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Abstract

Constructions of woven graph codes based on constitueck laled convolutional codes are studied. It is shown
that within the random ensemble of such codes basedmartite, s-uniform hypergraphs, wheredepends only on
the code rate, there exist codes satisfying the Varshaniiwei®(VG) and the Costello lower bound on the minimum
distance and the free distance, respectively. A connedtt&ween regular bipartite graphs and tailbiting codes is
shown. Some examples of woven graph codes are presentedhgimem an example of a rafe,, = 1/3 woven
graph code withis... = 32 based on Heawood’s bipartite graph and containing 7 constituent rateRc = 2/3
convolutional codes with overall constraint lengtifs= 5 is given. An encoding procedure for woven graph codes
with complexity proportional to the number of constituentlies and their overall constraint lengthis presented.

I ndex ter ms—Convolutional codes, girth, graphs, graph codes, hyppttg, LDPC codes, tailbiting codes, woven
codes.

. INTRODUCTION

Woven graph codes can be considered as a generalizatiowafdosity parity-check (LDPC) block codes [1].
Their structure as graph codes makes them suitable fotiterdecoding. Moreover, the LDPC block codes are
known as codes with low-complexity decoding and they can dwesicered as competitors to the turbo codes
[2] which are sometimes called parallel concatenated coiesnentioned in [3], the underlying graph defines a
permutation of the information symbols which resemblesititerleaving in turbo coding schemes.

On the other hand, similarly to the LDPC codes, graph codeallyshave minimum distances essentially smaller
than those of the best known linear codes of the same paresn@te first glance, the minimum distance of a graph
code does not play an important role in iterative decodingesithe error-correcting capability of this suboptimal
procedure is often less than that guaranteed by the minimstande. However, in general, the belief-propagation
decoding algorithms work better if thgirth of the underlying graph is large, that is, if the minimum drate of
the graph code is large [4].

In the sequel we distinguish between graph, graph-basedyamen graph codes. We say thagraph code is a
block code whose parity-check matrix coincides with thedance matrix of the corresponding grag@raph-based
codes constitute a class of concatenated codes with constituenk ltodes concatenated with a graph code (see,
for example, [3]). Each vertex in the underlying graph cepands to a constituent block code. The main feature
of these codes is that the block length of their constituémtibcodes coincides with the degree of the underlying
graph.
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We introducewoven graph codes which are, in fact, graph-based codes with constituentioboces whose block
length is a multiple of the graph degregthat is, their block length ig, wherel is an integer. In particular, when
[ tends to infinity we obtain convolutional constituent cades

Distance properties of bipartite graph-based codes withstitoient block codes were studied in [3]. It was
shown that if the minimum distance of the constituent blookles is larger than or equal & then there exist
asymptotically good codes with fixed constituent codes ajtbese graph-based codes. Also it was shown in [3]
that for some range of rates, random graph-based codes leitk bonstituent codes satisfy the VG bound when
the block length of the constituent codes tends to infinitpe @isadvantage of graph-based codes that becomes
apparent in the asymptotic analysis is that good perforesican only be achieved when the block length of the
constituent block codes (which in this case coincides whth graph degree) tends to infinity. In practice this
leads to rather long graph-based codes with not only rathghr tlecoding complexity of the iterative decoding
procedures but also high encoding complexity.

In this paper, we consider a class of the generalized grapbeébcodes which we call woven graph codes with
constituent block and convolutional codes. They are basedmartite, s-uniform hypergraphs. Notice that graph-
based codes with constituent block codes based on hypbasgyvegre considered in [5], [6]. It is mentioned in [5]
that Gallager's LDPC codes are graph codes over hypergraphs

We consider first woven graph codes with constitugntib) block codes. A product-type lower bound on the
minimum distance of such codes is derived. In order to amatheir asymptotic performances we modify the
approach used in [3] te-partite, s-uniform hypergraphs and constitugit, [b) block coded, It is shown that when
I grows to infinity in the random ensemble of woven graph codiéis binary constituent block codes we can find
s > 2 such that there exist codes satisfying the VG lower boundhemtinimum distance for any rate.

In order to generalize the asymptotic analysis to woven lyreges with constituent convolutional codes we
assume that the binary constituent block code is chosen asaatal (ZT) terminated convolutional code and
consider a sequence of ZT convolutional codes of increaliagk length!. It is shown that when the overall
constraint length of the woven graph code tends to infinitghie random ensemble of such convolutional codes
we can finds > 2 such that there exist codes satisfying the Costello lowendan the free distance for any rate.

We also describe the constituent convolutional codes asklidodes over the field of binary Laurent series [8].
This description as well as the notion bifock Hamming distance [9] of convolutional codes is used to @edv
product-type lower bound on the free distance of woven giagates with constituent convolutional codes and to
construct examples of such woven codes with ttg = 1/3. For a given hypergraph the free distance of the
woven graph code depends on the numbering of code symbalsiat#isg to the hypergraph vertices. By a search
over all possible permutations of the constituent code wmdoan example of a rat®,, = 1/3 woven graph
code with overall constraint length= 64 and free distancéy.. = 32. The rateR,,, = 1/3 woven graph code is
based on Heawood's bipartite graph [10], [11] and contagmstituent convolutional codes with overall constraint
lengthv© = 5 and free distancéy,, = 6.

We consider also the encoding problem for graph and wovegshgrades. The traditional encoding technique for
graph codes has complexity(N?), where N is the blocklength. We show by examples that some regularkblo
graph codes are quasi-cyclic and thereby can be interpestddilbiting (TB) codes (see, for example, [12], [13]).
It is known that the encoding complexity of such codes is propnal to the overall constraint length of the parent
convolutional code.

By using a TB representation for the graph code we can cartsdruexample of an encoder for a woven graph
code that is also represented in the form of a TB code but wighiadl constraint length less than or equabkia/©,
wheren is the number of constituent convolutional codes with o@@nstraint lengthv© each.

In Section Il, we consider some propertiessegbartite, s-uniform, c-regular hypergraphs. We define woven graph
codes with constituent block codes as well as with constitgenvolutional codes and obtain product-type lower
bounds on their minimum and free distances. Then, in Sedliiowe derive a lower bound on the free distance of
the random ensemble of woven graph codes. In Section IV, pkesnof woven graph codes are given. We conclude
the paper by considering encoding techniques for graphscadd woven graph codes in Section V.

