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Abstract

We define a class of Z-interference channels for which we obtain a new upper bound

on the capacity region. The bound exploits a technique first introduced by Korner and

Marton. A channel in this class has the property that, for the transmitter-receiver pair

that suffers from interference, the conditional output entropy at the receiver is invari-

ant with respect to the transmitted codewords. We compare the new capacity region

upper bound with the Han/Kobayashi achievable rate region for interference channels.

This comparison shows that our bound is tight in some cases, thereby yielding spe-

cific points on the capacity region as well as sum capacity for certain Z-interference

channels. In particular, this result can be used as an alternate method to obtain sum

capacity of Gaussian Z-interference channels. We then apply an additional restric-

tion on our channel class: the transmitter-receiver pair that suffers from interference

achieves its maximum output entropy with a single input distribution irrespective of

the interference distribution. For these channels we show that our new capacity re-

gion upper bound coincides with the Han/Kobayashi achievable rate region, which is

therefore capacity-achieving. In particular, for these channels superposition encoding

with partial decoding is shown to be optimal and a single-letter characterization for

the capacity region is obtained.

Index terms: Capacity, interference channel, one-sided interference channel, Z-interference

channel
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1 Introduction

The interference channel, introduced in [1], is a simple network consisting of two pairs of

transmitters and receivers. Each pair wishes to communicate at a certain rate with negligi-

ble probability of error. However, the two communications interfere with each other. The

problem of finding the capacity region of the interference channel is difficult and therefore

remains essentially open except in some special cases, e.g., interference channels with statis-

tically equivalent outputs [2–4], discrete additive degraded interference channels [5], a class

of deterministic interference channels [6], strong interference channels [7–11], and a class of

degraded interference channels [12].

While the capacity region of the interference channel remains largely unknown, achievable

rate regions and capacity region upper bounds have been found. To date, techniques for

obtaining achievable rate regions for the interference channel include treating interference as

noise [2], fully decoding the unwanted interference [3], superposition encoding and partially

decoding the unwanted interference [4,9], and time division multiplexing/frequency division

multiplexing [3, 4]. Techniques for upper bounding the capacity region of the interference

channel include allowing transmitters and receivers to cooperate without requiring additional

bandwidth or power [3], introducing an imaginary but more capable receiver into the system

[13], and genie-aided receivers [6, 14–16].

The Z-interference channel is an interference channel where one transmitter-receiver pair

is interference-free. Though finding the capacity region of the Z-interference channel is a

simpler problem than that of the interference channel, capacity results are still limited,

with the following exceptions: The Z-interference channel capacity region is known when

the interference is deterministic [6, Section IV]. The Z-interference channel sum capacity

is known when the Z-interference channel is Gaussian [17], or when the interference-free

link is also noise-free [18], although in both cases, the full capacity region has not been

characterized.

In this paper, we first provide a new capacity region upper bound for a class of Z-

interference channels that satisfy a given condition: namely that the performance of the

transmitter-receiver pair that suffers from interference depends only on the distance of the

transmitter’s codewords and not their exact locations. The technique [19, page 314] that we

use in obtaining the converse associated with this upper bound was introduced by Korner

and Marton in [20]. This technique has been useful in the solution of several problems in

multi-user information theory, in particular for broadcast channels with degraded message

sets [21], communication where the transmitter has non-causal perfect side information, i.e.,

the Gelfand-Pinsker problem [22], and semicodes for the multiple access channel [18]. We

then compare the new capacity region upper bound with the Han/Kobayashi achievable

rate region [9]. This comparison yields certain points on the capacity region, including the

sum-rate point, for channels in our defined class.
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We next add an additional condition to our channel class, namely that for the transmitter-

receiver pair that suffers from interference, the maximum output entropy can always be

achieved regardless of the choice of the interferer’s codebook. With this additional condition

we show that our capacity region upper bound coincides with the Han/Kobayashi achievable

rate region, and hence equals the capacity region for this subclass of Z-interference chan-

nels. The Han/Kobayashi achievable rate region is obtained using the idea of superposition

encoding and partial decoding. Specifically, the transmitters are required to encode their

messages via superposition encoding, and each receiver is required to decode not only its

own message, but also part of the interference. One of the main difficulties in finding the

capacity region of the interference channel is to justify the need for partial decoding in the

converse proofs, as the partially decoded information is not required at the receiver. Using

our new capacity region upper bound, we are able justify the optimality of superposition

encoding and partial decoding for a subclass of Z-interference channels. So far, the only

result that proves superposition encoding and partial decoding is optimal is [6] where, due

to the deterministic nature of the channel, the capacity region upper bound obtained by

using the technique of genie-aided receivers is sufficient to meet the achievable rate region

of [9]. Using a different upper bounding technique, we show that superposition encoding

and partial decoding is optimal for certain Z-interference channels, which are not necessarily

deterministic and, therefore, provide a single-letter characterization for the capacity region

of these channels, which was previously unknown.

The remainder of this paper is organized as follows. In Section 2, we define the class

of Z-interference channels investigated in this paper by providing two conditions on the

channels. In Section 3, we provide a new capacity region upper bound for Z-interference

channels satisfying the first conditon. We restate the Han/Kobayashi achievable rate region

for Z-interference channels in Section 4. In Section 5, points on the capacity region as well as

sum capacity for certain Z-interference channels are found by comparing our capacity region

upper bound with the Han/Kobayashi achievable rate region. In Section 6, we provide the

single-letter characterization of the capacity region for Z-interference channels that satisfy

both conditions. This is followed by our conclusions in Section 7. Details of certain proofs

are given in the Appendix in Section 8.

2 System Model

Consider a Z-interference channel with two transition probabilities p(y1|x1) and p(y2|x1, x2).

