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Abstract

Compressed Sensing decoding algorithms can efficiently recover an N dimensional real-
valued vector x to within a factor of its best k-term approximation by taking m = 2k logN/k
measurements y = Φx. If the sparsity or approximate sparsity level of x were known, then
this theoretical guarantee would imply quality assurance of the resulting compressed sensing
estimate. However, because the underlying sparsity of the signal x is unknown, the quality
of a compressed sensing estimate x̂ using m measurements is not assured. Nevertheless, we
demonstrate that sharp bounds on the error ||x − x̂||lN2 can be achieved with almost no ef-
fort. More precisely, we assume that a maximum number of measurements m is pre-imposed;
we reserve 4 log p of the original m measurements and compute a sequence of possible esti-
mates

(
x̂j
)p
j=1

to x from the m− 4 log p remaining measurements; the errors ||x− x̂j ||lN2 for
j = 1, ..., p can then be bounded with high probability. As a consequence, numerical upper
and lower bounds on the error between x and the best k-term approximation to x can be
estimated for p values of k with almost no cost. Our observation has applications outside of
compressed sensing as well.

Key words: Compressed Sensing, cross validation, measurements, best k-term
approximation, Johnson Lindenstrauss Lemma, encoding/decoding, error estimates

1 Introduction

Compressed Sensing (CS) is a fast developing area in applied mathematics, motivated by the
reality that most data we store and transmit contains far less information than its dimension
suggests. For example, a one-dimensional slice through the pixels in a typical grayscale image
will contain segments of smoothly varying intensity, with sharp changes between adjacent pixels
appearing only at edges in the image. Often this sparsity in information translates into a sparse
(or approximately sparse) representation of the data with respect to some standard basis; for
the image example, the basis would be a wavelet of curvelet basis. For such N dimensional
data vectors that are well approximated by a k-sparse vector (or a vector that contains at most
k << N nonzero entries), it is common practice to temporarily store the entire vector, possibly
with the intent to go back and replace this vector with a smaller dimensional vector encoding
the location and magnitude of its k significant coefficients. In compressed sensing, one instead
collects fewer fixed linear measurements of the data to start with, sufficient in number to recover
the location and numerical value of the k nonzero coordinates at a later time. Finding ”good”
linear measurements, as well as fast, accurate, and simple algorithms for recovering the original
data from these measurements, are the twofold goals of compressed sensing research today.

Review of basic CS setup. The data of interest is taken to be a real-valued vector x ∈ RN

that is unknown, but from which we are allowed up to m < N linear measurements, in the
form of inner products of x with m vectors vj ∈ RN of our choosing. Letting Φ denote the
m × N matrix whose jth row is the vector vj , this is equivalent to saying that we have the
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freedom to choose and store an m × N matrix Φ, along with the m-dimensional measurement
vector y = Φx. Of course, since Φ maps vectors in RN to vectors in a smaller dimensional space
Rm, the matrix Φ is not invertible, and we thus have no hope of being able to reconstruct an
arbitrary N dimensional vector x from such measurements.

However, if the otherwise unknown vector x is specified to be k-sparse, and k is fairly small
compared with N , then there do exist matrices Φ for which y = Φx uniquely determines x,
and allows recovery of x using fast and simple algorithms. It was the interpretation of this
phenomenon given by Candes and Tao [1], [2], and Donoho [3], that gave rise to compressed
sensing. In particular, these authors define classes of matrices that possess this property. One
particularly elegant characterization of this class is via the Restricted Isometry Property (RIP)
[2]. A matrix Φ with unit normed columns is said to be k-RIP if all singular values of any k
column submatrix of Φ lie in the interval [1− δk, 1 + δk] for a given constant δk < 1. With high
probability, 2k-RIP is obtained, with

k = K(m,N) := 2m/ log(N/m)),where m ≤ 1
2
m, (1)

for m×N matrices Φ whose entries Φi,j are independent realizations of a Gaussian or Bernoulli
random variable [4]. Also with high probability, an m×N matrix obtained by selecting m rows
at random from the N × N discrete Fourier matrix satisfies 2k-RIP of the same order as (1)
up to an additional log3N factor [28]. In fact, the order of k given by (1) is optimal given m
and N , as shown in [5] using classical results on Gelfand widths of lN1 unit balls in lN2 . To date,
there exist no deterministic constructions of RIP matrices of this order.

Recovering or approximating x. As shown in [21], the following approximation results
hold for matrices Φ that satisfy 2k-RIP with constant δ2k ≤

√
2− 1:

1. If x ∈ RN is k-sparse, then x can be reconstructed from Φ and the measurement vector
y = Φx as the solution to the following `1 minimization problem:

x = L1(Φ, y) := arg min
Φz=y

||z||1. (2)

2. If x is not k-sparse, the error between x and the approximation x̂ = L1(Φ, y) is still
bounded by

||x− x̂||2 ≤
c√
k
σk(x)lN1 , (3)

where c = 2(1 + δ2k)/(1− δ2k), and σk(x)lNp := inf |z|≤k ||x− z||lNp denotes the best possible
approximation error in the metric of lNp between x and the set of k-sparse signals in
RN . The approximation error σk(x)lNp is realized by the k-sparse vector xk ∈ RN that
corresponds to vector x with all but the k largest entries set to zero, independent of the
lNp norm in the approximation σk(x)lNp .

This immediately suggests to use the `1-minimizer L1 as a means to recover or approximate an
unknown x with sparsity constraint. Several other decoding algorithms are used as alternatives
to `1 minimization for recovering a sparse vector x from its image y = Φx, not because they
offer better accuracy ( `1 minimization gives optimal approximation bounds when Φ satisfies
RIP), but because they can be faster and easier to implement. For a comprehensive survey on
compressed sensing decoding algorithms, we refer the reader to [30].

