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Abstract— In this paper, we consider recovery of jointly sparse Determining the sparsest vectorconsistent with the data
multichannel signals from incomplete measurements. Sevar y = Ax is generally an NP-hard problem [14]. To determine
approaches have been developed to recover the unknown spaers ; practice, a multitude of efficient algorithms have beeo-pr

vectors from the given observations, including thresholdig, . . .
simultaneous orthogonal matching pursuit (SOMP), and congx posed, [14], [18], [43], [7], [9], which achieve high recoye

relaxation based on a mixed matrix norm. Typically, worst-ase rates. The basis pursuit (BP), ér-minimization approach,
analysis is carried out in order to analyze conditions undewhich is the most extensively studied recovery method [12], [8],
the algorithms are able to recover any jointly sparse set ofectors.  [15], [35]. The use of general purpose or specialized convex
However, such an approach is not able to provide insights imt optimization techniques [26], [18] allows for efficient tee

why joint sparse recovery is superior to applying standard parse . . .
reconstruction methods to each channel individually. Preipus ~Struction using this strategy. Although greedy methodshsu

work considered an average case analysis of thresholding dn s simple thresholding or orthogonal matching pursuit (QMP
SOMP by imposing a probability model on the measured signals are faster in practice, BP provides significantly betteovecy
In this paper, our main focus is on analysis of convex relaxabn  guarantees. In particular, there exist measurement naatric
techniques. In particular, we focus on the mixed/, ; approach A ¢ R™N that allow for stable recovery of alt-sparse

to multichannel recovery. We show that under a very mild .
condition on the sparsity and on the dictionary characterigics, vectors as long ag > Cklog(N/k) whereC'is a constant.

measured for example by the coherence, the probability of Such uniform recovery is not possible for simple threshugdi
recovery failure decays exponentially in the number of chanels. or OMP [16], [36]. (We note, however, that the recent greedy
This demonstrates that most of the time, multichannel spars algorithms CoSaMP [33] and ROMP [34] are able to provide
recovery is indeed superior to single channel methods. Our gch yniform guarantees.) In practice, the recovery rate of
probability bqunds are.valld and meaningful even for a small BP wh d i d t is tvpicall
number of signals. Using the tools we develop to analyze the when averaged over all random sparse vectors IS typically
convex relaxation method, we also tighten the previous bouts Detter than that predicted by the theory. This is due to the fa
for thresholding and SOMP. that existing analysis considers the ability of BP to recove
all vectorsz. On the other hand, in random simulations, the
worst-case instance af typically does not occur. Therefore,
considering the behavior of various recovery methods over
randomz often leads to more characteristic behavior.

The BP principle as well as greedy approaches have been
extended to the multichannel setup where the signal cansist
I. INTRODUCTION of several channels with joint sparsity support [47], [42R],

Recovery of sparse signals from a small number of mel3l: [11], [31], [20], [21]. In [2] the buzzword distribute
surements is a fundamental problem in many different sigrimPressed sensing was coined for this setup. An alteenativ
processing tasks such as image denoising [8], analoggitatli approach is to first reduce the pr_oblem to a single channel
conversion [30], [19], [32], radar, compression, inpaigti p.roblem that preserves the sparsity pattern, and recoeer th
and many more. The recent framework of compressed sensig1a! support set; given the support, the measurements can
(CS), founded in the works of Donoho [15], Candés, Rombe@ inverted to recover the input [31]. A variety _of d]ﬁergnt
and Tao [8], studies acquisition methods as well as efficiefcOvery results have been established that provide ¢onslit
computational algorithms that allow reconstruction of arsp  €nsuring that the output of the proposed efficient algorsthm
vectorz from linear measuremengs= Az, whereA € R™*N coincides with the true signals. In [11] a recovery resulswa

is referred to as the measurement matrix. The key obsenvatfirived for a mixed’, , program in which the objective is to

