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Abstract

Consider a pair of correlated Gaussian sources (X1, X2). Two separate encoders observe the two

components and communicate compressed versions of their observations to a common decoder. The

decoder is interested in reconstructing a linear combination of X1 and X2 to within a mean-square

distortion of D. We obtain an inner bound to the optimal rate-distortion region for this problem. A

portion of this inner bound is achieved by a scheme that reconstructs the linear function directly rather

than reconstructing the individual components X1 and X2 first. This results in a better rate region

for certain parameter values. Our coding scheme relies on lattice coding techniques in contrast to more

prevalent random coding arguments used to demonstrate achievable rate regions in information theory.

We then consider the case of linear reconstruction of K sources and provide an inner bound to the optimal

rate-distortion region. Some parts of the inner bound are achieved using the following coding structure:

lattice vector quantization followed by “correlated” lattice-structured binning.

1 Introduction

Since its inception in 1973 by Slepian and Wolf, the problem of distributed source coding has been a source

of inspiration for information/communication/data-compression theory community because of its formidable

nature (in its full generality) and its wide scope of practical applications. In this problem, a collection of K

correlated information sources, with ith source having an alphabet Xi, is observed separately by K encoders.

Each encoder maps its observations into a finite-valued set. The indices from these sets are transmitted

over K noiseless but rate-constrained channels to a joint decoder. The decoder is interested in obtaining L

reconstructions with L fidelity criteria (one for each). The ith reconstruction has an alphabet X̂i, and the

ith fidelity criterion is a mapping from the product of alphabets of a subset of the sources and X̂i to the set
∗This work was supported by NSF grant (CAREER) CCF-0448115.
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of nonnegative real numbers. The goal is to find a computable performance limit for this communication

problem. The performance limit, also referred to as the optimal rate-distortion region, is expressed as the

set of all (K + L)-tuples of rates of the K indices transmitted by the encoders and distortions of the L

reconstructions of the decoder that can be achieved in the usual Shannon sense.

Toward this goal, progress has been made in a number of directions. In the following we restrict our

attention to the case of the collection of stationary memoryless sources. In [1], a solution to the problem

was given for the case when the decoder wishes to reconstruct all the sources losslessly. In [3, 4], the case

of lossless “one-help-one” problem was resolved. Here the decoder wishes to reconstruct only one of the

sources1 losslessly (K = L+1 = 2). In [5], the case of lossy “one-help-one” problem was resolved for the case

when the rate of the helper is greater than its entropy (also referred to as the Wyner-Ziv problem). In [6, 7],

an inner bound, and an outer bound (also known as the Berger-Tung inner and outer bounds respectively)

to the performance limit are given for the case where (a) K = L = 2 and (b) the fidelity criterion of each

source does not depend on the other source (also referred to as independent fidelity criteria). In [8], an inner

bound to the performance limit is given for the case of lossy “one-help-one” problem. In [9], an inner bound

to the performance limit is given for the case when the decoder wishes to reconstruct a function of K sources

losslessly. It was also shown that this is optimal for the case when the sources are conditionally independent

given the function. In [10], the performance limit is given for reconstructing losslessly the modulo-2 sum of

two binary correlated sources, and was shown to be tight for the symmetric case. This has been extended

to several cases in [12] (see Problem 23 on page 400) and [14]. An improved inner bound was provided for

this case in [15]. The key point to note is that the performance limits given in [10, 14, 15] are outside the

inner bound given in [9]. In [16], the performance limit is given for the case where (a) K = L = 2, (b) one

of the sources is reconstructed losslessly and the other with a independent fidelity criterion. In [18] (also see

[11, 17, 19, 20, 21, 44]), an inner bound to the performance limit of the CEO problem 2 was given. This

problem for the quadratic Gaussian case essentially boils down to reconstructing a certain linear function of

the sources with mean squared error fidelity criterion. It was shown that this inner bound is tight for some

cases in [25, 30]. For the vector Gaussian CEO problem, inner and outer bounds were derived in [27, 28].

These bounds were shown to be tight under some conditions. In [31], the performance limit is given for the

case of lossless reconstruction of a function of two sources with the rate of one of the sources being greater

than or equal to its entropy. The lossy version is addressed in [32, 33]. Regarding the Berger-Tung inner

bound, it was shown that this is tight for (a) the high-resolution case with independent fidelity criteria in

[44], (b) the jointly Gaussian case K = 2, L = 1 and independent squared error fidelity criterion in [24],

and (c) the jointly Gaussian case with K = 2, L = 2 and independent squared error criteria in [35]. In

[35], it was also shown that a Berger-Tung based coding scheme is optimal for the case of reconstruction of

certain linear functions of two jointly Gaussian sources with squared error criterion. A general outer bound
1The source which does not enter into any of the fidelity criteria is referred to as a helper. When the rate at which the

helper is transmitted is greater than its entropy, the helper is also referred to as side information.
2This is a variant of the general distributed source coding problem mentioned above. This is closely related to another class

of distributed source coding problems known as remote source coding problems. Here the encoders observe a noisy version of

the sources. However it can be shown using the techniques of [22, 23] that the remote source coding problems are equivalent to

a class of general distributed source coding problems mentioned above.
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to the performance limit of the general distributed source coding problem was given in [29]. In [34], the

performance limit was given for the lossy “one-help-many” problem with independent fidelity criteria and

the sources being conditionally independent given the helper which is transmitted at a rate greater than its

entropy. In [26], the performance limit was given for the quadratic jointly Gaussian lossy “many-help-one”

problem with the condition that the helpers are conditionally independent given the source. In [36], the

performance limits were obtained for the case of quadratic Gaussian “many-help-one” problem where the

sources satisfy a “tree-structure”. In [37], the performance limit is given for the case where one of the

sources needs to be reconstructed with an independent fidelity criterion and the rest of the sources need to

be reconstructed losslessly. In [38], infinite order descriptions were provided for the performance limits of

the general case of two terminal source coding problem (K = 2) with independent distortion criteria. This

was extended to the case of more than two sources in [39].

With regard to above set of results, we would like to make the following observations. (a) Most of the above

approaches, except that of [10] and its extensions in [12, 14, 15], use random vector quantization followed

by independent random binning (see Chapter 14 of [13]) of the quantizer indices. (b) The four exceptions,

which consider only lossless source coding problems, deviate from this norm, and instead use structured

random binning based on linear codes on finite fields. Further, the binning operation of the quantizers of

the sources are “correlated”. This incorporation of structure in binning appears to give improvements in the

rates especially for those cases that involve reconstruction of a function of the sources. Moreover, it is still

not known whether it is possible to approach this performance without the structured codes. (c) For some

distributed source coding problems (that belong to the first category), whose performance limits were derived

using random coding and random binning, it is well-known that these limits can also be approached using

structured codes. For example structured codes were considered for (a) the Slepian-Wolf problem in [40], (b)

the Wyner-Ziv problem for the binary case with Hamming distortion and for the quadratic Gaussian case in

[45], (c) the Berger-Tung inner bound for the two terminal quadratic Gaussian problem with independent

fidelity criteria in [45] and (d) high-resolution distributed source coding problem with independent fidelity

criteria in [44].

With this as a motivation, in this paper we consider a lossy distributed source coding problem with

K jointly Gaussian sources with one reconstruction, i.e., L = 1. The fidelity criterion has the additional

structure that is given by the following. The decoder wishes to reconstruct a linear function of the sources

with squared error as the fidelity criterion. We consider a coding scheme with the following structure: sources

are quantized using structured vector quantizers followed by “correlated” structured binning. That is, the

binning operations of the quantizers of the sources are not performed “independently”. The structure used

in this process is given by lattice codes. We provide an inner bound to the optimal rate-distortion region.

We show that the proposed inner bound is better for certain parameter values than an inner bound that can

be obtained by using a coding scheme that uses random vector quantizers following by independent random

binning. For this purpose we use the machinery developed by [41, 42, 45, 46, 47] for the Wyner-Ziv problem

in the quadratic Gaussian case.

We also believe that the proposed scheme can be used as a building block to provide an inner bound to

the optimal rate-distortion region for the case when the decoder wishes to reconstruct all the sources with
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independent squared error fidelity criterion. This will be addressed in our future work. The rest of the paper

is organized as follows. Rather than giving the main result for the most general case first and then considering

special cases, we first consider the case of two sources and obtain the result and then provide the result for

the general case. In Section 2, we give a concise overview of the asymptotic properties of high-dimensional

lattices that are known in the literature and we use these properties in the rest of the paper. In Section

3, we define the problem formally for the case of two sources and present an inner bound to the optimal

rate-distortion region given by a coding structure involving structured quantizers followed by “correlated”

structured binning. Further, we also present another inner bound achieved by a scheme that first obtains

a lossy reconstruction of the sources, and then obtains a reconstruction of the linear function. The latter

scheme is based on the Berger-Tung inner bound. An overall achievable rate region can be obtained by

combining these two schemes. Then we present our lattice based coding scheme and prove achievability of

the inner bound. We also provide motivation and intuition about the proposed coding scheme in this section.

