arXiv:cs/0603072v1 [cs.IT] 18 Mar 2006

Distributed Transmit Beamforming using
Feedback Control

R. Mudumbai,Student Member, IEEE, J. HespanhaSenior Member, IEEE, U. Madhow,Fellow, |IEEE
and G. BarriacMember, |EEE

Abstract— A simple feedback control algorithm is pre- tion, wireless networks, sensor networks, space-time com-
sented for distributed beamforming in a wireless network. munication.
A network of wireless sensors that seek to cooperatively
transmit a common message signal to a Base Station (BS) l. INTRODUCTION
is considered. In this case, it is well-known that substan-

tial energy efficiencies are possible by using distributed ~ ENnergy efficient communication is important for wire-

beamforming. The feedback algorithm is shown to achieve less ad-hoc and sensor networks. We consider the prob-

the carrier phase coherence required for beamforming |em of cooperative communication in a sensor network,

in a scalable and distributed manner. In the proposed where there are multiple transmitters (e.g., sensor nodes)

algorithm, each sensor independently makes a random i ] ] | di
. . . . . seeking to transmit a common message signal to a distant
adjustment to its carrier phase. Assuming that the BS is 9 ge sy

able to broadcast one bit of feedback each timeslot about Base Station receiver (BS). In particular, we investigate

the change in received signal to noise ratio (SNR), the distributed beamforming, where multiple transmitters

sensors are able to keep the favorable phase adjustmentscoordinate their transmissions to combine coherently

and discard the unfavorable ones, asymptotically achiev- at the intended receiver. With beamforming, the sig-

ing perfect phase coherence. A novel analytical model is

i : nals transmitted from each antenna undergo constructive
derived that accurately predicts the convergence rate. The 9

analytical model is used to optimize the algorithm for interference at the receiver, the multiple transmitters

fast convergence and to establish the scalability of the acting as avirtual antenna array. Thus, the received
algorithm. signal magnitude increases in proportion to number of
Index Terms— Distributed beamforming, synchroniza- transmittersV, and the SNR increases proportional to
N2, whereas the total transmit power only increases
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however, requires precise control of the carrier

phases at each transmitter in order that the transmitted

B such phase coherence. The protocol is based on a fully
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independently adjusts its phase by a small amount inaatenna system. This is a challenging problem, because
manner depending on a single bit of feedback from theven small timing errors lead to large phase errors at the
BS. The algorithm is scalable, in that convergence tarrier frequencies of interest. Once phase synchroniza-
phase coherence occurs in a time that is linear in thien is achieved, reciprocity was proposed as a means
number of cooperating transmitters. of measuring the channel phase response to the BS. In
Prior work on cooperative communication mainly fothis paper, we present an alternative method of achieving
cuses on exploiting spatial diversity for several wirelessoherent transmission iteratively using a simple feedback
relaying and networking problems [1], [2]. Such diseontrol algorithm, which removes the need for explicit
tributed diversity methods require different transmgterestimation of the channel to the BS, and greatly reduces
to transmit information on orthogonal channels, whicthe level of coordination required among the sensors.
are then combined at the receiver. The resulting diver- Other related work on synchronization in sensor net-
sity gains could be substantial in terms of smoothingorks is based on pulse-coupled oscillator networks
out statistical fluctuations in received power due tf8] and biologically inspired (firefly synchronization)
fading and shadowing environments. However, unlik®] methods. These methods are elegant, robust and
distributed beamforming, distributed diversity does nduitable for distributed implementation, however they are
provide a gain in energy efficiency in terms aferage limited by assumptions of zero propagation delay and the
received power, which simply scales with the transmitte@quirement of mesh-connectivity, and are not suitable
power. On the other hand, the coherent combining &dr carrier phase synchronization.
signals at the receiver due to distributed beamformingWe consider the following model to illustrate our
also provides diversity gains. ideas. The protocol is initialized by each sensor trans-
Recent papers discussing potential gains from disiitting a common message signal modulated by a car-
tributed beamforming include [3], which investigates thder with an arbitary phase offset. (This phase offset
use of beamforming for relay under ideal coherends a result of unknown timing synchronization errors,
at the receiver, and [4], which shows that even partiahd is therefore unknown.) When the sensors’ wireless
phase synchronization leads to significant increase ¢hannel is linear and time-invariant, the received signal
power efficiency in wireless ad hoc networks. The beais the message signal modulated by an effective carrier
patterns resulting from distributed beamforming usingignal that is the phasor sum of the channel-attenuated
randomly placed nodes are investigated in [5]. Howeveararrier signals of the individual sensors. At periodic
the technical feasibility of distributed beamforming isntervals, the BS broadcasts a single bit of feedback
not investigated in the preceding papers. In our prido the sensors indicating whether or not the received
work [6], [7], we recognized that the key technicaBNR level increased in the preceding interval. Each
bottleneck in distributed beamforming is carrier phasgensor introduces an independent random perturbation
synchronization across cooperating nodes. We presentédheir transmitted phase offset. When this results in
a protocol in which the nodes first establish a commadncreased total SNR compared to the previous time
carrier phase reference usingnaster-slave architecture, intervals (as indicated by feedback from the BS), the

thus providing a direct emulation of a centralized multinew phase offset is set equal to the perturbed phase by



each sensor; otherwise, the new phase offset is set equal channel. This means that each sensor has a flat-

to the phase prior to the perturbation. Each sensor then fading channel to the receiver. Therefore the sensor
introduces a new random perturbation, and the process i's channel can be represented by a complex scalar
continues. We show that this procedure asymptotically  gain h;.
converges to perfect coherence of the received signals2) Each sensor has a local oscillator synchronized to
and provide a novel analysis that accurately predicts the carrier frequency, i.e. carrier drift is small.
the rate of convergence. We verify the analytical model =~ One way to ensure this is to use Phase-Locked
using Monte-Carlo simulations, and use it to optimize Loops (PLLs) to synchronize to a reference tone
the convergence rate of the algorithm. transmitted by a designated master sensor as in
The rest of this paper is organized as follows. Sec-  [6]. In this paper, we use complex-baseband nota-
tion [ describes our communication model for the tion for all the transmitted signals referred to the
sensor network. A feedback control protocol for dis-

tributed beamforming is described in SectlonTlI-A and 3)

common carrier frequency,.

