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Average Case Analysis of Multichannel Sparse
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Abstract— In this paper, we consider recovery of jointly sparse
multichannel signals from incomplete measurements. Several
approaches have been developed to recover the unknown sparse
vectors from the given observations, including thresholding,
simultaneous orthogonal matching pursuit (SOMP), and convex
relaxation based on a mixed matrix norm. Typically, worst-case
analysis is carried out in order to analyze conditions underwhich
the algorithms are able to recover any jointly sparse set of vectors.
However, such an approach is not able to provide insights into
why joint sparse recovery is superior to applying standard sparse
reconstruction methods to each channel individually. Previous
work considered an average case analysis of thresholding and
SOMP by imposing a probability model on the measured signals.
In this paper, our main focus is on analysis of convex relaxation
techniques. In particular, we focus on the mixedℓ2,1 approach
to multichannel recovery. We show that under a very mild
condition on the sparsity and on the dictionary characteristics,
measured for example by the coherence, the probability of
recovery failure decays exponentially in the number of channels.
This demonstrates that most of the time, multichannel sparse
recovery is indeed superior to single channel methods. Our
probability bounds are valid and meaningful even for a small
number of signals. Using the tools we develop to analyze the
convex relaxation method, we also tighten the previous bounds
for thresholding and SOMP.

Key Words: Multichannel sparse recovery, mixed-norm
optimization, average performance, thresholding, simulta-
neous orthogonal matching pursuit

I. I NTRODUCTION

Recovery of sparse signals from a small number of mea-
surements is a fundamental problem in many different signal
processing tasks such as image denoising [8], analog-to-digital
conversion [30], [19], [32], radar, compression, inpainting,
and many more. The recent framework of compressed sensing
(CS), founded in the works of Donoho [15], Candès, Romberg
and Tao [8], studies acquisition methods as well as efficient
computational algorithms that allow reconstruction of a sparse
vectorx from linear measurementsy = Ax, whereA ∈ R

n×N

is referred to as the measurement matrix. The key observation
is that y can be relatively short, so thatn < N , and still
contain enough information to recoverx.
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Determining the sparsest vectorx consistent with the data
y = Ax is generally an NP-hard problem [14]. To determinex
in practice, a multitude of efficient algorithms have been pro-
posed, [14], [18], [43], [7], [9], which achieve high recovery
rates. The basis pursuit (BP), orℓ1-minimization approach,
is the most extensively studied recovery method [12], [8],
[15], [35]. The use of general purpose or specialized convex
optimization techniques [26], [18] allows for efficient recon-
struction using this strategy. Although greedy methods, such
as simple thresholding or orthogonal matching pursuit (OMP),
are faster in practice, BP provides significantly better recovery
guarantees. In particular, there exist measurement matrices
A ∈ R

n×N that allow for stable recovery of allk-sparse
vectors as long asn ≥ Ck log(N/k) whereC is a constant.
Such uniform recovery is not possible for simple thresholding
or OMP [16], [36]. (We note, however, that the recent greedy
algorithms CoSaMP [33] and ROMP [34] are able to provide
such uniform guarantees.) In practice, the recovery rate of
BP when averaged over all random sparse vectors is typically
better than that predicted by the theory. This is due to the fact
that existing analysis considers the ability of BP to recover
all vectorsx. On the other hand, in random simulations, the
worst-case instance ofx typically does not occur. Therefore,
considering the behavior of various recovery methods over
randomx often leads to more characteristic behavior.

The BP principle as well as greedy approaches have been
extended to the multichannel setup where the signal consists
of several channels with joint sparsity support [47], [45],[22],
[13], [11], [31], [20], [21]. In [2] the buzzword distributed
compressed sensing was coined for this setup. An alternative
approach is to first reduce the problem to a single channel
problem that preserves the sparsity pattern, and recover the
signal support set; given the support, the measurements can
be inverted to recover the input [31]. A variety of different
recovery results have been established that provide conditions
ensuring that the output of the proposed efficient algorithms
coincides with the true signals. In [11] a recovery result was
derived for a mixedℓp,1 program in which the objective is to
minimize the sum of theℓp-norms of the rows of the estimated
matrix whose columns are the unknown vectors. Recovery
results for the more general problem of block-sparsity were
developed in [21] based on the block restricted isometry prop-
erty (RIP), and in [20] based on mutual coherence. In practice,
multichannel reconstruction techniques perform much better
than recovering each channel individually. However, the the-
oretical equivalence results predict no performance gain.The
reason is that these results apply to all possible input signals,
and are therefore worst-case measures. Clearly, if we inputthe
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same signal to each channel, then no additional information
on the joint support is provided from multiple measurements.
Therefore, in this worst-case scenario there is no advantage
for multiple channels.

In order to capture more closely the true underlying be-
havior of existing algorithms and observe a performance
gain when using several channels, we consider an average-
case analysis. In this setting, the inputs are considered tobe
random variables. The idea is to develop conditions on the
measurement matrixA such that the inputs can be recovered
with high probability given a certain input distribution.

Recently, there have been several papers that consider
sparse recovery with random ensembles. In [46] random sub-
dictionaries ofA are considered and analyzed. This allows to
obtain average results for BP with a single input channel. In
[40], average-case performance of single channel thresholding
was studied. In [25], [24] extensions to two multichannel
recovery algorithms were developed: thresholding and simulta-
neous OMP (SOMP) [25], [24]. Under a mild condition on the
sparsity and on the matrixA, the probability of reconstruction
failure decays exponentially with the number of channels. In
the present paper we contribute to this line of research by
analyzing the average-case performance of multichannel BP,
i.e., mixed ℓ2,1-minimization [45], [22], [21], [20]. The tools
we derive in this context are then also used to slightly improve
previous bounds on average performance of multichannel
thresholding and SOMP.

The theoretical average-case results we develop for multi-
channel BP are superior to the average bounds developed on
thresholding and SOMP. For an equally mild or even milder
condition on the sparsity and on the matrixA, we obtain faster
exponential decay of the failure probability with respect to the
number of channels. Thus, in this sense, the extension of BP to
the multichannel case is superior to existing greedy algorithms,
just as in the single channel setting. Moreover, our recovery
results are applicable also in the single channel case whereas
previous results [25] require a large number of channels to
yield meaningful (i.e., positive) probability bounds (although
our new bound for thresholding generalizing the one in [40]
does not suffer from this drawback). Note, however, that in
simulations SOMP often exhibits the best performance. This
may be explained by the fact that the bounds are not tight (at
least for SOMP).

To develop our probability bounds, we rely on a new
sufficient condition that ensures recovery of the exact signal
set viaℓ2,1-minimization. This condition generalizes a result
of [44], [23] to the multichannel setting, and is weaker than
existing multichannel recovery conditions. Our average-case
analysis is then carried out assuming that the elements of
the input signal are drawn at random. We prove that under
a certain restriction onA and the sparsity setS, the sufficient
condition we develop is satisfied with high probability. The
restriction we impose is that theℓ2-norm of A†

Saℓ over all ℓ
not in the setS is bounded, whereaℓ is the ℓth column of
A, andA†

S is the pseudo inverse of the restriction ofA to the
columns inS. This is an improvement over known worst-case
recovery conditions which require a bound on theℓ1-norm
[11], [20], and are therefore stronger. Loosely speaking, we

will show that while worst-case results limit the sparsity level
to order

√
n, average-case analysis shows that sparsity up to

ordern may enable recovery with high probability. In terms
of RIP constants, instead of bounding the RIP constant for
sparsity sets of size2k, we will only need to consider sets of
sizek + 1.

The remaining of the paper is organized as follows. In
Section II we introduce our problem and briefly summarize
known equivalence results between theℓ2,1 approach for
multichannel recovery and NP-hard combinatorial optimiza-
tion that recovers the true signals. A new recovery condition
is derived in Section III, which is weaker than previous
results, and will be instrumental in developing our average-
case analysis in Section IV. Since the probability bounds
we develop depend on the2-norm of A†

Saℓ, in Section V
we derive several upper bounds on this norm. In Section VI
we use the tools developed in the previous section to derive
new bounds on the average performance of thresholding and
SOMP, that are tighter than existing results and also applicable
to a broader set of problems. We then compare our bounds on
multichannel BP to these results. Finally, in Section VII we
present several simulations demonstrating the behavior ofthe
different methods.

Throughout the paper, we denote byAS the submatrix ofA
consisting of the columns indexed byS ⊂ {1, . . . , N}, while
XS is the submatrix ofX consisting of the rows ofX indexed
by S. Theℓth column ofA is denoted byaℓ or Aℓ. For a matrix
A, ‖A‖2 is the spectral norm ofA, i.e., the largest singular
value, andA∗ is its conjugate transpose. The unit sphere in
R

L is defined bySL−1 = {x ∈ R
L, ‖x‖2 = 1}; the complex

counterpart is denotedSL−1

C
= {x ∈ C

L, ‖x‖2 = 1}.