is thaty can be relatively short, so that < N, and still Minimize the sum of thé,-norms of the rows of the estimated
contain enough information to recover matrix whose columns are the unknown vectors. Recovery
results for the more general problem of block-sparsity were
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same signal to each channel, then no additional informatiwill show that while worst-case results limit the sparsityel
on the joint support is provided from multiple measurement® order+/n, average-case analysis shows that sparsity up to
Therefore, in this worst-case scenario there is no advantagdern may enable recovery with high probability. In terms
for multiple channels. of RIP constants, instead of bounding the RIP constant for
In order to capture more closely the true underlying beparsity sets of sizk, we will only need to consider sets of
havior of existing algorithms and observe a performansizek + 1.
gain when using several channels, we consider an averagefhe remaining of the paper is organized as follows. In
case analysis. In this setting, the inputs are considerdzktoSection[I] we introduce our problem and briefly summarize
random variables. The idea is to develop conditions on tkeown equivalence results between thg, approach for
measurement matrid such that the inputs can be recovereghultichannel recovery and NP-hard combinatorial optimiza
with high probability given a certain input distribution. tion that recovers the true signals. A new recovery conglitio
Recently, there have been several papers that consigerderived in Sectiorl_ll, which is weaker than previous
sparse recovery with random ensembles. In [46] random subsults, and will be instrumental in developing our average
dictionaries ofA are considered and analyzed. This allows tease analysis in Sectidn_JIV. Since the probability bounds
obtain average results for BP with a single input channel. ipe develop depend on th&-norm of Agag, in Section Y
[40], average-case performance of single channel thréstpl we derive several upper bounds on this norm. In Se¢fidn VI
was studied. In [25], [24] extensions to two multichannele use the tools developed in the previous section to derive
recovery algorithms were developed: thresholding andé&mu new bounds on the average performance of thresholding and
neous OMP (SOMP) [25], [24]. Under a mild condition on th6sOMP, that are tighter than existing results and also agipléc
sparsity and on the matrik, the probability of reconstruction to a broader set of problems. We then compare our bounds on
failure decays exponentially with the number of channeis. multichannel BP to these results. Finally, in Section] VII we
the present paper we contribute to this line of research pyesent several simulations demonstrating the behavitheof
analyzing the average-case performance of multichanngl BRferent methods.
i.e,, mixed {5 1-minimization [45], [22], [21], [20]. The tools  Throughout the paper, we denote By the submatrix ofd
we derive in this context are then also used to slightly inapro consisting of the columns indexed iyc {1,..., N}, while
previous bounds on average performance of multichanneb is the submatrix ofX’ consisting of the rows ok indexed
thresholding and SOMP. by S. The/th column ofA is denoted by:, or A,. For a matrix
The theoretical average-case results we develop for mulli; || 4|, is the spectral norm ofl, i.e., the largest singular
channel BP are superior to the average bounds developed,aiie, andA* is its conjugate transpose. The unit sphere in
thresholding and SOMP. For an equally mild or even mildeg” is defined bySL—! = {x e R, |lz|l2 = 1}; the complex
condition on the sparsity and on the matrixwe obtain faster counterpart is denoteﬂL = {z e C¥ |zl = 1}.
exponential decay of the failure probability with respecthe
number of channels. Thus, in this sense, the extension o6 BP t
the multichannel case is superior to existing greedy algms, [1. MULTICHANNEL ¢;-MINIMIZATION
just as in the single channel setting. Moreover, our regover
results are applicable also in the single channel case agerg: Problem Formulation

previous results [25] require a large number of channels towe consider multichannel signal recovery where our goal
yield meaningful (e, positive) probability bounds (althoughis to recover a jointly-sparse matriX € CY*L fromn linear
our new bound for thresholding generalizing the one in [4Gheasurements per channel. Hé¥edenotes the signal length
does not suffer from this drawback). Note, however, that ghd 1. the number of channels,e.,, the number of signals.
simulations SOMP often exhibits the best performance. Thige assume thak is jointly k-sparse, meaning that there are
may be explained by the fact that the bounds are not tight @tmostk rows in the matrixX that are not identically zero.

least for SOMP). More formally, we define the support of the matti as
To develop our probability bounds, we rely on a new

sufficient condition that ensures recovery of the exactaign
set via/l, ;-minimization. This condition generalizes a result
of [44], [23] to the multichannel setting, and is weaker than
existing multichannel recovery conditions. Our averagsec Where the support of théh column is

anal_ysis is_then carried out assuming that the elements of supp Xy = {j, Xj¢ # 0} )
the input signal are drawn at random. We prove that under

a certain restriction ol and the sparsity sef, the sufficient Our assumption is thatX||o := | supp X| < k. The measure-
condition we develop is satisfied with high probability. Thé&ents are given by

restr_iction we impose is that th@—norm of ATSag over all ¢ Y = AX, Y eC™E, 3)
not in the setS is bounded, where, is the /th column of

A, andAg is the pseudo inverse of the restriction.éfto the where A € C™*" is a given measurement matrix. Each
columns inS. This is an improvement over known worst-casgeasurement vectdf, = AX, corresponds to a measurement
recovery conditions which require a bound on thenorm of the corresponding signaY,.