The local carrier of each sensohas an unknown
its asymptotic convergence is shown in Section1II-B. phase offset;y; relative to the receiver’'s phase
Sectio IV describes an analytical model to characterize  reference. Note that synchronization using PLLs
the convergence behavior of the protocol. Some ana- still results in independent random phase offsets
Yi (27ch7’i

synchronization errors; that are fundamentally

lytical and simulation results are presented in Section mod 27), because of timing
M Section[V-A presents an optimized version of the
feedback control protocol. SectidnsV-B dndV/-C present

some results on scalability, and the effect of time-varying 4)

limited by propagation delay effects.
The sensors’ communication channel is time-

channels respectively. Secti@nlVI concludes the paper slotted with slot lengtli¥". The sensors only trans-

with a short discussion of open issues. mit at the beginning of a slot. This requires some

coarse timing synchronization; < T whereT;

II. COMMUNICATION MODEL FOR ASENSOR is the timing error of sensor i.

NETWORK

5) Timing errors among sensors are small compared

We consider a system oW sensors transmitting a to a symbol interval (a “symbol intervalT; is

common message signal(t) to a receiver. Each sensor nominally defined as inverse bandwidtf; = ).

is power constrained to a maximum transmit power of For a digitally modulated message signal(t),

P. The message(t) could represent raw measurement  this means that Inter Symbol Interference (ISI) can

data, or it could be a waveform encoded with digital be neglected.

data. We now list the assumptions in this model. 6) The channelsh; are assumed to exhibit slow-

1) The sensors communicate with the receiver over fading, i.e. the channel gains stay roughly constant

a narrowband wireless channel at some carrier
frequencyf.. In particular, the message bandwidth
B < W,, whereB is the bandwidth ofn(¢) and

W, is the coherence bandwidth of each sensor’s

for several time-slots. In other word§ <« T <«
T., whereT, is the coherence time of the sensor

channels.



Distributed transmission model: The communica- equality, we can see that to maximiég it is necessary
tion process begins with the receiver broadcastingthat the received carrier phases = ~; + 6; + v;, are
signal to the sensors to transmit their measured dagdl. equal:

The sensors then transmit the message signal at the next - .
G = ’Z a;b;el®
i=1

A-gim(t — 7;), wherer; is the timing error of sensor N .
<Y aer
=1

time-slot. Specifically, each sensor transmitg(t) =

i, A < /P is the amplitude of the transmission, agd

. g . . N
is a complex amplification performed by sengoiOur | ( 5,
= > (vas) (vae'™) ©)
objective is to choosg; to achieve optimum received ;
SNR, given transmit power constramt. @ on each < Govt = (Z a;), with equality if and only if®; = ®; andb; = 1
sensor. For simplicity, we writd; = a;e’¥ andg; = i=1
b;e’% , whereb; < 1 to satisfy the power constraint. Then (6)

the received signal is: However sensof is unable to estimate either, or v,

N because of the lack of a common carrier phase reference.

r(t) = Zhisi(t)em +n(t) (1) In the rest of this paper, we propose and analyze a
i=1

feedback control technique for sensoto dynamically

N
— q.0d7i e . .
= AZW@ m(t —7) +n(t) compute the optimal value of; so as to achieve the
=1

N condition for equality in[(B).
=A Z aibiej(%‘””wi)m(t —1)+n(t). (2

i=1 I1l. FEEDBACK CONTROL PROTOCOL
In the frequency domain, this becomes:

N
R(f) = AZaibiej(’W‘f‘ei"‘wi)M(f)e_jfTi + N(f)
i=1
N
~AM(f)Y " abied D L N(F), (3)
i=1

Base
wheren(t) is the additive noise at the receiver aNd f) feedback Station

is its Fourier transform over the frequency rarigé <
B

5
In @), the phase term; accounts for the phase offset Fig.[ illustrates the process of phase synchronization

in sensori. In @), we sete=/™ ~ 1 becausefr; <

Fig. 1. Phase synchronization using receiver feedback

using feedback control. In this section, we describe the
Ti

Br = 7+ < 1. Equation[B) motivates a figure of meritrooyack control algorithm, and prove its asymptotic

for the beamforming gain: convergence.