II. M ULTICHANNEL ℓ1-M INIMIZATION

A. Problem Formulation

We consider multichannel signal recovery where our goal
is to recover a jointly-sparse matrixX ∈ C

N×L from n linear
measurements per channel. HereN denotes the signal length
and L the number of channels,i.e., the number of signals.
We assume thatX is jointly k-sparse, meaning that there are
at mostk rows in the matrixX that are not identically zero.
More formally, we define the support of the matrixX as

suppX =

L
⋃

ℓ=1

suppXℓ, (1)

where the support of theℓth column is

suppXℓ = {j, Xjℓ 6= 0}. (2)

Our assumption is that‖X‖0 := | suppX | ≤ k. The measure-
ments are given by

Y = AX, Y ∈ C
n×L, (3)

where A ∈ C
n×N is a given measurement matrix. Each

measurement vectorYℓ = AXℓ corresponds to a measurement
of the corresponding signalXℓ.

The natural approach to determineX given Y is to solve
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the ℓ0-minimization problem

min
X

‖X‖0 s. t. AX = Y. (4)

However, (4) is NP hard in general [14]. Several alternative
methods have been proposed, that have polynomial complexity
[47], [45], [22], [13], [11], [31], [20], [21], [31]. A variety of
different equivalence results between the solution of theℓ0-
problem and the output of the proposed efficient algorithm.
In [11] an equivalence result was derived for a mixedℓp,1

program in which the objective is to minimize the sum of the
ℓp-norms of the rows of the estimated matrix whose columns
are the unknown vectors. The condition is based on mutual
coherence, and turns out to be the same as that obtained from
a single measurement problem, so that the joint sparsity pattern
does not lead to improved recovery capabilities as judged by
this condition. Recovery results for the more general problem
of block-sparsity were developed in [21] based on the RIP, and
in [20] based on mutual coherence. Reducing these results to
the multiple measurement vectors (MMV) setting leads again
to conditions that are the same as in the single measurement
case. An exception is the work in [25], [24] which considers
average-case performance of thresholding and SOMP. Under
a mild condition on the sparsity and on the matrixA, the
probability of reconstruction failure decays exponentially with
the number of channelsL. In Section VI we slightly improve
on these bounds using the tools developed in this paper.

In Section IV we follow a similar approach and treat the
average behavior of the mixedℓ2,1-minimization program [45],
[22], [21] defined by

min ‖X‖2,1 =

N
∑

j=1

‖Xj‖2, subject toAX = Y, (5)

which promotes joint sparsity, as argued for instance in [22].
In the single channel caseL = 1 this is the usual BP principle.
Therefore, our results can also be used to deduce the average-
case behavior of the BP method. This is in contrast to [25],
in which the recovery results derived are not applicable to
the single channel case. As we discuss in Section VI, our
theoretical results are superior to the previous average-case
analysis of [25] in the sense that we use an equally mild or
even milder condition on the sparsity and on the matrixA, but
at the same time get a faster exponential decay of the failure
probability with respect to the number of channelsL.

B. Recovery Results

Recovery results for the program (5) were considered in
[11], [21], [20]. In particular, the lemma below is derived in
[11] and follows also from [20] where the more general case
of block sparsity is considered.

Proposition 2.1: Let S ⊂ {1, . . . , N} and suppose that

‖A†
Saℓ‖1 < 1 for all ℓ /∈ S, (6)

with A†
S = (A∗

SAS)−1A∗
S denoting the pseudo-inverse ofAS .

Then (5) recovers allX ∈ C
N×L with suppX = S from

Y = AX .
Note, that the condition above does not depend on the number
of channels. In the next section we will derive a condition

similar to (6) that involves the2-norm instead of the1-norm,
and is therefore weaker (namely, easier to satisfy).

Assuming the columns ofA are normalized,‖aℓ‖2 = 1, we
can guarantee that (6) holds as long as the coherenceµ of A
is small enough, where [17]

µ = max
j 6=ℓ

|〈aj , aℓ〉|. (7)

The following result follows from [20] by noting that the block
coherence in this setting is equal toµ/d.

Proposition 2.2: Assume that

(2k − 1)µ < 1. (8)

Then (5) recovers allX with ‖X‖0 ≤ k from Y = AX .
Under the same conditions as in Propositions 2.1 and 2.2, it
is shown in [43] that BP will recover a singlek-sparse vector.
Therefore, if (6) holds, then instead of solving (5) we can use
BP on each of the columns ofY .

The coherence is lower bounded by [41]

µ ≥
√

N − n

n(N − 1)
. (9)

The lower bound behaves like1/
√

n for largeN , which limits
the Proposition 2.2 to maximal sparsitiesk = O(

√
n). To

improve on this we can generalize existing recovery results
[8], [6] based on RIP to the multichannel setup. The restricted
isometry constantδk of a matrixA is defined to be the smallest
constantδk such that

(1 − δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2, (10)

for all k-sparse vectorsx. The next proposition follows from
[21].

Proposition 2.3: AssumeA ∈ C
n×N with δ2k <

√
2 − 1

Let X ∈ C
N×L, Y = AX , and letX be the minimizer of

(5). Then

‖X − X‖F ≤ Ck−1/2‖X − X̂(k)‖2,1

whereC is a constant,‖X‖F =
√

Tr(X∗X) is the Frobenius
norm of X and X̂(k) denotes the bestk-term approximation
of X , i.e., supp X̂(k) consists of the indices corresponding to
thek largest row norms‖Xℓ‖2. In particular, recovery is exact
if | suppX | ≤ k.
It is well known that Gaussian and Bernoulli random matrices
A ∈ R

n×N satisfyδ2k ≤
√

2−1 with high probability as long
as [1], [10]

n ≥ Ck log(N/k). (11)

For random partial Fourier matrices the respective condition is
n ≥ ck log4(N) [37], [39]. Therefore, Proposition 2.3 allows
for a smaller number of measurements. However, there is still
no dependency on the number of channels. Indeed, under the
same RIP condition BP will recover a singlek-sparse vector
and therefore, as before, BP may as well be applied to each
of the columns ofY individually.

We conclude this overview by stressing that known equiv-
alence results do not improve on those for single channel
sparse recovery. In [21], [20] equivalence results are derived
for a mixedℓ2,1 program when different measurement matrices
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Ai are used on each channel. In this case, even worst-case
analysis shows improvement overL = 1. However, when all
measurement matrices are equal, the recovery conditions do
not show any advantage with multiple signals.

III. A R ECOVERY CONDITION

Before turning to analyze the average-case behavior of
(5), we first develop a new condition onA that allows for
perfect recovery. This formulation will be useful in deriving
the average-case results.

In the following theorem we give a sufficient condition on
the minimizers of (5). This theorem generalizes a result of
[44], [23] for the L = 1 case. To this end we denote by
sgn(X) ∈ C

N×L the matrix with entries

sgn(X)ℓj =

{

Xℓj

‖Xℓ‖2
, ‖Xℓ‖2 6= 0;

0, ‖Xℓ‖2 = 0.
(12)

In this definition, each element ofX is normalized by the norm
of the corresponding row. WhenL = 1, sgn(X) reduces to
the sign of the elements of the vectorx.

Theorem 3.1: Let X ∈ C
N×L with suppX = S and

assumeAS to be non-singular. If there exists a matrixH ∈
C

n×L such that
A∗

SH = sgn(XS), (13)

and
‖H∗aℓ‖2 < 1 for all ℓ /∈ S (14)

thenX is the unique solution of (5).
Before proving the theorem we note that the two conditions
on H easily imply that

‖H∗aℓ‖2 ≤ 1, for all ℓ. (15)

Proof: The proof follows the ideas of [44], with appro-
priate modifications to account for the mixedℓ2,1 norm that
replaces theℓ1 norm.

Let Y = AX , and assume there exists a matrixH such that
X, H satisfy (13) and (14). LetX ′ be an alternative matrix
satisfying Y = AX ′. Our goal is to show that‖X‖2,1 <
‖X ′‖2,1. To this end, we note that

‖X‖2,1 = ‖XS‖2,1 = Tr
(

sgn(XS)(XS)∗
)

, (16)

where Tr denotes the trace. SubstitutingA∗
SH = sgn(XS)

into (16), and using the cyclicity of the trace we have

‖X‖2,1 = Tr
(

H∗ASXS
)

= Tr (H∗AX ′) (17)

= Tr
(

X ′S′

H∗AS′

)

,

where we used the fact thatASXS = Y = AX ′ and S′

denotes the support ofX ′. We next rely on the following
lemma.

Lemma 3.2: Let A, B be matrices such thatAB is defined.
Then |Tr(BA)| ≤ ‖B‖2,1 maxℓ ‖Aℓ‖2, with strict inequality
if ‖Aℓ‖2 < maxℓ ‖Aℓ‖2 for some value ofℓ for which
‖Bℓ‖2 6= 0.