"When we were preparing this paper we were informed that tlssipitity of achieving the VG bound by considering hypepira was
known to A. Barg [7].



Il. PRELIMINARIES

A hypergraph is a generalization of a graph in which the edges are subsgtstaces and may connect (contain)
any number of vertices. These edges are called hyperedgegpérgraph is called-uniform if every hyperedge
has cardinalitys or, in other words, connects vertices. Ifs = 2 the hypergraph is simply a graph. Thegree
of a vertex in a hypergraph is the number of hyperedges that are corthextEontain) it. If all vertices have the
same degree we say that this is ttegree of the hypergraph. The hypergraph is-regular if every vertex has the
same degree.

Let the set” of vertices of ans-uniform hypergraph be partitioned intodisjoint subsetd’;, j =1,2,...,t. A
hypergraph is said to bepartite if no edge contains two vertices from the samelggtj = 1,2,... .

In the sequel we considerpartite, s-uniform, c-regular hypergraphs. Such a hypergraph is a union difjoint
subsets of vertices. Each vertex has no connections in itssevand is connected with— 1 vertices in the other
subsets. In Fid.]1 &-partite, 3-uniform, 4-regular hypergraph is shown. It contains three sets ofcemt They are

Fig. 1. A 3-partite, 3-uniform, 4-regular hypergraph.

shown by triangles, rectangles, and ovals, respectivdigrd are no edges connecting vertices inside any of these
three sets. The vertices are connected by hyperedges eadhiahf connects three vertices.

A cycle of length L. in the hypergraph is an alternating sequencé. af 1 vertices and. hyperedges where all
vertices are distinct except the initial and the final vertegkich coincide, and all edges are distinct. Tdieth of a
hypergraph is the length of its shortest cycle. In Fig. 2 wewsh subgraph that contains the shortest cycle of the
3-partite, 3-uniform, 4-regular hypergraph in Figl 1. It consists of the vertise$0, and5 and has girth equal to 2.
We introduce the notion of eompact (> d)-connected subgraph in the hypergraph. It is a connected subgraph in
which each vertex is incident with at leashyperedges. We call the length (number of hyperedges) cdhibetest
compact subgraph it6,d)-girth. In Fig.[2 the hyperedges belonging to the shorfest2)-compact subgraph are
marked by circles. It is easy to see thagj-girth is 6.

A 2-partite, 2-uniform hypergraph is a bipartite graph. For such a hy@grigithe 2,2)-girth is equal to the girth
and a compact subgraph is a cycle. Heawood’s bipartite dteEIh[11] with 14 vertices an®1 edges is shown in
Fig.[3. This graph contains a setof= 7 black and a set of. = 7 white vertices. Each vertex has no connections
within its own set and is connected with= 3 vertices from the other set. The girth of the Heawood graph is

A. Graph-based codes and graph codes

In order to illustrate the structure of a binary graph-basledk code with constituent block codes we represent
the Heawood bipartite graph using a so-called Tanner graphds shown in Fig.14.

We introduce a set ofic = 21 (variable) vertices which correspond to the code symbad&hbof the2n = 14
(constraint) vertices on the right- and left-hand sidegesponds to one of 14 parity checks. The= 3 edges



Fig. 2. A shortest compact subgraph.

Fig. 3. Heawood's bipartite graph.

leaving one constraint vertex correspond to a codeword efctnstituen{c, b) block code of rateR = b/c. The
parity-check matrix of the corresponding graph-based auitte binary constituent block codes is

o= (1)

where the parity-check matrik/; of sizen x nc =7 x 21 has the form

H 0 0 0 0 0 O

0O H° 0 0 0 O0 O
Hy = : e
0O 0 0 0 0 0 H°
where H¢ is a size(c — b) x ¢ = (3 — b) x 3 parity-check matrix of the constituent block code, afigl is a size
n X nc = 7 x 21 parity-check matrix which is the permutation of the colunuisH; determined by the graph.
Notice that in general by choosifg< ¢ and assigning constituent block codes of different ratés= b/c to
the same graph we can obtain graph-based codes of diffeatgg. in general, since in anpartite, s-uniform,
c-regular hypergraph the total number of parity checks isattpusn(c — b), the code rateR,;, of the graph-based
code is .

RngW%(CC_))ZS(Rc_1)+1 )

with equality if and only if all parity-checks are linearlpdependent. I = 2, then we getRy, > 2R — 1.



Fig. 4. A Tanner graph ¢ = 3, n = 7) representation of Heawood’s bipartite graph.

The simplest example of a Heawood graph-based code can bm@ity choosing as constituent block codes
a single-parity-check code of rafe® = 1/3. Then the parity-check matrik/¢ has the form

H=(11 1)

and the parity-check matrix of the graph-based code is

1 2 3,4 5 6,7 8 9:10 11 12,13 14 15,16 17 1819 20 21

1 1 1,0 00100010 0 010 0 0:10 0 010 0 0[O0
000!l 1110 00'0 0 0'0 0 0'0 0 0'0 0 0] 2
000,000,111, 0 0 0,0 0 0/ 0 0 0,0 0 04
000,000,000,1 1 1,0 0 0,0 0 0,0 0 036
0001000100010 0 011 1 110 0 010 0 0]38
00 0'000'000'0 0 0'0 0 O0O'1 1 1!'0 0 0]10

Hgy =Hy=| 00 0,0 00,000, 0 0 0,0 0 0,0 0_ 0,1 1_ 112 3)

I7070,0170,0700,0° 0 1,0 0 0,0 0 0,0 0 01
oo 6r120 00 1 0r0 O Oro o0 11r0 O Oro o0 o0 3
0 00'000'T00'0 1 0'0 0 0'0 0 1'0 0 0]S5
000,000,000,61 0 0,0 1 0,0 0 0,0 0 1]7
001,00 0,000,0 0 0;1 0 0,0 1 0,0 0 0129
00 010 0 110 0010 0O 010 0O 011 0 010 1 0|11
010'000'0011'0 0 0'0 0 0'0 0 0'1 0 o0]13

In this case the graph-based code coincides with the gragé sioce[(B) is the incidence matrix of the Heawood
graph. In [4] it is proved that the minimum distance of thedsijie graph-based code with single-parity-check
constituent codes i8,,;n = g, whereg is the girth of the corresponding graph. Notice that for therler graph we
havedin = g/2. The parity-check matriX{3) is & x 21 parity-check matrix. Taking into account that one check
is linearly dependent on the other, we obtaif2a, 8) binary block code. Its minimum distancedg;, = g = 6.