N
G = ’Z aibiej(%-f-eﬁ-wi)
i=1
which is proportional to the square-root of received SNR. The protocol for distributed beamforming works as

) A. Description of Algorithm

Note thatb; < 1, in order to satisfy the power follows: each sensor starts with an arbitrary (unsyn-

constraint on sensot. From the Cauchy-Schwartz In-chronized) phase offset. In each time-slot, the sensor



applies a random perturbation t and observes the The algorithm works as follows.

resulting received signal strengifz] through feedback. Initially the phases are set to ze{1] = 0. At each

The objective is to adjust its phase to maximige] time-slotn, each sensarapplies a random phase pertur-
through coherent combining at the receiver. Each phalsationd;[n] to 6;[n] for its transmission. As a result, the
perturbation is a guess by each sensor about the crgeeived phase is given b@; [n] = v;+6; [n]+0;[n]+1;.

rect phase adjustment required to increase the overfile BS measure¥|n] and keeps a record of the highest
received signal strength. If the received SNR is found wbserved signal strengtWpes:[n] = maxg<, Y[k] in
increase as a result of this perturbation, the sensor addisprevious timeslots. At the end of each timeslot, the
the appropriate phase offset, and repeats the procd3S.broadcasts a one-bit feedback message that indicates
This works like a distributed, randomized gradient searatthether the received signal strength of the preceding
procedure, and eventually converges to the correct phaseeslot was higher than the previous highest signal
offsets for each sensor to achieve distributed beamforstrength. Depending on the feedback message, each
ing. Fig.[2 shows the convergence to beamforming witkensor: updates its phase according to:

N =10 sensors.

91_ [n i 1] _ 91 [n] + 51 [n] y[’ﬂ] > ybest [n] (7)

0 iterations 10 iterations 91, [n] Otherwise.

Simultaneously, The BS also updates its highest received

signal strength:

Dhestln +1] = max(Voew[n], Vinl) — ®)

1 g 1 J This has the effect of retaining the phase perturbations
125 OO 125 00 that increase SNR and discarding the unfavorable ones
27 A0 22) ko that do not increase SNR. The sensors and the BS repeat
2807550 28075 %0 the same procedure in the next timeslot.
The random perturbation;[n] is chosen indepen-
Fig. 2. Convergence of feedback control algorithm dently across sensors from a probability distribution

di[n] ~ f5(d;), where the density functiorfs(d;) is a
Let n denote the time-slot index ar)d[n] the ampli- parameter of the protocol. In this paper, we consider

tude of the received signal in time-slat From [3), we primarily two simple distributions forfs(d;): (i) the
have:Y[n] o« |3, a;e’®:["!| where®;[n] is the received two valued distribution wheré; = +d, with proba-
signal phase corresponding to sensowe set the pro- bility 0.5, and (ii) the uniform distribution wheré; ~
portionality constant to unity for simplicity of analysis.uniform[—do, do]. We allow for the possibility that the
At each time instantu, let 6;[n] be the best known distribution f5(d;) dynamically changes in time.
carrier phase at senserfor maximum received SNR. It follows from (@) that if the algorithm were to
Each sensor uses the distributed feedback algorithmbe terminated at timeslot, the best achievable signal

dynamically adjustf;[n] to satisfy [6) asymptotically. strength using the feedback information received so



far, is equal to)y.s:[n], which correspond to sensér Bound [10]. In general the limitGy would depend on
transmitting with the phase;[n]. the starting phase anglesWe now provide an argument
Vieatln] = ’Z 4l ’ tr-1at shovxfs (under mild c-onditions on the probability den-
p sity function f5(;)), that in fact{Vs.s:[n]} converges to
where®;[n] = v; + 0;[n] + ¥ (9) the constang°P? with probability 1 for arbitrary starting
phasesp. The following proposition will be needed to

B. Asymptotic Coherence establish the convergence.

We now show that the feedback control protocol Proposition 1: Consider a distributiorfs(d;) that has
outlined in SectiofIIA asymptotically achieves phas80N-Zero support in an interval-do, d). Given any
coherence for any initial values of the phadgs Let ® ¢ # 0, and Mag(¢) < G — ¢, wheree > 0 is
denote the vector of the received phase angleswe arbitrary, there exist constanés > 0 and p > 0 such
define the functionMag(®) to be the received signal that Prob(Mag(¢ + 0) — Mag(¢) > 1) > p.

consider, the probability of choosing in any finite

Mag(®) = ’Z a;el®i (10

interval I C (—dp, dg) is non-zero. One example of such
Phase coherence meafts = ®; = ®.,,s:, Where a class of distributions igs(d;) ~ uniform[—do, do].

®.onse IS an arbitrary phase constant. In order to remove Recall that the phase reference is chosen such that the

this ambiguity, it is convenient to work with the rotatedotal received signa}_, a;e?*: has zero phase. First we

phase values); = ®;, — ®;, where ®, is a constant sort all the phaseg; in the vectorg in the descending

chosen such that the phase of the total received sigeadler of|¢;| to get the sorted phase$ satisfying|¢;| >

is zero. This is just a convenient shift of the receivers| > ... > |¢} /|, and the corresponding sorted channel

phase reference and d5](10) shows, such a shift hasgainsa;. We use the conditioMag(¢) < G?' — ¢ to

impact on the received signal strength: get:
Mag(¢) = Mag(®) (11) cos(¢7) Za;‘ < Za;‘ cos(¢}) < GP — ¢
We interpret the feedback control algorithm as a 5>, _1(Gopt _6) (12)
e = COS =
discrete-time random proce3.:[n] in the state-space ! >4

of ¢, the state-space being th¥-dimensional space Now we choose a phase perturbatigrthat decreases

of the phasesp; constrained by the condition that thel¢?|. This makes the most mis-aligned phaseinloser
phase of the received signal is zero. We observe that ttoe the received signal phase, and thus increases the
sequence{V,.s:[n]} is monotonically non-decreasing,magnitude of the received signal. ¢ff > 0, then we