The input and output alphabets are X1, X2, Y1 and Y2. Set

V1(a|b) = Pr[Y1 = a|X1 = b], (1)

V2(c|b, d) = Pr[Y2 = c|X1 = b,X2 = d]. (2)
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Let W1 and W2 be two independent messages uniformly distributed on {1, 2, · · · ,M1} and

{1, 2, · · · ,M2}, respectively. Transmitter i wishes to send message Wi to Receiver i, i = 1, 2.

An (M1,M2, n, ǫn) code for this channel consists of a sequence of two encoding functions

fn
i : {1, 2, · · · , 2nRi} → X n

i , i = 1, 2 (3)

and two decoding functions

gni : Yn
i → {1, 2, · · · , 2nRi}, i = 1, 2 (4)

with probability of error

ǫn = max
i=1,2

1

M1M2

∑

w1,w2

Pr [gni (Y
n
i ) 6= wi|W1 = w1,W2 = w2] . (5)

A rate pair (R1, R2) is said to be achievable if there exists a sequence of
(

2nR1, 2nR2, n, ǫn
)

codes such that ǫn → 0 as n → ∞. The capacity region of the Z-interference channel is the

closure of the set of all achievable rate pairs.

An example of the Z-interference channel is the Gaussian Z-interference channel, where

X1 = X2 = Y1 = Y2 = R, and p(y1|x1) and p(y2|x1, x2) are given as

Y1 = X1 + Z1, (6)

Y2 = aX1 +X2 + Z2, (7)

where Z1 and Z2 are independent Gaussian random variables with zero mean and unit

variance, a ∈ R, and the channel inputs have to satisfy the average power constraints of P1

and P2.

The class we investigate in this paper consists of Z-interference channels that satisfy :

Condition 1: For any n = 1, 2, · · · , H(Y n
2 |X

n
2 = xn

2 ), when evaluated with the distribution
∑

xn

1

p(xn
1 )p(y

n
2 |x

n
1 , x

n
2 ), is independent of x

n
2 for any p(xn

1 ).

Condition 1 specifies that the channel p(y2|x1, x2) is invariant, in terms of conditional

output entropy, with respect to the input sequence of Transmitter 2, i.e., xn
2 . This means

that when designing the codebook of Transmitter 2, the exact locations of the codewords

do not affect the performance, rather, it is the relative locations, or “distances”, between

codewords that matter. For example, the Gaussian Z-interference channel, defined in (6)

and (7), satisfies this condition.

4



Define τ as

τ = max
p(x1)p(x2)

H(Y2). (8)

The class of Z-interference channels for which we are able to obtain the capacity region

satisfy Condition 1 as well as the following condition.

Condition 2: There exists a p∗(x2) such that H(Y2), when evaluated with the distribution
∑

x1,x2
p(x1)p

∗(x2)p(y2|x1, x2), is equal to τ for any p(x1).

Intuitively, Condition 2 specifies that no matter how tightly packed the codewords in

codebook 1 are, by spacing out the codewords in codebook 2, we can always fill up the

entire, or maximum, output space at Receiver 2. This means that using an i.i.d. generated

codebook with p∗(x2) at Transmitter 2 is to our advantage, as the larger the output space,

the more codewords of Transmitter 2 we can pack in the space. Note that the Gaussian

Z-interference channel does not satisfy this condition, since the largest output space is only

achieved when both p(x1) and p(x2) are Gaussian with variances P1 and P2, respectively.

The largest output space cannot be achieved with a p∗(x2) that is irrespective of p(x1), as

specified in Condition 2.

Now, we give an example of a channel, shown in Figure 1, where both conditions are

satisfied. Let X2 = Y2 = S = {0, 1, 2, · · · , q − 1}, where q is an arbitrary interger. Let

sets X1, Y1, and probability distributions p̄(y1|x1) and p̄(s|x1) be arbitrary. The channel is

defined as V1(y1|x1) = p̄(y1|x1), and V2(y2|x1, x2) is defined as
∑

s∈S p̄(y2|s, x2)p̄(s|x1), where

p̄(y2|s, x2) is given by

Y2 = S ⊕X2. (9)

In (9), ⊕ is the mod-q sum. It is easy to see that the channel thus defined satisfies Condition

1. By letting p∗(x2) be the uniform distribution on {0, 1, 2, · · · , q − 1}, we find that the

channel also satisfies Condition 2, where τ = log |Y2| = log q.

The above example is related to several Z-interference channels that have been studied

in [5, 6, 16], as we now describe in more detail.

1. The discrete additive degraded interference channels studied in [5], using similar tech-

niques as [23, Fig. 6], can be shown to be equivalent to, or in other words, have the

same capacity region as, the following Z-inteference channel:

Y1 = X1 ⊕ Z1 (10)

Y2 = X1 ⊕X2 ⊕ Z1 ⊕ Z2. (11)
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Figure 1: Example of a Z-interference channel satisfying Conditions 1 and 2

The Z-interference channel characterized by (10) and (11) is a special case of our

example. The derivation of the capacity region in [5] relies on the degradedness of

output Y2 with respect to Y1, which makes treating interference as noise optimal. In our

example, we do not make an assumption on degradedness, and show that superposition

encoding and partial decoding is optimal.

2. The example shown in [6, Fig. 3] is a special case of our example, with X2 = Y2 =

{0, 1} = S = Y1 and X1 = {0, 1, 2}, p̄(y1|x1) is given as

p̄(y1|x1) =



















1 if (x1, y1) = (0, 0) or (x1, y1) = (1, 1)

ǫ if (x1, y1) = (2, 0)

1− ǫ if (x1, y1) = (2, 1)

0 otherwise

(12)

and p̄(s|x1) is given as

p̄(s|x1) =

{

1 if (x1, s) = (0, 0) or (x1, s) = (1, 1) or (x1, s) = (2, 0)

0 otherwise
(13)

which is deterministic. As mentioned before, the capacity region of this channel is

found in [6] by matching the achievable rate region of superposition encoding and

partial decoding and the capacity region upper bound of genie-aided receivers. The

deterministic nature of p(y2|x1, x2) plays an important role in obtaining the results. In

our example, we make no assumption on the channel being deterministic, and use a

different upper bounding technique to match the achievable rate region of superposition

encoding and partial decoding.