Proof: The proof follows from noting that

|Tr(BA)| ≤
∑

ℓ

|BℓAℓ| ≤
∑

ℓ

‖Bℓ‖2‖Aℓ‖2

≤ max
ℓ

‖Aℓ‖2

∑

ℓ

‖Bℓ‖2 = max
ℓ

‖Aℓ‖2‖Bℓ‖2,1,

where the second inequality is a result of applying Cauchy-
Schwartz. Under the condition of the lemma, we have strict
inequality in the last inequality.
Applying Lemma 3.2 to (17), leads to

‖X‖2,1 ≤ ‖X ′S′‖2,1 max
ℓ∈S′

‖H∗Aℓ‖2 ≤ ‖X ′S′‖2,1 (18)

= ‖X ′‖2,1,

where the last inequality follows from (15). We have strict
inequality in the first inequality of (18) as long as the values
‖H∗Aℓ‖2 for ℓ ∈ S′ are not all equal since‖X ′ℓ‖2 6= 0 for
all ℓ ∈ S′ be definition of the support.

Suppose to the contrary that‖H∗Aℓ‖2 = a for all ℓ ∈
S′. Clearly, S′ must contain at least one indexℓ that is not
contained inS; otherwiseS′ ⊂ S, which would contradict the
hypothesis thatAS is non-singular,AS′X ′ = ASX andX 6=
X ′. By our assumption‖H∗aℓ‖2 < 1, which then implies that
a < 1 or ‖H∗Aℓ‖2 < 1, ℓ ∈ S′. The inequalities in (18) then
become

‖X‖2,1 ≤ ‖X ′S′‖2,1 max
ℓ∈S′

‖H∗Aℓ‖2 < ‖X ′S′‖2,1 = ‖X ′‖2,1.

(19)
Thus, we have shown that‖X ′‖2,1 > ‖X‖2,1 for any X ′

such thatY = AX ′, and therefore (5) recovers the true sparse
matrix X .

ChoosingH = (A†
S)∗ sgn(XS) in Theorem 3.1 results in

the following corollary.
Corollary 3.3: Let X ∈ C

N×L with suppX = S and
assumeAS to be non-singular. If

‖ sgn(XS)∗A†
Saℓ‖2 < 1 for all ℓ /∈ S, (20)

thenX is the unique minimizer of (5).
This corollary will be instrumental in proving the average-case
performance of (5). It can easily be seen that Corollary 3.3 im-
plies Proposition 2.1. This follows from the triangle inequality,

∥

∥

∥
sgn(XS)∗A†

Saℓ

∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

∑

j∈S

(A†
Saℓ)j sgn(Xj)∗

∥

∥

∥

∥

∥

∥

2

≤
∑

j∈S

|(A†
Saℓ)j | ‖ sgn(Xj)‖2 = ‖A†

Saℓ‖1,

where we used the fact that‖ sgn(Xj)‖2 = 1.

IV. AVERAGE CASE ANALYSIS

Intuitively, we would expect multichannel sparse recovery
to perform better than single channel recovery. However, in
the worst case setting this is not true as already suggested by
the results of Section II. The reason is very simple. If each
channel carries the same signal,Xℓ = x for ℓ = 1, . . . , L,
then also the components ofY = AX are all the same and
we do not have more information on the support ofX than
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provided by a single componentYℓ. The following proposition
establishes formally that if BP fails for a given measurement
matrix A, then multichannel optimization (5) will fail as well
so that in the worst-case, adding channels will not improve
performance.

Proposition 4.1: Suppose there exists ak-sparse vectorx ∈
C

N that ℓ1-minimization is not able to recover fromy = Ax.
Then ℓ2,1-minimization fails to recoverX = (x|x| · · · |x) ∈
C

N×L from Y = AX .
Proof: If ℓ1-recovery fails on somek-sparsex then

necessarily‖x′‖1 ≤ ‖x‖1 for somex′ satisfyingAx′ = Ax.
ClearlyX = (x|x| · · · |x) is (jointly) k-sparse andAX = AX ′

for X ′ = (x′|x| · · · |x′). Furthermore,

‖X ′‖2,1 =
√

L‖x′‖1 ≤
√

L‖x‖1 = ‖X‖2,1

and thereforeX is not the unique minimizer of theℓ2,1-
minimization problem.

Realizing that (5) is not more powerful than usual BP in
the worst case, we seek an average-case analysis. This means
that we impose a probability model on thek-sparseX . In
particular, as in [25], we will assume that on the supportS of
size k the coefficients ofX are chosen at random. We then
show that under a suitable probability model on the non-zero
elements ofX , the condition given by Corollary 3.3 is satisfied
with high probability, which depends onL.

We follow the probability model used in [25]: letS be the
joint support of cardinalityk. On S the coefficients are given
by

XS = ΣΦ (21)

whereΣ = diag(σj , j ∈ S) ∈ R
k×k is an arbitrary diagonal

matrix with positive diagonal elementsσj . The matrixΦ will
be chosen at random according to one of the following models.

• Real Gaussian: each entry ofΦ ∈ R
k×L is chosen

independently from a standard normal distribution.
• Real spherical: the rows of Φ ∈ R

k×L are chosen
independently and uniformly at random from the real
sphereSL−1.

• Complex Gaussian: the real and imaginary parts of each
entry of Φ ∈ C

k×L are chosen independently according
to a standard normal distribution.

• Complex spherical: the rows ofΦ ∈ C
k×L are chosen

independently and uniformly at random from the complex
sphereSL−1

C
.

Note that takingΣ to be the identity matrix results in a
standard Gaussian random matrixXS , while taking arbitrary
non-zero σj ’s on the diagonal ofΣ allows for different
variances. The matrixΣ may be deterministic or random. In
particular, choosingΣ to be the matrix with diagonal elements
given by the inverseℓ2-norm of the rows ofΦ in the real
(complex) Gaussian model, leads to a matrixXS with a real
(complex) spherical distribution.

In Theorems 4.4 and 4.5 below we develop conditions under
which (5) recoversX from Y = AX with probability that
decays exponentially withL. The condition in both theorems
is given in terms of an upper bound on‖A†

Saℓ‖2 for ℓ not inS.
This is in contrast to the worst-case result of Proposition 2.1
that is given in terms of‖A†

Saℓ‖1 and therefore stronger.

The essential idea in both proofs is to show that if the
bound on‖A†

Saℓ‖2 is satisfied, then the sufficient condition
of Corollary 3.3 holds with high probability.

Before stating the first theorem, we derive the following
result on the norm of sums of independent random vectors,
uniformly distributed on a sphere.

Theorem 4.2: Let a ∈ C
k and letZj, j = 1, . . . , k, be a

sequence of independent random vectors which are uniformly
distributed on the real sphereSL−1. Then for anyu > 1

P





∥

∥

∥

∥

∥

∥

k
∑

j=1

ajZj

∥

∥

∥

∥

∥

∥

2

≥ u‖a‖2





≤ exp

(

−L

2
(u2 − log(u2) − 1)

)

.

Proof: See Appendix I.
Theorem 4.2 generalizes the Bernstein inequality for Stein-

haus sequences in [46, Theorem 13] to higher dimensions. We
may extend the estimate easily to random vectors uniformly
distributed on complex unit spheres.

Corollary 4.3: Let a ∈ C
k and letZj , j = 1, . . . , k, be a

sequence of independent random vectors which are uniformly
distributed on the complex sphereSL−1

C
. Then for anyu > 1

P





∥

∥

∥

∥

∥

∥

k
∑

j=1

ajZj

∥

∥

∥

∥

∥

∥

2

≥ u‖a‖2





≤ exp
(

−L(u2 − log(u2) − 1)
)

.
Proof: First observe thatajZj has the same distribution

as|aj |Zj. We may therefore assume without loss of generality
that aj ∈ R. Next, a random vectorZ ∈ SL−1

C
is uniformly

distributed onSL−1

C
if and only if (Re(Z)T , Im(Z)T )T is

uniformly distributed on the real sphereS2L−1. Applying
Theorem 4.2 withL replaced by2L yields the statement.

With this tool at hand we can now easily prove the following
average-case recovery theorem.

Theorem 4.4: Let S ⊂ {1, . . . , N} be a set of cardinalityk
and suppose

‖A†
Saℓ‖2 ≤ α < 1 for all ℓ /∈ S. (22)

Let X ∈ R
N×L with suppX ⊂ {1, . . . , N} such that the

coefficients onS are given by (21) with some diagonal matrix
Σ ∈ R

k×k and Φ ∈ R
k×L chosen from the real Gaussian or

spherical probability. Then with probability at least

1 − N exp

(

−L

2
(α−2 − log(α−2) − 1)

)

(23)

(5) recoversX from Y = AX .
If the real probability model is replaced by one of the two

complex models thenL/2 can be replaced byL in (23).
For α < 1 we are guaranteed that the exponent in (23) has
a negative argument, and therefore the error decays exponen-
tially in L.