and is upperbounded ky°P* as shown in[{5). Therefore need to choose & < 0, whereas if¢} < 0, we need
each realization of V,.s:[n]} is always guaranteed tod; > 0. In the following, we assume that; > 0 and
converge to some limiGy < G°Pt. FurthermoreGy = ¢. > Jy. The argument below does not depend on these
limy, s 00 Vhest[n] = Sup,,_,o, Vrest[n2] 1.€. the limit G, assumptions, and can be easily modified for the other

of the sequencé&),.s:[n]} is the same as its Least Uppercases. Consider; € (—do, —%"). This is an interval in



which fs5(é1) is non-zero , therefore there is a non-zero Theorem 1: For the class of distributionss(d;)
probability p; > 0 of choosing such @;. We have: considered in Proposition 1, starting from an arbitrayy

the feedback algorithm converges to perfect coherence of
aj cos(@] + 01) — aj cos(¢]) > 2¢;

ajsin(¢ — 2)do
4

the received signals almost surely, ). [n] — G°P*

wheree; = (13) or equivalentlyg[n] — 0 (i.e. ¢[n] — 0,Vi) with

- bability 1.
We observe that; andp; do not dependent oa. probability

Proof: We wish to show that the seque s =
The perturbatiord; by itself will achieve a non-zero quende..: ]

Gert bit = .
increase in total received signal, provided that the other Mag(olnl) — given an arbitraryg{l] ¢

Consider an arbitrarily smakk > 0 and defineT,
phasesp; do not get too mis-aligned by their respective y (@)
5 as the first timeslot when the received signal exceeds
" Gort _ ¢,

Mag(¢ + §) — Mag(¢) = Y _ a; (cos(¢; +6,) —cos(¢})) By definition if n < T.(), then Vyess|n] —

GoPt — ¢, d by P ition 1,
=aj (cos(tb’{ +01) — cos(fb’{)) g;g;?c[ob]ggb i 5 s( i an y Froposiuon
o

i

Vhestn + 1 % ybesf[n% > ¢e;) > p for some

> 2, + Z cos(¢? + 6;) — Cos%mﬂantgl > 0 andp > 0. We have:
i>1 _
4)  E(Pestln +1] = Vhetln]) > c1p,vn < T(9)  (17)
We note that sincélag(¢) is continuous in each of  Using [IT) we have:

the phase®?, we can always find &, > 0 to satisfy:
Gopt Z ybest[n + 1]

€1
a; (cos(¢f +0;) —cos(¢])) | < 77—, VIdi < e (15)
’ N—1 :ybest[1]+
In particular the choice; = m, satisfies[(1I5), and .
this choice of; is independent af. With thed;’'s chosen > (ybest [k+1] - ybest[k]) (18)

to satisfy [Ib), we have:

NE

(Prestll + 1] = Vit R)

>
Il

1

Taking expectation we have:

—€e1 < > _aj(cos(¢] +6;) —cos(¢})) < e (16) n
=1 G > B> (Vrestlk + 1] = Viest K]) )
Since f5(6;) has non-zero support in each of the non- h=t

zero intervals(—e;, ¢;), the probabilityp; of choosing > PTOb(Te(@ > n)E(Z(ybest [k + 1] — Vst [K]) | T

«(6) > n)
5; to satisfy [Ib) is non-zero, i.e; > 0, which is -

_ > Prob(T.(¢) > n)ne 19
independent ofp. Finally, we recall that each of th& ( @) ) P (19)

are chosen independently, and therefore with probabiliyhere we obtained{19) by using_{17). Therefore we

p=[1;p: >0, it is possible to finds; to satisfy [IB) have Prob(T.(¢) > n) < %C;; — 0,asn — oo.
and 6;,7 > 1 to satisfy [Ib). Ford chosen as above, Since this is true for an arbitrarily smat, we have
Mag(¢ + &) — Mag(¢) > €1, and therefore Propositionshown thatYy..[n] — G°P* and ¢[n] — 0 almost

1 follows. O surely. O



IV. ANALYTICAL MODEL FORCONVERGENCE

The initial valuey[1] in @0) is set under the assumption

The analysis in SectidiIIEB shows that the feedbadkat the received phase$l] are randomly distributed in
control algorithm of Sectiof TIEA asymptotically con- [0, 27). For subsequent timeslot3jses:[n + 1] in @)

verges for a large class of distributiorig(d;); however

is conditioned onY,..:[n] but the phase vectas([n] is

it provides no insight into the rates of convergenc&0t known. Some remarks are in order regarding this
We now derive an analytical model based on simpld€finition, particularly the relationship offn] with the

intuitive ideas that predicts the convergence behavig#nconditionally) averagees: [n]. Let

of the protocol accurately. We then use this analytlc%I[n+1] _ F(y[n]), where F(y) = E(ybest[n+1]|ybest n] = y)

model, to optimizefs(é;) for fast convergence.

70

received signal strength: y[n]

0 50 lOf_J 150 200 250 300
timeslots, n

Fig. 3.
with N = 100, f5(d;) ~ uniform[—

Motivating the Analytical Model: two simulated iasices

i L}
207 201"

A. Derivation of Analytical Model

(22)

Consider:

E(Ysestln +11) = By, (EDbest [ + 1] Doest 1)) )
= Ey,...[n] (F (Vbest [n]))
~ F(E(Dhestlnl) ) =yl +1] (23)

In most cases, the functiofi(y) is concave, and there-
fore (by Jensen’s Inequality) the approximation [In](23)
represents an overestimate of the unconditional aver-
age of Vuest[n + 1]. Also in different instances of the
algorithm, we would expect to see different random
evolutions of p[n] and Vye.:[n] with time, and an av-
eraged quantity only provides partial information about
the convergence rate. Fortunately, as Elg. 3 shows, even

over multiple instances of the algorithm, the convergence

The basic idea behind our analytical model is thatte remains highly predictable, and the average charac-

the convergence rate of typical realizations)af s:[n]

is well-modeled by computing thexpected increase in

terizes the actual convergence reasonably well. Since the

variation of the randor,.s; [r] around its average value

signal strength at each time-interval given a distributiois small, the approximation ifi.{R3) also works well. Our

f5(0;). This is illustrated in Fig[d3, where we showgoal is to compute?’(y) as defined in[{22).

two separate realizations d%.s:[n] from a Monte-Carlo

simulation of the feedback algorithm.