Estimating the accuracy of CS estimates. According to the bound (3), the quality of
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a compressed sensing estimate x̂ = 4(Φ, y) depends on how well x can be approximated by
a k-sparse vector, where the value of k is determined by the number of rows m composing Φ.
While k is assumed to be known and fixed in the compressed sensing literature, no such bound
is guaranteed for real-world signal models such as vectors x ∈ RN corresponding to wavelet co-
efficient sequences of discrete photograph-like images. Thus, the quality of a compressed sensing
estimate x̂ in general is not guaranteed.

If the error ||x − x̂||2/||x||2 incurred by a particular approximation x̂ were observed to be
large, then decoding could be repeated using a larger number of measurements, perhaps at
increasing measurement levels {m1,m2, ...,mp}, until the error ||x − x̂j ||2/||x||2 corresponding
to mj measurements were observed to be sufficiently small. Of course, the errors ||x− x̂j ||2 and
||x − x̂j ||2/||x||2 are typically not known, as x is unknown. Our main observation is that one
can apply the Johnson-Lindenstrauss lemma [13] to the set of p points,

{(x− x̂1), (x− x̂2), ..., (x− x̂p)}. (4)

In particular, r = O(log p) measurements of x, provided by yΨ = Ψx, when Ψ is, e.g. a Gaussian
or Bernoulli random matrix, are sufficient to guarantee that with high probability,

4/5||yΨ −Ψx̂j ||2 ≤ ||x− x̂j ||2 ≤ 4/3||yΨ −Ψx̂j ||2 (5)

and
1/3
||yΨ −Ψx̂j ||2
||yΨ||2

≤ ||x− x̂j ||2
||x||2

≤ 2
||yΨ −Ψx̂j ||2
||yΨ||2

(6)

for any p compressed sensing estimates. The equivalences (5) and (6) allow the measurable
quantities ||yΨ−Ψx̂j ||2 and ||yΨ−Ψx̂j ||2/||yΨ||2 to function as proxies for the unknown quantities
||x− x̂j ||2 and ||x− x̂j ||2/||x||2; these proxies can be used to

(a) provide tight numerical upper and lower bounds on the errors ||x−x̂j ||2 and ||x−x̂j ||2/||x||2
at up to p compressed sensing estimates x̂j ,

(b) provide estimates of the underlying k-term approximations ||x − xk||2 of x for up to p
different values of k, and

(c) return from among a sequence of estimates (x̂1, ..., x̂p) with different initialization parame-
ters, an estimate x̂cv = arg minj ||yΨ−Ψx̂j ||2 having error ||x− x̂cv||2 that does not exceed
a small multiplicative factor of the best possible error in the metric of `N2 between x and
an element from the sequence at hand.

More precisely, all CS decoding algorithms require as input a parameter m corresponding to the
number of rows in Φ; some compressed sensing decoding algorithms (such as greedy algorithms)
require also a parameter k indicating the sparsity level of x, and other algorithms require as
input a bound γ on the expected amount of energy in x outside of its significant coefficients. All
CS decoding algorithms can be symbolically represented by functions of the form 4(Φ, y, k, γ),
and we will give examples where each of the parameters m, k, and γ can be optimized over
a sequence of estimates (x̂1, x̂2, ..., x̂p) parametrized by increasing hypotheses on each of the
variables m, k, and γ.

The estimation procedure described above, although novel in its proposed application, is by
no means new. Cross validation is a technique used in statistics and learning theory whereby
a data set is separated into a training/estimation set and a test/cross validation set, and the
test set is used to prevent overfitting on the training set by estimating underlying noise pa-
rameters. We will take a set of m measurements of x, and use m − r of these measurements,
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Φx, in a compressed sensing decoding algorithm to return a sequence (x̂1, x̂2, ...) of candidate
approximations to x. The remaining r measurements, Ψx, are then used to identify from among
this sequence a single approximation x̂ = x̂j , along with an estimate of the sparsity level of
x. The application of cross validation to compressed sensing has been studied by Boufounos,
Duarte, and Baraniuk in [7], but in a different context from the present paper, and without the
mathematical justification of the Johnson Lindenstrauss lemma that we present below.

2 Preliminary Notation

Throughout the paper, we will be dealing with large dimensional vectors that have few nonzero
coefficients. We use the notation

|x| = n (7)

to indicate that a vector x ∈ RN has exactly n nonzero coefficients.

We will sometimes use the notation a ∼ε b as shorthand for the multiplicative relation

(1− ε)a ≤ b ≤ (1 + ε)a, (8)

that can be worded as “the quantity a approximates the quantity b to within a multiplicative
factor of (1± ε)”. Note that the relation ∼ε is not symmetric. Properties of the relation a ∼ε b
are listed below; we leave the proofs (which amount to a string of simple inequalities) as an
exercise for the reader.

Lemma 2.1. Fix ε ∈ (0, 1).

1. If a, b ∈ R+ satisfy a ∼ε b, then b/
[
(1 + ε)(1− ε)

]
∼ε a.

2. If a, b, c, d ∈ R+ satisfy a ∼ε b and c ∼ε d, then a/c ∼δ b/d for parameter δ = 2ε/1− ε.

3. If (a1, a2, ..., ap) and (b1, b2, ..., bp) are sequences in R+, and aj ∼ε bj for each 1 ≤ j ≤ p,
then minj aj ∼ε minj bj.

3 Mathematical Foundations

The Johnson Lindenstrauss (JL) lemma, in its original form, states that any set of p points in high
dimensional Euclidean space can be embedded into ε−2 log(p) dimensions, without distorting the
distance between any two points by more than a factor of (1 ± ε) [13]. In the same paper, it
was shown that a random orthogonal projection would provide such an embedding with positive
probability. Following several simplifications to the original proof [15], [12], [14], it is now
understood that Gaussian random matrices, among other purely random matrix constructions,
can substitute for the random projection in the original proof of Johnson and Lindenstrauss. Of
the several versions of the lemma now appearing in the literature, the following variant presented
in Matousek [16] is most applicable to the current presentation.