[11], [20], and are therefore stronger. Loosely speaking, w The natural approach to determide givenY is to solve

L

supp X = |_J supp Xy, @
=1



the £yp-minimization problem similar to [8) that involves th@-norm instead of thé-norm,
) and is therefore weaker (namely, easier to satisfy).
s IXflo st AX =Y. ) Assuming the columns ofl are normalized|a,||2 = 1, we

However, [@) is NP hard in general [14]. Several alternati@" guarantee thatl(6) holds as long as the cohererufed
methods have been proposed, that have polynomial comples Small enough, where [17]

[47], [45], [22], [13], [11], [31], [20], [21], [31]. A vari¢y of 1= max |{a;, ar)|. 7
different equivalence results between the solution of dhe J#EL
problem and the output of the proposed efficient algorithmThe following result follows from [20] by noting that the ldko

In [11] an equivalence result was derived for a mixed, coherence in this setting is equal ggd.
program in which the objective is to minimize the sum of the Proposition 2.2: Assume that

¢,-norms of the rows of the estimated matrix whose columns
are the unknown vectors. The condition is based on mutual (2k = 1u < L. (®)
coherence, and turns out to be the same as that obtained freRan [5) recovers alk with || X||o < k from Y = AX.

a single measurement problem, so that the joint sparsitgmat ynder the same conditions as in Propositibns 2.1[&nd 2.2, it
does not lead to improved recovery capabilities as judged RYshown in [43] that BP will recover a singlesparse vector.

this condition. Recovery results for the more general mobl Therefore, if [6) holds, then instead of solviig (5) we cae us
of block-sparsity were developed in [21] based on the RIB, agp on each of the columns &f.

in [20] based on mutual coherence. Reducing these results tqne coherence is lower bounded by [41]

the multiple measurement vectors (MMV) setting leads again

to conditions that are the same as in the single measurement | N—n

case. An exception is the work in [25], [24] which considers p= n(N—-1) ©)
average-case performance of thresholding and SOMP. Under

a mild condition on the sparsity and on the matrx the The lower b_qund behaves Iild_q\/ﬁfor IargeN, which limits
probability of reconstruction failure decays exponehgialith ~ the Propositiori 22 to maximal sparsitiés= O(,/n). To

the number of channels. In Sectiorf V) we slightly improve improve on this we can generalize existing recovery results
on these bounds using the tools developed in this paper. [8], [6] based on RIP to the multichannel setup. The restdct

In Section[T¥ we follow a similar approach and treat thésometry constant, of a matrixA is defined to be the smallest
average behavior of the mixég ; -minimization program [45], constantj,. such that

[22], [21] defined by (1= 80)zl3 < | Azl < (L+80)z]3,  (20)
N g
min || X||z1 = Z |X7|ls, subjecttoAX =Y, (5) Ecz)rl]all k-sparse vectors. The next proposition follows from
j=1 )

) o ) ) ] Proposition 2.3: AssumeA € C™ N with 8o, < V2 — 1
which promotes joint sparsity, as argued for instance ir}.[23 4 x e CV*L y — AX, and letX be the minimizer of
In the single channel cage= 1 this is the usual BP principle. m Then

Therefore, our results can also be used to deduce the average .

case behavior of the BP method. This is in contrast to [25], X = X|[g < Ck 2| X = XW|a,

in which the recovery results derived are not applicable to

the single channel case. As we discuss in Sediioh VI, Ovlypere(} Is a constant] X = /Tr(X*X) is the Frobenius

. i . X (k) . imati
theoretical results are superior to the previous average-cnorm of X and X" " denotes the best-term approximation

. . . i X (k) i indi i
analysis of [25] in the sense that we use an equally mild §f X+ 1€ supp X' consists of the indices corresponding to

P . ;
even milder condition on the sparsity and on the matrjbut thek largest row norm§.X"[,. In particular, recovery is exact

at the same time get a faster exponential decay of the faiIL?fré supp X| < k. _ _ _
probability with respect to the number of channéls t is well known that Gaussian and Bernoulli random matrices

A e R™N satisfydy, < +/2—1 with high probability as long
B. Recovery Results as [1], [10]
Recovery results for the prograri (5) were considered in n 2 Cklog(N/k). (11)