In Section 4, we consider a generalization of the problem that involves reconstruction of a linear function

of an arbitrary finite number of sources. We also demonstrate how the general solution simplifies in certain

special cases. In Section 5, we provide a set of numerical results for the two-source case that demonstrate

the conditions under which the lattice based scheme performs better than the Berger-Tung based scheme.

We conclude with some comments in Section 6.

A word about the notation used in this paper is in order. Let f(·) be an arbitrary function that takes

as input a scalar. Then the function fn(·) takes an n-length vector as input and operates component-

wise on the components of that vector. This notation generalizes to functions of more than one variable

as well. Variables with superscript n denote an n-length random vector whose components are mutually

independent. However, random vectors whose components are not independent are denoted without the use

of the superscript. The dimension of such random vectors will be clear from the context.

2 Preliminaries on high-dimensional Lattices

2.1 Overview of Lattice Codes

Lattice codes [54] play the same role in Euclidean space that linear codes play in Hamming space. Introduc-

tion to lattices and to coding schemes that employ lattice codes can be found in [42, 45, 46, 52, 55]. Lattice

codes have been used in other related multiterminal source coding problems in the literature [56, 57, 58, 59,

60]. In the rest of this section, we will briefly review some properties of lattice codes that are relevant to

our coding scheme. We start by defining various quantities of interest associated with lattices. We use the

same notation as in [45] for these quantities.

An n-dimensional lattice Λ is composed of all integer combinations of the columns of an n× n matrix G

called the generator matrix of the lattice.

Λ = {l ∈ Rn : l = G · i for some i ∈ Zn} (1)

Associated with every lattice Λ is a natural quantizer namely one that associates with every point in Rn its
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nearest lattice point. This quantizer can be described by the function

QΛ(x) , l ∈ Λ where ‖ x− l ‖≤‖ x− l̂ ‖ for all l̂ ∈ Λ. (2)

The quantization error associated with the quantizer QΛ(·) is defined by

x mod Λ = x−QΛ(x). (3)

The basic Voronoi region of a lattice Λ is the set of all points closer to the origin than to any other lattice

point, i.e.,

V0(Λ) = {x ∈ Rn : QΛ(x) = 0n} (4)

where 0n is the origin of Rn. The second moment of a lattice Λ is the expected value per dimension of the

norm of a random vector uniformly distributed over V0(Λ) and is given by

σ2(Λ) =
1
n

∫
V0(Λ)

‖ x ‖2 dx∫
V0(Λ)

dx
(5)

Let the normalized second moment be give by

G(Λ) =
σ2(Λ)
V 2/n(Λ)

(6)

where V (Λ) =
∫
V0(Λ)

dx. When used as a channel code over an unconstrained AWGN channel with noise Z

having variance σ2
Z [61], let the probability of decoding error be denoted by

Pe(Λ, σ2
Z) = Pr(Zn 6∈ V0) (7)

where Zn is the random noise vector of length n.

The mod operation defined in equation (3) satisfies the following useful distributive property.

((x mod Λ) + y) mod Λ = (x+ y) mod Λ ∀x, y. (8)

It is known (see [42] [46]) that the quantization error of a lattice quantizer Λ can be assumed to have

a nearly uniform distribution over the fundamental Voronoi region V0 of the quantizer. This assumption is

completely accurate in the case of subtractive dithered quantization where a vector uniformly distributed

over V0 (called the dither) is added at the encoder before quantization and subtracted at the decoder. It

has been shown in [42] that for an optimal lattice quantizer, this noise is wide-sense stationary and white.

Further, as the lattice dimension n → ∞, for optimal lattice quantizers, the quantization noise approaches

a white Gaussian noise process in the Kullback-Leibler divergence sense.

Lattices have been studied extensively for efficient packing and covering. A systematic study of lattice

packings was initiated by Minkowski in [48], where existence of good lattice packings was shown. A formal

study of lattice covering appears to have been initiated by Kershner in [50]. See [51] for a thorough review of

existence of efficient lattice packings and coverings. Lattice codes have been employed in the point-to-point

setting for quantization of Gaussian sources with squared error fidelity criterion and also in coding for the

AWGN channel with power constraint. In [45], the existence of high dimensional lattices that are “good”

for quantization and for coding is discussed. The criteria used therein to define goodness are as follows:
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• A sequence of lattices Λ(n) (indexed by the dimension n) is said to be a good channel σ2
Z-code sequence

if ∀ε > 0, there exists N(ε) such that for all n > N(ε) the following conditions are satisfied:

V (Λ(n)) < 2n( 1
2 log(2πeσ2

Z)+ε), (9)

Pe(Λ(n), σ2
Z) < 2−nE(ε) (10)

for some E(ε) > 0.

• A sequence of lattices Λ(n) (indexed by the dimension n) is said to be a good source D-code sequence

if ∀ε > 0, there exists N(ε) such that for all n > N(ε) the following conditions are satisfied:

log(2πeG(Λ(n))) < ε (11)

σ2(Λ(n)) = D. (12)

2.2 Nested Lattice Codes

For lossy coding problems involving side-information at the encoder/decoder, it is natural to consider nested

codes. Wyner proposed an algebraic binning approach involving linear codes for the Slepian-Wolf problem

[2]. Adapting this scheme to the case of lossy coding, nested codes for the Wyner-Ziv problem were proposed

in [43]. We review the properties of nested lattice codes briefly here. Further details can be found in [45].

A pair of n-dimensional lattices (Λ1,Λ2) is nested, i.e., Λ2 ⊂ Λ1, if their corresponding generating matrices

G1, G2 satisfy

G2 = G1 · J (13)

where J is an n × n integer matrix with determinant greater than one. Λ1 is referred to as the fine lattice

while Λ2 is the coarse lattice. The points of the set

{Λ1 mod Λ2} , {Λ1 ∩ V0,2} (14)

are called the coset leaders of Λ2 relative to Λ1. The nesting ratio of this nested lattice is defined as n
√
V2/V1

where Vi = V (Λi) is the volume of the Voronoi region of lattice Λi, i = 1, 2.

In many applications of nested lattice codes, we require the lattices involved to be a good source code

and/or a good channel code. We term a nested lattice (Λ1,Λ2) good if (a) the fine lattice Λ1 is both a good

δ1-source code and a good δ1-channel code and (b) the coarse lattice Λ2 is both a good δ2-source code and a

δ2-channel code. For such a nested lattice code (Λ1,Λ2), the number of coset leaders of Λ2 relative to Λ1 is

about (δ2/δ1)n/2. A code employing the coset leaders as codewords would thus have a rate of 1
2 log(δ2/δ1).

Equivalently, the rate of such a code is the logarithm of the nesting ratio of the nested lattice (Λ1,Λ2).

The existence of good lattice codes and good nested lattice codes (for various notions of goodness) has

been studied in [46, 47] which use the random coding method of [49, 52]. In [47], it was shown that there

exists lattices which are simultaneously good in both the source and channel coding senses described above.

In [46], the existence of nested lattices where the coarse lattice is simultanously good as a source and channel

code and the fine lattice is a good channel code was proved.
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3 Distributed source coding for the two-source case

3.1 Problem Statement and Main Result

In this section we consider a distributed source coding problem for the case of two sources X1 and X2. The

function to be reconstructed at the decoder is assumed to be the linear function Z , F (X1, X2) = X1− cX2

unless otherwise specified. Consideration of this function is enough to infer the behavior of any linear

function c1X1 + c2X2 and has the advantage of fewer variables. We consider the more general case of

F (X1, . . . , XK) =
∑K
i=1 ciXi in Section 4.

We define the coding problem formally below. Consider a pair of correlated jointly Gaussian sources

(X1, X2) with a given joint distribution pX1X2(x1, x2). The source sequence (Xn
1 , X

n
2 ) is independent over

time and has the product distribution
∏n
i=1 pX1X2(x1i, x2i). Consider the following average squared error as

the fidelity criterion: d : Rn × Rn → R+ given by

d(xn, yn) =
1
n

n∑
i=1

(xi − yi)2. (15)

Definition 3.1. Given such a jointly Gaussian distribution pX1X2 and a distortion function d(·, ·) a trans-

mission system with parameters (n, θ1, θ2,∆) is defined as the set of mappings

fi : Rn → {1, 2, . . . , θi} for i = 1, 2 (16)

g : {1, 2, . . . , θ1} × {1, 2, . . . , θ2} → Rn (17)

such that the following constraint is satisfied

E (d(Fn(Xn
1 , X

n
2 ), g(f1(Xn

1 ), f2(Xn
2 )))) ≤ ∆. (18)

We say that a tuple (R1, R2, D) is achievable if ∀ε > 0, ∃ for all sufficiently large n, a transmission system

with parameters (n, θ1, θ2,∆) such that

1
n

log θi ≤ Ri + ε for i = 1, 2

∆ ≤ D + ε.