Lemma 3.1 (Johnson-Lindenstrauss Lemma). Fix an accuracy parameter ε ∈ (0, 1/2], a confi-
dence parameter δ ∈ (0, 1), and an integer r ≥ r0 = Cε−2 log 1

2δ .

Let M be a random r × N matrix whose entries Mi,j are independent realizations of a ran-
dom variable R that satisfies:
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1. V ar(R) = 1/r (so that the columns of M have expected `2 norm 1)

2. E(R) = 0,

3. For some fixed a > 0 and for all λ,

Prob[|R| > λ] ≤ 2e−aλ
2

(9)

Then for a predetermined x ∈ RN ,

(1− ε)||x||lN2 ≤ ||Mx||lr2 ≤ (1 + ε)||x||lN2 (10)

is satisfied with probability exceeding 1− δ.

The constant C bounding r0 in Lemma (3.1) grows with the parameter a specific to the con-
struction of M (9). Gaussian and Bernoulli random variables R will satisfy the concentration
inequality (9) for a relatively small parameter a (as can be verified directly), and for these ma-
trices one can take C = 8 in Lemma (3.1).

The Johnson Lindenstrauss lemma can be made intuitive with a few observations. Since
E
[
R
]

= 0 and Var
[
R
]

= 1
r , the random variable ||Mx||22 equals ||x||22 in expected value; that is,

E
[
||Mx||22

]
= ||x||22. (11)

Additionally, ||Mx||22 inherits from the random variable R a nice concentration inequality:

Prob
[
||Mx||22 − ||x||22 > ε||x||22

]
≤ e−a(2ε

√
r)2 ≤ δ/2. (12)

The first inequality above is at the heart of the JL lemma; its proof can be found in [16]. The
second inequality follows using that r ≥ (2aε2)−1 log( δ2) and ε ≤ 1/2 by construction. A bound
similar to (12) holds for Prob

[
||Mx||22 − ||x||22 < −ε||x||22

]
as well, and combining these two

bounds gives desired result (10).

For fixed x ∈ RN , a random matrix M constructed according to Lemma (3.1) fails to sat-
isfy the concentration bound (10) with probability at most δ. Applying Boole’s inequality, M
then fails to satisfy the stated concentration on any of p predetermined points {xj}pj=1, xj ∈ RN ,
with probability at most ξ = pδ. In fact, a specific value of ξ ∈ (0, 1) may be imposed for fixed
p by setting δ = ξ/p. These observations are summarized in the following corollary to Lemma
(3.1).

Corollary 3.2. Fix an accuracy parameter ε ∈ (0, 1/2], a confidence parameter ξ ∈ (0, 1), and
fix a set of p points {xj}pj=1 ⊂ RN . Set δ = ξ/p, and fix an integer r ≥ r0 = Cε−2 log 1

2δ =
Cε−2 log p

2ξ . If M is a r×N matrix constructed according to Lemma (3.1), then with probability
≥ 1− ξ, the bound

(1− ε)||xj ||lN2 ≤ ||Mxj ||lr2 ≤ (1 + ε)||xj ||lN2 (13)

obtains for each j = 1, 2, ..., p.

4 Cross Validation in Compressed Sensing

We return to the situation where we would like to approximate a vector x ∈ RN with an assumed
sparsity constraint using m < N linear measurements y = Ax where A is an m ×N matrix of
our choosing. Continuing the discussion in Section 1, we will not reconstruct x in the standard
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way by x̂ = ∆(A, y, k, γ) for fixed values of the input parameters, but instead separate the m×N
matrix A into an n×N implementation matrix Φ and an r×N cross validation matrix Ψ, and
separate the measurements y accordingly into yΦ and yΨ. We use the implementation matrix Φ
and corresponding measurements yΦ as input into the decoding algorithm to obtain a sequence
of possible estimates (x̂1, ..., x̂p) corresponding to increasing one of the input parameters m, k, or
γ. We reserve the cross validation matrix Ψ and measurements yΨ to estimate each of the error
terms ||x− x̂j ||2 in terms of the computable ||yΨ −Ψx̂j ||2. Our main result, which follows from
Corollary (3.2), details how the number of cross validation measurements r should be chosen in
terms of the desired accuracy ε of estimation, confidence level ξ in the prediction, and number
p of estimates x̂j to be measured:

Theorem 4.1. For a given accuracy ε ∈ (0, 1/2], confidence ξ ∈ (0, 1), and number p of es-
timates x̂j ∈ RN , it suffices to allocate r = dCε−2 log p

2ξ e rows to a cross validation matrix Ψ
of Gaussian or Bernoulli type, normalized according to Lemma (3.2) and independent of the
estimates x̂j, to obtain with probability greater than or equal to 1− ξ, and for each j = 1, 2, ..., p,
the bounds

1
1 + ε

≤
||x− x̂j ||lN2
||Ψ(x− x̂j)||l`2

≤ 1
1− ε

(14)

and

1− 3ε
(1 + ε)(1− ε)2

≤
||x− x̂j ||lN2 /||x||2

||Ψ(x− x̂j)||l`2/||Ψx||2
≤ 1

(1− ε)2

(15)

and also
1

1 + ε
≤ ηor
η̂cv
≤ 1

1− ε
(16)

where ηor = min1≤j≤p ||x− x̂j ||lN2 is the unknown oracle error corresponding to the best possible
approximation to x in the metric of lN2 from the sequence (x̂1, ..., x̂p), and η̂cv = min1≤j≤p ||Ψ(x−
x̂j)||lr2 is the observable cross validation error.

Proof. .

• The bounds in (14) are obtained by application of Lemma (3.2) to the p points uj = x−x̂j ,
and rearranging the resulting bounds according to Lemma (2.1) part (1). The bound (16)
follows from the bounds (14) and part (3) of Lemma (2.1).