[11], [21], [20]. In particular, the lemma below is derived i For random partial Fourier matrices the respective coolis
[11] and follows also from [20] where the more general casg> ck 10g4(]\7) [37], [39]. Therefore, Proposition 2.3 allows

of block sparsity is considered. for a smaller number of measurements. However, there is stil
Proposition 2.1: Let S C {1,..., N} and suppose that  no dependency on the number of channels. Indeed, under the
||AT5alH1 <1 forall£¢s, 6) same RIP condition BP will recover a singtesparse vector

and therefore, as before, BP may as well be applied to each
with Ag = (A% As) ' A% denoting the pseudo-inverse df.  of the columns ofY” individually.
Then [3) recovers alX € C¥*¥ with supp X = S from We conclude this overview by stressing that known equiv-
Y = AX. alence results do not improve on those for single channel
Note, that the condition above does not depend on the numbparse recovery. In [21], [20] equivalence results arevddri
of channels. In the next section we will derive a conditiofor a mixed/; ; program when different measurement matrices



A; are used on each channel. In this case, even worst-case Proof: The proof follows from noting that
analysis shows improvement ovér= 1. However, when all ’ ‘
measurement matrices are equal, the recovery conditions do | Te(BA)| < Z |B"Ag| < Z 18712l Aell2

not show any advantage with multiple signals. ¢ ¢
< max||Aell2 Z 1Bl = max || Aello]| B2,

lIl. A RECOVERY CONDITION where the second inequality is a result of applying Cauchy-
Schwartz. Under the condition of the lemma, we have strict

Before turning to analyze the average-case behavior 'ngu?“ty in the last inequality. u
(), we first develop a new condition oA that allows for Applying Lemmal3.P to[(17), leads to
perfect recovery. This formulation will be useful in dengi [Xl21 < |\X/Sl|\2,1maXHH*Afz||2 < ||X/S’||271 (18)
the average-case results. / tes’
In the following theorem we give a sufficient condition on = X721,
the minimizers of [(b). This theorem generalizes a result gfhere the last inequality follows froni{lL5). We have strict
[44], [23] for the L = 1 case. To this end we denote bynequality in the first inequality of{18) as long as the value
sgn(X) € CV** the matrix with entries |H*Ag|| for ¢ € " are not all equal sincéX’*||, # 0 for
{ Xy X2 2 0; all ¢ € S’ be definition of the support.
sgn(X)e; =< I1X0ll7 , ’ (12) Suppose to the contrary th#itH* A2 = « for all ¢ €
0, X5z = 0. S’. Clearly, S’ must contain at least one indéxthat is not
In this definition, each element of is normalized by the norm contained inS; otherwiseS” C S, which would contradict the
of the corresponding row. Wheh = 1, sgn(X) reduces to hypothesis thatls is non-singulards' X’ = AsX and X #
the sign of the elements of the vector X'. By our assumptiotfj H*ac||2 < 1, which then implies that
Theorem 3.1: Let X € CV*L with suppX = S and @ < 1or||H*As|2 < 1,£ € S'. The inequalities in[{18) then
assumeAs to be non-singular. If there exists a matifk ¢ PeCOMe

€% such that 5 1X 2 < 1X7S [, max | Adla < X7 [l21 = | X2,
ASH =sgn(X?), (13) tes’ (19)
and Thus, we have shown thdtX’||2; > || X||2,1 for any X’
[H*aell2 <1 forallt¢sS (14) suchthatt” = AX’, and therefored(5) recovers the true sparse

. . : matrix X. ]

then X is the unique solution of15). ChoosingH = (ATS)* sgn(Xg) in Theorem 331l results in

Before pr_ovi_ng the theorem we note that the two conditiogge following corollary.
on H easily imply that Corollary 3.3: Let X e CN*¥ with suppX = S and
|H*agl|s <1, forall £. (15) assumeds to be non-singular. If

Proof: The proof follows the ideas of [44], with appro- I sen(X )" Afar> <1 forall ¢ ¢ 5, (20)

priate modifications to account for the mixég; norm that then X is the unique minimizer of{5).

replaces the/; norm. This corollary will be instrumental in proving the averaggse
LetY = AX, and assume there exists a matfixsuch that performance of[(5). It can easily be seen that Coro[larly @3 i

X, H satisfy [13) and[{14). Lef{’ be an alternative matrix plies Propositioi 2]1. This follows from the triangle inetjty,

satisfyingY = AX’. Our goal is to show thal| X |21 <

!/ 1 .
[IX’||2,1- To this end, we note that Hsgn(XS)*ALaeHQ _ Z(Agaz)j sen(X7)"
[X[l21 = [1X%]|21 = Tr (sgn(X*)(X*)*),  (16) jes 2
where Tr denotes the trace. Substituting H = sgn(X*) < Z |(ATSGL’).7'| [ sgn(X7)|[2 = ||ATsa€H17
into (I8), and using the cyclicity of the trace we have jes
HX|21 :’I‘I‘(H*ASXS) :’I‘I‘(H*AX/) (17) where we used the fact thﬁkgn(XUHg =1.