The performance limit is given by the optimal rate-distortion region which is defined as the set of all achievable

tuples (R1, R2, D). This problem is graphically illustrated in Fig. 1.

Without loss of generality, the sources can be assumed to have unit variance and let the correlation

coefficient ρ > 0. For the rest of this section, these assumptions are made unless otherwise stated.

One possible coding scheme for this problem would be the following. The decoder reconstructs lossy

versions (W1,W2) of the sources (X1, X2) and uses the best estimate of Z given (W1,W2) as the reconstruction

Ẑ. The rate region for such a scheme can be derived using the Berger-Tung inner bound [6, 7]. One of the

main result in this paper is to show that for certain parameter values, there exists a better coding scheme

that enables the decoder to reconstruct Ẑ directly without resorting to reconstructions (W1,W2). We present

the rate region of our scheme below.
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Xn
1

Xn
2

f1(·)

f2(·)

g(·, ·)
Ẑ

Encoder 1

Encoder 2

Decoder

R1

R2

Figure 1: Schematic Illustration of the problem

Theorem 3.1. The set of all tuples of rates and distortion (R1, R2, D) that satisfy

2−2R1 + 2−2R2 ≤
(
σ2
Z

D

)−1

(19)

are achievable. Here, σ2
Z = 1 + c2 − 2ρc is the variance of the function Z to be reconstructed.

Proof: See Section 3.2.

We also present another achievable rate region based on ideas similar to the Berger-Tung coding scheme

[6] [7]. From here on, we shall refer to this rate region as the Berger-Tung based rate region and the scheme

that achieves this as the Berger-Tung based coding scheme.

Theorem 3.2. Let the region RDin be defined as follows.

RDin =
⋃

(q1,q2)∈R2
+

{
(R1, R2, D) : R1 ≥

1
2

log
(1 + q1)(1 + q2)− ρ2

q1(1 + q2)
, R2 ≥

1
2

log
(1 + q1)(1 + q2)− ρ2

q2(1 + q1)

R1 +R2 ≥
1
2

log
(1 + q1)(1 + q2)− ρ2

q1q2
, D ≥ q1α+ q2c

2α+ q1q2σ
2
Z

(1 + q1)(1 + q2)− ρ2

}
. (20)

where α , 1−ρ2 and R+ is the set of positive reals. Then the rate distortion tuples (R1, R2, D) which belong

to RD∗in are achievable where ∗ denotes convex closure.

Proof: Follows directly from the application of Berger-Tung inner bound with the auxiliary random

variables involved being Gaussian.

In many distributed source coding problems involving jointly Gaussian sources ([25, 30, 35]), the use of

Gaussian auxiliary random variables results in the optimal or largest known rate region. It was conjectured

in [6, 7] that choosing the auxiliary random variables to be Gaussian indeed results in the optimal rate

distortion region for the problem of reconstructing both sources with independent distortion criteria. This

was shown to be true in [35]. With this as motivation, we have used Gaussian auxiliary random variables to

derive an inner bound to the performance limit of this problem based on the Berger-Tung coding scheme.

We have the following lemma that gives the minimum sum rate of the second approach which will be

used in later sections for comparing the performance limits given by the above two theorems.
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Lemma 3.1. For a given distortion D, the minimum sum rate Rsum , R1 +R2 that lies in the region RD∗in
of Theorem 3.2 is given by the lower convex envelope of the following region.

Rsum ≥
1
2

log
4c(αc− ρD)

D2
D ≤ min

{
2αc
ρ+ c

,
2αc2

1 + ρc

}
(21)

Rsum ≥
1
2

log
(

(1− ρc)2

D − αc2
)

σ2
Z > D >

2αc2

1 + ρc
, c ≤ 1 (22)

Rsum ≥
1
2

log
(

(c− ρ)2

D − α

)
σ2
Z > D >

2αc
ρ+ c

, c > 1 (23)

Rsum = 0 D ≥ σ2
Z (24)

Proof: This derivation is detailed in Appendix A.

For certain values of ρ, c and D, the sum-rate given by Theorem 3.1 is better than that given in Theorem

3.2. This implies that each rate region contains rate points which are not contained in the other. Thus,

an overall achievable rate region for the coding problem can be obtained as the convex closure of the union

of all rate distortion tuples (R1, R2, D) given in Theorems 3.1 and 3.2. A further comparison of the two

schemes is presented in Section 5. Note that for c < 0, it has been shown in [35] that the rate region given

in Theorem 3.2 is tight.

3.2 The Coding Scheme

In this section, we present a lattice based coding scheme for the problem of reconstructing the above linear

function of two jointly Gaussian sources whose performance approaches the inner bound given in Theorem

3.1. In what follows, a nested lattice code is taken to mean a sequence of nested lattice codes indexed by

the lattice dimension n.

We will require nested lattice codes (Λ11,Λ12,Λ2) where Λ2 ⊂ Λ11 and Λ2 ⊂ Λ12. We need the fine

lattices Λ11 and Λ12 to be good source codes (of appropriate second moment) and the coarse lattice Λ2 to

be a good channel code. The proof of the existence of such nested lattices is detailed in Appendix B where

we show the existence of a nested lattice (Λ11,Λ12,Λ2) such that Λ11 ⊂ Λ12 ⊂ Λ2 or Λ12 ⊂ Λ11 ⊂ Λ2 and all

three lattices are good source and channel codes simultaneously. The parameters of the nested lattice are

chosen to be

σ2(Λ11) = q1 (25)

σ2(Λ12) =
Dσ2

Z

σ2
Z −D

− q1. (26)

σ2(Λ2) =
σ4
Z

σ2
Z −D

(27)

where 0 < q1 < Dσ2
Z/(σ

2
Z − D). The coding problem is non-trivial only for D < σ2

Z and in this range,

Dσ2
Z/(σ

2
Z − D) < σ2(Λ2) and therefore Λ2 ⊂ Λ11 and Λ2 ⊂ Λ12 indeed. Note that the order of nesting

between the lattices Λ11 and Λ12 depends on whether q1 > Dσ2
Z/2(σ2

Z − D) or not. However, this is

irrelevant for the proof which only requires Λ2 ⊂ Λ11 and Λ2 ⊂ Λ12.
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Xn
1

cXn
2

U1

U2

QΛ11(·) mod

mod

Λ2

Λ2

σ2
Z−D

σ2
Z

Ẑ
mod Λ2

+

−

−U1

−U2

S1

S2
QΛ12(·)

Figure 2: Distributed coding using lattice codes to reconstruct Z = X1 − cX2

Let U1 and U2 be random vectors (dithers) that are independent of each other and of the source pair

(X1, X2). Let Ui be uniformly distributed over the basic Voronoi region V0,1i of the fine lattices Λ1i for

i = 1, 2. The decoder is assumed to share this randomness with the encoders. The source encoders use these

nested lattices to quantize X1 and cX2 respectively according to equation

S1 = (QΛ11(Xn
1 + U1)) mod Λ2, (28)

S2 = (QΛ12(cXn
2 + U2)) mod Λ2. (29)

Note that the second encoder scales the source X2 before encoding it. The decoder receives the indices S1

and S2 and reconstructs

Ẑ =
(
σ2
Z −D
σ2
Z

)
([(S1 − U1)− (S2 − U2)] mod Λ2) . (30)

This coding scheme is illustrated in Fig. 2. The rates of the two encoders are given by

R1 =
1
2

log
σ4
Z

q1(σ2
Z −D)

(31)

R2 =
1
2

log
σ4
Z

Dσ2
Z − q1(σ2

Z −D)
(32)

Clearly, for a fixed choice of q1 all rates greater than those given in equations (31) and (32) are achievable.

The union of all achievable rate-distortion tuples (R1, R2, D) over all choices of q1 gives us an achievable

region. Eliminating q1 between the two rate equations gives us

22R2 ≥ 1
D
σ2
Z
− 2−2R1

(33)

which is the rate region claimed in Theorem 3.1. It remains to show that this scheme indeed reconstructs

the function Z to within a distortion D. We show this in the following.