• The bounds in (15) are obtained by application of Lemma (3.2) to the p+ 1 points u0 =
x, uj = x− x̂j , and regrouping the resulting bounds according to part (2) of Lemma (2.1).

Remark 4.2. The measurements making up the cross validation matrix Ψ must be independent
of the measurements comprising the rows of the implementation matrix Φ. This comes from the
requirement in Lemma (3.1) that the matrix Ψ be independent of the points uj = x− x̂j . This
requirement is crucial, as observed when x̂ solves the `1 minimization problem

x̂ = arg min
z∈RN

||z||1 subject to Φz = Φx, (17)

in which case the constraint Φ(x̂ − x) = 0 clearly precludes the rows of Φ from giving any
information about the error ||x̂− x||2.
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Remark 4.3. Theorem (4.1) should be applied with a different level of care depending on
what information about the sequence (x − x1, x − x2, ..., x − xp) is sought. If the minimizer
x̂ = arg min1≤j≤p ||Ψ(x − x̂j)||lr2 is sufficient for one’s purposes, then the precise normalization
of Ψ in Theorem (4.1) is not important. The normalization doesn’t matter either for estimating
the normalized quantities ||x − x̂j ||2/||x||2. On the other hand, if one is using cross validation
to obtain estimates for the quantities ||x − x̂j ||2, then normalization is absolutely crucial, and
one must observe the normalization factor given by Lemma (3.2) that depends on the number
of rows r allocated to the cross validation matrix Ψ.

5 Applications of cross validation to compressed sensing

5.1 Estimation of the best k-term approximation error

We have already seen that if the m×N matrix Φ satisfies 2k-RIP with parameter δ ≤
√

2− 1,
and x̂ = L1(Φ,Φx) is returned as the solution to the `1 minimization problem (2), then the error
between x and the approximation x̂ is bounded by

||x− x̂||2 ≤
c√
k
σk(x)lN1 . (18)

Several other decoding algorithms in addition to `1 minimization enjoy the reconstruction guar-
antee (18) under similar bounds on Φ, such as the Iteratively Reweighted Least Squares algorithm
(IRLS) [29], and the greedy algorithms CoSAMP [30] and Subspace Pursuit [31]. It has recently
been shown [18] [20] that if the bound (18) is obtained, and if x − x̂ lies in the null space of
Φ (as is the case for the decoding algorithms just mentioned), then if Φ is a Gaussian or a
Bernoulli random matrix, the error ||x− x̂||2 also satisfies a bound, with high probability on Φ,
with respect to the `N2 residual, namely

||x− x̂||2 ≤ cσk(x)lN2 , (19)

for a reasonable constant c depending on the RIP constant δ2k of Φ. In the event that (19)
is obtained, a cross validation estimate ||Ψ(x − x̂)||lr2 can be used to lower bound the residual
σk(x)lN2 , with high probability, according to

(1− ε)||Ψ(x− x̂)||l`2 ≤ ||x− x̂||lN2 ≤ cσk(x)lN2 , (20)

with O( 1
ε2

) rows reserved for the matrix Ψ (4.1). At this point, we will use Corollary 3.2 of [8],
where it is proved that if the bound (18) holds for x̂ with constant c, then the same bound will
hold for

x̂k = arg min
z:|z|≤k

||x̂− z||lN2 , (21)

the best k-sparse approximation to x̂, with constant c̃ = 3c. Thus, we may assume without loss
of generality that x̂ is k-sparse, in which case ||Ψ(x− x̂)||lr2 also provides an upper bound on the
residual σk(x)lN2 by

(1 + ε)||Ψ(x− x̂)||lr2 ≥ ||x− x̂||lN2 ≥ σk(x)lN2 . (22)

With almost no effort then, cross validation can be incorporated into many decoding algorithms
to obtain tight upper and lower bounds on the unknown k-sparse approximation error σk(x)lN2
of x. More generally, the allocation of 10 log p measurements to the cross validation matrix
Ψ is sufficient to estimate the errors (||x − xkj

||2)pj=1 or the normalized approximation errors
(||x−xkj

||2/||x||2)pj=1 at p sparsity levels kj by decoding p times, adding mj measurements to the
implementation matrix Φj at each repetition. Recall that the quantities kj and mj are related
by kj = 2mj/ log(N/mj)) according to (1).
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5.2 Choice of the number of measurements m

Photograph-like images have wavelet or curvelet coefficient sequences x ∈ RN that are com-
pressible [23] [32], having entries that obey a power law decay

|x|(k) ≤ csk−s, (23)

where x(k) denotes the kth largest coefficient of x in absolute value, the parameter s > 1 indicates
the level of compressibility of the underlying image, and cs is a constant that depends only on s
and the normalization of x. From the definition (23), compressible signals are immediately seen
to satisfy

||x− xk||1/
√
k ≤ c′sk−s+1/2, (24)

so that the solution x̂m = L1(Φ,Φx) to the `1 minimization problem (2) using an m×N matrix
Φ of optimal RIP order k = 2m/ log(N/m)) satisfies

||x− x̂m||2 ≤ cs,δk−s+1/2. (25)

The number of measurements m needed to obtain an estimate x̂m satisfying ||x− x̂m||2 ≤ τ for
a predetermined threshold τ will vary according to the compressibility of the image at hand.
Armed with a total of m measurements, the following decoding method that adaptively chooses
the number of measurements for a given signal x presents a more democratic alternative to
standard compressed sensing decoding structure:

Table 1: CS decoding structure with adaptive number of measurements

1. Input: The m-dimensional vector y = Φx, the m×N matrix Φ, (in some algorithms) the sparsity
level k, and (again, in some algorithms) a bound γ on the noise level of x, the number p of of row
subsets of Φ, (Φ1,Φ2, ...,Φp), corresponding to increasing number of rows m1 < m2 < ... < mp < m,
and threshold τ > 0.