Consider the hypergraph shown in Hig. 1. Its incidence mdiais the form

1 2 3 4,5 6 7 8,9 10 11 12,13 14 15 16

I 1 1 11000010 0 0 010 0 0O 0] O
0000'L 11 1'00 0 0'0 0 0 0|1
0000,0000,1 1 1 1,0 0 0 0|2
0 000,000 0,0 0 0 0,1 1 1 1]|3
"I700 070 T 000" 0T T 00 00 14

Hyg=Hwyp=| 01 00,001 0,0 0 0 1,1 0 0 035 4)

0010,000 1,1 0 0 0,0 1 0 0|3®%
000 111 00010 1 0 010 0 1 0|7
"T00 01T 000,170 0 01 0 0 038
0100,01 00,01 0 0,0 1 0 0|29
00101001010 0 0 110 0 0 1]10
0001'000 1'00 1 0'0 0 1 0|11

and is al2 x 16 parity-check matrix of a hypergraph-based code which ¢dexwith the parity-check matrix of
the hypergraph code. Each column represents a hyperedgea@hdrow represents a vertex of this hypergraph.
For example, the first four rows represent the vertices 1, and 4 (triangles), the next four rows he vertices 5, 6,
7, and 8 (rectangles), and the last four rows the vertice9911, and 12 (ovals). The first column represents the
hyperedge which connects the vertices 1, 5, and 9, the sexmuohn the hyperedge connecting vertices 1, 6, and
10 etc. The rows of [(4) are linearly dependent. By removing two tyacthecks we obtain 416,6) linear block
code with the minimum distanaé,;, = g3 2 = 6, wheregs - is the §,2)-girth of the hypergraph. The rate of this
hypergraph code i}, = 3/8, which satisfies inequality [2),

3 1

The Tanner version of this hypergraph is shown in Elg. 5.

Fig. 5. A Tanner graph representation of &, 6) hypergraph-based code.



For ans-partite, s-uniform, c-regular hypergraph-based code with constituent bloclesade have the following
theorem.

Theorem 1: The minimum distance of a hypergraph-based code based osipantite, s-uniform, c-regular
hypergraph with £d,; )-girth g, 4 ~and containing constituent block codes with minimum diséadf; > 2

min
IS

dmin = 9s,de,;,

Proof. Any nonzero codeword in agtpartite, s-uniform, c-regular hypergraph-based code always corresponds to a
connected> d< ; )-subgraph or a set of disjoint connected subgraphs. Théxgaphs are calledctive [14], [4].

All hyperedges and vertices in an active subgraph are altedcactive. The number of hyperedges in the shortest
connected subgraph is equaldg,- . Any nonzero symbol in a codeword corresponds to an actipetegge in

the graph. By using the arguments given above, we concluatefah any codeword,
wh(v) > gsde

wherewy (v) is the Hamming weight ob. Minimizing overv completes the proof.

B. Woven graph codes with constituent block codes

Now assume that the constituent code assigned to the hgpérgertices is a binaric, [b) linear block code
determined by a parity-check matrix

HE o HS, ... HE,
HC: : 21 | 22 - : 2.c (5)
Hi, 1 Hicp)o Hie_p).c

whererj € B« is a sizel x | matrix, B;; is the set of all possible binary matrices of size [.

Let Co(H®) denote such a binaryic,b) constituent block code determined by the matfix (5). We tadi
corresponding hypergraph-based code WithH¢) as constituent codesveoven graph code with constituent block
codes.

Consider an example of a woven graph code based on the Wpgiiph with girthg = 4 shown in Fig[6. The
Tanner version of this the so-called “utility” bipartiteagrh is shown in Fig.17.

0 1
5 2
4 3
Fig. 6. Utility bipartite graph.
The incidence matrix of this graph is
111,00 0/0 00
00 0;1 11,000
00 0r0 0 O0r1 1 1
He=1"710g0 1000 1| ©)
001,100,010
01000 1'1 0 0



Fig. 7. A Tanner graph representation of the utility bigertraph.

We use a constituent (x 3,4 x 2) linear block code withi’ . = 3 determined by the parity-check matrix
H® = (H{ H; Hy)
1000,1110,1100
:0100:0111:0110
0010,2011,0011
000 T11T'T 10 1'1T 001

By searching over all possible permutations of the matrig¢s Hs, and H5 we found the following parity-check
matrix of the woven graph code with the best minimum distance

H{ H§ H§ 0 0 0 0 0 0
0 0O 0  Hf Hs H;, 0 0 O
| o o 0,0 o0 o0 ,Hf H§ Hj
He=1"gz=9 " "0770 H; 00 0 H | @
0 0 H{'HS 0 O0'0 H5 0
0 H; o0'o0 o0 Hi'H5 o0

The matrix [T) describes @6, 12) linear block code withd,,,;;, = 10.

Any codewordv® of the (lc,lb) constituent block code can be represented as a sequencklatks of length
[, that is,v° = (v{,v5,...,v%), wherev{ = (v§,v%,...,v5), i = 1,2,...,c. We define theminimum Hamming
block distance between the codewords’ and o¢ of the constituent block code as

dpioer = min_ {wpioer (v — )}
VEAED

wherewsy, .. (v¢) = #(v§ #0), i =1,2,...,c. Next we will prove the following theorem.
Theorem 2: The minimum distance of woven graph codes based-partite, s-uniform, c-regular hypergraphs
with (s,dg;,..)-girth gs 4.~ and containing constituent block codes with minimum diséad ;| and minimum

block distancei;, .. > 2 can be lower-bounded by

Gs,d¢ ve c
dmin > max {$7 3} dmin'

Proof. Any nonzero codeword corresponds to an active connectbdraph or a set of disjoint connected
subgraphs and the number of hyperedges in the shortestagbgrg; 4 . Any nonzero symbol in a codeword

block

activates a hyperedge in the graph, that is, not less ¢h@mstituent subcodes correspond to a codeword. Since at

mostc hyperedges are connected with any hypergraph vertex treenumber of active constituent subcodes can

be lower-bounded by g
S50k

(&
Taking into account that any codeword of block weight gretitan or equal taij, . in the constituent block code
has a weight at least equal #j;, we obtain the following inequality

Gs,d¢
wy(v) > maX{%,S} min

for any codewordv and the proof is complete.
From Theoreni]2 for the woven graph code determined by (7) wairkthatd,,;, > max {%, 3} 3=0.