Using the distributive property of lattices described in equation (8), we can reduce the coding scheme to

a simpler equivalent scheme by eliminating the first mod-Λ2 operation in both the signal paths. This results
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Xn
1

cXn
2

eq1

eq2

+

−
1− D

σ2
Z

Ẑ
mod Λ2

Figure 3: Equivalent representation of Fig. 2

in an equivalent representation of the coding scheme as shown in Fig. 3. The decoder can now be described

by the equation

Ẑ =
(
σ2
Z −D
σ2
Z

)
([(Xn

1 + eq1)− (cXn
2 + eq2)] mod Λ2) (34)

=
(
σ2
Z −D
σ2
Z

)
([Zn + eq1 − eq2 ] mod Λ2) (35)

where eq1 and eq2 are dithered lattice quantization noises given by

eq1 = QΛ11(Xn
1 + U1)− (Xn

1 + U1), (36)

eq2 = QΛ12(cXn
2 + U2)− (cXn

2 + U2). (37)

The subtractive dither quantization noise eqi is independent of both sources X1 and X2 and has the same

distribution as −Ui for i = 1, 2 [45]. Since the dithers U1 and U2 are independent and for a fixed choice of

the nested lattice eqi is a function of Ui alone, eq1 and eq2 are independent as well.

Let eq = eq1 − eq2 be the effective dither quantization noise. The decoder reconstruction in equation (35)

can be simplified as

Ẑ =
(
σ2
Z −D
σ2
Z

)
([Zn + eq] mod Λ2) (38)

c.d=
(
σ2
Z −D
σ2
Z

)
(Zn + eq) (39)

= Zn +
((

σ2
Z −D
σ2
Z

)
eq −

D

σ2
Z

Zn
)

(40)

, Zn +N. (41)

The c.d= in equation (39) stands for equality under the assumption of correct decoding. Decoding error

occurs if equation (39) doesn’t hold. Let Pe be the probability of decoding error. Assuming correct decoding,

the distortion achieved by this scheme is the second moment per dimension3 of the random vector N in
3We refer to this quantity also as the normalized second moment of the random vector N . This should not be confused with

the normalized second moment of a lattice as defined in equation (6).

11



equation (41). This can be expressed as

E ‖ N ‖2
n

=
(
σ2
Z −D
σ2
Z

)2 E ‖ eq ‖2
n

+
(
D

σ2
Z

)2 E ‖ Zn ‖2
n

(42)

where we have used the independence of eq1 and eq2 to each other and to the sources X1 and X2 (and

therefore to Z = X1− cX2). Since eqi has the same distribution as −Ui, their expected norm per dimension

is just the second moment of the corresponding lattice σ2(Λ1i). Thus the effective distortion achieved by the

scheme is

1
n

E‖Zn − Ẑ‖2 =
(
σ2
Z −D
σ2
Z

)2(
Dσ2

Z

σ2
Z −D

)
+
D2σ2

Z

σ4
Z

= D. (43)

Hence, the proposed scheme achieves the desired distortion provided correct decoding occurs at equation

(39). Let us now prove that equation (39) indeed holds with high probability for an optimal choice of the

nested lattice, i.e., there exists a nested lattice code for which Pe → 0 as n→∞ where,

Pe = Pr ((Zn + eq) mod Λ2 6= (Zn + eq)) . (44)

To this end, let us first compute the normalized second moment of (Zn + eq).

E ‖ Zn + eq ‖2
n

=
E ‖ Zn ‖2

n
+

E ‖ −U1 − U2 ‖2
n

(45)

= σ2
Z + q1 +

σ2
ZD

σ2
Z −D

− q1 (46)

=
σ4
Z

σ2
Z −D

= σ2(Λ2). (47)

It was shown in [42] that as n → ∞, the quantization noises eqi tend to a white Gaussian noise for an

optimal choice of the nested lattice. The following lemma states that eq also converges in the same way.

Lemma 3.2. If the two independent subtractive dither quantization noises eqi tend to a white Gaussian

noise of the same variance as eqi in the Kullback-Leibler divergence sense, then eq = eq1 − eq2 also tends to

a white Gaussian noise of the same variance as eq in the divergence sense.

Proof: The proof of convergence to Gaussianity of eq is detailed in Appendix C.

We choose Λ2 to be an exponentially good channel code in the sense defined in Section 2.1 (also see

[45]). For such lattices, the probability of decoding error Pe in equation (44) goes to 0 exponentially fast

if (Zn + eq) is Gaussian. The analysis in [46] also showed that if (Zn + eq) tends to a white Gaussian

noise vector, the effect on Pe of the deviation from Gaussianity is sub-exponential. Hence, the overall error

behavior is asymptotically the same as the behavior if (Zn + eq) were Gaussian, i.e., Pe → 0 as n → ∞.

This implies that the reconstruction error Zn − Ẑ tends in probability to the random vector N defined in

equation (41). Since all random vectors involved have finite normalized second moment, this convergence

in probability implies convergence in second moment as well. Thus the normalized second moment of the

reconstruction error tends to that of N which is shown to be D in equation (43). Averaged over the random

12



dithers U1 and U2, we have shown that the appropriate distortion is achieved. Hence there must exist a pair

of deterministic dithers that also achieve the given distortion. Combining equations (33) and (43), we have

proved the claim of Theorem 3.1.

Remark: Instead of focussing on the entire rate region, if one is interested in minimizing the sum rate

of the encoders, then it can be checked that the optimal choice of lattice parameters is σ2(Λ11) = σ2(Λ12) =
1
2
Dσ2

Z

σ2
Z−D

. In this case, we require only one nested lattice (Λ1,Λ2) with both encoders using the same nested

lattice for encoding.

3.3 Intuition about the Coding Scheme

In this section, we outline some arguments that justify our choice of lattice codes and the scaling constants

described in the previous subsection. Our use of lattice codes is motivated by the following. Suppose there

exists a centralized encoder that has access to both sources X1 and X2. Clearly, the optimal encoding

strategy then would be to compute Z = X1− cX2, and compress it using an encoder, say f(·), that achieves

the optimal rate distortion function of a Gaussian source of variance σ2
Z . Such a centralized coding scheme

can be adapted to a distributed setting if the encoder f(·) distributes over the linear function X1− cX2. For

then, from the decoder’s perspective, there is no distinction between the centralized and distributed coding

scheme since

f(X1 − cX2) = f(X1)− f(cX2). (48)

A lattice code satisfies the functional form mentioned in equation (48) and is known to achieve the optimal

rate distortion function for Gaussian sources. Hence it is an ideal candidate for use as the source encoder.

The parameters of the lattice code as given in equations (25) and (26) can be justified as below. Without

loss of generality, let the second source alone be scaled by an arbitrary constant η. Let the fine lattices

in the signal path of the two sources have second moments qi , σ2(Λi,1) for i = 1, 2. For the case of

optimal lattices in high enough dimensions, one can think of quantization using the fine lattices Λi,1, i = 1, 2

as simulating an AWGN channel of noise variance qi. Such a statement can be made precise by analysis

similar to the one carried out in the previous subsection. Let Qi, i = 1, 2 be N (0, qi) random variables that

are single-letter asymptotic equivalents of the subtractive dither quantization noises eqi encountered in the

previous subsection.

Referring to the equivalent coding scheme represented in Fig. 3, we see that it suffices to choose the

coarse lattice Λ2 to be a good AWGN channel code of second moment equal to

σ2(Λ2) = Var(X1 +Q1 − (ηX2 +Q2))

= 1 + η2 − 2ηρ+ q1 + q2. (49)

Using the distributive property of lattices (equation (8)), this scheme can be converted to the one represented

by Fig. 2.

The rates achieved by this scheme are given by

Ri =
1
2

log
1 + η2 − 2ηρ+ q1 + q2

qi
for i = 1, 2 (50)
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This region can be optimized over all choices of η subject to an appropriate distortion constraint. It turns

out that the scaling chosen in Section 3.2 is the optimal choice. The details are described (for the more

general K user case) in Appendix D.

4 Distributed source coding for the K source case

In this section, we consider the case of reconstructing a linear function of an arbitrary number of sources.

In the case of two sources, the two strategies used in Theorems 3.1 and 3.2 were direct reconstruction of the

function Z and estimating the function from noisy versions of the sources respectively. Henceforth, we shall

refer to the coding scheme used to derive Theorem 3.1 as lattice binning and that used in Theorem 3.2 as

random binning.

In the presence of more than two sources, a host of strategies which are a combination of these two

strategies become available. For example, in the case of 3 sources, one possible strategy would be for all

users to use the lattice binning while another strategy would be for users 1 and 2 to use lattice binning and

user 3 to employ random binning. The union of the rate-distortion tuples achieved by all such schemes gives

an achievable rate region of the problem.