2. Initialize the decoding algorithm at j = 1.

3. Estimate x̂j = 4(Φmj , ymj , k, γ) with the decoder 4 at hand, using only the first mj measurement
rows of Φ. The previous estimate x̂j−1 can be used for “warm initialization” of the algorithm,
if applicable. The remaining rj = m −mj measurement rows are allocated to a cross validation
matrix Ψj that is used to estimate the resulting error ||x− x̂j ||2/||x||2.

4. Increment j by 1, and iterate from step 3 if stopping rule is not satisfied.

5. Stop: at index j = j∗ < p if ||x− xmj ||2/||x||2 ≤ τ holds with near certainty, as indicated by

√
rj ||Ψ(x− xmj )||2/||Φx||2

√
rj − 3 log p

≤ τ (26)

according to Theorem (4.1). If the maximal number of decoding measurements mp < m have been
used at iteration p, and (26) indicates that ||x − x̂mp

||2/||x||2 > τ still, return x̂m = 4(Φ, y, k, γ)
using all m measurements, but with a warning that the underlying image x is probably too dense,
and its reconstruction is not trustworthy.

5.3 Choice of regularization parameter in homotopy-type algorithms

Certain compressed sensing decoding algorithms iterate through a sequence of intermediate esti-
mates x̂j that could be potential optimal solutions to x under certain reconstruction parameter
choices. This is the case for greedy and homotopy-continuation based algorithms. In this section,
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we study the application of cross validation to the intermediate estimates of decoding algorithms
of homotopy-continuation type.

LASSO is the name coined in (??) for the problem of minimizing of the following convex pro-
gram:

x̂[τ ] = arg min
z∈RN

||Φx− Φz||`2 + τ ||z||1 (27)

The two terms in the LASSO optimization problem (27) enforce data fidelity and sparsity, re-
spectively, as balanced by the regularization parameter τ . In general, choosing an appropriate
value for τ in (27) is a hard problem; when Φ is an underdetermined matrix, as is the case in
compressed sensing, the function f(τ) = ||x− x̂[τ ]||2 is unknown to the user but is seen empiri-
cally to have a minimum at a value of τ in the interval [0, ||Φx||∞] that depends on the unknown
noise level and/or and compressibility level of x.

The homotopy continuation algorithm [26], which can be viewed as the appropriate variant
of LARS [26], is one of many algorithms for solving the LASSO problem (27) at a predeter-
mined value of τ ; it proceeds by first initializing τ ′ to a value sufficiently large to ensure that the
`1 penalization term in (27) completely dominates the minimization problem and x[τ ′] = 0 triv-
ially. The homotopy continuation algorithm goes on to generate x[τ ′] = 0 for decreasing τ ′ until
the desired level for τ is reached. If τ = 0, then the homotopy method traces through the entire
solution path x[τ ′] ∈ RN for τ ′ ≥ 0 before reaching the final algorithm output x[0] = L1(Φ, y)
corresponding to the `1 minimizer (2).

From the non-smooth optimality conditions for the convex functional (27), it can be shown
that the solution path x̂[τ ] ∈ RN is a piecewise-affine function of τ [26], with “kinks” possible
only at a finite number of points τ ∈ {τ1, τ2, ...}. Theorem (4.1) suggests a method whereby
an appropriate value of τ∗ can be chosen from among a subsequence of the kinks (τ1, τ2, ..., τp)
by solving the minimization problem x̂[τ∗] = arg minj≤p ||Ψ(x − x̂[τj ])||2 for appropriate cross
validation matrix Ψ. Moreover, since the solution x − x̂[τ ] for τj ≤ τ ≤ τj+1 is restricted to
lie in the two-dimensional subspace spanned by x − x̂[τj ] and x − x̂[τj+1], one can combine the
Johnson Lindenstrauss Lemma with a covering argument analogous to that used to derive the
RIP property for Gaussian and Bernoulli random matrices in [4], to cross validate the entire
continuum of solutions x̂[τ ] between τ1 ≤ τ ≤ τp. More precisely, the following bound holds
under the conditions outlined in Theorem (4.1), with the exception that 2r (as opposed to r)
measurements are reserved to Ψ:

1
1 + ε

≤
minτ1≤τ≤τp ||x− x̂[τ ]||2

minτ1≤τ≤τp ||Ψ(x− x̂[τ ])||2
≤ 1

1− ε
(28)

Unfortunately, the bound (28) is not strong enough to provably evaluate the entire solution
path x̂[τ ] for τ ≥ 0, because the best upper bound on the number of kinks on a generic LASSO
solution path can be very large. One can prove that this number is bounded by 3N , by observ-
ing that if x̂[τ1] and x̂[τ2] have the same sign pattern, then x̂[τ ] also has the same sign pattern
for τ1 ≤ τ ≤ τ2. Applying Theorem (4.1) to p = 3N points x − x̂j , this suggests that O(N)
rows would need to be allocated to a cross validation matrix Ψ in order for Theorem (4.1) and
the corollary (28) to apply to the entire solution path, which clearly defeats the compressed
sensing purpose. However, whenever the matrix Φ is an m × N compressed sensing matrix
of random Gaussian, Bernoulli, or partial Fourier construction, it is observed empirically that
the number of kinks along a homotopy solution path is bounded by 3m, independent of the
underlying vector x ∈ RN used to generate the path. This suggests, at least heuristically, that
the allocation of O(logm) out of m compressed sensing measurements of this type suffices to
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ensure that the error ||x− x̂[τ ]||2 for the solution x̂[τ ] = arg minτ≥0 ||Ψ(x− x̂[τ ])||2 will be within
a small multiplicative factor of the best possible error in the metric of `N2 obtainable by any
approximant x̂[τ ] along the solution curve τ ≥ 0. At the value of τ corresponding to x̂[τ ], the
LASSO solution (27) can be computed using all m measurements Φ as a final approximation to x.