Note that while [2R) is conditioned Q,.s:[n] being

known, the phase vectai[n] is unknown. AsYyes:[n]

We define the averaged sequenge] recursively as increases, the phasggn| become increasingly clustered

the conditional value oses:[n + 1] given Vyes:[n]:

yl1] = B(Mag(@[1]))

I+ 11 = Egpyy (Vocat 1+ 1| Vocatln] = yln]) (22)

(20)

together, however their exact values are determined by
their initial values, and the random perturbations from
previous time-slots. In order to compute the expectation

in @), we need some information abag(t].



We show in SectioRTV-B that the phasggn] can be (CLT).

accurately modeled as clustered together according to a

statistical distribution that is determined paramettjcal Mag(¢ +0) = ;aieﬂ@ﬁ-ﬂx 27)
as a function o). [n] alone. This is analogous to the — Z a; (COS bi cos §; — sin ¢; sin 51_) +j Z ; (COS bisind
technique in equilibrium statistical mechanics, where the i i

individual positions and velocities of particles in an en- = |(Csyln] + 1) +jx2‘, (28)

semble is unknown, but accurate macroscopic results argyhere C; = E; (cosd;), (29)

obtained by modeling the kinetic energies as following

= Z a; (cos i (cos 0; — C(;) — sin ¢; sin 5i),

the Boltzmann distribution, which is fully determined i
by a single parameter (the average kinetic energy or the (30)
temperature). In our case;[n] are modeled as indepen- Ty = Z a; (cos @i sin d; + sin ¢; cos 61-)

2

dent and identically distributed (for al) according to a

distribution satisfying the constraint:

yln] = Z a; CoS ¢; = NE(al-)E@ (cos gbl-) (24)

Therefore, even though the individug] are unknown, [n]E(cos &)
) y SIXile
we can compute all aggregate functions¢otising this yin] \l
distribution, as if thep, are known. This is an extremely
powerful tool, and we now use it to compuﬂé(y) Fig. 4. Perturbation in the total received signal.

treating ¢[n] as a given. Sectiof IVAB completes the

computation by deriving the distribution used to specify Both x; and z» as defined in[{28) are linear com-

o[n] given Vyes:[n]. binations of iid random variablessin; and cos ;.
From the conditiorVses:[n] = y[n], we have: Therefore as the number of sensdysincreases, these
random variables can be well-modeled as Gaussian, as
yln] = Zaie”’i = Zai cos ¢@; (25) per the CLT [11]. Futhermoreg;,z, are zero-mean

random variables, and their respective variancgsr3
where we used the fact that the imaginary part of thge rejated by:

received signal is zero for our choice of phase reference.

21 2 2 N2
We have the following expressions (omitting the time- R Zai ((1 — C5) — cos(26:)(C5 — 025))
index ong[n] andé[n] for convenience): , 1 )
03 =35 ;ai (1 — cos(2¢i)C’25)
Yool 41] = Mag(¢+9) if Mag(é+0) >yln]  perac,. — B, (cos(25;)) (32)

y[n] otherwise.
(26) With these simplifications, the statistics 9fn + 1]

We now expresdag(¢ + §) as a sum of i.i.d. terms only depends on the density functigi(s;) throughCj

from each sensor, and invoke the Central Limit Theoreand C»5. We have the following proposition.
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Proposition 2: Assuming that the CLT applies for phasess; are distributed independentland uniformly

random variabler,, the expected value of the receivedn [0, 27). In particular, we set;; = 1 for all sensors,

signal strength is given by: which gives G°?* = N. As the algorithm progresses
op —Wn0-¢»?  towards convergence, the values @f are distributed
yln + 1] %y[n](l—p (1—05)) 4+ —e 207 9 o
V2m over a smaller and smaller range. In general, we expect
(33)

that the distributionf,(¢;) of ¢;[n] depends on the

1-C

wherep = Q(M) (34) number of sensorgV, the iteration indexn, and the
1

Proof. First we observe that the small imaginar;?jlsmbunon of the perturbationgs(d;). In the spirit of

. the statistical model, we consider larg and look for
componentz, of the perturbation mostly rotates the 98

received signal, with most of the increasejm + 1] a class of distributions that approximafg(; ).

coming fromz; (see Fig[Hh).