C. Woven graph codes with constituent convolutional codes

Woven graph codes with constituent convolutional codesbeaconsidered as a straightforward generalization of
the woven graph code with constituent block codes. AssumtethieC, (H ) code is chosen as a zero-tail terminated
(ZT) convolutional code and consider a sequence of ZT camiaslal codes with increasing It is evident that
when! tends to infinity the(lc, ib) constituent cod€y(H¢) can be chosen as a ral& = b/c binary convolutional
code with constraint lengtlx. Then the corresponding woven graph code has Rate s(R° — 1) + 1 and its
constraint length is at mostv©.

Another description of woven graph codes with constituemvolutional codes follows from the representation
of the constituent convolutional code in polynomial fornetlG<(D) be a minimal encoding matrix [8] of a rate
R¢ =b/c, memorym® convolutional code, given in polynomial form, that is,

gn(D) ... gi.(D)
G°(D) = L (8)
9 (D) o (D)

wheregs; (D) = gffo) +gf§1)D +gf§2)D2 + - +gfj(m)Dm, i=1,2,...,b,j=1,2,...,¢, are binary polynomials
such thatm® = max; j{deg gf;(D)}. The overall constraint length i8° = 3, max;{deg gf;(D)}. The binary

information sequenca®(D) = (u§(D),us(D),...,u;(D)) is encoded as
v(D) = u(D)G*(D)

wherev¢(D) = (v{(D),v§(D),...,v5(D)) is a binary code sequence. LEt°(D) denote a parity-check matrix
for the same code,
hir(D) ... hi(D)
H(D) = P 9)
hin(D) .. hi (D)

wherer = ¢ — b is the redundancy of the constituent code.

We denote bylFy((D)) the field of binary Laurent series and regard a rRte= b/c constituent convolutional
code as a rat®® = b/c block codeC* over the field of binary Laurent series encoded¥yD). Then its codewords
v¢(D) are elements ofy((D))¢, which is thec-dimensional vector space over the field of binary Laurenese
[8].

The minimum Hamminglock distance between the codewordg D) and v (D) is defined [9] as

dplock = o (D){wblock(vj(D) vi(D))}
wherewyoek (v(D)) = #(vi(D) # 0) is the Hamming (block) weight o6 (D) = (v1(D),v2(D),...,v.(D)).

Representing a convolutional code as a block code over thiedidinary Laurent series we can obtain a woven
graph code with constituent convolutional codes as a gépatian of a graph-based code with binary constituent
block codes. For example, a parity-check matfix, (D) of the rateR,,, = 4/3—1 = 1/3 Heawood’s graph-based
code with R® = 2/3 constituent convolutional codes has the form

hS hS RS, 0 O 0,0 O 0,0 O O,0 O 0,0 O 0,0 0 O
0 O O (hf RS A5+ 0 O O,0 O O,0 O O;0 O O;0 0 O
0 0 0'0 O O 'hS A RS'O O O'0 O O'0 O O0'0 O O
0 0 0,0 0 0,0 O O ;hf hf 5,0 0 0,0 0O 0,0 0 0
0O 0 0,0 O 0,0 O 0,0 O O,hf RS RS, 0 O 0,0 0 O
o o0 0r0 O O1r0 O Or0 O Or0 O O1tvhf A5 A51 0 0 O
0 0 0'o 0O 0'0 O O0'0O O O'0O O O'0 O O/'RS hS h
Hyg(D) = K0T 0,0 £ 0,00 0,0 0 £70 60,0 0 0,0 0 0 (10)
0 0 0.t 0 0,0 t 010 O 010 O 10 0 00 0 O
0 0 0'0 O O0'#¢ 0 0'0 ¢ 0'0 0 O0'0 O 10 0 0
00 0,0 0 0,0 O O0,;¢ 0 0,0 t5 0,0 0 0,0 0 ¢
0O 0 t,0 0 0,0 O 0,0 O O0,t% 0 0,0 t 0,0 0 0
0 0 010 O %10 0 010 O 010 0 O01¢ 0 010 t 0
0o t5 0'o o 0'0o O t'0o 0o 0'0O 0O O0O'0O O O0't 0 0
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where h§ andt{ are short-hand forh§(D) andtf(D), respectively, and?(D) = (h{(D) h5(D) h§(D)) is a
parity-check matrix of the rat®° = 2/3 constituent convolutional code arid; (D), t5(D),t5(D)) is one of six
possible permutations df{ (D), h§(D), h§(D).

Exploiting the above definitions we can interpret this hbip@arwoven graph-based code with constituent con-
volutional codes as follows. The left column of vertices ig.H4 represents: parity checks each of which
determines one ai constituent fixed and identical convolutional codes and the branches represent the elements
vij(D) € Fo((D)), i even,0 < i < 2n—2,1 < j < c. Similarly, the right column of vertices represents same
convolutional codes and theitc branches represent the elemen;fﬁ(D) € Fo((D)), i 0dd, 1 < i < 2n — 1,

1 < j <¢, where the se{vfﬁ(D)} is a random permutation of the Z‘?jL(D)} determined by the graph.

We can also regard the left constituent convolutional codes as a warp with threads. Each of the right
constituent convolutional codes are tackedcoaf the threads in the warp such that each thread of the warp is
tacked on exactly once. Thus, our construction is a speai# of a woven code [17] and we call this graph-based
code awoven graph code.

Theorem 3: The free distance of a woven graph code based osy@antite, s-uniform, c-regular hypergraph with
the (s,d};,..,)-9irth g 4c  and containing constituent convolutional codes with frégasced;,, and minimum
block distancely,.. > 2 can be lower-bounded by

divee > max {gs,dcglock : S} e .
Proof. Since woven graph codes with constituent convolutionalesocan be considered as a generalization of
woven graph codes with constituent block codes, the thedolows from Theoreni 2 whei tends to infinity.