3. For a class of interference channels, [16] quantifies the gap between the achievable rate

region of superposition encoding and partial decoding and the capacity region upper

bound obtained using the technique of genie-aided receivers. Consider a special case
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of the class of interference channels considered in [16], where p(s2|x2) in [16, Fig. 1] is

independent of x2 and the deterministic function f2 in [16, Fig. 1] is the modulo sum

operation. This special case is contained in our example. Hence, for this special case,

the results in this paper provide the exact capacity region, and we may conclude that

the achievable rate region of Han and Kobayashi used in [16] is in fact optimal, while

the capacity region upper bound in [16] is not tight.

As a final remark in this section, note that in general, Condition 1 can not be verified

in a “single-letter” way, i.e., by checking for only the case of n = 1. However, for many

channels, such as the Gaussian Z-interference channel in (6) and (7) and the example given

in Figure 1, Condition 1 is straightforward to verify.

3 New Capacity Region Upper Bounds

In this section, we obtain a new capacity region upper bound for the class of Z-interference

channels that satisfy Condition 1.

Before we proceed, we will first restate the converse technique introduced in Korner

and Marton [20]. The technique is a method of writing the difference between two n-letter

entropies into a sum of differences between conditional entropies, which may then be written

as the difference between two single letter conditional entropies by defining the appropriate

auxiliary random variables.

Lemma 1 [19, page 314, eqn (3.34)]

For any n, and any random variables Y n and Zn, we have

H(Zn)−H(Y n) =
n

∑

i=1

(

H(Zi|Y
i−1, Zi+1, Zi+2, · · · , Zn)−H(Yi|Y

i−1, Zi+1, Zi+2, · · · , Zn)
)

.

(14)

Now, we state our upper bound for the class of Z-interference channels that satisfy Con-

dition 1.

Theorem 1 For a Z-interference channel, characterized by transition probabilities V1 and

V2, that satisfies Condition 1, if rate pair (R1, R2) is achievable, then it must satisfy

R1 ≤ H(Y1|U,Q) + γ −H(Y1|X1) (15)

R2 ≤ H(Y2|Q)−H(T |U,Q)− γ (16)

0 ≤ γ ≤ min(I(Y1;U |Q), I(T ;U |Q)) (17)
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for some distribution p(q)p(x1, u|q)p(x2|q) and number γ, where the mutual informations and

entropies are evaluated using p(q, u, x1, x2, y1, t, y2) = p(q)p(x1, u|q)p(x2|q)V1(y1|x1)V2(t|x1, x̄2)

V2(y2|x1, x2), and x̄2 is an arbitrary element in X2.

Theorem 1 is the major technical contribution of this work. However, to improve the read-

ability of the paper, we have moved the proof of Theorem 1 to the Appendix in Section 8.1.

The key point of the proof is to define an imaginary memoryless channel V̂2 : X1 → Y2, with

input X1 and output T , as

V̂2(t|x1) = V2(t|x1, x̄2), (18)

where x̄2 is an arbitrary element in X2. Theorem 1 is proved by using the definition of this

imaginary channel, Lemma 1 and Condition 1. Notice that T is a random variable that we

created in the proof of Theorem 1 which does not exist in the actual communication system.

4 Achievable rates for Z-interference channels

In this section, we specialize the achievable rate region in [9], which is developed for the

interference channel, to the Z-interference channel. More specifically, we use, as in [24],

Fourier-Motzkin elimination and the fact that p(ui|q)p(wi|q)f(xi|ui, wi, q) is sufficient to

achieve all possible marginals p(wi|q)p(xi|wi, q) for i = 1, 2. By setting the auxiliary random

variable associated with Receiver 2 to be constant, we obtain the following achievable rate

region.

Define P as the set of distributions p(q, u, x1, x2) that satisfies

p(q, u, x1, x2) = p(q)p(x1, u|q)p(x2|q). (19)

For each p ∈ P, further define the region GI(p) as

GI(p)
△
= {(R1, R2)|R1 ≤ I(X1; Y1|U,Q) + min(I(Y1;U |Q), I(Y2;U |X2, Q)),

R2 ≤ I(X2; Y2|U,Q),

R1 +R2 ≤ I(X1; Y1|U,Q) + I(U,X2; Y2|Q)}. (20)

where the mutual informations are evaluated with p, and the given channel transition prob-

abilities p(y1|x1) and p(y2|x1, x2).

Theorem 2 [9, 24] For the Z-interference channel described by V1 and V2, an inner bound
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on the capacity region is

GI =
⋃

p∈P

GI(p). (21)

Furthermore, the inner bound remains invariant if we impose the following constraint on the

cardinality of the auxiliary random variables:

|U| ≤ |X1|+ 2, |Q| ≤ 4. (22)

5 Comparison of achievable rates and rate upper bounds

Since T is a random variable that we created in the proof of Theorem 1 which does not exist

in Theorem 2, in order to compare the new capacity region upper bound with the known

achievable rate region, we rewrite the upper bound in a different way by replacing T with

Y2 conditioned on X2, using Condition 1. In other words, the capacity region upper bound

given in Theorem 1 is equivalent to the one given in the next theorem.

Theorem 3 For a Z-interference channel, characterized by transition probabilities V1 and

V2, that satisfies Condition 1, if the rate pair (R1, R2) is achievable, then it must satisfy

R1 ≤ I(X1; Y1|U,Q) + γ (23)

R2 ≤ I(U,X2; Y2|Q)− γ (24)

0 ≤ γ ≤ min(I(Y1;U |Q), I(Y2;U |X2, Q)) (25)

for some distribution p(q)p(x1, u|q)p(x2|q) and number γ, where the mutual informations are

evaluated using p(q, u, x1, x2, y1, y2) = p(q)p(x1, u|q)p(x2|q)V1(y1|x1)V2(y2|x1, x2).