Proof: First observe that by the rotational invariance
of Gaussian random vectors the columns ofsgn(XS)∗ =
sgn(Φ∗) are independent and uniformly distributed on the
real sphere, and the same is also true if we use the real
spherical random model. Denoteb(ℓ) = A†

Saℓ for ℓ /∈ S and
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by Zj , j = 1, . . . , k a sequence of independent random vectors
that are uniformly distributed on the sphereSL−1. Using the
sufficient recovery condition of Corollary 3.3, the union bound
and Theorem 4.2 we can estimate the probability thatℓ2,1

minimization fails to recoverX by

P(max
ℓ/∈S

‖ sgn(XS)∗b(ℓ)‖2 > 1)

≤
∑

ℓ/∈S

P(‖ sgn(XS)∗b(ℓ)‖2 > 1)

≤
∑

ℓ/∈S

P





∥

∥

∥

∥

∥

∥

k
∑

j=1

b
(ℓ)
j Zj

∥

∥

∥

∥

∥

∥

2

> α−1‖b(ℓ)‖2





≤ (N − k) exp

(

−L

2
(α−2 − log(α−2) − 1)

)

.

The complex case follows analogously using Corollary 4.3.

For L = 1, Theorem 4.4 is contained implicitly in [46,
Theorem 13]. The appearance of the2-norm in (24) instead
of the 1-norm as in (6) makes the condition of the theorem
weaker than worst-case estimates (recall that‖x‖2 ≤ ‖x‖1 ≤√

k‖x‖2 for any length-k vector x). In Section V this will
be made more evident when we consider conditions on the
coherenceµ and the RIP constant to allow for recovery with
high probability. The requirement we obtain onµ is weaker
than that of Proposition 2.2 and allows for recovery withk on
the order ofn, while the worst-case results limit recovery to
order

√
n. Furthermore, in contrast to the worst-case results

which depend onδ2k, we will show that high-probability
recovery is possible as long asδk+1 is small enough.

It is evident from (23) that the failure probability decays
exponentially with growing number of channelsL. Moreover,
the bound is also useful for smallL, and in particular for
the monochannel caseL = 1. Indeed, a simple algebraic
manipulation shows that the failure probability is less than
ǫ provided‖A†

Saℓ‖2 ≤ α for all ℓ /∈ S with α satisfying

α−2 − log(α−2) ≥ 2 log(N/ǫ)

L
+ 1.

This provides a useful average-case analysis even forL = 1.

For completeness, we also state an alternative recovery re-
sult below which provides a slightly better probability estimate
than Theorem 4.4 for very large values ofN . However, the
required condition on‖A†

Saℓ‖2 is stronger.

Theorem 4.5: Let S ⊂ {1, . . . , N} be a set of cardinality
k, and let X ∈ R

N×L be random sparse coefficients with
suppX = S given by the real Gaussian probability model. If

‖A†
Saℓ‖2 <

AL

3
√

L + 2
√

k
=: γ ∼ 1

3 + 2
√

k/L
(24)

for all ℓ /∈ S, where

AL =
√

2
Γ((L + 1)/2)

Γ(L/2)
∼

√
L, (25)

and Γ denotes the Gamma function, then with probability at
least

P = 1 − exp(−L/8)− k exp(−A2
L/8)

(5) recoversX from Y = AX .

It follows from Stirling’s formulaΓ(z) ∼
√

2πzzz−1/2e−z,
that

AL =
√

2
Γ((L + 1)/2)

Γ(L/2)
∼

√
2
((L + 1)/2)L/2e−(L+1)/2

(L/2)(L−1)/2e−L/2

= e−1/2 (L + 1)L/2

L(L−1)/2
= e−1/2

(

L(1 + 1/L)L
)1/2 ∼

√
L.

Moreover, for allL ≥ 1 it holds that
√

L ≥ AL ≥
√

2
π

√
L ≈

0.797
√

L.
Note that γ = AL

3
√

L+2
√

k
is monotonically increasing in

L. In addition, the probabilityP is also increasing (towards
1) in L. Therefore, more channels increase the probability of
success and in addition relax the requirements on the matrix
A.

Proof: To prove the theorem we show that if (24) is
satisfied, then condition (20) of Corollary 3.3 holds with
probabilityP .

To this end, letΦ ∈ R
k×L denote a random matrix with

independent standard normal distributed entries, and define D
as thek×k diagonal matrix with diagonal elements1/sj, j ∈
S, wheresj = ‖Φj‖2 =

√

∑L
ℓ=1 |Φjℓ|2. We can then express

sgn(XS) = sgn(ΣΦ) = sgn(Φ) = DΦ. (This equation also
means that the diagonal matrixΣ does not play any role.)
Denotingbj = A†

T aj for j /∈ S,

‖ sgn(XS)∗bj‖2 = ‖Φ∗Dbj‖2 ≤ ‖Φ‖2‖D‖2‖bj‖2.

By the assumption of the theorem‖bj‖2 < γ where γ is
defined by (24). It therefore remains to bound‖Φ‖2 and‖D‖2.
¿From [10, equation (4.35)], see also [42], the operator norm
of Φ satisfies

‖Φ‖2 ≤
√

L +
√

k + r (26)

with probability at least1 − exp(−r2/2).
Next we consider‖D‖2. Observe that thes2

j are χ2(L)
distributed. Therefore, denoting aχ2(L)-variable byY ,

E[sj ] = E[
√

Y ] =
1

2L/2Γ(L/2)

∫ ∞

0

√
xxL/2ex/2dx

=
√

2
Γ((L + 1)/2)

Γ(L/2)
= AL ∼

√
L.

As a function of Φj the sj are Lipschitz continuous,i.e.,
sj(Φ

j − Ψj) ≤ ‖Φj − Ψj‖2. Using these two observations
we rely on the following standard concentration of measure
result, see e.g. [28, eq. (2.35)] or [29, eq. (1.6)].

Theorem 4.6: Let f be a Lipschitz function onRL, i.e.,
|f(x)− f(y)| ≤ B‖x− y‖2 for all x, y ∈ R

L. Further assume
thatZ = (Z1, Z2, . . . , ZL) is a vector of independent standard
Gaussian random variables. Then

P(f(Z) ≥ E[f(Z)] + t) ≤ exp

(

− t2

2B2

)

,

P(f(Z) ≤ E[f(Z)] − t) ≤ exp

(

− t2

2B2

)

.

Our goal is to show that‖D‖2 is bounded from above, which
is equivalent to bounding the smallest value ofsj from below.
Applying Theorem 4.6 tosj ,

P(sj < AL(1 − t)) ≤ exp(−t2A2
L/2),
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where we used the fact thatB = 1 andE[sj ] = AL. Using a
union bound over allj, we obtain

P(sj < AL(1 − t), ∀j) = P

(

min
j=1,...,k

sj < AL(1 − t)

)

≤
∑

j∈S

P(sj < AL(1 − t)) = k exp(−t2A2
L/2).

Assuming thatminj∈S sj ≥ AL(1 − t) holds, ‖D‖2 ≤
1/(AL(1− t)). Combining this bound with (26) forr =

√
Ls

we have

‖ sgn(XS)A†
Saj‖2 ≤

√
k +

√
L + s

√
L

AL(1 − t)
γ

=
(s + 1 +

√

k/L)γ
√

L

(1 − t)AL
.

Choosings = t = 1/2,

‖ sgn(XS)∗A†
Saj‖2 ≤ (3 + 2

√

k/L)γ
√

L/AL < 1. (27)

¿From (27) and Corollary 3.3,X is recoverable using (5).
The probability that (27) does not hold can be computed by

applying a union bound to the probabilities that the spectral
norms of each of the matricesΦ and D are not bounded.
This shows that (27) does not hold with probability at most
exp(−L/8) + k exp(−A2

L/8) completing the proof of the
theorem.

V. BOUNDED NORM CONDITION

Both Theorems 4.4 and 4.5 state thatX can be recovered
with high probability fromY , as long as‖A†

Saℓ‖2 is bounded.
In this section we develop several different conditions under
which this holds.

Proposition 5.1: Let A ∈ C
n×N have unit-norm columns

and coherenceµ, and let S ⊂ {1, . . . , N} be a set of
cardinalityk. Assume that

(
√

k + (k − 1)δ)µ < δ (28)

for someδ > 0. Then‖A†
Saℓ‖2 ≤ δ for all ℓ /∈ S.

Proof: Gershgorin’s disk theorem implies that the small-
est eigenvalueλmin of A∗

SAS is bounded from below by
1 − (k − 1)µ. In particular, A∗

SAS is invertible provided
(k − 1)µ < 1. Further,

‖A∗
Saℓ‖2 =

√

∑

j∈S

|〈aℓ, aj〉|2 ≤
√

kµ,

since by definition,|〈aℓ, aj〉| ≤ µ. Now, using the fact that
A†

S = (A∗
SAS)−1A∗

S ,

‖A†
Saℓ‖2 ≤ ‖(A∗

SAS)−1‖2‖A∗
Saℓ‖2

≤ (1 − (k − 1)µ)−1
√

kµ < δ,

where the last inequality follows from the fact that (28) implies
δ >

√
k/(1 − (k − 1)µ)−1.