18" Ty

=T (X " AS') ’ IV. AVERAGE CASE ANALYSIS
where we used the fact thatsX® = vV = AX’ and &’ Intuitively, we would expect multichannel sparse recovery
denotes the support ak’. We next rely on the following to perform better than single channel recovery. However, in
lemma. the worst case setting this is not true as already suggested b

Lemma 3.2: Let A, B be matrices such thaiB is defined. the results of Sectionlll. The reason is very simple. If each
Then | Tr(BA)| < || Bl|2,1 maxg ||A¢l|2, with strict inequality channel carries the same signal, = = for ¢ = 1,..., L,
if [|Aell2 < maxy]||A¢||2 for some value of¢ for which then also the components &f = AX are all the same and
| BY||2 # O. we do not have more information on the supportXfthan



provided by a single componeht. The following proposition The essential idea in both proofs is to show that if the
establishes formally that if BP fails for a given measuretnehound 0n||ATSa¢||2 is satisfied, then the sufficient condition

matrix A, then multichannel optimizationl(5) will fail as well of Corollary[3.3 holds with high probability.

so that in the worst-case, adding channels will not improve Before stating the first theorem, we derive the following

performance. result on the norm of sums of independent random vectors,

Proposition 4.1: Suppose there existskasparse vectar € uniformly distributed on a sphere.
CY that¢,-minimization is not able to recover from= Az. Theorem 4.2 Let ¢ € C* and letZ;, j =1,...,k be a
Then {5 ;-minimization fails to recovetX = (z|z|---|z) € sequence of independent random vectors which are uniformly
CV*L fromY = AX. distributed on the real sphe®-~1. Then for anyu > 1

Proof: If ¢i-recovery fails on somek-sparsex then N
necessarilyl|z’||; < ||z||; for somez’ satisfying Az’ = Axz.
= o Zil|l >
Clearly X = (z|z| - - - |z) is (jointly) k-sparse andl X = AX’ F z_; a;Z3|| = ulallz
for X' = (a'|z| - - |2’). Furthermore, a L2
1X a1 = VEIla'lls < V[l = [ X[l2, = P ( g (1"~ log(u) ”) |

and thereforeX is not the unique minimizer of thé ;- Proof: See Appen(_nK]I. o . .
L ’ Theorenf 4R generalizes the Bernstein inequality for Stein
minimization problem. . . . .
o . .haus sequences in [46, Theorem 13] to higher dimensions. We
Realizing that[{(b) is not more powerful than usual BP in . . .
: . may extend the estimate easily to random vectors uniformly
the worst case, we seek an average-case analysis. This m%arfé .
. . istributed on complex unit spheres.
that we impose a probability model on thesparseX. In ) & _
. ; . Corollary 4.3: Leta € C” and letZ;, j =1,...,k, be a
particular, as in [25], we will assume that on the supgbuf . . .

) b sequence of independent random vectors which are uniformly
size k the coefficients ofX are chosen at random. We thendistributed on the complex sphef—!. Then for anvu > 1
show that under a suitable probability model on the non-zero P P é ' Y
elements ofX, the condition given by Corollafy 3.3 is satisfied i
with high probability, which depends ab. P E :aij > ullal2

We follow the probability model used in [25]: It be the =

joint support of cardinalityc. On S the coefficients are given >

b < exp (—L(u® —log(u®) — 1)) .
y . E T
s Proof: First observe that;Z; has the same distribution
X°=%9 (21) : . :
asla;|Z;. We may therefore assume without loss of generality
where X = diag(c;,j € S) € R*** is an arbitrary diagonal thata; € R. Next, a random vectoZ € S¢~" is uniformly
matrix with positive diagonal elementsg. The matrix® will  distributed onséfl if and only if (Re(Z)T,Im(2)")T is
be chosen at random according to one of the following mOdelﬁ’liforme distributed on the real sphers?“~!. Applying
. Real Gaussian:each entry of® € R**" is chosen Theoren{ZR withL replaced by2L yields the statementm
independently from a standard normal distribution. With this tool at hand we can now easily prove the following
« Real spherical the rows of ® € R*** are chosen average-case recovery theorem.
independently and uniformly at random from the real Theorem 4.4: Let S C {1,..., N} be a set of cardinality
sphereSt—1. and suppose
« Complex Gaussianthe real and imaginary parts of each ;
entry of ® € C** are chosen independently according [Agaclz << forall £ ¢S (22)
to a standard normal distribution. Let X € RY*E with supp X C {1 N} such that the
_ L b
« Complex spherical the rows of® € C *" are chosen coefficients onS are given by[(21) with some diagonal matrix
independently and uniformly at random from the complex < r*** gnd® < R**~ chosen from the real Gaussian or