A proof of Theorem 3 is provided in the Appendix in Section 8.2. Based on Theorem 3,

we now restate the capacity region upper bound as follows, by eliminating variable γ. The

proof is straightforward, and thus omitted. For each p ∈ P, define the region Go(p) as

Go(p)
△
= {(R1, R2)|R1 ≤ I(X1; Y1|U,Q) + min(I(Y1;U |Q), I(Y2;U |X2, Q)),

R2 ≤ I(U,X2; Y2|Q),

R1 +R2 ≤ I(X1; Y1|U,Q) + I(U,X2; Y2|Q)}. (26)

where the mutual informations are evaluated with p, and the given channel transition prob-

abilities p(y1|x1) and p(y2|x1, x2).
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Theorem 4 For a Z-interference channel, characterized by transition probabilities V1 and

V2, that satisfies Condition 1, an outer bound on the capacity region is

Go =
⋃

p∈P

Go(P ). (27)

Furthermore, the outer bound remains invariant if we impose the following constraint on the

cardinality of auxiliary random random variables:

|U| ≤ |X1|+ 1, |Q| ≤ 4. (28)

Comparing the capacity region upper bound in Theorem 4 and the achievable rate region

in Theorem 2, we see that the set of allowable distributions, P, are the same, while the

regions, GI(p) and Go(p), look slightly different for the same p ∈ P. More specifically, among

the three equations that characterize GI(p) and Go(p), two of them are exactly the same.

Notice also the fact that, the region Go(p) is always a pentagon, while the region GI(p) can

be a pentagon if p satisfies I(U ; Y1|Q) ≥ I(U ; Y2|Q), and a rectangle otherwise. We illustrate

the gap between GI(p) and Go(p) in the following two figures. If the distribution p is such

that I(U ; Y1|Q) < I(U ; Y2|Q), the comparison between GI(p) and Go(p) looks like Figure 2.

On the other hand, if the distribution p is such that I(U ; Y1|Q) ≥ I(U ; Y2|Q), the comparison

would look like Figure 3. In this case, corner point A is achievable.

The outer bound, Go, is a union of pentagons, and the boundary of Go consists of the two

corner points of certain pentagons. It is likely that point A of Go(p0) for some p0 ∈ P, will

appear on the boundary of Go. If p0 also satisfies I(U ; Y1|Q) ≥ I(U ; Y2|Q), then point A is a

capacity point, i.e., a point on the boundary of the capacity region. We formalize this fact

in Corollary 1.

Corollary 1 For Z-interference channels that satisfy Condition 1, if point A given by:

(

I(X1; Y1|U,Q) + min(I(Y1;U |Q), I(Y2;U |X2, Q)),

I(U,X2; Y2|Q)−min(I(Y1;U |Q), I(Y2;U |X2, Q))
)

(29)

for some distribution p ∈ P that satisfies I(U ; Y1|Q) ≥ I(U ; Y2|Q) happens to be on the

boundary of Go, then point A is a point on the boundary of the capacity region.

Further, by comparing the achievable rate region and capacity region upper bound, we may

make the following statement about the sum capacity of Z-interference channels that satisfy

Condition 1.
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Figure 2: Comparison of GI(p) and Go(p) when I(U ; Y1|Q) < I(U ; Y2|Q)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

R1

R
2

 

 
outer bound
achievable rate region

A

Figure 3: Comparison of GI(p) and Go(p) when I(U ; Y1|Q) ≥ I(U ; Y2|Q)

Corollary 2 For Z-interference channels that satisfy Condition 1, if

max
p(q)p(x1,u|q)p(x2|q)

I(X1; Y1|U,Q) + I(U,X2; Y2|Q) (30)

is achieved by a distribution that satisfies I(U ; Y1|Q) ≥ I(U ; Y2|Q), then the sum capacity is

(30).

To demonstrate how Corollary 2 might be used, consider the Gaussian Z-interference channel,

defined in (6) and (7), where a ≤ 1. For any p(q)p(x1, u|q)p(x2|q), I(U ; Y1|Q) ≥ I(U ; Y2|Q) is

satisfied. Hence, (30) is the sum capacity. The sum capacity of the Gaussian Z-interference

channel where a ≤ 1 has been found in [17] using a different technique.

11



6 Capacity region of a subclass of Z-interference chan-

nels

As illustrated in Section 5, in general, for Z-interference channels that satisfy Condition 1,

the capacity region upper bound, described in Theorem 4, and the achievable rate region,

described in Theorem 2, are not the same. However, in this section we show that when the

Z-interference channel satisfies the additional Condition 2, our capacity region upper bound

and the Han/Kobayashi achievable rate region coincide, yielding the capacity region.

In the achievable rate region derived in Theorem 2, if we specify Q to be a constant,

i.e., time sharing is not employed, and if we further specify p(x2) to be p∗(x2), defined in

Condition 2, we obtain another achievable rate region:

R1 ≤ I(X1; Y1|U) + min(I(U ; Y1), I(U ; Y2|X2)) (31)

R2 ≤ τ −H(Y2|X2, U) (32)

R1 +R2 ≤ I(X1; Y1|U) + τ −H(Y2|X2, U) (33)

for some distribution p(u)p(x1|u), where the mutual informations and entropies are evaluated

with

p(u, x1, x2, y1, y2) = p(u)p(x1|u)p
∗(x2)V1(y1|x1)V2(y2|x1, x2). (34)

In obtaining this region, we have used the fact that the Z-interference channel satisfies

Condition 2, and therefore, we have

H(Y2|U) =
∑

u

p(u)H(Y2|U = u) = τ = H(Y2). (35)

This achievable rate region is potentially smaller than that described in Theorem 2, due to

the fact that we have eliminated time sharing and fixed p(x2) to be a specific distribution.