Condition (28) is slightly weaker than (8) as long asδ >
1/

√
k. This follows from the2-norm that replaced the1-norm

in the upper bound. However, (28) still suffers the square-root
bottleneckk = O(

√
n). To improve on this result, we next

provide a condition based on the following refinement of the
RIP of A. For a setS ⊂ {1, . . . , N} we let

δ(S) = ‖A∗
SAS − I‖2.

The restricted isometry constantδk of (10) satisfiesδk =
max|S|≤k ‖A∗

SAS − I‖2 so that if S has cardinalityk then
δ(S) ≤ δk. We further define

δ∗(S) = max
ℓ/∈S

δ(S ∪ {ℓ}). (29)

Clearly, δ(S) ≤ δ∗(S) ≤ δk+1. Finally, we make use of the
following “local” 2-coherence function,

µ2(S) = max

{

max
ℓ/∈S

‖A∗
Saℓ‖2, max

ℓ∈S
‖A∗

S\ℓaℓ‖2

}

(30)

for a subsetS ⊂ {1, . . . , N}, where S \ ℓ denotes the
elements inS excluding theℓth one. From the definition of
the coherence it follows immediately that

µ2(S) ≤
√

|S|µ, (31)

since the magnitude of each element|〈aℓ, aj〉| of the vector
A∗

Saℓ is bounded above byµ. In addition,

µ2(S) ≤ δ∗(S). (32)

This is a result of the fact thatA∗
Saℓ is a submatrix of

A∗
S∪{ℓ}AS∪{ℓ} − I for ℓ /∈ S, while A∗

S\{ℓ}aℓ is a submatrix
of A∗

SAS − I for ℓ ∈ S. (They both consist of a subcolumn of
the respective matrix, that “leaves” out the diagonal element.)
We now use these definitions to bound‖A†

Saℓ‖2:
Proposition 5.2: Let S ⊂ {1, . . . , N}. Then:

(a) If A satisfiesδ∗(S) ≤ δ < 1/2 then

‖A†
Saℓ‖2 ≤ δ

1 − δ
< 1 for all ℓ /∈ S.

(b) If A satisfiesδ(S) ≤ δ < 1 andµ2(S) ≤ η then

‖A†
Saℓ‖2 ≤ η

1 − δ
.

Proof: Denoting by λ an eigenvalue ofA∗
SAS , the

definition of δ(S) ≤ δ∗(S) ≤ δ implies that |1 − λ| ≤ δ.
Consequently, the smallest eigenvalue ofA∗

SAS is bounded
from below by1 − δ and therefore

‖(A∗
SAS)−1‖2 ≤ 1

1 − δ
.

For (a), as already noted above,A∗
Saℓ for ℓ /∈ S is a

k × 1 submatrix ofA∗
T∪ℓAT∪ℓ − I. Therefore,‖A∗

Saℓ‖2 ≤
‖A∗

T∪ℓAT∪ℓ − I‖2 ≤ δ, and

‖A†
Saℓ‖2 ≤ ‖(A∗

SAS)−1A∗
Saℓ‖2

≤ ‖(A∗
SAS)−1‖2‖A∗

Saℓ‖2 ≤ δ

1 − δ
.

The proof of (b) follows from the fact that‖A∗
Saℓ‖2 ≤ µ2(S).

A similar estimate as above yields‖A†
Saℓ‖2 ≤ (1− δ)−1η.

Proposition 5.2 applies ifδk+1 is small while in contrast
Theorem 2.3 works withδ2k, which is generally larger than
δk+1. By (11) the conditionδk+1 ≤ δ can be satisfied ifn ≥
Cδk log(N/k). Working with δ∗(S) instead ofδk+1 allows to
improve on the bound (11) for Gaussian, Bernoulli and random
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spherical matrices.

Proposition 5.3: Let S ⊂ {1, . . . , N} be a set of cardinality
k and suppose thatA = 1√

n
Φ ∈ R

n×N , whereΦ is drawn
at random according to a standard Gaussian or Bernoulli
distribution (with expectation0 and variance1/n). Then
δ∗(S) ≤ δ with probability at least1 − ǫ provided that

n ≥ C1δ
−2 max{k log(1/δ), log(N/ǫ)} (33)

for a suitable constant.

The same statement holds (with possibly a different con-
stant) for a random matrix whose columns are chosen inde-
pendently at random according to the uniform distribution on
a sphere.

Proof: See Appendix II.

A straightforward extension of the proof, as in [1], also shows
that a random matrixA ∈ R

n×N with independent columns
drawn from the uniform distribution on the sphere satisfies
RIP, δk ≤ δ with probability at least1 − ǫ provided n ≥
Cδ−2(k log(N/k)+log(ǫ−1)). Although this fact seems to be
known, we are not aware of reference where this is rigorously
stated.

The next result relies on a theorem by Tropp [46, Theorem
B] that uses random support setsS and allows to work with
the coherenceµ alone. Note that choosingS at random is
perfectly in line with an average-case analysis.

Theorem 5.4: Let A ∈ C
n×N have unit norm columns and

coherenceµ. Let S ⊂ {1, . . . , N} be a set of cardinalityk ≥ 4
chosen uniformly at random. Letδ, ǫ ∈ (0, 1) and assume that

µ2k log(ǫ−1) ≤ cδ2, (34)
k

N
‖A‖2

2 ≤ δ

4e1/4
, (35)

wherec = log(2)e−1/2

4·144 log(3) ≈ 6.64 · 10−4. Then

‖A†
Saℓ‖2 ≤

√
c δ

(1 − δ)
√

log(ǫ−1)
for all ℓ /∈ S

with probability at least1 − ǫ.

Proof: The proof relies on [46, Theorem 12]. The
formulation below follows from [46] by settings =
log(ǫ−1)/ log(k/2) and estimatinglog(k/2 + 1)/ log(k/2) ≤
log(3)/ log(2) for k ≥ 4.

Theorem 5.5: AssumeA ∈ C
n×N has unit norm columns

and coherenceµ. Let S ⊂ {1, . . . , N} be a set of cardinality
k ≥ 4 chosen uniformly at random. The condition

√

144 log(3) log(2)−1µ2k log(ǫ−1) +
k

N
‖A‖2

2 ≤ e−1/4δ

(36)
implies

P(‖A∗
SAS − I‖ ≥ δ) ≤ ǫ.

Using (34) and the value ofc, the square-root in (36) becomes
δ/(2e1/4). Combining this with (35) shows that (36) is satis-
fied. Therefore,‖A∗

SAS − I‖2 ≤ δ with probability at least
1 − ǫ, which implies that

‖(A∗
SAS)−1‖2 ≤ 1

1 − δ
.

Finally,

‖A†
Saℓ‖2 ≤ ‖(A∗

SAS)‖2‖A∗
Saℓ‖2 ≤ 1

1 − δ

√
kµ

≤
√

c δ

(1 − δ)
√

log(ǫ−1)

by using condition (34) once more.

A. Comparison With Worst-Case Results

Our average-case analysis depends on‖A†
Saℓ‖2, while the

classical condition (6) of Proposition 2.1 depends on‖A†
Saℓ‖1

and is therefore significantly stronger. Proposition 5.2 estab-
lishes that the2-norm condition can be satisfied as long as
δk+1 < 1/2. This is clearly weaker than the worst case
conditionδ2k <

√
2 − 1 ≈ 0.41 of Proposition 2.3.

Let us now compare worst-case and average results based
on the coherenceµ, by relying on Theorem 5.4. For simplicity,
we consider the case in whichA is a unit-norm tight frame,
for which ‖A‖2

2 = N
n . In this case, (35) is equivalent tok ≤

δ
4e1/4 n. If additionally µ = c/

√
n, then conditions (34) and

(35) are both satisfied for fixedǫ, δ provided

k ≤ C′n.

This beats the square-root bottleneck and even removes the
log-factor present in estimates for the restricted isometry con-
stants, see (11). Moreover, we have the additional advantage
that the coherence is much easier to estimate than the restricted
isometry constants.

Combining Theorem 5.4 with the average-case analysis of
Theorems 4.4 and 4.5 shows that for a unit norm tight frame
A of coherenceµ multichannel sparse recovery by (5) can be
ensured in the average-case providedk ≤ Cµ−2, which can be
as small ask ≤ Cn. Moreover, the failure probability decays
exponentially in the number of channels.

In the next sections we provide further examples when we
discuss particular choices of the matrixA.

VI. COMPARISON WITH MULTICHANNEL GREEDY

ALGORITHMS

We now compare our results regardingℓ2,1 optimization
to those obtained for the greedy algorithmsp-thresholding
andp-SOMP [25]. These are multichannel versions of simple
thresholding and orthogonal matching pursuit. For1 ≤ p ≤ ∞
they produce ak-sparse signalX̂ from measurementsY =
AX using a greedy search. To this end, we improve slightly
on previous average-case performance results in [25] for these
algorithms in the noiseless setting.