For a woven graph code based on a bipartite graph with gidind containing constituent convolutional codes
with minimum block distance,; . = 2 and free distance,, by a straightforward generalization of the approach
of [4] we obtain the following tighter bound on the free dista

diree > max {g 2} dj (11)

free*

[1l. ASYMPTOTIC BOUNDS ON THE MINIMUM DISTANCE OF WOVEN GRAPH CODS&

We will show that the ensemble of random woven graph codesdbas randomns-partite, s-uniform, c-regular
hypergraphs with a fixed degreeand with a fixed number of verticesin each subgraph contains asymptotically
good codes. In order to prove this we will modify the approacha].

A. Woven graph codes with constituent block codes
First we consider the ensemble of random woven graph cod#és rafe R° = b/c constituent block codes

determined by the edges of a randerpartite, s-uniform, c-regular hypergraph corresponding to the time-varying
random parity-check matrix

H, m1(H1)
H o (H
- | 2 - 2(' 2) 12)
f[s WS(HS)
where H; = m;(H;), i = 1,2,...,s, is a block matrix of sizenc(1 — R®) x nc (or a binary matrix of size
n(c — b)l x ncl) andm; denotes a random permutation of the columndZpf
g#Y o ... o0
o H® o .
Hi=1 . _ : (13)
o ... o H®™
wherer(t), t = 1,...,n, denotes the random parity-check matfix (5) which deteesithe(lc,!b) constituent

block code and: is the number of constituent codes in each subgraph.
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Remark: In [3] a more restricted ensemble of random codes is studigchich all matrices are identical random
matrices. In the proof of Theorem 1 we need that the syndrasngonents are independent random variables in
the product probability space of random matrices and rangermutations. The following simple example shows
that this is not always the case if all matrices are identical

Considern = 1 constituent block codes of block length= 2 with b = 1 information symbols. This example
is rather artificial since the rate of the constituent blookeR¢ = 1/2 and therefore the rate of the graph-based
code withs = 2 is Ry, = s(R°— 1) + 1 =2R°—1 = 0. In this case the parity-check matrix of the code has the

form I
. 1
Hog = ( o )

wherer is a random permutation af elements. First assume that all matrices are identical,ishdd; = Ho.
There are only 8 equiprobable elements in the product speceely,

0 0 0 0 01 0 1
o) = (a0 ) (oo ) (5 1) (Vo)
1 0 10 11 11
1 0/)°’\ 0 1 /)°\1 1)’ 11 '
For any vectorr of weight 1 we have the following set of random equiprobalyiedsomes:

(@HL} = {(00).(0 0).(0 0).(0 1),

(1 1),(10),(1 1),(1 1)},

Therefore,

=

3
P(xHy, = Olwp(z) = 1) = 3>

If H; and H, are both random and independent this probability is equal4o

Although this remark contradicts the proof of Theorem 3 iy {Bere exists another (combinatorial) way to prove
the same statement for identicd} [16].

Next we prove the following theorem.

Theorem 4: (Varshamov-Gilbert lower bound) For ary> 0, somel, > 0, some integes > 0 and for all
[ > ly in the random ensemble of lengtlal woven graph codes witfic, (b) binary block constituent codes of rate
R° = b/c there exist codes of ratB,,, = s(R°— 1) + 1 such that their relative minimum distanég, = dmin/ncl
satisfies the inequalities

PR (Rwg) — €, if Rywg > 1+ slogy(1 — dvg(Rwg))
e = 5VG(ng) -6 if ng <1+ 810g2(1 - 5VG(ng))
whered(Ry,) is a root of the equation

(14)

(1 —s)h(0) — dslogy (2_(ng_1)/S - 1) =0

anddyg(Rwg) is the solution ofh(d) + Ryws — 1 = 0, andh(-) denotes the binary entropy function.

Proof. Let w be the Hamming weight of the codewoedof the random binary woven graph codg(Hy,,). We
are going to find a parametérsuch that the probabilitj?’(quvfg = 0Jw) tends to O for alkw < d. We can rewrite
P(vH,, = Olw) as

P(vH, = 0lw) = > P(vH{, = 0w, j)P(j|w) (15)
J

wherej = (j1,72,.-.,js) and j; denotes the number of nonzero constituent codewords initthesubgraph
corresponding to the codeword of weight

In the ensemble of random parity-check matridég"), t = 1,2,...,n, of sizelc(1 — R°) x lc the probability
that a nonzero vector® is a codeword of the corresponding constituent random pinadeC,(H¢) is equal to
2~(=b) since the syndromes of the constituent codes are equidembabuences of lengtft — b)l. Taking into
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account that in théth subgraph we havg nonzero constituent codewords the probabiRt(wHV% = 0|w, j) can
be upper-bounded by

P(vHy, = 0w, j) < (nufl> [[277<0=. (16)
i=1

In order to estimate the probabilify(j|w) we prove the following lemma.

Lemma 1: For the ensemble of binary woven graph codes with constitoiexk codes described in Theorém 14,
the probabilityP(j|w) that a codeword of weightr containsj = (j1, j2,- .-, Jjs) nonzero constituent codewords
in the s subgraphs can be upper-bounded by

o <[ LU ED

’Ll)

(17)

Proof. Taking into account that in th&h subgraph the number of nonzero component codewords & &mj and
that the subgraphs are random and independent we can réaifgobability P(j|w) as

P (jlw) = HP (Jilw) .