sphereséfl. spherical probability. Then with probability at least
Note that takingX: to be the identity matrix results in a I
standard Gaussian random mat®¢, while taking arbitrary 1— Nexp (_§(a2 ~log(a™?) — 1)) (23)

non-zeroo;’s on the diagonal ofY allows for different

variances. The matri may be deterministic or random. In(@) recoversX fromY = AX.

particular, choosingd to be the matrix with diagonal elements If the real probability model is replaced by one of the two
given by the inverse,-norm of the rows of® in the real complex models thei/2 can be replaced by in (23).
(complex) Gaussian model, leads to a mafkixX with a real For o < 1 we are guaranteed that the exponent[in (23) has

(complex) spherical distribution. a negative argument, and therefore the error decays exponen
In Theorem§ 414 arild 4.5 below we develop conditions undally in L.
which (8) recoversX fromY = AX with probability that Proof: First observe that by the rotational invariance

decays exponentially witlh.. The condition in both theoremsof Gaussian random vectors the columnssgfi(X®)* =

is given in terms of an upper bound QATSagHszrEnotin S. sgn(®*) are independent and uniformly distributed on the
This is in contrast to the worst-case result of Proposifidih 2real sphere, and the same is also true if we use the real
that is given in terms Oﬂ|ATSag||1 and therefore stronger. spherical random model. Denot€) = Agag for £ ¢ S and



by Z;,j = 1,...,k asequence of independent random vectors|t follows from Stirling’s formulal'(z) ~ /27225 1/2¢7%,
that are uniformly distributed on the sphe$é—!. Using the that

sufficient recovery condition of Corollaky 3.3, the unioruinad L/2,—(L+1)/2

and Theoreni_412 we can estimate the probability that TR (L/2) T D L2
minimization fails to recoverX by (L + 1)L
_ —1/2 _ —1/2 Ly1/2
P(I?éig(” sgn(X %) 0], > 1) =V L&z~ °© P(La+1/0)") "7 ~ VL.
< ZP(H sgn(X )@y > 1) Moreover, for allL > 1 it holds thatv/L > Ay > \/g\/f ~
s 0.797VL.
k o . Note thaty = ﬁ is monotonically increasing in
<> P67 > O, L. In addition, the probabilityP is also increasing (towards
¢S j=1 9 1) in L. Therefore, more channels increase the probability of
L, _, _a success and in addition relax the requirements on the matrix
< (N —k)exp _E(a —log(a™)—-1) ). A

. Proof: To prove the theorem we show that [f{24) is
The complex case follows analogously using Corolfary 3. satisfied, then condition_(20) of Corollafy_B.3 holds with

For L = 1, Theorem[4} is contained implicitly in [46, propability P.
Theorem 13]. The appearance of theorm in (23) instead  To this end, letd € R**" denote a random matrix with
of the 1-norm as in [(6) makes the condition of the theorefmgependent standard normal distributed entries, andel&fin

weaker than worst-case estimates (recall thalo < [|z]s < as thek x k diagonal matrix with diagonal elementgs,, j €
Vk|z||2 for any lengthk vector z). In Section[¥ this will

i L

be made more evident when we consider conditions on the WNeres; = 197]l2 = 4/ 3262y [ @je]?. We can then_ EXpress
coherence: and the RIP constant to allow for recovery withFen(X ) = sgn(X®) = sgn(®) = D®. (This equation also
high probability. The requirement we obtain gnis weaker Means that ther|agon§1I matri does not play any role.)
than that of Propositiof. 2.2 and allows for recovery witon D€notingb; = Aya; for j & .5,
the order ofn, while the worst-case results limit recovery to || sgn(Xs)*bjll2 = [|@* Db;la < ||®[|2]|D]l2]/b;]l2-
order y/n. Furthermore, in contrast to the worst-case results
which depend ondsx, we will show that high-probability By the assumption of the theorefib;|ls < ~ where vy is
recovery is possible as long ds,; is small enough. defined by[(2#4). It therefore remains to boufil|; and||D|2.