A. Greedy Methods

In p-thresholding, we select a setS of k indices whose
p-correlation withY are among thek largest:

‖a∗
ℓY ‖p ≥ ‖a∗

jY ‖p, ∀ℓ ∈ S, ∀j /∈ S. (37)

After the supportS is determined, the non-zero coefficients of
X̂ are computed via an orthogonal projection:X̂S = A†

SY .
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The p-SOMP algorithm is an iterative procedure. At each
iteration, an atom indexℓm is selected, and a residual is
updated. At the first iteration the residual is simplyY0 = Y .
After M iterations, the set of selected atoms beingSM =
{ℓm}M

m=1, the new residual is computed asYM = Y −
ASM XM = (I − PSM )Y whereXM = A†

SM
Y and PSM =

ASM A†
SM

is the orthogonal projection onto the linear span of
the selected atoms. The next selected atomkM+1 is the one
which maximizes thep-correlation with the residualYM ,

‖a∗
ℓM+1

YM‖p = max
1≤ℓ≤N

‖a∗
ℓYM‖p. (38)

Using the probability model (21) average-case recovery
theorems forp-thresholding andp-SOMP have been proven
in [25], [24, Theorems 4,6,7,8]. We improve slightly on these
in the following. (Note, however, that [25] also treats the
noisy case.) Our first result generalizes the one in [40] to the
multichannel setup.

Theorem 6.1: Let A ∈ C
n×N have unit norm columns and

local 2-coherence functionµ2(S) defined in (30). LetX ∈
R

N×L with suppX ⊂ S whereS ⊂ {1, . . . , N}, and such
that the coefficients onS are given by (21),XS = ΣΦ, where
we choose the real spherical model forΦ. SetY = AX and
R = maxj σj/ minj σj . If

θ = Rµ2(S) < 1, (39)

then the probability that2-thresholding applied toY fails to
recoverX is bounded by

N exp
(

−L/2(θ−2 − log(θ−2) − 1)
)

.

If we use the complex spherical model instead of the real
spherical model thenL/2 in the above probability estimate
may be replaced byL.

The probability bound of Theorem 6.1 is similar to that
of Theorem 4.4. However, in contrast to our results forℓ2,1-
minimization, success of thresholding suffers a dependency
on the diagonal matrixΣ. The larger the ratioR, the stronger
the condition (39) on the maximal allowed sparsityk, and the
larger the probability of error.

Proof: We proceed similarly as in [40]. We denote byΘ
the event that2-thresholding fails. Clearly,

P(Θ) = P(min
i∈S

‖a∗
i Y ‖2 < max

ℓ/∈S
‖a∗

ℓY ‖2)

≤ P(min
i∈S

‖a∗
i Y ‖2 < ρ) + P(max

ℓ/∈S
‖a∗

ℓY ‖2 > ρ),

where ρ will be specified later. Denote byZj , j ∈ S, a
sequence of independent random vectors which are uniformly
distributed on the unit sphere ofR

L. Then,

P(min
i∈S

‖a∗
i Y ‖2 < ρ) = P



min
i∈S

∥

∥

∥

∥

∥

∥

∑

j∈S

a∗
i ajσjZ

∗
j

∥

∥

∥

∥

∥

∥

2

< ρ



 .

(40)

Now,
∥

∥

∥

∥

∥

∥

∑

j∈S

a∗
i ajσjZ

∗
j

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

σiZ
∗
i +

∑

j∈S,j 6=i

a∗
i ajσjZ

∗
j

∥

∥

∥

∥

∥

∥

2

≥ |σmin| −

∥

∥

∥

∥

∥

∥

∑

j∈S,j 6=i

σj〈ai, aj〉Z∗
j

∥

∥

∥

∥

∥

∥

2

.

Substituting into (40),

P(min
i∈S

‖a∗
i Y ‖2 < ρ)

≤
∑

i∈S

P





∥

∥

∥

∥

∥

∥

∑

j∈S,j 6=i

σja
∗
i ajZ

∗
j

∥

∥

∥

∥

∥

∥

2

≥ σmin − ρ



 .

Choosingρ = σmin/2 and applying Theorem 4.2 we obtain

P(min
i∈S

‖a∗
i Y ‖2 < ρ)

≤ k exp(−L/2(θ−2 − log(θ−2) − 1))

where we used the definition ofθ and µ2(S). Similarly we
estimate

P(max
ℓ/∈S

‖a∗
ℓY ‖2 > σmin/2)

≤ (N − k) exp(−L/2(θ−2 − log(θ−2) − 1)).

Combining the two estimates completes the proof for the real
case. Choosing the vectorsZj, j ∈ S, from the complex unit
sphereSL

C
and using Corollary 4.3 yields the statement for

the complex case.
We now state the corresponding result for2-SOMP, which

slightly improves the one in [25] for the noiseless case. (Note
that we restrict top = 2 here, although the theorem is easily
extended to general values ofp.)

Theorem 6.2: Let A be a matrix with unit norm columns
and constantsδ(S), µ2(S) < 1 where S ⊂ {1, . . . , N}.
Assume that

µ2(S)2 + (1 + ǫ)(1 − ǫ)−1µ2(S)

1 − δ(S)
≤ 1 (41)

for someǫ ∈ (0, 1). Let X be a random coefficient matrix
with supportS that is selected according to the real Gaussian
probability model, see (21), and letY = AX . Then2-SOMP
applied toY recoversX in k steps with probability at least

1 − N2k exp(−ǫ2A2
L), (42)

whereAL ∼
√

L is given by (25).
If we use the complex Gaussian model instead of the

real Gaussian model then the same conclusion holds withL
replaced by2L in (42).

Proof: See Appendix III.
Remark 6.3: (a) Due to the factor2k the probability

bound (42) becomes effective only when the number
of channels becomes comparable to the sparsityk. This
drawback is very likely due to the analysis and is not
observed in practice. However, it seems to be very
difficult to remove this factor by a more sophisticated
proof technique.
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(b) We requireǫ < 1, so that the probability decay of (42)
is potentially slower than that given by Theorem 4.4.

(c) With δ = ǫ = 1/2 condition (41) is satisfied ifµ2(Λ) ≤
1/7 while the probability estimate (42) behaves like1 −
N2k exp(−L/4).

(d) With the estimatesδ(S) ≤ δ∗(S) and µ2(S) ≤ δ∗(S),
(41) with ǫ = 3/11 is implied by

δ∗(S) < 1/3.

(e) By Proposition 5.2 the conditionδ∗(S) < 1/3 implies
‖A†

Saℓ‖2 ≤ 1/2 for all ℓ /∈ S, i.e., the bounded norm
condition ( 22) of the average case recovery result for
mixedℓ2,1. In other words, the condition in (d) for SOMP
is slightly stronger than the one forℓ2,1.

B. Comparison

We now compare the average-case recovery conditions for
mixed ℓ2,1, thresholding and SOMP for the following choices
of the matrix A which we will also use in the numerical
experiments:

1) Random spherical ensemble;
2) Union of Dirac and Fourier;
3) Time-Frequency shifts of the Alltop window.

1) Random spherical ensemble: Assume that the random
columns of A ∈ R

n×N are independent and uniformly
distributed on the sphereSn−1. Let S be a support set of size
k. Then according to Proposition 5.2 the condition‖A†

Saℓ‖2 ≤
α < 1 of Theorem 4.4 is implied byδ∗(S) ≤ α

1+α < 1/2,
while by Proposition 5.3 the latter holds with probability at
least1 − ǫ provided

n ≥ max{C1(α)k, C2(α) log(N/ǫ)}. (43)

Assuming, for example,α = 1/4, under the probability
model (21), the probability that reconstruction byℓ2,1 fails
is bounded from above byN exp(−L/2(15− log(16)))+ ǫ =
N exp(−cL) + ǫ with c ≈ 6.1137.

We now compare this result with the condition of Theorem
6.1 concerning thresholding. As noted in (32),µ2(S) ≤ δ∗(S).
Therefore, by Proposition 5.3 we have

θ = 2Rµ2(S) ≤ 2Rδ∗(S) < 1

with probability at least1 − ǫ provided

n ≥ C
R2

θ2
max {k log(R/θ), log(N/ǫ)} (44)

and the failure probability of thresholding is bounded by
N exp(−L/2(θ−2 − log(θ−2) − 1)) + ǫ.

Let us finally consider Theorem 6.2 for SOMP. By Proposi-
tion 5.3 the conditionδ∗(S) < 1/3 in Remark 6.3 is satisfied
with probability at least1 − ǫ provided

n ≥ max {C1k, C2 log(N/ǫ)} (45)

and the failure probability of SOMP is bounded by

N2k exp(−9/121 A2
L) + ǫ (46)

with A2
L ∼ L if the real Gaussian probability model is used.