The probabilityP (j;|w) can be upper-bounded as
‘Hi(’v7 wajl)‘
ncl
(%)
whereH; (v, w, j;) = {H; | vH! = 0,w, j;}. The cardinality ofH;(v,w, j;) can be upper-bounded as

Hi(w,w, i) = > <;>E<i>

wr>1,> wy=w

<()) G 2

where the sum is upper-bounded by the maximal term times uhgbar of terms(zj’?_jll). [ |
Notice that in the above derivations we ignored the fact thaj; can be noninteger since we consider the

asymptotic behaviour of (15).
It follows from Lemma 1 that
le ° VAL w—1
= =2 () Tl (3) () ()
( ‘ Z?: Zl_Il Ji w/]z ]z’ -1
nle\'™* I n w—1
(n+1)° max 2]”1RC<>< ) < >
< > H Ji w/]z ]z -1
nle\ ' el(1— w—1
o (1) () (571
< > H w/]z Ji—1
nlc\ 1 7* . [ cd \ fw—1 °
o (Y.
w j i) \w/j) \j—1

Consider the asymptotic behaviour ¢f (15) whentends to infinity. Introduce the notations = j/n and
d = w/(ncl) and the function

P (jilw) <

T _
F(5) = lim logo P(vH" = O\w)'

l—00 nlc
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After simple derivations we obtain
F(6) < F(6) 2 { max (1 — s)h(6) — (1 — Rwg)y + svh <é>} (20)
Y€(0,1] Y

where Ry, = s(R° — 1) + 1 is the rate of binary woven graph code. Maximizifgl(20) over v < 1 gives

Topt = MU TR /s [

Insertingy,,: < 1 and~,,; = 1 into (20) we obtain
£(5) = h(6) + Ryg — 1, if 0<d<1—2Fwb/s
Tl (1= s)h(8) — bslogy (27 Fwe=l/s — 1) | if § > 1 — 2(FwemD)/s
which coincides with (9) and (10) in [3] fos = 2, that is, if the graph is bipartite.
For any Ry, andé from F'(6) < 0, it follows that there exist codes of rafe,, with relative minimum distance
dwg = 0. Let 5(R,,,) denote the solution of the equation

(21)

F(6) =0 (22)
for 0 < § <1 — 2 w=1/s and letdyc(Ryg) be the solution of(8) + Ryg — 1 = 0. Solving [22) forye,: < 1
and~,,; = 1 we obtain that there exist woven graph codes of fag with the relative minimum distancé,,
satisfying the inequalities:

s o 0(Bug) = if Ryg> 1+ slogy(l—dva(Rug)) 23)
we = 5\/(;(ng) —¢€ f ng <1l+ slog2(1 — 5\/(;(ng)).
|
0.5 T
s=o (VG bound)
- = -s=2
----- s=3
0.4r
0.3F
3R,
0.2
\\\
0.1f N2
~
h ~ - -~
0O 0‘2 O‘.4 0‘6 018 o 1
wg

Fig. 8. The relative minimum distance as a function of theectate for the ensemble of binary woven graph codes with bbocistituent
codes.

In Fig.[8 the lower bound_(14) on the relative minimum dis&ffier the ensemble of binary woven graph codes
with block constituent codes as a function of the code ratshimwn. It is easy to see that whangrows the
ensemble of binary woven graph codes contains codes metégnyG bound for almost all rate® < R, < 1.
Fig.[@ demonstrates the gdpyc — Ry between the VG bound and the code rate as a function of théveela
minimum distancej,,, for different values ofs. It follows from Fig.[9 that fors > 3 the difference in code rate
compared to the VG bound is negligible.
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oA WN (4

nw n n n
Il

0.25

Fig. 9. The gap between the VG bound and the code rate as adiumftthe relative minimum distance.

B. Asymptotic bound on the free distance of woven graph codes with constituent convolutional codes

Consider a ZT convolutional woven graph code with constiti&T convolutional codes of rat&® = b/c. The
length of a ZT woven graph codewordsir-tuples is equal td+m.,, wherel is the number ofic-tuples influenced
by information symbols andh., is the memory of the woven graph code of rd&tg, = s(R° — 1) + 1. Denote
by d;%. the free distance of the corresponding woven graph code.

Now we can prove the following

Theorem 5: (Costello lower bound) For any > 0, somem, > 0, some integes > 2, and for allm.,, > mg
in the random ensemble of rai,, = s(R° — 1) + 1 woven graph codes overpartite, s-uniform, c-regular
hypergraphs with constituent convolutional codes of fate= b/c there exists a code with memory,,, such that

its relative free distancéy s = di.% /ncm., satisfies the Costello lower bound [8],
ng

— €. (24)

logy (21 Fwe — 1

Proof: Analogously to the derivations in the proof of Theorem 4jet (ji,j2,...,Jjs) whereyj; denotes the
number of nonzero constituent codewords in itre subgraph corresponding to the codeword of weightj; €
{1,...,n}. In order to evaluate the number of nonzero constituentwot#s among the: constituent codewords,
notice that the set of such codewords is a union of sets of@ronzonstituent codewords belonging to each of
the s subgraphs. The cardinality of the union is at legst, = max;{j;}. Therefore the all-zero “tail” required to
force the encoder into the zero state has length at lgastm,. The total number of redundant symbols consists
of two parts: the numbey >, j;cl(1 — R°) of parity-check symbols for the nonzero constituent codeaan the
s subgraphs and at leagt,.xcmw, redundant symbols required for zero-tail terminating & Woven graph code.
Thus, formula[(1I6) can be rewritten as

P(UHVTV‘g _ 0’w7j) < <’I’LC l + Myg ) <H2 jicl(1—R®) ) 2—jmaxcmwg. (25)
The statement of the Lemnia 1 is changed in a following way

() (el (1)
-7'” w/] Ji 1
(Jw) < | | nc(l+mwg)) . (26)

wg
5frco =
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Instead of [(IP) we now have

P(wHY, =0lw) < (n+ 1)5<nc(l J;Umwg)>l_s

ol () () )

By introducing the notations l
w

J
) )U/ - ) ’7 - —
NCMyg Mg n

)=

we obtain from[(2b)+£(27) that
logy P(vHT = 0jw)

F(5) = lim
My g — 00 NCMyg
< ma {(1 s)(1+ )h( 0 > (1+ Ryg) + (1 + )$h< 0 )} (28)
X - — | = — Ul — .
Maximizing (28) over0 < v < 1, we obtain
)
O; = i 17 29
e =i {1 29
where
_ 14 pu(1 — Ryg)
s(1+p)
If s is large enough, then,,; = 1. It follows from (28) that
)
< - ] =1 =
F(5)_(1+u)h<1+u> 1 — g+ pRyg, (30)
Maximization of F'(6) over u gives
Fopt(é) é _510g2 (21_ng - 1) - ng (31)
h
where 5

/’LOpt = 1— 2ng_1 -1

We can find a bound on;.% by solving F,,;(§) = 0. Thus, we can conclude that for amy> 0 we can find a
woven graph code such that {24) holds [ |

IV. EXAMPLE

We start with considering a graph code determined by theypahieck matrix [(B). As mentioned before, the
matrix (3) can be considered asla x 21 parity-check matrix. Since the parity checks defined by tteply are
linearly dependent (the sum of the rows [of (3) is equal to erurned out that by ignoring one parity check we
obtain a parity-check matrix of @1, 8) linear block code. For simplicity we consider the rdtg = 1/3 code that
is obtained by ignoring the eighth information symbol whidblds a(21,7) subcode of this code.