When a combination of the two strategies are used among the K sources, the order of decoding at the

decoder becomes significant. The indices which are decoded earlier can be used as side information for

the indices which are to be decoded later. This raises the question of how to adapt the coding schemes

of lattice binning and random binning to the case when side information is present at the decoder. For

ease of exposition and understanding in the following section, we first describe a lattice coding strategy for

the distributed source coding problem involving two sources with the goal of reconstruction of their linear

function at the decoder and, in addition, the decoder has access to some side information. We then use this

to formally describe an achievable rate region for the problem of reconstructing Z =
∑K
i=1 ciXi.

4.1 Lattice coding in presence of decoder side information

In this section, we consider the problem of distributed encoding of correlated sources using lattices in the

presence of side information at the decoder. As we will see, this can be used as a building block in recon-

structing a linear function of multiple sources.

Assume that we have correlated Gaussian sources X1 and X2 and the decoder is interested in reconstruct-

ing a linear function Z ,
∑2
i=1 ciXi. Suppose the decoder also has available to it side information Y that is

correlated with the sources X1, X2. Y and X1, X2 are jointly Gaussian. Each source Xi is observed by an

encoder which maps its outcomes to a finite set. The indices produced by the encoders are transmitted to a

joint decoder using two rate-constrained noiseless channels. The goal is to find the optimal rate-distortion

region which is the set of all achievable tuples (R1, R2, D).

In this subsection we provide an inner bound to the optimal rate-distortion region for this problem using

a lattice-based “correlated” binning strategy. We use the notation ẐY to denote the minimum mean-squared

error (MMSE) estimate of Z given Y , namely E(Z | Y ). The innovations random variable Z− ẐY is denoted

by ηZ|Y .
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The lattice coding strategy in the presence of side information can be inferred by considering what the

strategy would be in the presence of a central encoder that has access to all the sources X1, X2 and the

side information Y . In that case, the central encoder would first compute Z =
∑2
i=1 ciXi and then quantize

and transmit only the innovations random variable ηZ|Y . This can be accomplished with subtractive dither

lattice quantization using a nested lattice Λ2 ⊂ Λ1 of parameter

σ2(Λ1) =
Dσ2

η

σ2
η −D

(51)

σ2(Λ2) =
σ4
η

σ2
η −D

(52)

where σ2
η is the variance of the innovations random variable ηZ|Y and D is the desired distortion in the

reconstruction of Z. The rate incurred in this system is given by 1
2 log(σ2

η/D). The decoder would use this

quantized innovations with the side information to obtain a reconstruction that is within a distortion of D

of Z.

The two assumptions in the setup above that deviate from our distributed coding problem are that all

sources are available to a central encoder and that side information is available at the encoder. The first

assumption can be gotten rid of by employing the distributive property (equation (8)) of lattice codes. The

second assumption can be eliminated by using the linear nature of the forward test channel for the case of

Gaussian quantization. This linear nature enables one to move the side information present at the encoder

to the decoder thus obviating its necessity at the encoder. Thus, we can convert the above centralized coding

strategy to our distributed setting to yield the following encoding scheme.

The source encoders are described by the equations

Si = (QΛ1i(ciX
n
i + Ui)) mod Λ2 for i = 1, 2, (53)

where Uis are independent random dithers uniformly distributed over the fundamental Voronoi region V0,1i

of the fine lattices Λ1is. As in Section 3, we require Λ2 ⊂ Λ1i, i = 1, 2, the fine lattices Λ1i to be good source

codes and the coarse lattice Λ2 to be a good channel code. The second moments of the nested lattices are

given by

σ2(Λ11) = q1 (54)

σ2(Λ12) =
Dσ2

η

σ2
η −D

− q1 (55)

σ2(Λ2) =
σ4
η

σ2
η −D

(56)

where q1 is chosen such that 0 < q1 <
Dσ2

η

σ2
η−D . This gives a quantization rate of

R1 =
1
2

log
σ4
η

q1(σ2
η −D)

(57)

R2 =
1
2

log
σ4
η

Dσ2
η − q1(σ2

η −D)
(58)
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Clearly, for a fixed choice of q1 all rates beyond that given above can be achieved. Eliminating q1 between

the two rates now gives us an expression of the overall achievable region as

2−2R1 + 2−2R2 ≤
(
σ2
η

D

)−1

(59)

The decoder is given by the equation

Ẑ =
(

1− D

σ2
η

)([ 2∑
i=1

(Si − Ui)− ẐnY

]
mod Λ2

)
+ ẐnY (60)

The encoding operation given by equation (53) is similar to that used in Section 3.2. By mimicking

the analysis of Section 3.2, we can show that the first part of the decoder operation, given by ([
∑2
i=1(Si −

Ui)− ẐnY ] mod Λ2) in equation (60), produces with high probability ηnZ|Y +N where N approaches a white

Gaussian noise vector with each element having variance σ2(Λ11) + σ2(Λ12) = Dσ2
η

σ2
η−D . The decoder then

obtains an estimate of the function Z based on ηZ|Y + N and the side information Y . It can be checked

that equation (60) describes such an estimate and that this estimate indeed achieves the desired distortion

D. Thus, we have an achievable rate-distortion tuple given by equation (59) for reconstructing a linear

function in the presence of any side information. The rationale for choosing the lattice parameters and

scaling constants is very similar to that given in Section 3.3.

4.2 Reconstructing a linear function of K sources

Previously, we considered the problem of reconstructing a linear function of two sources. In this section,

we generalize the problem to an arbitrary number of sources. Let the sources be given by X1, X2, . . . , XK

which are jointly Gaussian. The encoder of Xi maps its outcome to a finite set. The output of the encoder is

transmitted over a noiseless but rate-constrained channel to a joint decoder. The rate of channel i is given by

Ri. The decoder wishes to reconstruct a linear function given by Z =
∑K
i=1 ciXi with squared error fidelity

criterion. The performance limit RD is given by the set of all rate-distortion tuples (R1, R2, . . . , RK , D)

that are achievable in the sense defined in Section 3. In this section we provide an inner bound based on

“correlated” lattice-structured binning.

As indicated earlier, there are several possible coding schemes based on each user’s choice of coding

strategy and also the choice of order of decoding. Before, we describe these coding schemes, we introduce

some relevant notation.

For any set A ⊂ {1, . . . ,K}, let XA denote those sources whose indices are in A, i.e., XA , {Xi : i ∈ A}.
Let ZA be defined as

∑
i∈A ciXi. Let Θ be a partition of {1, . . . ,K} with θ = |Θ|. Let πΘ : Θ→ {1, . . . , θ}

be a permutation. One can think of πΘ as ordering the elements of Θ. Each set of sources XA, A ∈ Θ are

decoded simultaneously at the decoder with the objective of reconstructing ZA. The order of decoding is

given by πΘ(A) with the lower ranked sets of sources decoded earlier. Let Q = (q1, . . . , qK) ∈ RK+ be a tuple

of positive reals. Let E(·) denote the expectation operator.

For any partition Θ and ordering πΘ, let us define recursively a positive-valued function σ2
Θ : Θ→ R+ as

follows:

σ2
Θ(A) = E

[
(ZA − fA(SA))2

]
, (61)
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where

fA(SA) = E(ZA|SA) (62)

SA = {ZB +QB : B ∈ Θ, πΘ(B) < πΘ(A)} (63)

and {QA : A ∈ Θ} is a collection of |Θ| independent zero-mean Gaussian random variables with variances

given by qA = Var(QA) ,
∑
i∈A qi, and this collection is independent of the sources. Let

f({ZA +QA : A ∈ Θ}) , E (Z|{ZA +QA : A ∈ Θ}) . (64)

Theorem 4.1. For a given tuple of sources X1, . . . , XK and tuple of real numbers (c1, c2, . . . , cK), we have

RD∗in ⊂ RD, where

RDin =
⋃

Θ,πΘ,Q

{
(R1, . . . , RK , D) : Ri ≥

1
2

log
σ2

Θ(A) + qA
qi

for i ∈ A

D ≥ E [(Z − f ({ZA +QA : A ∈ Θ}))2]
}
, (65)

and ∗ denotes convex closure.