Conditions (43), (44), (45) forℓ2,1, thresholding and SOMP
are rather similar. However, condition (44) for thresholding
involves the ratioR. If R is large then thresholding behaves
much worse compared toℓ2,1 and SOMP. The probability
estimate (46) is the worst compared to the other two algorithms
due to the factor2k. Therefore,ℓ2,1 gives the best known
theoretical average case result.

2) Union of Dirac and Fourier: Consider then×2n matrix
A = (I|F ), whereI is the n × n identity matrix andF is
the normalizedn × n Fourier matrix. The coherence ofA is
easily seen to beµ = 1/

√
n. By Proposition 5.1 condition

(22), ‖A†
Saℓ‖2 ≤ α with α = 1/2 is satisfied for all support

setsS of cardinality at mostk provided
√

k

n
+

k − 1

2
√

n
<

1

2
.

If S is chosen at random then a much better bound (up to
constants) is obtained using Theorem 5.4. In our special case,
however, further improvement is possible. A reformulation
of a result of [5], see also [46, Proposition 3] shows the
following. If the supportS consists ofk1 arbitrary elements of
{1, . . . , n} andk2 random elements of{n + 1, . . . , 2n} then
with probability at least1 − ǫ we haveδ(S) ≤ 1/2 provided

k = k1 + k2 ≤ cn
√

log
(

ǫ
Cn

)

+ log(n)
, (47)

with c = 0.25. In particulark ≤ n/4 and the same reasoning
as in the proof of Theorem 5.4 yields

‖A†
Saℓ‖2 ≤ α = 1/2.

Using one of the complex probability models in Theorem
4.4, the failure probability ofℓ2,1-minimization is bounded by
N exp(−L(4 − log(4) − 1)) = N exp(−cL) with c ≈ 1.61.

To compute the performance of thresholding, note that
condition (39),2Rµ2(S) ≤ 2Rµ

√
k ≤ θ < 1, is satisfied

provided

n ≥ 4R2

θ2
k. (48)

Assuming that the non-zero rows of the matrixΦ in the
probability model (21) on the coefficients are indepen-
dent and uniformly distributed on the complex unit sphere
SL−1

C
, the failure probability of thresholding is bounded by

N exp(−L(θ−2 − log(θ−2) − 1)).
Assumingδ(S) ≤ δ = 1/2 andµ

√
k ≤ 1/7, i.e.,

n ≥ 49 k, (49)

the condition of Remark 6.3(c) is satisfied since by (32),
µ2(S) ≤ µ

√
k ≤ 1/7. Then by Theorem 6.2 SOMP fails with

probability at mostN2k exp(−A2
2L/4) assuming the complex

Gaussian probability model. Assuming as in the discussion
of ℓ2,1 that the support set is such thatk1 arbitrary elements
of {1, . . . , n} and k2 random elements of{n + 1, . . . , 2n}
are chosen withk = k1 + k2 then the assumed condition
δ(S) ≤ 1/2 is true with probability at least1 − ǫ provided
(47) holds.

Similar conclusions on the comparison of the three algo-
rithms as in the previous example apply. We note, however,
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that in contrast toℓ2,1 and SOMP, the performance bound
for thresholding does not require a probability model on the
support setS.

3) Time-Frequency shifts of Alltop window: Let n ≥ 5 be
a prime. Denote by(Trg)ℓ = gℓ−r mod n and (Msg)ℓ =
e2πisℓ/ngℓ the cyclic shift and modulation operator, respec-
tively. ThenTrMs, r, s = 0, . . . , n− 1 forms the set of time-
frequency shifts. Letgℓ = 1√

n
e2πiℓ3/n be the so-called Alltop

window. Then defineA to be then×n2 matrix with columns
being the time-frequency shiftsTrMsg, r, s = 0, . . . , n − 1.
The coherence ofA is µ = 1/

√
n [41].

As in the Fourier-Dirac case, under condition (48) and the
complex probability model of Theorem 6.1, thresholding fails
with probability at mostN exp(−L(θ−2 − log(θ−2) − 1)).

For the analysis ofℓ2,1 and SOMP we assume that the
supportS is chosen uniformly at random. AsA is the union
of n orthonormal bases we have‖A‖2

2 = n. Then choosing
δ = 3/4 in Theorem 5.4 yields that under the condition

n ≥ Ck log(ǫ−1)

with a constantC (which also implies (35)) we have

‖A†
Saℓ‖2 ≤ 3

√
c log−1/2(ǫ−1) ≤ α for all ℓ /∈ S

with probability at least1 − ǫ whereα = 3
√

c ≈ 0.0773. By
Theorem 4.4, using one of the complex probability models, the
failure probability ofℓ2,1 is then bounded byN exp(−c2L)+ǫ
with c2 = α−2 − log(α−2) − 1.

For the analysis of SOMP we chooseδ = 1/2 in Theo-
rem 5.5. Assuming that the square-root in (36) is less than
9
10e−1/4 1

2 is equivalent to

n ≥ Ck log(ǫ−1) (50)

with an appropriateC, and condition (36) is satisfied. Then
with probability at least1 − ǫ we have δ∗(S) ≤ 1/2.
Furthermore, as suggested by Remark 6.3(b) the condition
µ2(S) ≤ 1/12 is also implied by (50) sinceµ2(S) ≤

√
kµ =

√

k
n . Assuming the complex Gaussian probability model on

the non-zero coefficients ofX the failure probability of SOMP
is bounded byN2k exp(−A2

2L/2) + ǫ due to Theorem 6.2.

VII. N UMERICAL SIMULATIONS

We tested the three algorithmsℓ2,1 minimization, thresh-
olding and SOMP using the three different types of matrices
indicated in the previous section. The support setS of the
sparse coefficient matricesX was always selected uniformly
at random while the non-zero coefficients were selected at
random using one of the following choices of the probability
model (21),XS = ΣΦ:

1) Φ is chosen to be a real Gaussian random matrix (i.e., all
entries independent and standard normally distributed);
Σ has independent diagonal entries with standard normal
distribution.

2) Φ is chosen to be a complex Gaussian random matrix
(i.e., the real and imaginary parts of each entry are
chosen independently according to a standard normal
distribution);Σ is equal to the identity.

Note thatΣ = I is favorable for thresholding, while the choice
of Σ should have no influence on the performance ofℓ2,1 and
only a mild influence on SOMP.

In the following figures the results of various simulation
runs are plotted (we always used100 simulations for each
choice of parameters).

In Fig. 1 we plot the results when choosingA from a
random spherical ensemble of sizen = 32 columns and
N = 256 rows for L = 1, 2, 4. The matrixX was generated
according to model (1). The improvement with increasingL
is clearly evident.
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Fig. 1. Multichannel recovery withX generated according to model (1)
and A chosen from a random spherical ensemble, (a)ℓ2,1, (b) SOMP, (c)
Thresholding.
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In Fig. 2 we consider all three methods whenA is a union
of Dirac and Fourier bases, each with32 elements. Therefore,
n = 32 andN = 64. The matrixX was generated according
to model (2). In this setting the performance using thresholding
is reasonable, though still worse thanℓ2,1 and SOMP.
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Fig. 2. Multichannel recovery withX generated according to model (2)
and A a union of the Dirac and Fourier bases, (a)ℓ2,1, (b) SOMP, (c)
Thresholding.

Finally, in Fig. 3 we plot the results when using time-
frequency shifts of the Alltop window withn = 29 andN =
292 = 841. Here the results of thresholding are extremely poor
and therefore not plotted.

In all three cases, SOMP performs better than theℓ2,1

approach. However, both show clear performance advantage
with increasingL.
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Fig. 3. Multichannel recovery withX generated according to model (2) and
A chosen as time-frequency shifts of the Alltop function (a)ℓ2,1 (b) SOMP.

VIII. C ONCLUSION

In this paper we analyzed the average-case performance
of ℓ2,1 recovery of multichannel signals. Our main result is
that under mild conditions on the sparsity and measurement
matrix, the probability of failure decays exponentially with
the number of channels. To develop this result we assumed
a probability model on the non-zero coefficients of a jointly
sparse signal. The results we obtained appear to be the best-
known theoretical results on multichannel recovery. Using
the tools we developed for analyzing theℓ2,1 approach, we
also improved slightly on previous performance bounds for
thresholding and SOMP.