The Dantzig selector (DS) [22] refers to a minimization problem that is similar in form to
the LASSO problem:

x̂τ = arg min
z∈RN

||Φx− Φz||`∞ + τ ||z||1 (29)

The difference between the DS (29) and LASSO (27) is the choice of norm (`∞ versus `2) on the
fidelity-promoting term. Homotopy-continuation based algorithms have also been developed to
solve the minimization problem (29) by tracing through the solution path x̂τ ′ for τ ′ ≥ τ . As the
minimization problem (29) can be reformulated as a linear program, its solution path x̂τ ∈ RN

is seen to be a piecewise constant function of τ , in contrast to the LASSO solution path. In
practice, the total number of breakpoints (τ1, τ2, ...) in the domain 0 ≤ τ is observed to be on the
same order of magnitude as m when the m×N matrix Φ satisfies RIP [24]; thus, the procedure
just described to cross validate the LASSO solution path can be adapted to cross validate the
solution path of (29) as well.

Thus far we have not discussed the possibility of using cross validation as a stopping crite-
rion for homotopy-type decoding algorithms. Along the LARS homotopy curve (27), most of
the breakpoints (τ1, τ2, ...) appear only near the end of the curve in a very small neighborhood of
τ = 0. These breakpoints incur only miniscule changes in the error ||x− x̂τj ||2 even though they
account for most of the computational expense of the LARS decoding algorithm. Therefore, it
would be interesting to adapt such algorithms, perhaps using cross validation, to stop once τ∗

is reached for which the error ||x− x̂τ∗ ||2 is sensed to be sufficiently small.

5.4 Choice of sparsity parameter in greedy-type algorithms

Greedy compressed sensing decoding algorithms also iterate through a sequence of intermediate
estimates x̂j that could be potential optimal solutions to x under certain reconstruction param-
eter choices. Orthogonal Matching Pursuit (OMP), which can be viewed as the prototypical
greedy algorithm in compressed sensing, picks columns from the implementation matrix Φ one
at a time in a greedy fashion until, after k iterations, the k-sparse vector x̂k, a linear combination
of the k columns of Φ chosen in the successive iteration steps, is returned as an approximation to
x. The OMP algorithm is listed in Table 2. Although we will not describe the algorithm in full
detail, a comprehensive study of OMP can be found in [6]. Note in particular that OMP requires
as input a parameter k corresponding to the expected sparsity level for x ∈ RN . Such input is
typical among greedy algorithms in compressive sensing (in particular, we refer the reader to
[30], [29], and [31]). As shown in [6], OMP will recover with high probability a vector x having at
most k ≤ m/log(N) nonzero coordinates from its image Φx if Φ is a (known) m×N Gaussian or
Bernoulli matrix with high probability. Over the more general class of vectors x = xd +N that
can be decomposed into a d-sparse vector xd (with d presumably less than or equal to k) and
additive noise vector N , we might expect an intermediate estimate x̂s to be a better estimate
to x than the final OMP output x̂k, at least when d << k. Assuming that the signal x admits a
decomposition of the form x = xd +N , the sequence of intermediate estimates (x̂1, ..., x̂k) of an
OMP algorithm can be cross validated in order to estimate the noise level and recover a better
approximation to x. We will study this particular application of cross validation in more detail
below.
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Table 2: Orthogonal Matching Pursuit Basic Structure

1. Input: The m-dimensional vector y = Bx, the m × N encoding matrix Φ whose jth column is
labeled φj , and the sparsity bound k.

2. Initialize the decoding algorithm at j = 1, the residual r0 = y, and the index set Λ0 = ∅.

3. Estimate

(a) Find an index λj that realizes the bound (ΦT rj−1)λj
= ||ΦT rj−1||∞.

(b) Update the index set Λj = Λj−1 ∪ λj and the submatrix of contributing columns: Φj =
[Φj−1, φλj

]

(c) Update the residual:

sj = arg min
x
||Φjx− y||2 = (ΦTj Φj)−1ΦTj y,

aj = Φjxj
rj = rj−1 − aj .

(d) The estimate x̂j for the signal has nonzero indices at the components listed in Λj , and the
value of the estimate x̂j in component λi equals the ith component of sj .

4. Increment j by 1 and iterate from step 3, if j < k.

5. Stop: at j = k. Output x̂omp = x̂k as approximation to x.

6 Orthogonal Matching Pursuit: A case study

As detailed in Table 2, a single index λj is added to a set Λj estimated as the j most significant
coefficients of x at each iteration j of OMP; following the selection of Λj , an estimate x̂j to x is
determined by the least squares solution,

x̂j = arg min
supp(z)∈Λj

||Φz − y||2, (30)

among the subspace of vectors z ∈ RN having nonzero coordinates in the index set Λj . OMP
continues as such, adding a single index λj to the set Λj at iteration j, until j = k at which
point the algorithm terminates and returns the k-sparse vector x̂omp = x̂k as approximation to x.

Suppose x has only d significant coordinates. If d could be specified beforehand, then the
estimate x̂d at iteration j = d of OMP would be returned as an approximation to x. However,
the sparsity d is not known in advance, and k will instead be an upper bound on d. As the
estimate x̂j in OMP can be then identified with the hypothesis that x has j significant coordi-
nates, the application of cross-validation as described in the previous section applies in a very
natural way to OMP. In particular, we expect x̂or and x̂cv of Theorem (4.1) to be close to the
estimate x̂j at index j = |x| corresponding to the true sparsity of x; furthermore, in the case
that |x| is significantly less than k, we expect the cross validation estimate x̂cv to be a better
approximation to x than the OMP-returned estimate x̂k. We will put this intuition to the test
in the following numerical experiment.
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6.1 Experimental setup

We initialize a signal x0 of length N = 3600 and sparsity level d = 100 as

x0(j) =
{

1, for j = 1...100
0, else.