As for the upper bound, rather than starting from the capacity region upper bound

described in Theorem 4, we study the equivalent region described in Theorem 1. By the def-

inition of τ in (8), another upper bound on the Z-interference channel that satisfies Condition

1, which is looser than that of Theorem 1, is

R1 ≤ H(Y1|U,Q) + γ −H(Y1|X1) (36)

R2 ≤ τ −H(T |U,Q)− γ (37)

0 ≤ γ ≤ min(I(Y1;U |Q), I(T ;U |Q)) (38)

for some distribution p(q, u)p(x1|u, q) and number γ, where the mutual informations and
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entropies are evaluated using p(q, u, x1, y1, t) = p(q, u)p(x1|u, q)V1(y1|x1)V2(t|x1, x̄2). Note

that by replacing H(Y2|Q), or more specifically H(Y2|Q = q), with a possibly larger term τ ,

we have removed the dependence of the region on p(x2|q).

By defining a new auxiliary random variable Ū to be (U,Q), and noting the fact that

H(Y1|Q) ≤ H(Y1) (39)

H(T |Q) ≤ H(T ), (40)

we obtain yet another capacity region upper bound, which is possibly looser than the previous

one described in (36)-(38):

R1 ≤ H(Y1|Ū) + γ −H(Y1|X1) (41)

R2 ≤ τ −H(T |Ū)− γ (42)

0 ≤ γ ≤ min(I(Y1; Ū), I(T ; Ū)) (43)

for some distribution p(ū)p(x1|ū) and number γ, where the mutual informations and entropies

are evaluated using p(ū, x1, y1, t) = p(ū)p(x1|ū)V1(y1|x1)V2(t|x1, x̄2). By defining Ū to be

(U,Q), we have gotten rid of the time sharing auxiliary random variable Q.

For notational convenience, we replace Ū with U , and eliminate variable γ, to get the

following capacity region upper bound for Z-interference channels satisfying Condition 1,

which is equivalent to the capacity region upper bound described in (41)-(43):

R1 ≤ I(Y1;X1|U) + min(I(Y1;U), I(T ;U)) (44)

R2 ≤ τ −H(T |U) (45)

R1 +R2 ≤ I(Y1;X1|U) + τ −H(T |U) (46)

for some distribution p(u)p(x1|u), where the mutual informations and entropies are evaluated

using

p(u, x1, y1, t) = p(u)p(x1|u)V1(y1|x1)V2(t|x1, x̄2). (47)

Next, we will show that when the Z-interference channel satisfies Conditions 1 and 2, the

capacity region upper bound described by (44)-(46) and the achievable rate region described

by (31)-(33) are the same when evaluated with the same p(u)p(x1|u).

When evaluated with the same p(u)p(x1|u), it is obvious that the termsH(Y1|U), H(Y1|X1)

and I(U ; Y1) are equal in both (44)-(46) and (31)-(33). H(T |U), respectively H(T ), evalu-

ated with the distribution in (47) is equal to H(Y2|X2 = x̄2, U), respectively H(Y2|X2 = x̄2),
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evaluated with the distribution in (34). Furthermore, evaluated with the distribution in (34),

H(Y2|X2, U) =
∑

x2,u

p∗(x2)p(u)H(Y2|X2 = x2, U = u) (48)

=
∑

x2,u

p∗(x2)p(u)H(Y2|X2 = x̄2, U = u) (49)

= H(Y2|X2 = x̄2, U), (50)

We also have

H(Y2|X2) =
∑

x2

p∗(x2)H(Y2|X2 = x2) = H(Y2|X2 = x̄2), (51)

where we obtain (49) and (51) using Condition 1 with n = 1. Thus, we have proved that the

region described by (44)-(46) and that described by (31)-(33) are the same when evaluated

with the same p(u)p(x1|u).

Since the capacity region upper bound and the achievable rate region are taking the

union of regions described by (44)-(46) and (31)-(33), respectively, over all p(u)p(x1|u), the

achievable rate region and the capacity region upper bound coincide, yielding the capacity

region.

Hence, the capacity region of the class of Z-interference channels that satisfies Conditions

1 and 2 is

R1 ≤ I(X1; Y1|U) + min(I(U ; Y1), I(U ; Y2|X2)) (52)

R2 ≤ τ −H(Y2|X2, U) (53)

R1 +R2 ≤ I(X1; Y1|U) + τ −H(Y2|X2, U) (54)

for some distribution p(u)p(x1|u), where the mutual informations and entropies are evaluated

with p(u, x1, x2, y1, y2) = p(u)p(x1|u)p
∗(x2)V1(y1|x1)V2(y2|x1, x2). Using support lemma [19,

Lemma 3.4], without loss of generality, we may bound the cardinality of the auxiliary random

variable U as |U| ≤ |X1|+ 1.

In Figure 4, we plot the capacity region and prior upper bounds by Telatar and Tse [16]

and by Sato [3] for the Z-interference channel based on the model illustrated in Figure 1,

where p̄(y1|x1) is a binary erasure channel (BEC) with erasure probability 0.4 and p̄(s|x1) is a

binary symmetric channel (BSC) with crossover probability 0.1. This Z-interference channel

is based on the model illustrated in Figure 1, and therefore satisfies both Conditions 1 and 2.