APPENDIX I
PROOF OFTHEOREM 4.2

The proof uses the following extension of Khintchine’s
inequality to higher dimensions stated in [27],

E

∥

∥

∥

∥

∥

∥

k
∑

j=1

ajZj

∥

∥

∥

∥

∥

∥

p

2

≤
(

2

L

)p/2 Γ
(

L+p
2

)

Γ
(

L
2

) ‖a‖p
2

for all p ≥ 2 and all vectorsa ∈ R
k. By splitting in real and

imaginary parts it easily follows that this inequality alsoholds
for all a ∈ C

k. We may assume without loss of generality that
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‖a‖2 = 1. Then an application of Markov’s inequality yields

P





∥

∥

∥

∥

∥

∥

k
∑

j=1

ajZj

∥

∥

∥

∥

∥

∥

2

≥ u





= P






exp






λL/2

∥

∥

∥

∥

∥

∥

∑

j

ajZj

∥

∥

∥

∥

∥

∥

2

2






≥ exp(λLu2/2)







≤ exp(−λLu2/2)E






exp






λL/2

∥

∥

∥

∥

∥

∥

∑

j

ajZj

∥

∥

∥

∥

∥

∥

2

2













= exp(−λLu2/2)

∞
∑

i=0

(λL/2)i
E

∥

∥

∥

∥

∥

∥

k
∑

j=1

ajZj

∥

∥

∥

∥

∥

∥

2i

2

≤ exp(−λLu2/2)
∞
∑

i=0

λi Γ(L/2 + i)

i!Γ(L/2)

= exp(−λLu2/2)

∞
∑

i=0

(L/2)i

i!
λi

= exp(−λLu2/2)
1

(1 − λ)L/2
, (51)

where (a)i = a(a + 1)(a + 2) · · · (a + i − 1) denotes the
Pochhammer symbol. The last equation is due to the fact that
∑∞

i=0
(a)i

i! λi is the Taylor series of(1−λ)−a, which converges
for λ < 1. Minimizing (51) with respect toλ givesλ = 1 −
u−2. Inserting this value yields the statement of the theorem.

APPENDIX II
PROOF OFPROPOSITION5.3

Consider first the case of Gaussian or Bernoulli matrices.
According to Theorem 2.1 in [38] (see also Lemma 5.1 in [1]),
we have‖A∗

SAS − I‖2 ≥ δ with probability at most2(1 +
12/δ)k exp(−c0/9nδ2) with c0 = 7/18. A similar estimate
holds for‖A∗

S∪ℓAS∪ℓ − I‖2 with ℓ /∈ S. A union bound over
all ℓ /∈ S yields δ∗(S) ≥ δ with probability at most2N(1 +
12/δ)k exp(−c0/9nδ2). This term is less thanǫ if (33) holds.

Now consider a random matrixΨ ∈ R
n×N with indepen-

dent columns that are uniformly distributed on the sphere
Sn−1. Then Ψ has the same distribution asDA, where A
is Gaussian matrix as above,D = diag(s−1

1 , . . . , s−1
N ) and

sj =
√

n‖Φj‖2 whereΦj ∈ R
n is a vector of independent

standard normally-distributed random variables. We now use
the following measure concentration inequality [3, Corollary
(2.3)] or [4, eq. (2.6)] for a standard Gaussian vectorZ ∈ R

n,

P(‖Z‖2
2 ≥ n

1 − γ
) ≤ exp(−γ2n/4),

P(‖Z‖2
2 ≤ (1 − γ)n) ≤ exp(−γ2n/4).

By a union bound this implies that

P

(

1 − γ ≤ min
j=1,...,N

s2
j ≤ max

j=1,...,N
s2

j ≤ 1

1 − γ

)

≥ 1 − 2N exp(−γ2n/4). (52)

By the above reasoning, we have(1 − δ/3)‖x‖2
2 ≤ ‖Ax‖2 ≤

(1 + δ/3)‖x‖2
2 for all x with suppx ⊂ S ∪ {ℓ} for some

ℓ /∈ S with probability at least1− ǫ provided (33) holds with
a suitable constant. If additionally1 − γ ≤ minj=1,...,N s2

j ≤
maxj=1,...,N s2

j ≤ 1
1−γ for γ = δ/4 then (1 − δ)‖x‖2

2 ≤
‖DAx‖2

2 = ‖Ψx‖2
2 ≤ (1 + δ)‖x‖2

2 for all x with suppx ⊂
S ∪ {ℓ} for someℓ /∈ S. By a union bound and (52) this
holds with probability at least1− 2ǫ provided (33) holds and
2N exp(−δ2n/64) ≤ ǫ, the latter being equivalent ton ≥
64δ2 log(2N/ǫ). Adjusting the constant in (33) completes the
proof.

APPENDIX III
PROOF OFTHEOREM 6.2

We assume that until a certain step SOMP has selected only
correct indices, collected inJ ⊂ S. Let us first estimate the
probability that it selects a correct element ofS \ J also in
the next step.

We denote byPJ = AJA†
J the orthogonal projection onto

the span of the columns ofA in J , andQJ = I − PJ . The
residual at the current iteration is given byYM = QJY =
QJASX = QJASΣΦ. SOMP selects a correct index inS \J
in the next step if

max
ℓ∈S\J

‖a∗
ℓQJASΣΦ‖2 > max

ℓ/∈S
‖a∗

ℓQJASΣΦ‖2. (53)

By Theorem 11 in [25] (which is proven using Theorem 4.6;
note that there is a slight error in [25] in the computation
of the constantAL) we have the following concentration of
measure inequalities

P

(

max
ℓ∈S\J

‖a∗
ℓQJASΣΦ‖2 < (1 + ǫ)C2(L)×

× max
ℓ∈S\J

‖a∗
ℓQJASΣ‖2

)

≤ exp(−ǫ2A2
L),

P

(

max
ℓ/∈S

‖a∗
ℓQJASΣΦ‖2 > (1 − ǫ)C2(L)×

×max
ℓ/∈S

‖a∗
ℓQJASΣ‖2

)

≤ |Sc| exp(−ǫ2A2
L),

whereAL is the constant in (25) andC2(L) = E‖Z‖2 with
Z = (Z1, . . . , ZL) being a vector of independent standard
normal variables. Now we assume that

(1 + ǫ)C2(L) max
ℓ∈S\J

‖a∗
ℓQJASΣ‖2

≥ (1 − ǫ)C2(L)max
ℓ/∈S

‖a∗
ℓQJASΣ‖2. (54)

Then by the above and a union bound the probability that
SOMP fails can be bounded by

P( max
ℓ∈S\J

‖a∗
ℓQJASΣΦ‖2 ≤ max

ℓ/∈S
‖a∗

ℓQJASΣΦ‖2)

≤ (|Sc| + 1) exp(−ǫ2A2
L). (55)

Let us consider now the maximum on the right hand side of
(54). First note thatPJaℓ = aℓ for all ℓ ∈ J , in other words
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QJaℓ = 0. Hence, we can estimate

max
ℓ/∈S

‖a∗
ℓQJASΣ‖2

2 = max
ℓ/∈S

‖ΣS\JA∗
S\JQJaℓ‖2

2

≤ max
ℓ/∈S

∑

j∈S\J

σ2
j |〈QJaj , aℓ〉|2

≤ max
i∈S\J

σ2
i max

ℓ/∈S

∑

j∈S\J

|〈QJaj , aℓ〉|2.

Furthermore, forℓ /∈ S we have




∑

j∈S\J

|〈QJaj , aℓ〉|2




1/2

= ‖A∗
S\JQJaℓ‖2

= ‖A∗
S\J(I − PJ )aℓ‖2

≤ ‖A∗
S\Jaℓ‖2 + ‖A∗

S\JAJ (A∗
JAJ)−1A∗

Jaℓ‖2

≤ µ2(S \ J) + ‖A∗
S\JAJ‖2‖(A∗

JAJ )−1‖2‖A∗
Jaℓ‖2

≤ µ2(S) +
δ(S)

1 − δ(S)
µ2(S) =

µ2(S)

1 − δ(S)
,

where we used the fact thatA∗
S\JAJ is a submatrix ofA∗

SAS−
I.

Next we consider the maximum on the left hand side of
(54). We can estimate

max
ℓ∈S\J

‖a∗
ℓQJASΣ‖2

2 = max
ℓ∈S\J

∑

j∈S\J

σ2
j |〈QJaℓ, aj〉|2

≥ max
ℓ∈S\J

σ2
ℓ inf

j∈S\J
|〈QJaj , aj〉|2.

Furthermore, forj ∈ S \ J

|〈QJaj , aj〉| = |〈(I − PJ )aj , aj〉|
= |1 − a∗

jAJ(A∗
JAJ )−1A∗

Jaj |
≥ 1 − ‖A∗

Jaj‖2‖(A∗
JAJ)−1‖2

≥ 1 − µ2(S)2(1 − δ(S))−1.

Combining the above estimates, condition (54) is satisfied if

(1 + ǫ)
µ2(S)

1 − δ(S)
≥ (1 − ǫ)

(

1 − µ2(S)2

1 − δ(S)

)

,

which is equivalent to (41).
In order to complete the proof, we note that OMP success-

fully recovers the correct signal if (54) holds for allJ ⊂ S.
By a union bound of (55) over all those2k subsets this is
true with probability at least1 − N2k exp(−ǫ2A2

L) provided
condition (41) holds.

The extension to the complex valued case is straightforward.
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