Proof: We give a description of a lattice-based coding scheme that achieves the inner bound. Fix Θ,

πΘ and Q. For each A ∈ Θ, construct a family of good nested lattices ΛA1i and ΛA2 such that ΛA2 ⊂ ΛA1i for

i ∈ A. Existence of such good nested lattices has been shown in Appendix B. The second moment of the fine

lattice ΛA1i is chosen to be qi. The second moment of the coarse lattice is chosen based on the amount of side

information available to the decoder at the time of decoding the set of sources XA which in turn depends

on πΘ(A). The function σ2
Θ governs this choice. More precisely, for i ∈ A and A ∈ Θ, the second moments

of the lattices are given by

σ2(ΛA1i) = qi (66)

σ2(ΛA2 ) = σ2
Θ(A) + qA (67)

Encoder: For each A ∈ Θ, the source Xi, i ∈ A is encoded using the nested lattice ΛA2 ⊂ ΛA1i. The

encoders can be described by the equations

Ti = (QΛA1i
(ciXn

i + Ui)) mod ΛA2 for i ∈ A (68)

where Ui are independent random dithers uniformly distributed over the fundamental Voronoi region VA0,1i
of the fine lattice ΛA1i. This would give an encoding rate of

Ri =
1
2

log
σ2

Θ(A) + qA
qi

for i ∈ A (69)

Decoder: For A ∈ Θ, in order to decode ZA, the decoder has access to some side information and its

operation can be recursively described similar to equations (30) and (60) as

ẐA =

([∑
i∈A

(Ti − Ui)− fnA(ŜA)

]
mod ΛA2

)
+ fnA(ŜA) (70)
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where

ŜA = {ẐB : B ∈ Θ, πΘ(B) < πΘ(A)}. (71)

After decoding ẐA for all A ∈ Θ, the decoder obtains the reconstruction as a linear function of {ẐA : A ∈ Θ}
as

Ẑ = fn({ẐA : A ∈ Θ}). (72)

We now show that the above system achieves the inner bound given in the theorem. From equation (69), it

is clear that this scheme achieves the rate tuple claimed in Theorem 4.1. It remains to prove that the claimed

distortion is achieved. The crucial observation is that while SA in equation (63) denotes the side information

available to decode ZA in test channels, ŜA in equation (71) denotes the side information available to decode

ẐA in the actual coding system. If we were to assume ŜA to be Gaussian, then by definition of the functions

fA(·) (equation (62)) and f(·) (equation (64)), it is easy to see that the distortion given in Theorem 4.1 is

achieved. However such an assumption isn’t true for ŜA for any finite lattice dimension n.

Fortunately, loosely speaking, we can show that even though the assumption of Gaussianity of ẐA isn’t

strictly true, it becomes increasingly valid as the lattice dimension n → ∞. By analysis similar to that in

Section 3.2, we can show that the subtractive dither quantization noises tend to a white Gaussian of the

same variance (in the K-L divergence sense). This implies that as the lattice dimension n → ∞, for an

optimal choice of nested lattices, ẐA tends to ZnA + QnA and hence ŜA tends to SnA (in the K-L divergence

sense). By virtue of the “goodness” of the nested lattices, this then implies that the probability of incorrect

decoding goes to 0 exponentially in the lattice dimension. Thus the reconstruction error (Zn − Ẑ) tends in

probability (and hence in normalized second moment) to N where N approaches a Gaussian random vector

with each component having variance D. Thus, the proposed lattice scheme indeed achieves the claimed

rate-distortion tuples and Theorem 4.1 is proved.

To show this formally using induction, we need some more notation. For each A ∈ Θ and for each i ∈ A,

let

ei = QΛA1i
(ciXn

i + Ui)− ciXn
i − Ui, (73)

and

eA ,
∑
i∈A

ei. (74)

For each A ∈ Θ, let the linear function fA(·) be given by

fA(SA) =
∑

B:πΘ(B)<πΘ(A)

αA(B)(ZB +QB). (75)

By noting that ei are independent for i ∈ {1, 2, . . . ,K}, we note that for all A ∈ Θ,

1
n

E‖eA‖2 = qA. (76)

Let E ∈ Θ be such that πΘ(E) = 1. Thus ŜE = φ. Hence using the distributive property, and noting the

normalized second moments of ei for i ∈ E, we have with high probability (i.e., under correct decoding)

ẐE = ZnE + eE . (77)
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For any 1 ≤ j < K, we assume correct decoding with high probability at the jth stage and show correct

decoding with high probability at the (j + 1)th stage. Let C ∈ Θ be such that πΘ(C) = j + 1. Under the

above assumption, we have, with high probability, for all B ∈ Θ with πΘ ≤ j

ẐB = ZnB + eB . (78)

Using this we have

ẐC =

ZnC + eC −
∑

B:πΘ(B)≤j
αC(B)ẐB

 mod ΛC2 +
∑

B:πΘ(B)≤j
αC(B)ẐB (79)

c.d=

ZnC + eC −
∑

B:πΘ(B)≤j
αC(B)ẐB

+
∑

B:πΘ(B)≤j
αC(B)ẐB (80)

= ZnC + eC , (81)

where the second equality holds with high probability (correct decoding) because of the following reasons.

(a) The normalized second moment of the term inside the mod operation satisfies the following equalities:

1
n

E

∥∥∥∥∥∥ZnC + eC −
∑

B:πΘ(B)≤j
αC(B)ẐB

∥∥∥∥∥∥
2

= (82)

=
1
n

E

∥∥∥∥∥∥ZnC −
∑

B:πΘ(B)≤j
αC(B)ZnB

∥∥∥∥∥∥
2

+ qC +
∑

B:πΘ(B)≤j
α2
C(B)qB (83)

= qC + E

ZC − ∑
B:πΘ(B)≤j

αC(B)(ZB +QB)

2

(84)

= σ2
Θ(C) + qC (85)

= σ2(ΛC2 ). (86)

(b) Using the arguments of Section 3.2 (see Appendix C),

lim
n→∞

h

ZnC + eC −
∑

B:πΘ(B)≤j
αC(B)ẐB

 =
n

2
log 2πeσ2(ΛC2 ). (87)

where h(·) denotes differential entropy. Hence we have for all A ∈ Θ, with high probability,

ẐA = ZnA + eA. (88)

Now regarding the final estimation, an argument similar to the above can be given that shows that a

distortion given in the theorem is achieved asymptotically. The rationale for the specific choice of scaling

constants is explained in detail in Appendix D.

Remark: An important point worth noting before proceeding further is that the nesting relations we need
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the lattices to satisfy is ΛA2 ⊂ ΛA1i for i ∈ A. But, for A,B ∈ Θ, we don’t need the lattice families (ΛA1i,Λ
A
2 )

and (ΛB1j ,Λ
B
2 ) to be related in any way for A 6= B. Also, just as in the two user case, if we are interested

only in minimizing the sum rate of this encoding scheme, then for all encoders in a given set A ∈ Θ, the

second moment of their respective fine lattices are equal. This means that all encoders in a given set A ∈ Θ

can use the same nested lattice ΛA2 ⊂ ΛA1 for encoding.

4.3 An illustration of Theorem 4.1

For clarity, an illustration of the coding scheme of Theorem 4.1 for the case of 6 users and specific choices of

Θ and πΘ is described below. Let us choose Θ = {{1, 2, 3}, {4, 5}, {6}}. Let πΘ be the identity permutation

so that πΘ({1, 2, 3}) = 1, πΘ({4, 5}) = 2, πΘ({6}) = 3. This means that the decoder decodes Z{1,2,3} =∑3
i=1 ciXi first which is then used as side information for decoding Z{4,5} and so on. Let us also fix

Q = {q1, . . . , q6} where qi are all positive. We use A,B,C to denote the sets {1, 2, 3}, {4, 5} and {6}
respectively.

The fine lattice of the encoder of source Xi has second moment qi as given in equation (66). Encoders

for the sources X1, X2, X3 use nested lattices where the second moment of the coarse lattices are given by

equation (67). The decoder decodes ẐA according to equation (70). To decode ẐA, the decoder does not

have access to any side information. Encoders for X4, X5 use nested lattices whose parameters depend on

the function σ2
Θ(B) which in turn is determined by the fact that ẐA has been decoded earlier. The decoder

then decodes ẐB from T4, T5 and the functional value fnB(·) of the side information ŜB = ẐA. Similarly, to

decode ẐC , the decoder has side information ŜC = {ẐA, ẐB} along with the index T6. After having decoded

ẐA, ẐB , ẐC , the decoder uses the function fn(·) of equation (64) to estimate Z. This is illustrated in Fig. 4.

4.4 A Few Special Cases

In this section, we consider a few special cases of the general coding problem treated above. In particular, we

examine the rate distortion region derived above for specific choices of the partition Θ. First, we demonstrate

that we can recover the two user rate region of Theorems 3.1 and 3.2 from the more general K-user rate

region described above. Then, we illustrate a scheme for the case where the decoder estimates the function

directly, i.e., Θ = {{1, 2, . . . ,K}}.