Without loss of generality, by restricting the cardinality of the auxiliary random variable to

be 3, we plot the capacity region as given by (52)-(54). The dashed region is an inner bound

of the upper bound given by [16, Theorem 1] where we have omitted time sharing. The

dot-dash region is an upper bound given by [3, Theorem 2] which outperforms the MAC,
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Figure 4: Capacity region and known upper bounds for the Z-interference channel of Figure
1, where p(y1|x1) describes a BEC with erasure probability .4 and p(s|x1) describes a BSC
with crossover probability .1

BC outer bounds in [3]. But for this channel model, the upper bound given by [3, Theorem

2] is simply equivalent to

⋃

p(x1),p(x2)

{(R1, R2)|R1 ≤ I(X1; Y1), R2 ≤ I(X2; Y2|X1)}, (55)

which is the performance of both users where there is no interference. As can be seen, our new

capacity region upper bound significantly tightens known upper bounds. More significantly,

from the proofs in this section, we know that it equals the capacity region.

7 Conclusions

We have obtained a single-letter characterization for the capacity region of Z-interference

channels that satisfy certain conditions. The two conditions are 1) that the performance of

the second transmitter-receiver pair is invariant to the codeword locations of Transmitter

2 (i.e. it depends only on codeword distances), and 2) that regardless of the codebook

choice of Transmitter 1, the input to Receiver 2 can always achieve maximum entropy. The

results are obtained through a new upper bound on the capacity region that exploits a

technique by Korner and Marton. This new upper bound is shown to coincide with the

Han/Kobayashi achievable rate region for channels satisfying the stated conditions. Thus,

the Han/Kobayashi transmission strategy of superposition encoding and partial decoding is

capacity-achieving for this class of channels.

The upper bound also applies to channels satisfying the first but not the second condition.

This bound significantly improves on existing upper bounds by Teletar/Tse and by Sato, as
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is illustrated with a numerical example. We also show that this upper bound coincides with

the achievable rates at certain points on the capacity region, including the sum-rate point,

for Z-interference channels satisfying the first condition. This upper bounding technique

may also improve known bounds for other types of interference channels.

8 Appendix

8.1 Proof of Theorem 1

Since the rate pair (R1, R2) is achievable, there exist two sequences of codebooks 1 and 2,

denoted by Cn
1 and Cn

2 , of rate R1 and R2, and probability of error less than ǫn, where ǫn → 0

as n → ∞. Let Xn
1 and Xn

2 be uniformly distributed on codebooks 1 and 2, respectively.

Let Y n
1 be connected via V n

1 to Xn
1 , Y

n
2 be connected via V n

2 to Xn
1 and Xn

2 .

We start the converse with Fano’s inequality [25] and the data processing inequality [25],

nR1 = H(W1) = I(W1; Y
n
1 ) +H(W1|Y

n
1 ) (56)

≤ I(W1; Y
n
1 ) + nǫn (57)

≤ I(Xn
1 ; Y

n
1 ) + nǫn (58)

= H(Y n
1 )−H(Y n

1 |X
n
1 ) + nǫn (59)

= H(Y n
1 )−

n
∑

i=1

H(Y1i|Y
i−1
1 , Xn

1 ) + nǫn (60)

= H(Y n
1 )−

n
∑

i=1

H(Y1i|X1i) + nǫn (61)

and (61) follows from the memoryless nature of V n
1 . We also have

nR2 = H(W2) = I(W2; Y
n
2 ) +H(W2|Y

n
2 ) (62)

≤ I(W2; Y
n
2 ) + nǫn (63)

≤ I(Xn
2 ; Y

n
2 ) + nǫn (64)

= H(Y n
2 )−H(Y n

2 |X
n
2 ) + nǫn (65)

=

n
∑

i=1

H(Y2i|Y
i−1
2 )−H(Y n

2 |X
n
2 ) + nǫn (66)

≤

n
∑

i=1

H(Y2i)−H(Y n
2 |X

n
2 ) + nǫn (67)

where (67) follows because conditioning reduces entropy.
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Let us define another channel, V̂2 : X1 → Y2, as

V̂2(t|x1) = V2(t|x1, x̄2), (68)

where x̄2 is an arbitrary element in X2. Further, let us define another sequence of random

variables, T n, which is connected via V̂ n
2 , the memoryless channel V̂2 used n times, to Xn

1 ,

i.e., Ti → X1i → T{i}c , X1{i}c , X
n
2 , Y

n
1 , Y

n
2 . Also define x̄n

2 as the n-sequence with x̄2 repeated

n times. It is easy to see that

H(Y n
2 |X

n
2 ) =

∑

xn

2
∈Cn

2

1

2nR2

H(Y n
2 |X

n
2 = xn

2 ) (69)

= H(Y n
2 |X

n
2 = x̄n

2 ) (70)

= H(T n), (71)

where (70) follows from the fact that the channel under consideration satisfies Condition 1,

and (71) follows from the definition of T n.

By applying Lemma 1, we have

H(T n)−H(Y n
1 ) =

n
∑

i=1

(

H(Ti|Y
i−1
1 , Ti+1, Ti+2, · · · , Tn)−H(Y1i|Y

i−1
1 , Ti+1, Ti+2, · · · , Tn)

)

.

(72)

Furthermore, since conditioning reduces entropy, we can write

H(Y n
1 ) =

n
∑

i=1

H(Y1i|Y
i−1
1 ) ≤

n
∑

i=1

H(Y1i) (73)

H(T n) =

n
∑

i=1

H(Ti|T
i−1) ≤

n
∑

i=1

H(Ti) (74)

H(Y n
1 ) =

n
∑

i=1

H(Y1i|Y
i−1
1 ) ≥

n
∑

i=1

H(Y1i|Y
i−1
1 , Ti+1, Ti+2, · · · , Tn). (75)

Define the following auxiliary random variables,

Ui = Y i−1
1 , Ti+1, Ti+2, · · · , Tn, i = 1, 2, · · · , n (76)
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Hence, we have

1

n
(H(T n)−H(Y n

1 )) =
1

n

n
∑

i=1

(H(Ti|Ui)−H(Y1i|Ui)) (77)

1

n

n
∑

i=1

H(Y1i|Ui) ≤
1

n
H(Y n

1 ) ≤
1

n

n
∑

i=1

H(Y1i) (78)

1

n
H(T n) ≤

1

n

n
∑

i=1

H(Ti). (79)

Further define Q as a random variable that is uniform on the set {1, 2, · · · , n} and indepen-

dent of everything else. Also, define the following auxiliary random variables:

U = UQ, X1 = X1Q, X2 = X2Q, Y1 = Y1Q, T = TQ, Y2 = Y2Q. (80)

Then, we have

1

n
(H(T n)−H(Y n

1 )) = H(T |U,Q)−H(Y1|U,Q) (81)

H(Y1|U,Q) ≤
1

n
H(Y n

1 ) ≤ H(Y1|Q) (82)

1

n
H(T n) ≤ H(T |Q). (83)

Next, we prove some properties of the joint distribution of Q, U , X1, X2, Y1, T and Y2.