It is evident from [2B) that the failure probability decaysf'JFrom [.10,’ equation (4.35)], see also [42], the operatomnor
exponentially with growing humber of channdls Moreover, of ¢ satisfies
the bound is also useful for small, and in particular for 12]]2 < VL+VE+r (26)
the monochannel casé = 1. Indeed, a simple algebraicwith probability at leastl — exp(—r2/2).
manipulation shows that the failure probability is lessntha Next we consider| D||,. Observe that the? are y2(L)

e provided||Afa|> < o for all ¢ ¢ S with o satisfying distributed. Therefore, denoting)&(L)-variable byY’,
_ _ 21og(N/e) 1 o0
2 2y > ) 1 _ L/2 x/2
o log(a™%) > T +1 Els;] = IE[\/}_/] = 72L/2F(L/2) /0 Vzxtlte® 2dy
This provides a useful average-case analysis evet ferl. \/§F((L +1)/2) 4 VI
For completeness, we also state an alternative recovery re- B riL/2) F Ty

sult below which provides a slightly better probabilityigsite
than_Theoren@M for \/Tery Ia_rge values bf. However, the 5;(®7 — W) < ||®7 — Wi}, Using these two observations
required condition on|Aga||2 is stronger. : . .

we rely on the following standard concentration of measure

Theorem 4.5: Let S C {1,...,N} be a set of cardinality result, see e.g. [28, eq. (2.35)] or [29, eq. (1.6)].
k, and letX € RY*" be random sparse coefficients With Theorem 4.6 Let f be a Lipschitz function orR”, i.e.

supp X = S given by the real Gaussian probability model. 'Tf(a:) — f(y)| < Bl|lz —y|» for all z,y € RL. Further assume
thatZ = (Z1, Z,, ..., Z1) is a vector of independent standard

As a function of ®/ the s; are Lipschitz continuousi.e,

Al At 24
14sacll> < 3VL + 2k T 3+2k/L (24) " Gaussian random variables. Then
t2
for all ¢ ¢ S, where P(f(Z) > E[f(Z)] +t) < exp <_@> ,
I'(L+1)/2)
Ap =22 VL, 25 2
. XE7R) 2 P(/(2) <EIf(Z)] 1) <exp (5 )
andT" denotes the Gamma function, then with probability @ur goal is to show thaltD||, is bounded from above, which
least is equivalent to bounding the smallest valuespffrom below.
P =1—exp(—L/8) — kexp(—A2/8) Applying Theoreni 46 to;,

() recoversX fromY = AX. P(s; < AL(1 —t)) < exp(—t?A7 /2),



where we used the fact th& = 1 andE[s;] = Ar. Using a provide a condition based on the following refinement of the

union bound over allj, we obtain RIP of A. For a setS C {1,..., N} we let
P(s; < Ap(1—1),Vj) =P (}_n{lin L85 < Ap(1 - t)) 6(9) = |AsAs — I
T ) The restricted isometry constan}, of (I0) satisfiesd, =
<D P(s; < Ap(1 - 1)) = kexp(~1° A} /2). max|s|<i | A5As — I||> so that if S has cardinalityk then
jes §(S) < 6. We further define
Assuming thatminjess; > Ar(1 — t) holds, |D|s < cray
1/(AL(1—t)). Combining this bound witi{26) for = \/Ls (8) = %agui(s UAD: (29)
we have Clearly, 6(S) < 6*(S) < dx41. Finally, we make use of the
; Vk+ VL + sVL following “local” 2-coherence function,
I sen(Xs)Aay o <
_ (s + 1+ VEDWT p2(S) = max {I?¢a§(|Asag|2,I?€a§(|As\éagH2} (30)
(1-1)AL for a subsetS C {1,...,N}, where S \ ¢ denotes the
Choosings =t =1/2, elements inS excluding thelth one. From the definition of

the coherence it follows immediately that
| sen(Xs)* ALa,llz < (3+ 2/ DWE/AL < 1. (27) Y

¢From [(2¥) and Corollafy_3.3¥ is recoverable usind15). H2(S) = VISla, (31)
The probability that[{27) does not hold can be computed Isjnce the magnitude of each eleméfi,, a;)| of the vector

applying a union bound to the probabilities that the spéctrd§a, is bounded above by. In addition,

norms of each of the matriceB and D are not bounded.