4.4.1 Berger Tung coding for the two user case

In this section, we rederive the result of Theorem 3.2 using the more general framework of Theorem 4.1. Let

the function to be reconstructed be Z = X1 − cX2 as in Section 3. Individual reconstruction of the sources

corresponds to the partition Θ = {{1}, {2}}. There are two possible choices of πΘ corresponding to which

source is decoded first. Let us choose πΘ to be the identity permutation. Thus Z{1} = X1 is decoded first

and used as side information to decode Z{2} = −cX2.

Let Q = (q1, q2) where qi are positive for i = 1, 2. For ease of notation, we drop the set notation in the

subscripts below. In what follows, S1 is taken to mean S{1} and so on. Equations (61) to (63) simplify in
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Figure 4: Illustration of the coding scheme of Theorem 4.1

this case to

S1 = φ (89)

f1(S1) = E(Z1) = 0 (90)

σ2
Θ({1}) = E(Z2

1 ) = 1 (91)

S2 = {X1 +Q1} (92)

f2(S2) = E(Z2 | S2) = E(−cX2 | X1 +Q1) =
−ρc

1 + q1
S2 (93)

σ2
Θ({2}) = E

(
Z2 +

ρc

1 + q1
S2

)2

= c2 + q2 −
ρ2c2

1 + q1
. (94)

It follows from estimation theory that the function f(Z1 +Q1, Z2 +Q2) = a(Z1 +Q1) + b(Z2 +Q2) where

the constants a, b are given by

[ a b ] =
[

αc2+q2(1−ρc)
(1+q1)(c2+q2)−ρ2c2

c(αc+q1(c−ρ))
(1+q1)(c2+q2)−ρ2c2

]
(95)

where α , 1− ρ2.

As stated in Theorem 4.1, qi have to satisfy the distortion constraint of equation (65) which in this case

simplifies to

D ≥ q1c
2α+ q2c

2α+ q1q2σ
2
Z

(1 + q1)(c2 + q2)− ρ2c2
(96)
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The parameters of the nested lattices are given by equations (66) and (67) to be

σ2(Λ{1}1 ) = q1 (97)

σ2(Λ{1}2 ) = 1 + q1 (98)

σ2(Λ{2}1 ) = q2 (99)

σ2(Λ{2}2 ) = c2 + q2 −
ρ2c2

1 + q1
. (100)

This gives the following rates.

R1 =
1
2

log
1 + q1

q1
(101)

R2 =
1
2

log
(c2 + q2)(1 + q1)− ρ2c2

q2(1 + q1)
(102)

where Q = (q1, q2) is subject to the distortion constraint of equation (96). It can be checked that these

equations parameterize one of the corner points of the rate region of Theorem 3.2. Reversing the roles of the

two sources (equivalently, choosing πΘ({1}) = 2, πΘ({2}) = 1), we can achieve the other end point of the

rate region. Time sharing between these two points achieves the entire rate region of Theorem 3.2.

Note that the inner bound of Theorem 3.2 is derived using the Berger-Tung inner bound [6, 7] which

employs random quantization followed by random binning. Here, we have rederived this result using lattice

quantization followed by lattice-structured binning.

4.4.2 Lattice coding for the K user case

In this section, we derive an achievable rate region for the K user case when all the users encode in such

a way that the decoder estimates the function directly without reconstructing any intermediate variables.

This corresponds to the case where Θ = {{1, . . . ,K}}. πΘ is trivial in this case. Let Q = {q1, . . . , qK} ∈ RK+ .

Let A denote the set {1, . . . ,K}. Then qA =
∑K
i=1 qi

Equations (61) to (63) simplify in this case to

SA = φ (103)

fA(SA) = E(Z) = 0 (104)

σ2
Θ(A) = E(Z2) = σ2

Z . (105)

The function f(·) of equation (64) is given by

f(Z +Q) = E(Z | Z +Q)

=
σ2
Z

σ2
Z + qA

(Z +Q) (106)

and thus distortion constraint of equation (65) fixes the value of qA to be σ2
ZD

σ2
Z−D

.
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The encoders use the nested lattices (Λ1i,Λ2), i = 1, . . . ,K for encoding. The parameters of the nested

lattices are given by

σ2(Λ1i) = qi (107)

σ2(Λ2) = σ2
Z + qA =

σ4
Z

σ2
Z −D

(108)

This gives an encoding rate of

Ri =
1
2

log
σ4
Z

qi(σ2
Z −D)

(109)

This corresponds to the rate region

K∑
i=1

2−2Ri ≤
(
σ2
Z

D

)−1

(110)

For K = 2, this recovers the rate region of Theorem 3.1.

5 Comparison of the Rate Regions

In this section, we compare the rate regions of the lattice based coding scheme given in Theorem 3.1 and

the Berger-Tung based coding scheme given in Theorem 3.2 for the case of two users. The function under

consideration is Z = X1 − cX2. We would like to emphasize that we have assumed that the sources have

unit variance and that ρ > 0. To demonstrate the performance of the lattice binning scheme, we choose the

sum rate of the two encoders as the performance metric.

Fig. 5 shows the sum rate of the lattice based scheme for different values of c and distortion D. In

Fig. 6, we compare the sum-rates of the two schemes for ρ = 0.8 and c = 0.8. Fig. 6 shows that for small

distortion values, the lattice scheme achieves a smaller sum rate than the Berger-Tung based scheme. This

shows that the rate region of Theorem 3.1 contains points outside that of the rate region of Theorem 3.2.

The opposite is also true since for D = σ2
Z , the region in Theorem 3.2 contains the rate point (0, 0) while

the one in Theorem 3.1 does not.

We observe that the lattice based scheme performs better than the Berger-Tung based scheme for small

distortions provided ρ is sufficiently high and c lies in a certain interval. Fig. 7 is a contour plot that

illustrates this in detail. The contour labeled R encloses that region in which the pair (ρ, c) should lie for the

lattice binning scheme to achieve a sum rate that is at least R units less than the sum rate of the Berger-Tung

scheme for some distortion D. Observe that we get improvements only for c > 0.

6 Conclusion

We have thus demonstrated a lattice based coding scheme that directly encodes the linear function that

the decoder is interested in instead of encoding the sources separately and estimating the function at the

decoder. For the case of two users, it is seen that the lattice based coding scheme gives a lower sum-rate for
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Figure 5: Lattice based scheme’s sum-rate vs c and distortion D for ρ = 0.8
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Figure 7: Range of (ρ, c) where the lattice scheme performs better than the Berger Tung scheme

certain values of ρ, c,D. Hence, using a combination of the lattice based and the Berger-Tung based coding

schemes results in a better rate-region than using any one scheme alone. For the case of reconstructing

a linear function of K sources, we have extended this concept to provide an inner bound to the optimal

rate-distortion function. Some parts of the inner bound are achieved using a coding scheme that has the

following structure: lattice vector quantization followed by “correlated” lattice-structured binning.
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A Derivation of Berger-Tung based scheme’s sum rate

In this section, we derive the sum-rate of the Berger-Tung based scheme given in equations (21)-(23). The

sum-rate of the Berger-Tung based coding scheme is given by

R1 +R2 ≥
1
2

log
(1 + q1)(1 + q2)− ρ2

q1q2
(111)

where (q1, q2) ∈ R2
+ should satisfy the distortion constraint

D ≥ q1α+ q2c
2α+ q1q2σ

2
Z

(1 + q1)(1 + q2)− ρ2
(112)
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where R+ is the set of positive reals and α = 1− ρ2.

To minimize the sum-rate, we need to minimize the quantity given by equation (111). Using the fact

that the log function is monotone and that (q1, q2) must satisfy the distortion constraint in equation (112),

the minimization problem is equivalent to minimizing

(1 + q1)(1 + q2)− ρ2

q1q2
=
q1α+ q2c

2α+ q1q2σ
2
Z

Dq1q2
(113)

and this is equivalent to minimizing

1
q2

+
c2

q1
(114)

subject to the constraint in equation (112).

Assuming that (q1, q2) satisfy the distortion constraint with equality, one can solve for q2 in terms of q1

to give

q2 =
αD − q1(α−D)

(c2α−D) + q1(σ2
Z −D)

. (115)

Substituting this in equation (114) gives the function to be minimized as a function of q1 alone. The optimal

choice of q1 is then

q∗1 = argmin
q2
1(σ2

Z −D) + q1D(c2 − 1) + αDc2

−q2
1(α−D) + αDq1

. (116)

Differentiating with respect to q1 and setting the derivative to 0 gives us a quadratic in q1 whose roots are

q∗1 =
αc

ρ− c or
αcD

2αc− (ρ+ c)D
(117)

The second root given above is where the minima occurs. The q2 value corresponding to this value of q1 is

q∗2 =
αD

2αc2 − (1 + ρc)D
. (118)

Note that these optimal values of q1 and q2 are positive only for distortions in the range

D ≤ min
{

2αc
ρ+ c

,
2αc2

1 + ρc

}
. (119)

For values of D outside this range, the optimal strategy is to let q1 or q2 go to ∞ which effectively means

that we encode and transmit only one source.