First, we have

Pr[X2 = x2|X1 = x1, U = u,Q = i] (84)

= Pr[X2i = x2|X1i = x1, Ui = u,Q = i] (85)

= Pr[X2i = x2|X1i = x1, (Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) = u,Q = i] (86)

= Pr[X2i = x2|X1i = x1, (Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) = u] (87)

= Pr[X2i = x2] (88)

= Pr[X2 = x2|Q = i], (89)

where (87) and (89) are because Q is independent of everything else, and therefore can

be dropped from the conditioning, and (88) follows because X2i is a function of message

W2, while (X1i, Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) are functions of message W1. Since W1 and W2 are
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independent, so is X2i and (X1i, Y
i−1
1 , Ti+1, Ti+2, · · · , Tn). We also have

Pr[Y1 = y1|X1 = x1, X2 = x2, U = u,Q = i] (90)

= Pr[Y1i = y1|X1i = x1, X2i = x2, Q = i, Ui = u] (91)

= Pr[Y1i = y1|X1i = x1, X2i = x2, Q = i, (Y i−1
1 , Ti+1, Ti+2, · · · , Tn) = u] (92)

= Pr[Y1i = y1|X1i = x1, X2i = x2, (Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) = u] (93)

= Pr[Y1i = y1|X1i = x1] (94)

= V1(y1|x1), (95)

where (93) follows by the same reason as (87), and (94) follows from the memoryless nature

of V n
1 . We further have

Pr[T = t|X1 = x1, X2 = x2, U = u,Q = i, Y1 = y1] (96)

= Pr[Ti = t|X1i = x1, X2i = x2, Q = i, Ui = u, Y1i = y1] (97)

= Pr[Ti = t|X1i = x1, X2i = x2, Q = i, (Y i−1
1 , Ti+1, Ti+2, · · · , Tn) = u, Y1i = y1] (98)

= Pr[Ti = t|X1i = x1, X2i = x2, (Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) = u, Y1i = y1] (99)

= Pr[Ti = t|X1i = x1] (100)

= V2(t|x1, x̄2), (101)

where (99) follows by the same reason as (87), and (100) follows from the definition of T n,

more specifically, the memoryless nature of V̂ n
2 and the fact that Ti → X1i → T{i}c , X2i, Y

n
1 ,

for i = 1, 2, · · · , n. Finally, we have

Pr[Y2 = y2|X1 = x1, X2 = x2, U = u,Q = i, T = t, Y1 = y1] (102)

= Pr[Y2i = y2|X1i = x1, X2i = x2, Ui = u,Q = i, Ti = t, Y1i = y1] (103)

= Pr[Y2i = y2|X1i = x1, X2i = x2, (Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) = u,Q = i, Ti = t, Y1i = y1]

(104)

= Pr[Y2i = y2|X1i = x1, X2i = x2, (Y
i−1
1 , Ti+1, Ti+2, · · · , Tn) = u, Ti = t, Y1i = y1] (105)

= Pr[Y2i = y2|X1i = x1, X2i = x2] (106)

= V2(y2|x1, x2), (107)

where (105) follows by the same reason as (87), and (106) follows from the memoryless nature

of V2. Thus, based on (89), (95), (101) and (107), we have shown that the joint distribution

of Q, U , X1, X2, Y1, T and Y2 satisfies

p(q, u, x1, x2, y1, t, y2) = p(q)p(u, x1|q)p(x2|q)V1(y1|x1)V2(t|x1, x̄2)V2(y2|x1, x2). (108)
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From (81)-(83), we may conclude that there exists a number γ that satisfies

0 ≤ γ ≤ min(I(Y1;U |Q), I(T ;U |Q)) (109)

such that

1

n
H(T n) = H(T |U,Q) + γ,

1

n
H(Y n

1 ) = H(Y1|U,Q) + γ. (110)

From (95), we see that

Pr[Y1 = y1|X1 = x1, Q = i] = V1(y1|x1), (111)

which means

H(Y1|X1) = H(Y1|X1, Q) =
1

n

n
∑

i=1

H(Yi|Xi). (112)

By combining (61), (67), (71), (108), (109), (110) and (112), and allowing n to approach

infinity, we obtain the desired result.

