly independent. As a result, thendices ofC are2, Matrices ovetZ,-. To support our conjecture, let us examine
1, 1, 0 and thep-degree ot equalst. The controller canonical the rotationally invariant catastrophic code over Z, given

) ) - o 2 2
trellis corresponding td?(z) is given by by the encoderGy(z) = [3+32+322 3+2+2%]. A
noncatastrophic minimal-encoder forC, is given by

01 0 0] [1. 0 0 0 ) )
q_|00o0o0f o oo 1o El(z):[3+32+32 34242 ]
“loooo|"7T]0oo0 o0 1] 2 2
00 0 0 L0 0 0 0 yielding a minimal trellis representation 6 with 4 states.
- - Similarly the catastrophic cod€, over Z, with encoder
0 00 110 ST
10 0 2 2 0 G2(z) = [14+ 2z 1+ 3z] has a noncatastrophic minima#
C= ;. D= encoder
0 2 1 0 2 1 1+2 1432
2.0 0 | [0 0 2 Ex2)=| 4 5 |
This trellis is minimal with2* = 16 trellis states. yielding a minimal trellis representation 65 with 2 states.
Example 111.11. Over Z,: consider the(2,1) convolutional
code C of Example[IIL4, given by the polynomial encoder V. ACKNOWLEDGMENTS
G(z) = [2 2+ 2] (note thatG(z) is not delay-free). The The authors thank the reviewers for helpful comments,
delay-freep-encoder particularly for alerting us to the relevance of rotatidyal
invariant codes.
B(s) — 2 24z
(2) = 0 2 The first author is supported in part by the Australian Re-

search Council; the second author is supported in part by the
Portuguese Science Foundation (FCT) through the Unidade
de Investigacao Matematica e Aplicacdes of the Umsitgrof
Aveiro, Portugal.

of Example[1I[.4 is clearly minimal, so that its correspamgli
trellis is minimal with2 states which concurs with|[6].

IV. CONCLUSIONS

An important class of polynomial encoders for convo- APPENDIX A
lutional codes over a field are the canonical ones. Their
feedforward shift register implementations are minimellis
representations of the code. The trellis state space isrlin
However, for convolutional codes over the finite rity-,

In this appendix we recall the construction of a minimal
trellis for a convolutional cod& as a so-calledwo-sided
Gealization of C, see[[25],[[6], [21], [15], [[15],[[26]. Consider

. . : two code sequences € C and ¢ € C. Conform [25], the
the literature has generalized this result only for rettdc . . - .

. . concatenatiorat timet € Z of ¢ andé¢, denoted by A, ¢, is
cases. In this paper we introduce the concepp-@ncoder defined as

and defineminimal p-encoderfor the class of noncatastrophic , ,

convolutional codes. We show how to obtain a minirpal en E(t) = { o(t’) for ¢ <t

encoder from a polynomial encoding of the code. We show c(t') fort" >t

that the feedforward shift register implementation of sach The code sequencesandé are calledequivalent denoted by
minimal p-encoder is a minimal trellis representation of the ~ ¢ if

code. Its trellis state space is nonlinear. We also expless t chpceC.

minimal number of states in terms of the row degrees of the _ _
minimal p-encoder. In our view a minima-encoder is the Definition A.1. LetC be a linear convolutional code of length

ring analogon of the “canonical polynomial encoder” fron OVer a finite ringR. The canonical treIIis_ of C is defined as
the field case. We also present the novel concepjsinfices X = {Xt}iez, whereX; = (R", 5, K;) with S := C mod~
and p-degree of a code as analogons of the field notions &f

“Forney indices” and “degree”, respectively.

Our approach allows us to view “delay-freeness” as a prgpert K; := {(s(t), c(t), s(t + 1)) | s(t) = z~*e mod~ and
of the p-encoder. Thus we arrive at the novel result that delay-
freeness is a property of the encoding (just as in the field
case) rather than a property of the code, as in the literaturdt has been shown in_[25] that the above trellis is minimal.
so far (see e.g.[]4, subsect. V-C]). We conjecture that latuitively this is explained from the fact that, by constiion,
similar phenomenon occurs with respect to catastrophicity states cannot be merged.

s(t+1)=z"temod~}.



APPENDIX B Furthermore, from the fact that the encoder is delay-free

; ; - ~ . (Property 1 in sectiofl I) it follows thaD = G(0) has full
In t.hIS appendix we prove Theqrelﬂ]I.IB via a bijective "o o thats' (£) — 0 for £ < —v,. As a result,
mapping from the controller canonical trellis state sethe t

trellis state set of the canonical trellis that is defined in [e(=ve) - e(=2) o(-1) | =
Appendix A. We first provide the proof for the field case. D BC BAC
In our proof of Theorer IIL.B, which is the ring case, we are 0 D BC
then able to highlight the parts that are different from treop [ »'(—=v+) -+ v'(=2) «(-1) ]| 0 0o D

for the field case.