For D in the range given in equation (119), the sum rate Rsum = R1 + R2 is found by substituting q∗1
and q∗2 in equation (111) to get

Rsum ≥
1
2

log
4c(αc− ρD)

D2
D ≤ min

{
2αc
ρ+ c

,
2αc2

1 + ρc

}
. (120)

For D outside the range given in equation (119), the minimum sum rate is attained by setting either q1 or

q2 as ∞. Which quantity goes to ∞ depends on which argument of the min function in equation (119) is

smaller; equivalently on whether c > 1 or not. It is easy to see that if c < 1, q2 =∞ and

Rsum =
1
2

log
(1− ρc)2

D − αc2 for D >
2αc2

1 + ρc
, (121)
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and if c > 1, q1 =∞ and

Rsum =
1
2

log
(c− ρ)2

D − α for D >
2αc
ρ+ c

. (122)

Combining equations (120), (121) and (122) and taking the convex closure of the resulting region, the

complete rate region for the Berger-Tung based scheme can be found.

B Existence of good nested lattices

In this section, we show the existence of nested lattices with any finite degree of nesting such that all

the lattice codes involved are simultaneously good source and channel codes. More precisely, we show the

existence of a nested lattice (Λ1, . . . ,Λm), Λm ⊂ · · · ⊂ Λ1 such that Λi, i = 1, . . . ,m are simultaneously good

source and channel codes for sufficiently large lattice dimension n.

We use the same nested lattice ensemble as described in [46]. For completeness sake, we include a

description of the ensemble.

• Start with a fixed n-dimensional lattice Λ2 which is a good source and channel code. The existence of

such a lattice was shown in [47]. Let GΛ2 be the generator matrix of Λ2, i.e., Λ2 = GΛ2 · Zn.

• Construct a k × n matrix G whose elements are drawn according to an uniform i.i.d distribution over

Zp = {0, 1, . . . , p− 1} where p is an appropriately chosen prime.

• Define the discrete codebook C = {x ∈ Znp : x = y ·G for some y ∈ Zkp}.

• Apply Loeliger’s type A construction [52] to form the lattice Λ
′
1 = p−1C + Zn.

• Transform Λ
′
1 to get the fine lattice Λ1 , GΛ2 · Λ

′
1.

• This construction of Λ1 can be viewed equivalently as follows. From the lattice p−1Λ2, pick k < n

points at random along with all their multiples modulo-Λ2. The resulting set of points constitute the

fine lattice Λ1.

By construction, it follows that Λ2 ⊂ Λ1 with the nesting ratio n
√
pk. It was shown in [46] that, with high

probability, this construction will result in Λ1 being a good channel code. In [53], it was shown that a nested

lattice from this ensemble is, with high probability, a good source code as well. By union bound, it then

follows that Λ1 is simultaneously a good source and channel code with high probability. It follows that there

exists nested lattices (Λ1,Λ2) such that Λ2 ⊂ Λ1 and both Λ1 and Λ2 are simultaneously good source and

channel codes.

By iterating this process (with Λ1 playing the role of Λ2 in the construction above), one can obtain a

nested lattice code with any finite level of nesting. More precisely, for any m > 0, one can show the existence

of a nested lattice (Λ1, . . . ,Λm), Λm ⊂ · · · ⊂ Λ1 such that all the lattices Λi, i = 1, . . . ,m are simultaneously

good source and channel codes. Moreover, this can be accomplished for any choice of nesting ratios.
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C Proof of convergence to Gaussianity of eq

In this section, we prove the claim that eq = eq1−eq2 tends to a white Gaussian noise in the Kullback-Leibler

divergence sense. Note that eq1 and eq2 are independent.

We use the following properties of subtractive dither quantization noise and the associated optimal lattice

quantizers [42].

• The subtractive dither quantization noise eqi is uniformly distributed over the basic Voronoi region

V0,1i of the fine lattice Λ1i for i = 1, 2. It follows from equation (5) that

E ‖ eqi ‖2= nσ2(Λ1i) for i = 1, 2. (123)

• For optimal lattice quantizers, the components of eqi , i = 1, 2 are uncorrelated and have the same

power,i.e., their correlation matrices Σeqi can be written as

Σeqi = σ2(Λ1i)In×n for i = 1, 2. (124)

• For optimal lattice quantizers, as the lattice dimension n → ∞, the distribution of eqi , i = 1, 2 tends

to a white Gaussian vector of same covariance in the Kullback-Leibler divergence sense. Taking into

account equation (123), this can be written as

1
n
D
(
eqi ‖ N (0, σ2(Λ1i)In×n)

)
→ 0 for i = 1, 2 (125)

in terms of the Kullback-Leibler divergence D(. ‖ .) or equivalently,

h(eqi)→
n

2
log 2πeσ2(Λ1i) for i = 1, 2 (126)

in terms of differential entropy h(·).

To show the convergence of eq to a white Gaussian random vector, we use the entropy power inequality

and the fact that for a given covariance matrix, the Gaussian distribution maximizes differential entropy.

The entropy power inequality [13] states that for two independent n-dimensional random vectors X and

Y (having densities),

2
2
nh(X+Y ) ≥ 2

2
nh(X) + 2

2
nh(Y ). (127)

This inequality applied to the subtractive dither quantization noises gives

2
2
nh(eq1−eq2 ) ≥ 2

2
nh(eq1 ) + 2

2
nh(eq2 ). (128)

As n → ∞, by equation (126), the right hand side of equation (128) tends to 2πe(σ2(Λ11) + σ2(Λ12)). So,

we have the following lower bound on the limit of the differential entropy of eq.

lim
n→∞

h(eq) ≥
n

2
log 2πe(σ2(Λ11) + σ2(Λ12)). (129)
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To prove the inequality in the other direction, note that equation (124) implies that the covariance matrix

of eq is (σ2(Λ11) + σ2(Λ12))In×n. Since the Gaussian distribution maximizes differential entropy for a given

covariance matrix, we have

h(eq) ≤
n

2
log 2πe(σ2(Λ11) + σ2(Λ12)) (130)

Combining equations (129) and (130), we have the desired result that (if optimal lattice quantizers are

used)

lim
n→∞

h(eq) =
n

2
log 2πe(σ2(Λ11) + σ2(Λ12)). (131)

In words, eq tends in the Kullback-Leibler divergence sense to a white Gaussian random vector with covari-

ance matrix (σ2(Λ11) + σ2(Λ12))In×n.

D Derivation of optimal Lattice parameters

In the coding schemes of both Section 3 and Section 4, we scale the sources before encoding them. Here, we

briefly outline a justification for the specific scaling constants used. We restrict ourselves to the case where

all the K users encode their sources using lattice binning. In the notation of Section 4.2, this corresponds

to Θ = {1, . . . ,K}.
Let the function to be reconstructed be Z =

∑K
i=1 ciXi = cXn. Here c is a row vector with its ith

component as ci and Xn is a column vector of the sources Xi. Σ is the covaraince matrix of the random

vector Xn. Let the ith encoder scale its input by an arbitrary constant ηi. Let η , [η1, . . . , ηK ]. Choose a

tuple Q = (q1, . . . , qK) ∈ RK+ just as in Section 4.4.2.

It can be shown from analysis similar to the ones in Section 3.2 and 4.2 that the decoder can, with

high probability, reconstruct the function ηXn +Q where Q approaches a white Gaussian noise of variance

q =
∑K
i=1 qi. From equation (64), it follows that the function f used for decoding is

Ẑ =
(

cΣηT

ηΣηT + q

)
(ηXn +Q) (132)

and the corresponding distortion is

D = σ2
Z −

(cΣηT )2

ηΣηT + q
. (133)

This fixes the value of q. The second moment of the channel code used is σ2(Λ2) = Var(
∑
i ηiXi + qi) =

ηΣηT + q. This gives us the rate tuple

Ri =
1
2

log
ηΣηT + q

qi
for i = 1, . . . ,K (134)

Eliminating qi using q =
∑
i qi gives us the rate region

K∑
i=1

2−2Ri ≤ 1− (σ2
Z −D)

ηΣηT

(cΣηT )2
. (135)

This rate region is largest when the RHS is maximum. Maximizing the RHS as a function of η results in

η = ξ · c as the only solution for some constant ξ. However, all constants ξ result in the same rate region.
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