0.25
Mag(¢ +0) = ’C(;y[n] + 1 +j:c2‘
7 (C(;y[n] + ZCl) (35) _é\ 021 1
7
c
Defining p as the probability thad,es:[n + 1] > y[n], 8 0151 i
(E3), (33) readily follow from[[35),[(26) using Gaussiar 2
statistics. 0O 8 o ]
Q
o
. ol
We can rewrite[[33) as: 0.05F 1
yln +1] = F(y[nl]) = y[n] + f(y[n))
0
. 1-C -2 -1.5 -1 -0.5 0 0.5_ 1 15 2
where f(y) = Ulg(y( - 6)) Phase angle (radians)
andg(z) = ——c% — 2Q(z) (36)

(&
V2T
o Fig. 5. Comparing a Laplacian Distribution with a Histogrash
Proposition 2 does not yet allow us to compute thlgmpirica”y Observed Phase Angles

y[n] because it involves the varianeg that depends

on the phases; of the individual sensors. In the next We find that the Laplacian probability distribution

section we present a statistical distribution for that . . -
gives the best resuftsn terms of accurately predicting

allows us to calculate aggregate quantities suchras . . .
ggreg q = the convergence behavior of the algorithm of Section

without knowledge of the individua);. [I=A] Fig. Bl shows an empirically derived histogram

B. Satistical Characterization of Sensor Channels o )
1t is important to note that theé; are notrandom variables, however

The statistical model is based on the assumption thveg statistically parametrize them using a probabilityritistion for the
ake of compactness.

each sensor has a channel to the BS of similar qualii3
2The Laplacian distribution fog; is empirically found to work well,

and unknown phase. This means that this are all when compared with other families of distributions like theiform

approximately equal, and that the initial values of thend triangular distributions.
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from a Monte-Carlo simulation of the feedback controC. Summary of Analytical Model

alongside the histogram. We now explain the details @gctions[ TVZA and[I¥ZB. Our objective is to model

the approximation. the increase over time of the received signal strength
The Laplacian density function is given by [11]:  py averaging over all possible values of the random
1 el erturbations. As mentioned before, we set the channel
Foldn) = ggoe = (37) Permd o
0 attenuations for each sensor to unity ug= 1.
For ¢; distributed according td_{87), we also have: 1) Initially we set the received signal strength as
B(cos 1) — 1 1 i (38) y[l] = V/N. This is the expected value of the
+1¢0 signal strength if the initial phase angles are all
E(cos2¢;) = 1+462 (39) chosen independently i), 27).

Therefore given that at iteration of the feedback 2) At each time-interval (iteration) > 1, given the

algorithm, the phase angles abin] = [¢162...ow], We probability distribution of the perturbations (d;)

have: and the value ofy[n], we compute the Laplacian

parameterg, using [41), and then compute the
yln] = Mag(g[n]) = Y a;e’® = cosg;  (40) Gaussian variance? using [42) and finally[n +

1] using the Gaussian statistics [M35) ahdl (26).
where we used; = 1 in [I0). Now if we parametrize ] g mi35) (26)

all the ¢; using a Laplacian distribution, we can sef V. PERFORMANCEANALYSIS OF FEEDBACK

such thatzi cos p; = NE¢ (COS (b) Thus we USGmS) CONTROL PrROTOCOL

to rewrite [@D) as: We now present some results obtained from the ana-

N (41) lytical model of Sectiod V. Figld6 shows the evolution

y[n] = m

of y[n] derived from the analytical model and also

We are now able to determing given y[n]. from a Monte-Carlo simulation witlv = 100, for two

Proposition 3: The variancer} of z; is given by:

[n]

different choices of the distributiotfs(d;): a uniform

y
= (1-0h - X (€3 -Cw) @)

4-35% +55 with equal probability. The close match observed

distribution in [-35, 55] and a distribution choosing

Proof. Equation [4R) follows using[{32), and thebetween the analytical model and the simulation data

value of the Laplacian parameter frolik41) along witprovides validation for the analytical model.

the observation tha}, cos(2¢;) = NEy(cos(2¢)) = We observe from Fidl6, that the received signal grows
ﬁ. O rapidly in the beginning, but aftey[n] gets to within

about 25% ofG°Pt, the rate of convergence becomes

Using Propositions 2 and 3, we are able to analyticalslower. Also while the simple two-valued probability
derive the average convergence behavior of the feedbati&tribution appears to give good results, it does not
control algorithm. In particular, we recursively calc@at satisfy the condition for asymptotic coherence derived

y[n] by substituting the variance? from {@2) into [3B). in SectionII[-B.
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(8) £5(6:) ~ uniform(— 5, &) (b) f5(6:) ~ 25

Fig. 6. Comparison of Analytical Model with Monte-Carlo Sitation of Feedback Control Algorithm

A. Optimizing the Random Perturbations We are interested id; corresponding to small random
_ o perturbations i.ed; < 5. For such small values af;,
In Fig. [@, we used the same distribution for the _
) . ) ) E3) allows only a small range of possible valuegig§.
perturbations for all iterations of the algorithm. However
. o . o o Indeed we observe thabs(d;) and cos(29;) are very
this choice is not optimal: intuition suggests that it istbes ] i
) o well approximated by the first two terms of the Taylor
to choose larger perturbations initially to speed up the
series:
convergence and make the distribution narrower when 52 -
cos(6) @1 — —, if |§| < = (44)
the phase angles are closer to coherence. We now use the 2 2
analytical model to dynamically choose the distributiofrduation [4#) indicates that boti; andC5; are essen-

#5(5;) as a function ofy[n]. The general problem of tially determined by the second momentipfand there-
choosing a distribution is a problem in calculus of varifore even a one-parameter family of distributiofd; )
ations. Fortunately, it is possible to restrict ourseleeat IS Sufficient to achieve optimality of the convergence
family of distributions without losing optimality, becaais fate.- Fig.L¥ shows plots of the optimal choices of the
the analytical model only depends on the distributiofCs: C2s) pair with N = 2000 over10000 timeslots for
through the two parameterS;, Cs. Furthermore the two families of distributions: (i) the 3-point distributig
parameterss, Cos are highly correlated. To see thisP(£00) = p, P(0) = 1 — 2p parameterised by the
recall from [31) and{32) the definitions 6 andCs; as pair (é0,p), and (ii) the distributionsiniform|[—dy, do]

the expected values abs(8;) andcos(25;) respectively. parametrised by,. At each iteration of the protocol,
Using the identitycos(28) = 2 cos?(5) — 1 and Jensen’s W€ used the analytical model to compute the value of