(31)

Noise is then added to xa = x0 +Na in the form of a Gaussian random variable Na distributed
according to

Na ∼ N(0, .05), (32)

and the resulting vector xa is renormalized to satisfy ||xa||lN2 = 1. This yields an expected noise
level of

E(σd(xa)) ≈ .284. (33)

We fix the input k = 200 in Table 2, and assume we have a total number of compressed sensing
measurements m = 800. A number r of these m measurements are allotted to cross validation,
while the remaining n = m − r measurements are allocated as input to the OMP algorithm in
Table 2. This experiment aims to numerically verify Theorem (4.1); to this end, we specify a
confidence ξ = 1/100, and solve for the accuracy ε according to the relation r = ε−2 log( k2ξ );
that is,

ε(r) =

√
log( k2ξ )

r
≈ 3√

r
. (34)

Note that the specification (34) corresponds to setting the constant C = 1 in Theorem (4.1).
Although C ≥ 8 is needed for the proof of the Johnson Lindenstrauss lemma at present, we find
that in practice C = 1 already upper bounds the optimal constant needed for Theorem (4.1) for
Gaussian and Bernoulli random ensembles.

A single (properly normalized) Gaussian n × N measurement matrix Φ is generated (recall
that n = m - r) , and this matrix and the measurements y = Φx are provided as input to the
OMP algorithm; the resulting sequence of estimates (x̂1, x̂2, ..., x̂k) is stored. The final estimate
x̂k from this sequence is the returned OMP estimate x̂omp to x. The error ηomp = ||x̂omp − x||2
is greater than or equal to the oracle error of the sequence, ηor = minx̂j

||x− x̂j ||2.

With the sequence (x̂1, x̂2, ..., x̂k) at hand, we consider 1000 realizations Ψq of an r × N cross
validation matrix having the same componentwise distribution as Φ, but normalized to have
variance 1/r according to Theorem (3.1). The cross validation error

η̂cv(q) = min
j
||Ψq(x− x̂j)||lr2 (35)

is measured at each realization Ψq; we plot the average ¯̂ηcv of these 1000 values and intervals
centered at ¯̂ηcv having length equal to twice the empirical standard deviation. Note that we are
effectively testing 1000 trials of OMP-CV, the algorithm which modifies OMP to incorporate
cross validation so that (x̂cv, η̂cv) are output instead of x̂omp = x̂k.

At the specified value of ξ, Theorem (4.1) part (15) (with constant C = 1) implies that(
1− ε)ηor ≤ η̂cv(q) ≤

(
1 + ε

)
ηor (36)
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should obtain on at least 990 of the 1000 estimates η̂cv(q); in other words, at least 990 of the
1000 discrepancies |ηor − η̂cv(q)| should be bounded by

0 ≤ |η̂cv(q)− ηor| ≤ εηor. (37)

Using the relation (34) between ε and r, this bound becomes tighter as the number r of CV
measurements increases; however, at the same time, the oracle error ηor increases with r for
fixed m as fewer measurements n = m − r are input to OMP. An ideal number r of CV mea-
surements should not be too large or too small; Figure 1 suggests that setting aside just enough
measurements r such that ε ≤ .6 is satisfied in (34) serves as a good heuristic to choose the
number of cross validation measurements (in Figure 1, ε ≤ .6 is satisfied by taking only r = 30
measurements).

We indicate the theoretical bound (36) with dark gray in Figure 1, which is compared to the
interval in light gray of the 990 values of ηcv(q) that are closest to ηor in actuality.

This experiment is run for several values of r within the interval [5, 90]; the results are plotted
in Figure 1(a), with the particular range r ∈ [5, 30] blown up in Figure 1(b).

We have also carried out this experiment with a smaller noise variance; i.e. xb = x0 + Nb
is subject to additive noise

Nb ∼ N(0, .02). (38)

The signal xb is again renormalized to satisfy ||xb||lN2 = 1; it now has an expected noise level of

E(σd(xb)) ≈ .116. (39)

The results of this experiment are plotted in Figure 1(c).

6.2 Experimental Results

1. We remind the reader that the cross-validation estimates η̂cv are observable to the user,
while the values of ηomp, ηor, along with the noise level σd(x), are not available to the user.
Nevertheless, η̂cv can serve as a proxy for ηor according to (36), and this is verified by the
plots in Figure 1. η̂cv can also provide an upper bound on σd(x), as is detailed in Section
5.1.

2. The theoretical bound (36) is seen to be tight, when compared with the observed concen-
tration bounds in Figure 1.

3. With high probability, the estimate x̂cv(15) using r = 15 out of the alloted m = 800
measurements will be a better estimate of x than the OMP estimate: ||x̂cv(15) − x||2 ≤
||x̂omp(15)− x||2. With overwhelming probability, the estimate x̂cv(30) will result in error
||x̂cv(30) − x||2 ≤ ||x̂omp(30) − x||2. We note that the estimates x̂cv(15) and x̂cv(30)
correspond to accuracy parameters ε(15) = .8405 and ε(30) = .5943 in (34), indicating
that ε ≤ .6 is a good heuristic to determine when enough CV measurements have been
reserved.

4. The OMP-CV estimate x̂cv will have more pronounced improvement over the OMP es-
timate x̂omp when there is larger discrepancy between the true sparsity d of x0 and the
upper bound k used by OMP (in Figure (1), d = 100 and k = 200). In contrast, OMP-CV
will not outperform OMP in approximation accuracy when d is close to k; however, the
multiplicative relation (36) guarantees that OMP-CV will not underperform OMP, either.
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Figure 1: Comparison of the reconstruction algorithms OMP and OMP-CV. We fix the parameters
N = 3600,m = 800, k = 200, and underlying sparsity d = 100, but vary the number r of the total m
measurements reserved for cross validation from 5 to 90, using the remaining n = m−r measurements for
training. The underlying signal has residual σ100(x) ≈ .284 in Figures 1(a) and 1(b), and σ100(x) ≈ .116
in Figure 1(c), as shown for reference by the thin horizontal line. In both cases, the OMP-CV error
ηcv (the solid black line with error bars; each point represents the average of 1000 trials) gives a better
approximation to the residual error than does OMP (dot-dashed line) with very high probability, even
when as few as 20 of the total 800 measurements are used for cross validation. Even though ηcv is
guaranteed to provide a tighter bound for ηor as the number r of CV measurements increases, at the same
time, the oracle error ηor becomes a worse indicator of the residual σ100(x) because fewer measurements
n = m− r are input to OMP.
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7 Beyond Compressed Sensing