Theorem B.1. LetC be a(n, k) convolutional code of degree __ o ©
v over a finite fieldR with canonical encoderG(z) Since D has full row rank, the matrix in the above equation

R¥*n"[z]. Then the controller canonical trellis correspondingfISO has full row rank. Smc.e the right-hand sides ‘3f equa-
to G(z) is a minimal trellis representation faf. In particular, ions (3) and[(5) are equal, it then/ follows thaltt) = u'(¢)

the minimum number of trellis states eques whereq is the or —v. < £ < —1. As aresults = s".

size of the fieldR. We now prove thats = 0. By the abovec Ay 0 is a code
sequence that passes throught time 0. Its input sequence

Proof: Denote the memory of by v,, i.e., v, is the o' is of the form

maximal Forney index of. Consider the mapping : R" —
C mod~, given by (-+-,0,0,u'(=1s),--- ,u'(M),0,0,---),

O(s) = [c]., where M > 0. Here we used the fact that the encoder is

wherec € C passes through stateat time 0. The mapping noncatastrophic (.Property 2 in sectidn ). By constructios
O is well-defined since for any there exists such a codeState ofc Ao 0 at time M+, + 1 then equals zero. We now

sequence and any two code sequences that pass through fglsfﬁethe row redl;]cedness Gf(_z) to cont():Ique that = (il ";‘]S
s at time 0 are obviously equivalent. ollows. Denote the state at tim¥ + v, by 5. Now recall the

formula [3) for the controller canonical form. Singel = 0,
Since the trellis state sef’ mod ~ of the canonical trellis the nonzero components 6fmust be last components in a
of Appendix A is minimal, it suffices to prove tha is (1 x v;)-block in 5. Also, ¢(M + v,) = 0, so thatsC' = 0.
an isomorphism, as follows. Surjectivity follows immeditgt By construction, the last rows of the; x n)-blocks of C are
from the fact that all code sequences pass through SOfgs from G and are therefore linearly independent. As a
state at time0. Furthermore, the mappin@ is linear since yegylt, 5 = 0. Repeating this argument again and again, we

O(s1 + s2) = [e1+col.. It remains to prove tha® is  conclude that/(0) = ... = u/(M) = 0 and all states for time
injective. > 0 are zero, so that, in particular= 0, which proves the
For this, lets € R” be such thatB(s) = 0. Define theorem. Obviously, the size of the trellis state Seequals
w(—v4),..u(—2), u(—1) as elements oR* for which q”. u
BAv-—1 We now turn to the ring case to prove the analogon of

the above theorem. As compared to the field case, the proof
requires some care because the trellis statel3es not linear.

|
i

[u(=vs) - w(=2) u(-1) ] B:A

B Proof of Theorem[II.8]
Definew := (---,0,0,u(—v), -, u(—2),u(~1),0,0,-) Definev, as the maximap-index of C. Consider the mapping
and letc := G(z)u be the corresponding code sequence. Théh: Az — ¢ mod=, given by
clearly ¢ passes through From®©(s) = 0 it now follows that O(s) := [c] .,
the sequenceA0 is a code sequence. Denote its state at time - )
0 by s’ and its input sequence hy. Then clearly wherec € C passes through stateat time 0. Then® can
S be shown to be well-defined and surjective, as in the proof of
BA TheoreniB.1L. Note tha is not necessarily a linear mapping.
: As a result, injectivity can no longer be proven by showing
(—vy) o W (=2) /(-1 : =5 :
[ /(=) W(=2) w(-1) ] BA 8 that©(s) = 0 only for s = 0, as in the proof of Theorem B.1.
B Thus, to show tha® is injective, lets ands € A} be such that

O(s) = O(3). Let ¢ be the code sequence that passes through
s at time0, as defined in the proof of Theordm B.1. lebe
[ c(=vi) - e(=2) ¢(-1) } = the analogous code sequence that passes thrdagtime 0.
Note that bothe andé have finite support. Fror®(s) = ©(3)

We now prove thak = ¢, as follows. Firstly, it is clear that

jg BDC BBAg it now follows that the sequence/, ¢ is a code sequence.
Denote i im " and its in n
[u(=v) - w(=2) w(=1)]| ¢ o D enote its state at timé by s’ and its input sequence by

u' € (A;)Z. Since E(z) is a delay-freep-encoder, the rows
.. | of E(0) are ap-basis (use also Lemnial.3). By Lemma 2.8
(5) of [13] (see also[24]), it now follows from the fact that irtgu



only take values in4, thats = s’. The reasoning is as in the[16]
proof of Theoreni BI1.

We now prove thats = 5. By the abovec Ag ¢ is a code
sequence that passes througtat time 0. As in the proof [18
of Theoren[B.1L, it follows that its state equals zero at time
M + v, + 1 for someM > 0. Since E(z) is a minimalp-
encoder, the rows of'"¢ are p-linearly independent. It now
follows from the fact that states only take valuesAp that [2q]
the state at time\/ + v, must also be zero. The reasoning
is as in the proof of Theorefn B.1. Repeating this argume[gh
again and again, we conclude that all states for time, are
zero. As a resulty’(0) = v/(1) = --- = v/ (v, — 1) =0, SO

[17]

[19]

that [22]
s[ C AC A—1C ] [23]
=5[C AC Ao . [24]
We now prove that the above equation implies that 3. [25]
By Theorem 3.10 of[[13], the rows oF!" are not only [26]

p-linearly independent but also ggenerator sequence. By
Lemma 2.8 of [[18] anyp-linear combination of these rows[?7]
is then unique. By construction, this property is inheritsd

the rows of| ¢ AC Av==1C ] . Since boths and s

take their values in4,, it therefore follows that = 3, which
proves the theorem. Obviously, the size of the trellis state

S equalsp”. O
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