Inequality, we can show that,s is constrained by the the parameters (i.e. the paifo,p) in case (i) andd

value of C: in case (ii)) that maximizes thg[n + 1] given y[n];
the optimal parameters in each case were determined

202 — 1< Co5 <205 —1 (43) numerically using a simple search procedure. The two
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[
o
o

optimized

curves in Figll7 were obtained by plottiig's, Cas) pair

=
al
o

corresponding to the optimal parameters for cases (i) a

(ii) at each timeslot. The 3-point distribution is flexible

a1
o

enough to permit anyCjs, Css) in the feasible region

received signal y[n]
S
o

(=]

1500 2000 2500 3000

of @3). For the example of Fidl 7, it is clear that the 0 500 1000
. . . . . . %]
uniform distribution achieves values f's, Co5) that is g 50
close to optimal, thereby confirming the intuition Bf{44) & *°
£ 30 1
o 20t J
IS
1 2 105 ,
optimized over uniform distributions =
0.8r Q 0 ' ' y !
o 0 500 lOO(_) 1500 2000 2500 3000
0.6 timeslots, n
optimized over general distributions
0.41 1
© 0.2r Fig. 8. Optimized algorithm compared to fixeds(d6;) ~
ON of uniform[—&, dg] for different 5o and N = 200
-0.2r 1
Feasible
-0.4r Region i
-0.6f B, Scalability Results
-08r 1We now turn to the analytical model to study the
o 02 04 06 08 sgalability of the feedback algorithm with the number
C » .
5 of transmitting sensord/. We show the following scal-
ability results:
Fig. 7. Near-Optimality of a One-Parameter Distribution - The expected received signal strength at any time,

always increases when more transmitters are added.

We now use the family of distributiong;(6;) ~ - The number of timeslots required for the expected

uniform[— 6y, 6] to obtain insight into the optimal con- signal strength to reach within a certain fraction

vergence rate. Fid] 8 showsn] as a function of for of convergence always increases with more trans-

fixed values ofd, as well as for the optimized algo- mitters, but increases no faster than linearly in the

fithm. We observe that the convergence rate decreases NUmber of transmitters.
with time in all cases, and the optimized algorithm Theorem 2: Let y;[n] and ya[n] be the expected
converges significantly faster than any fixed instanckeceived signal magnitude at timesiotvhen the number
Fig.[d also shows the variation of optim&l with time. of transmitting sensors i&; and N, respectively. If the
This confirms our intuition that at the initial stages ofensors use the same distributigip&s;) for all timeslots
the algorithm, it is preferable to use larger perturbatiorts @hd N2 > Ny, then the following holds for alh:

(corresponding to largé,), and wheny[n] gets closer

v
<

y2[n] > y1[n] (45)

ang YL - v2l] (46)

(corresponding to smalle¥y). 1 N

to G°Pt, it is optimum to use narrower distributions
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Proof. We offer a proof by induction. From Sectiondistributions. We apply Theorem 2 to the case where

=Cl we know thatys[1] > y1[1] and% > ”]2\,[;] To we use the distributionfs(d;) optimized for Ny
prove [45), we need to show thgf[n + 1] > y1[n + 1] sensors in both cases. By definitigg[n] > y2[n], and
givenys[n] > y1[n]. 71[n] = y1[n], thereforegz[n] > ¢1[n], ¥n. This proves
We writey; [n+1] = Fi(y1[n]), y2[n+1] = Fa(y2[n]) @H). Using the same argument for the distribution
whereF; (y) and F»(y) are defined as i .(B6). Note thatfs(5;) optimized for N, sensors, we can provE_{46)]
Fi(y1[n]) (and Fx(y2[n])) depends on the time index
n not only throughy:[n] (y2[n]), but also through the  Another important criterion for scalability is the num-
distribution f;5(0;). We have suppressed this additionaber of timeslots7(N) required for the algorithm to
time-dependence to keep the notation simple. The fureenverge to a fixed fraction, say = 0.75 or 75%
tions Fi(y) and F;(y) satisfy the following properties: of the maximum forN transmitting sensors. Theorem
Fao(y) > Fi(y), Yy (47) 2 shows thatT;(N) is an increasing function ofV.
Next we show that when the feedback algorithm is

Fi(y")> Fi(y"), andFa(y") > Fa(y) if y© >y~

(48)
) faster than linearly.
To see this we observe froni{42) that for the same
Theorem 3: The number of timeslots to convergence

appropriately optimizeds(N) increases withN no

value of y, o1 is larger for largerN, and sincef(y)

: . . . satisfies the following:
in @8) increases witlr;, {@4) follows. To showl[(48), it

. - o T:(N .
is sufficient to show thaF} (y) and F»(y) have a positive Nlim T (N) < tr, wheret; is some constant. (51)
—00
derivative with respect tg. This can be shown readily
) o o Proof. First we usel(43) to get a lower-bound for the
by differentiating the expression iB{36):

div(y)  d (1-Cs)

d—y = d—y(y+f(y)) = 1_(1—05)Q(y

variances?. With y[n] = f-G°P* = f- N we have:
) >Cs >0
(49) (1—-C5)* <Cf = Cos < (1-C3) (52)

g1

We are now ready to complete the proof bfl(45) b)(Jsing the upper bound fron{B2) ifH42), we have:
induction. Given that;[n] > y1[n], we have:

(1—CF) (AN — 4y[n]
02> N
yaln+1] = Fa(ye[n]) > Fi (ga[n]) > Fy (s [n]) = g1 [n+1] 1 2 (4iV - 3y[nl)
(50) > 2N (1 — c@(ﬁ) (53)

where we use 7) an 8) for the two inequalities.
dL37) aniL{48) a We now use a bound for the Gaussian Q-Function:

This completes the proof offU5). The proof &I146)

1 3
by induction is similar and is omitted. O Q(z) >

+ :75) (54)

I
\/27re r a3
Using [53), we rewrite[{d3) to get:
Corollary: The scalability relation§{45) an {46) hold

22 1 3
when the sensors use optimized distributigigés;) in Ay[n] = yln + 1] — y[n] > ;21_6’7 (:102 E)
7T
both cases. (55)
Proof. Let g1[n] and g2[n] be the expected received _
wherex = M (56)

signal magnitudes using the respective optimized o1
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The bound in [[B5) has a maximum at ~ 3.6; C. Tracking Time-varying channels

choosing &5 such that: is close toro, does notneces- g far we have focused on the simple case of time-

sarily optimize the RHS ir{35), because also depends . ariant wireless channels from each sensor to the BS.

on Cs. However such a choice faf's does provide a |, practice, the channel phase response varies because of

meaningful lower bound on the optimaly*[n]. Doppler effects arising from the motion of the sensors

or scattering elements relative to the BS. In the dis-

1-f

2170

> 0
1= f (4 — 3f) (®7) tributed beamforming scenario, Doppler effects also arise
* 2(1-f 1 =1 3 because of drifts in carrier fre
z e (— - 2 guency between the local
Ay [n]>f(4—3f)(\/ﬁe (:co xg)) (58)

oscillators of multiple sensors. Therefore an important
where [&F) is obtained by backsubstitutibgl (56) ififd (53jperformance metric for the feedback control algorithm
Let us denote the RHS of(b8) b (f).

We observe that the lower bound [IX58) only depend¥e expect that the algorithm should track well as long
on the fractionf = % Let Ty af(N) be the number as the time-scale of the channel variations is smaller

of timeslots required for the feedback algorithm téhan the convergence time of the algorithm. In light

is its ability to track time-varying channels. Intuitively

increasey([n] from a fractionf — Af to a fraction f
of convergence. I\ f is small enough, we can udel58)performs better for smalle¥N because the corresponding

of the scalability results in Sectidi_M-B, the algorithm

convergence time is smaller.

to write:
A N _ T N 100 T T T T
f-N =yln] —yln = Tyar(N)] = S=uniform[- T130,730] y
Tt,af(N) = A S w~'~m
_ _ - 8ot ,m’“ ' "
- Z Ay [n t] E f’ 1 -wﬂm ’ Y
t=1 g 70 ,,' " ‘wk ,"/ .\”\, N, i
(<)) / r‘,"/ —=uni — " A
~ Ay[n] Traf (N) E ol W‘,J’u ,'/p 0o & unlfornT’[ T060,1760] W
C_G 50 "?}V\"s”x’l ‘\'(‘ ! fyn ! 4;‘\%“ “‘ )'Jw\'ﬁ J‘I\ | /‘ )’}4 W"w 1|Mm‘ ;;""‘l;'ﬁ) ! \{" ?\W\ “N
. IR T AT O L VM R P R Y Pl
> BUITrasn) 69 8 i Wi [ A e B A
Af-N » 7;"]/‘ j Y | ' ‘}"” AV
| | ) .W
ThereforeTs A (N) < K(f) (60) E S=uniform[~ 1910,7710] ! 1
=
o 20f 1
. . . . (_) I
Since Ty is just a sum of terms likeTyar, &) @ |
’ S = 10 1
immediately follows. O o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Theorem 3 is illustrated by the results in Hi§. 9, where

timeslots index, n

the number of timeslots required to get within a certaiig. 10. Tracking Performance for Time Varying Channe¥s:= 100,

fraction of convergence is plotted against number d@foppler rate

transmittersN for a fixed distribution (Fig[ 9(&)) as
well as optimized distributions (Fif. 9{b)). These results A simulation of y[n] with time in the presence of

show that the feedback algorithm is highly scalable witbhannel time-variations is shown in Fig:10. This plot

number of transmitters.

=7 radians/timeslot

200

uses a fixed distribution for the phase perturbations, as
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Fig. 9. Scalability of Feedback Control Algorithm with Nuerbof Sensors

the analytical model for optimization is not applicablés not clear. In addition the stability and convergence

to the time-varying case. A more detailed study of thieehavior of the feedback control algorithm under non-

tracking performance of the feedback control algorithridealities like time-varying channels, and the effects of
is beyond the scope of the present work. noise are open issues for future work.

While we use the term “sensors” for the cooperating

VI. CONCLUSION nodes performing distributed beamforming, the tech-

In this paper, we presented a simple algorithm fd?ique developed here is of more general applicability.

distributed beamforming in sensor networks, that ilgor example, it could be used as the basis for cooperative

based on the idea of using SNR feedback from tH:é)mmunication between clusters of nodes in a wireless

receiver to perform phase synchronization in an iterati\?eol hoc network. In such a context, it would be of interest

manner. This algorithm can be easily implemented f¢ examine how the use of distributed beamforming

a decentralized manner and is guaranteed to achié&'/%md impact the design of medium access control and

asymptotic coherence under mild assumptions. We algstwork layer protocols.

derived an analytical model that predicts the performance
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