8.2 Proof of Theorem 3

Because the distribution in Theorem 1 satisfies the Markov chain (Q,U) → X1 → Y1, we

have

H(Y1|X1) = H(Y1|X1, U,Q). (113)

Hence, comparing with the result of Theorem 1, in order to prove this theorem, it is sufficient

to show that for any p(q)p(x1, u|q)p(x2|q), we have

H(T |U,Q) = H(Y2|X2, U,Q) (114)

H(T |Q) = H(Y2|X2, Q), (115)

where entropies are evaluated with distribution

p(q, u, x1, x2, y1, t, y2) = p(q)p(x1, u|q)p(x2|q)V1(y1|x1)V2(t|x1, x̄2)V2(y2|x1, x2). (116)

With the distribution in (116), we have

H(T |U = u,Q = q) = H(Y2|X2 = x̄2, U = u,Q = q) (117)

H(T |Q = q) = H(Y2|X2 = x̄2, Q = q). (118)
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Moreover,

H(T |U,Q) =
∑

q,u

p(q)p(u|q)H(T |U = u,Q = q) (119)

H(T |Q) =
∑

q

p(q)H(T |Q = q). (120)

In addition,

H(Y2|X2, U,Q) =
∑

q,u,x2

p(q)p(u|q)p(x2|q)H(Y2|X2 = x2, U = u,Q = q) (121)

=
∑

q,u,x2

p(q)p(u|q)p(x2|q)H(Y2|X2 = x̄2, U = u,Q = q) (122)

=
∑

q,u

p(q)p(u|q)H(Y2|X2 = x̄2, U = u,Q = q)
∑

x2

p(x2|q) (123)

=
∑

q,u

p(q)p(u|q)H(Y2|X2 = x̄2, U = u,Q = q) (124)

and

H(Y2|X2, Q) =
∑

q,x2

p(q)p(x2|q)H(Y2|X2 = x2, Q = q) (125)

=
∑

q,x2

p(q)p(x2|q)H(Y2|X2 = x̄2, Q = q) (126)

=
∑

q

p(q)H(Y2|X2 = x̄2, Q = q)
∑

x2

p(x2|q) (127)

=
∑

q

p(q)H(Y2|X2 = x̄2, Q = q), (128)

where we obtain (122) and (126) using Condition 1 with n = 1. Using (117), (118), (119),

(120), (124) and (128), we obtain (114) and (115), and thus have proved Theorem 3.

References

[1] C. E. Shannon. Two-way communication channels. In Proc. 4th Berkeley Symp. Math.

Stat. Prob., volume 1, pages 611–644, Berkeley, CA, 1961.

[2] R. Ahlswede. Multi-way communication channels. In Proc. 2nd Int. Symp. Inform.

Theory, pages 23–52, Tsahkadsor, Armenian S.S.R., 1971.

[3] H. Sato. The two-user communication channels. IEEE Trans. on Information Theory,

23(3):295–304, May 1977.

21



[4] A. B. Carleial. Interference channels. IEEE Trans. on Information Theory, 24(1):60–70,

January 1978.

[5] R. Benzel. The capacity region of a class of discrete additive degraded interference

channels. IEEE Trans. on Information Theory, 25(2):228–231, March 1979.

[6] A. El Gamal and M. Costa. The capacity region of a class of deterministic interference

channels. IEEE Trans. on Information Theory, 28(2):343–346, March 1982.

[7] A. B. Carleial. A case where interference does not reduce capacity. IEEE Trans. on

Information Theory, 21:569–570, September 1975.

[8] H. Sato. On the capacity region of a discrete two-user channel for strong interference.

IEEE Trans. on Information Theory, 24(3):377 – 379, May 1978.

[9] T. Han and K. Kobayashi. A new achievable rate region for the interference channel.

IEEE Trans. on Information Theory, 27(1):49–60, January 1981.

[10] H. Sato. The capacity of the Gaussian interference channel under strong interference.

IEEE Trans. on Information Theory, 27(6):786–788, November 1981.

[11] M. Costa and A. El Gamal. The capacity region of the discrete memoryless interference

channel with strong interference. IEEE Trans. on Information Theory, 33(5):710–711,

September 1987.

[12] N. Liu and S. Ulukus. The capacity region of a class of discrete degraded interfer-

ence channels. In 44th Annual Allerton Conference on Communications, Control and

Computing, Monticello, IL, September 2006.

[13] A. B. Carleial. Outer bounds on the capacity of interference channels. IEEE Trans. on

Information Theory, 29:602–606, July 1983.

[14] G. Kramer. Outer bounds on the capacity of Gaussian interference channels. IEEE

Trans. on Information Theory, 50(3):581–586, Mar. 2004.

[15] R. Etkin, D. Tse, and H. Wang. Gaussian interference channel capacity to within one

bit. Submitted to IEEE Trans. on Information Theory, February 2007.

[16] I. E. Telatar and D. Tse. Bounds on the capacity region for a class of interference

channels. In IEEE International Symposium on information Theory, Nice, France, July

2007.

[17] I. Sason. On achievable rate regions for the Gaussian interference channel. IEEE Trans.

on Information Theory, 50(6):1345–1356, June 2004.

22



[18] R. Ahlswede and N. Cai. General Theory of Information Transfer and Combinatorics,

Lecture Notes in Computer Science, Vol. 4123, chapter Codes with the identifiable

parent property and the multiple-access channel, pages 249–257. Springer Verlag, 2006.

[19] I. Csiszar and J. Korner. Information Theory: Coding Theorems for Discrete Memory-

less Systems. Academic Press, 1981.

[20] J. Korner and K. Marton. Images of a set via two channels and their role in multi-user

communication. IEEE Trans. on Information Theory, 23(6):751–761, Nov. 1977.

[21] J. Korner and K. Marton. General broadcast channels with degraded message sets.

IEEE Trans. on Information Theory, 23(1):60–64, Jan. 1977.

[22] S. I. Gelfand and M. S. Pinsker. Coding for channel with random parameters. Probl.

Contr. and Inform. Theory, 9(I):19–31, 1980.

[23] M. Costa. On the Gaussian interference channel. IEEE Trans. on Information Theory,

31(5):607–615, September 1985.

[24] H. Chong, M. Motani, H. Garg, and H. El Gamal. On the Han-Kobayashi region for the

interference channel,. Submitted to IEEE Trans. on Information Theory, August 2006.

[25] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience,

1991.

23


	Introduction
	System Model
	New Capacity Region Upper Bounds
	Achievable rates for Z-interference channels
	Comparison of achievable rates and rate upper bounds
	Capacity region of a subclass of Z-interference channels
	Conclusions
	Appendix
	Proof of Theorem ??
	Proof of Theorem ??