The Compressed Sensing setup can be viewed within the more general class of underdeter-
mined linear inverse problems, in which x ∈ RN is to be reconstructed from a known m × N
underdetermined matrix A and lower dimensional vector y = Ax using a decoding algorithm
∆ : Rm → RN ; in this broader context, A is given to the user, but not necessarily specified by
the user as in compressed sensing. In many cases, a prior assumption of sparsity is imposed
on x, and an iterative decoding algorithm such as LASSO (27) will be used to reconstruct x
from y [17]. If it is possible to take on the order of r = log p additional measurements of x by
an r ×N matrix Ψ satisfying the conditions of Lemma (3.1), then all of the analysis presented
in this paper applies to this more general setting. In particular, the error ||x − x̂j ||lN2 at up to
j ≤ p successive approximations x̂j of the decoding algorithm ∆ may be bounded from below
and above using the quantities ||Ψ(x− x̂j)||`r2 , and the final approximation x̂ to x can be chosen
from among the entire sequence of estimates x̂j as outlined in Theorem (4.1); an earlier estimate
x̂j may approximate x better than a final estimate x̂p which contains the artifacts of parameter
overfitting occurring at later stages of iteration.

8 Extensions and Open Problems

We have presented an alternative approach to compressed sensing in which a certain number r
of the m allowed measurements of a signal x ∈ RN are reserved to track the error in decoding by
the remaining m−r measurements, allowing us to choose a best approximation to x in the metric
of `N2 out of a sequence of p estimates (x̂j)

p
j=1, and estimate the error between x and its best

approximation by a k-sparse vector, again with respect to the metric of `N2 . We detailed how the
number r of such measurements should be chosen in terms of desired accuracy ε of estimation,
confidence level ξ in the prediction, and number p of decoding iterations to be measured; in
general, r = O(log(p)) measurements suffice. Several important issues remain unresolved; we
mention only a few below.

1. The cross validation technique promoted in this paper corresponds specifically to the
technique of holdout cross validation in statistics, where a data set is partitioned into a
single training and cross validation set (as a rule of thumb, the cross validation set is
usually taken to be less than or equal to a third of the size of the training set; in the the
current paper, we have shown that the Johnson Lindenstrauss lemma provides a theoretical
justification of how many, or, more precisely, how few, cross validation measurements are
needed in the context of compressed sensing). Other forms of cross validation, such as
repeated random subsampling cross validation or K-fold cross validation, remain to be
analyzed in the context of compressed sensing. The former technique corresponds to
repeated application of holdout cross validation, with r cross validation measurements out
of the total m measurements chosen by random selection at each application. The results
are then averaged (or otherwise combined) to produce a single estimation. The latter
technique, K-fold cross validation, also corresponds to repeated application of holdout
cross validation. In this case, the m measurements are partitioned into K subsets of equal
size r, and cross-validation is repeated exactly K times with each of the K subsets of
measurements used exactly once as the validation set. The K results are again combined
to produce a single estimation. Although Theorem (4.1) does not directly apply to these
cross validation models, the experimental results of Section 6 suggest that, equiped with
an m × N matrix satisfying the requirements of Lemma (3.1), the application of K fold
cross validation to subsets of the measurements of size r << m − r just large enough
that ε > 0 in Theorem (4.1) for fixed accuracy ξ and constant C = 1 can be combined to

15



accurately approximate the underlying signal with near certainty.

2. It is not clear that the analysis in Theorem (4.1) can be extended to the noisy compressed
sensing model,

y = Φx+N , (40)

where N ∼ N(0, σ2) is a Gaussian random variable that accounts for both noise and
quantization error on the measurements Φx. Because measurement noise and quantization
error are unavoidable in any real-world sensing device, any proposed compressed sensing
technique should extend to the model (40). Indeed, cross validation is studied in [7] in
this context as a stopping criterion for decoding algorithms of homotopy/greedy type,
in the case that x is truly sparse and N is Gaussian noise. The experimental results
in [7] indicate that cross validation works well in this setting, but it remains to provide
theoretical justification of these results.

3. We have only considered cross validation over the metric of `2. However, the error ||x −
x̂||`N2 , or root mean squared error, is just one of several metrics used in image processing for
analyzing the quality of a reconstruction x̂ ∈ RN to a (known) image x ∈ RN . In fact, the
`1 reconstruction error ||x − x̂||`N1 has been argued to outperform the root mean squared
error as an indicator of reconstruction quality [23]. Unfortunately, Theorem (4.1) cannot
be extended to the metric of `1, as there exists no `1 analog of the Johnson Lindenstrauss
Lemma [27]. However, it remains to understand the extent to which cross validation in
compressed sensing can be applied over a broader class of image reconstruction metrics,
perhaps using more refined techniques than those considered in this paper.

4. Many more compressed sensing matrices than just those satisfying the requirements of
Lemma (3.1) are observed empirically to satisfy the Johnson Lindenstrauss Lemma; in
particular, a properly normalized r × N matrix obtained by selecting r rows at random
from the N ×N discrete Fourier matrix is observed to satisfy (3.1) for number of measure-
ments r ≥ ε−2 log 1

2δ , and the empirical concentration bounds for these matrices appear to
be indistinguishable from those of (properly normalized) random Gaussian and Bernoulli
matrices of the same dimension. This suggests that cross validation should be considered
as a general technique that can be applied to a set of m compressed sensing measurements,
the theoretical justification of which is a very interesting problem that we hope to pursue
in the future.
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