It is easy to see that renumbering the graph vertices by gddirach vertex number some fixed number modulo
the total number of vertices preserves both the incidendeadjacency matrices of the graph. For example, in Fig.
[3, by adding 2 modulo 14 we will get exactly the same graph. Wilie have a similar property for linear codes we
call such codes quasi-cyclic codes and these block codebeaescribed as tailbiting (TB) convolutional codes.
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Renumbering the vertices corresponds to permuting the odw8). By row permutations[{3) can be reduced to
the form

111,00 0,00 0,00 0,000,00 0,000
i1 0 0,01 60,0 0 0,0 0 1,0 0 0,0 0 0,0 0 O
00 0'1" 1170 0 010 0 070 0 070 0 O0'0 0 0O
000,100,011 0,000,001,000,00 0
000,00 0,T 1T 1,000,000,00 0,00 0
o o0 0+r0 O Or1 0 OO0 1 010 0 010 O 110 0 O
00000070001 1T 170007000070 0 (32)
000,00 0,00 0,1 00,010,00 0,001
0 0 0/0 0 010 0 0:/0 0 0+ 1 110 0 010 0 0
00 1'0 0 0'0 0 0'0 0 0'L 0 0'0 1 0'0 0 0
00 0,00 0;0 00,00 0/0 00,1 1 1T;/0°0 0
00 0,00 1,00 0,00 0,00 0,100,010
00 0100 010 0 010 0 010 0 010 0 Or1 1 1°
01 0'000'00 1'00 0'000'000'2 00
It follows from (32) that the graph shown in Figl. 3 correspeiid a(21,7) TB code with a parent convolutional

code determined by the parity-check matrix

Hom®)= (1} b 1o )- (33)

It means that this code is “tail-bitten” at the 7th level oéttnellis diagram. A corresponding polynomial generator
matrix of the parent convolutional code has the form

Gconv(D):(D+D2 1+ D + D? 1) (34)

The minimum distance of th&1,7) TB code is equal to the graph girth, that i&,;, = g = 6.

Notice that many regular bipartite graphs look very simitathe Heawood graph in the sense that by manipulating
the incidence (parity-check) matrices and truncating tlesigve can obtain infinite families of graphs. Some
properties of these graphs can be easily predicted from ithygepties of the corresponding parent convolutional
codes.

Consider the parity-check matrik {(10) of the woven graphecbdsed on the Heawood bipartite graph with
constituent convolutional codes of rak = 2/3. This woven graph code has the rdtg, =2/3-2—-1=1/3.

Let the rateR® = 2/3 constituent convolutional code of memony = 3 and overall constraint length® = 5

with df . = 6 be given by the generator matrix
el 1+ D? D? 1+ D+ D?
G<D)_<D+D2+D3 1 1+ D? (35)
A corresponding parity-check matrié¢(D) is
1+ D+ D* T
HD)=|1+D+D3+D*+D° | . (36)

1+ D?+ D3+ D'+ D°
Notice that the constituent cod& considered as a block code oV&((D)) represents &3,2) block code with

the minimum distancey, ., = 2.
By using the product-type lower bourid {11) we obtain

A8, > (9/2)dfree =3 % 6 = 18.

free =

On the other hand, it was verified by computer search that adgword of the woven graph code determined by
(10) consists of at least three nonzero codewords of the onend codeC® described by[(36). Moreover, it was
found by computer search that each of these nonzero codswbf has the minimum block weightf, , = 2.
Note that the codewords of the block code olg(D)) with block weightdf, , = 2 corresponds to the codewords
of the convolutional code belonging to its subcodes of féte= 1/2. These three subcodes have generator matrices

G1(D) = (95(D) g5(D))
G3(D) = (95(D) g5(D))
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G5(D) = (g§(D) g5(D))

whereg§(D) =1+ D + D3+ D'+ D®, ¢5(D) =1+ D + D%, andg§(D) = 1+ D? + D3 + D* + D°.

The minimum free distance over all these subcodes of Réte- 1/2 is equal to 8. Taking into account that all
other codewords of the woven graph code contain at leastrfonzero codewords af. of block weightd;  , = 3
we obtain an improved lower bound on the free distance of tinew graph code af;.. > min{3x8,4x6} = 24.

In order to obtain an upper bound on the free distance of theemgraph code we consider the parity-check
matrix (10) in more detail. It also describes a quasi-cyclicle and can by row permutations be reduced to a
parity-check matrix of a two-dimensional code, a TB (blockgde in one dimension and a convolutional code in
the other,

h§ h$ h$,0 0 0.0 0 0,0 0 0,0 0 0,0 0 0,0 0 0
0 0,0t 0,0 0 0,0 0,0 0 0,00 0,00 0
"0 0 OTh$ A ASTO O 0170 0 010 O 070 O 0TO 0 O
00 0'tSs0o0'0tto0'o000'0o0¢tt'00O0'000
_____ S g i
0 0 0,0 0 0,hSA5AH5,0 0 0,0 0 0,0 0 0,000
0 0010 0 O1tf O 0r0 t5 010 0 010 O t510 0 O
_____ TAa "N N A TN N < 7,¢ 1.¢T A " N N NN NN N
Hey(D) = 000700 oTo 0 ()Thc1 h$ hSTO (1 oTo 0 oTo 0 oc (37)
000,000,000t 00,01 0,000,070 ¢t
00 00 0 010 0 010 0 OI/RSASA510 0 010 0 0
0 0t5'0 0 010 0 0'0 O 0!t 0 010 t5 010 0 0
00 0700070 00,00 0,00 0jhihsh§ 0 0 0
00 0,0 01%t,00 0,00 0,00 0,t50 0,0¢tf0
0 0 010 0 0r0 0 010 0 010 0 010 O OTAS hS hS
0t 0'000'00¢t'000'000'00 0'ts500
A parity-check matrix of the parent convolutional code foe fTB code[(3l7) given in symbolic form is
C (4 C
H(D,Z): hcl(D) hc2(D) h3(D) 3 (38)
t{(D) t5(D)Z t5(D)Z

where Z and D are formal variables. The matrixX (38) can be considered aardygheck matrix of a two-
dimensional convolutional code. The varialffe corresponds to the parent convolutional code of the Heawood
graph code[(33), the variable is used for the constituent convolutional cofel (36).

A generator matrix of the two-dimensional convolutionafleavith the parity-check matrix_(88) has the form

G(D.Z) = ( 9i(D)Z + ge(D)Z° go(D) +g5(D)Z° g5(D) +g5(D)Z ) (39)

where g5 (D) = h5(D)t{(D), g;(D) = h3(D)t{(D), go(D) = h3(D)t5(D), g3(D) = hi(D)t5(D), ge(D) =
hs(D)t5(D), andg§(D) = hi(D)t5(D).

The generator matriX_(39) tail-bitten over varialffeat length21 yields the generator matri& (D) of the code
(32),

g 0 9510 g2 510 0 0,0 0 0

Lgi_g_goiio 90 95,00 0,0 0 0,00 0

"0 00 'ggi 0000 07950 g5 0 o5 g (40)

whereg¢ is short-hand fow$ (D).

Notice that any of the six permutations of the colunt§éD), i = 1, 2,3, generates a woven graph code. The
permutationt§ (D) = h{(D), t5(D) = h§(D), andt§(D) = h§(D) describes the woven graph code with the largest
free distance. The overall constraint length of this getoenaatrix is equal to 70 but the matrix is not in minimal
form. A minimal-basic generator matrix [8] has the overalhstraint length equal to 64 and differs from1(40) by
one row which can replace any of the rows®@(D) and has the form

(Go(D) Go(D) Go(D) Go(D) Go(D) Go(D) Go(D))

where
Go(D) = (g5(D) g5(D) g5(D))
wheregs(D) = D + D* andgS(D) = 1+ D + D™
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The matrix [40) is a generator matrix of a convolutional cedeate R,,, = 7/21. By applying the BEAST
algorithm [19] to the minimal-basic generator matricesregponding to the different permutations of the columns
h¢(D), i =1,2,3, we obtained the free distance and a few spectrum coefficdéritee corresponding woven graph
codes. The parameters of the best obtained woven graph ecelggesented in Table 1.

TABLE |
SPECTRA AND OVERALL CONSTRAINT LENGTHS OF RATERwg = 1/3 WOVEN GRAPH CODES

| Permutation | v | diree | Spectrum |
75(D), hs(D).hs(D) | 64 | 32 | 7,0,0,0,0,0,7,0,7,0...
nS(D), hs (D), hs(D) | 65 | 32 | 7,0,0,0,7,0,0,0,21,0...
RS(D), hS(D), hs(D) | 66 | 30 | 7,0,0,0,0,0,0,0,7,0...

V. ENCODING

Generally speaking, encoding of graph-based block codestmplexityO(N?), where N is the blocklength.
This technique implies that we find a generator matrix c@oesling to the given parity-check matrix and then
multiply the information sequence by the obtained genenaatrix. However, we showed by examples that some
regular graph codes as well as woven graph codes are quasi-cgdes and thereby they can be interpreted as TB
codes. For this class of codes the complexity of the encodipgoportional to the constraint length of the parent
convolutional code.

In this section we are going to illustrate by an example arodec of a woven graph code with constituent
convolutional codes having encoding complexity propaioto the overall constraint length of the corresponding
woven graph codey,, < nsv°.

Consider again the woven graph code in our example. It iscdbasethe Heawood graph and uses constituent
convolutional codes of rat® = 2/3 and overall constraint lengti® = 5. Taking into account the representation
(40) of the woven graph code as a rdtg, = 7/21 two-dimensional code, a TB (block) code in one dimension
and a convolutional code in the other, we can draw its encasleshown in Figl_10.

lul LU7 ‘Lus _LUS l u, J_u3 _Luz
H % ® H % H % B N -
Ny — u b H B | M — gl
[ H 9% H L ® % B i gl
| H b M — — D — 1
[ M > B B H B B = |
N b = iz Xy - —
GRXNs = ® | M b M = )
[ H | ® H H [ H ®» B — il
[ H % ® M9 - » ®H 1 —
N b |- - BDH B B H — -
L] - LT L] L] . L]
o
o
J_Vi
Fig. 10. An encoder of the two-dimensional woven graph code.
The input symbols.;, us, . .., ur enter the encoder once per each cycle of duration seven mistanits. At each

time moment the contents of each register is rewritten iheortext (modulo seven) register and the three output
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symbolswvy, ve, v3 are generated. In other words, each of the registers camesgy to the constituent code can
be considered as an enlarged delay element of the encodee 6TB-dimension” code determined by the graph.
The sequenceq, us, . .. ,u7 determines a transition between the states of this encAgter. a cycle of seven time
instants we return to the starting state of the enlarged darcand a TB-codeword (or a word from one of its
cosets) of length 21 has been generated. Then the folloveagnsinput symbols:s, ug, ..., u14 enter and after
seven time instants another word of length 21 has been gedestc.

VI. CONCLUSION

The asymptotic behavior of the woven graph codes with blackvall as with convolutional constituent codes
has been studied. It was shown that in the random ensemblebfc®des based onpartite, s-uniform, c-regular
hypergraphs we can find a value> 2 such that for any code rate there exist codes meeting the \dsthan
Costello lower bound on the minimum distance and free digtarespectively. Product-type lower bounds on the
minimum distance of graph-based and woven graph codes lemrederived. Example of a raf&,, = 1/3 woven
graph code with free distance above the product bound i®pted. It is shown, by an example, that woven graph
codes can be encoded with a complexity proportional to tmstcaint length of the constituent convolutional code.
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