This shows that[{27) does not hold with probability at most H2(S) < 0%(S). (32)
exp(—L/8) + kexp(—A?%/8) completing the proof of the This is a result of the fact thatl* Gag is a submatrix of
theorem. B AL Asupy — 1 for £ ¢ S, while A G IS a submatrix

of Az As I for ¢ € S. (They both conS|st of a subcolumn of
the respectlve matrix, that “leaves” out the diagonal elemye
We now use these definitions to bouHmTScuHQ:

Both Theorem$ 4]4 arld 4.5 state thatcan be recovered  proposition 5.2: Let S C {1,...,N}. Then:
with high probability fromY’, as long ag|A%a||» is bounded. (@) If A satisfiess* () < 5 < 1/2 then
In this section we develop several different conditionsamnd =

which this holds. I ALaglls < d <1 foralliés
Proposition 5.1: Let A € C™*" have unit-norm columns s =775 '

and coherencg:, and letS C {1,...,N} be a set of () |f A satisfiess(S) < § < 1 and u2(S) < 7 then
cardinality k. Assume that "
HATSW||2 < 13

(Vk+ (k=18 <o (28) _ _
Proof: Denoting by A an eigenvalue ofA:Ag, the
for somed > 0. Then|[ALa||> < & for all £ ¢ S. definition of 6(S) < 6*(S) < ¢ implies that|l — \| < 4.
Proof: Gershgorin’s disk theorem implies that the small€onsequently, the smallest eigenvalue A As is bounded

est eigenvalue\,,;, of A5Ag is bounded from below by from below byl — § and therefore

V. BOUNDED NORM CONDITION

— (k — Dp. In particular, A5 Ag is invertible provided 1
(k — 1)u < 1. Further, I(A5As) ™ 2 < =3
| ALacl2 = ZKW’%’W < \/E% For (a), as already noted abovdja, for £ ¢ S is a
jes k x 1 submatrix of A%, ,Arue — I. Therefore,||Agaell2 <

AspArue — I||2 <6, and
since by definition,/{as, a;)| < w. Now, using the fact that 1Az upAzoe = Iz <

Al = (AzAs) 1A%, [ALacll2 < [(A5As) * Afacl
X _ X N _ 0
| ALaells < [1(A5As) ™ |2l Agacl2 < (A5A45) 2l Agarllz <

1
< (L= (k=) Vkn <9, The proof of (b) follows from the fact thatA%asl2 < ua(S).
where the last inequality follows from the fact tHafl(28) lifep A similar estimate as above y|elq15}15afz||2 (1-6)"'n. m
6> VEk/(1—(k—1)p)~ " [ | Proposition 5.2 applies i1 is small while in contrast
Condition [28) is slightly weaker thafl(8) as long &s> Theoremi 2B works withi,;, which is generally larger than
1/\/E. This follows from the2-norm that replaced the-norm  §; ;. By (@) the conditiond,.; < § can be satisfied ifi >
in the upper bound. Howevel, (28) still suffers the squa-r Csklog(N/k). Working with §*(S) instead ofé; 1 allows to
bottleneckk = O(y/n). To improve on this result, we nextimprove on the bound(11) for Gaussian, Bernoulli and random



spherical matrices. Finally,

Proposition 5.3: LetS C {1,..., N} be a set of cardinality . . 1
k and suppose thatt = =& ¢ R™*", where® is drawn 145 acll> < [[(A5As)[l2l|A5ac]> < 1_5\/E“
at random according to a standard Gaussian or Bernoulli NZE)
distribution (with expectation0 and variancel/n). Then < (1—0)/log(e 1)

0*(S) < ¢ with probability at leastl — ¢ provided that
by using condition[(34) once more. [ |
n > 016 2 max{klog(1/6),log(N/e)} (33)

for a suitable constant. A. Comparison With Worst-Case Results

The same statement holds (with possibly a different con- average-case analysis dependqm@ag”% while the

stant) for a random matrix whose columns are chosen indc?éssical conditior{6) of Propositién 2.1 dependﬂlﬂli;azlll

gesnpdheer:t;y at random according to the uniform distribution Ond is therefore significantly stronger. Proposition 5 @iles

lishes that the2-norm condition can be satisfied as long as
Proof: See AppendiklI. B 5., < 1/2. This is clearly weaker than the worst case

A straightforward extension of the proof, as in [1], alsowko conditionds;, < v/2 — 1 = 0.41 of Propositior 2.B.

that a random matrixd € R™*" with independent columns Let us now compare worst-case and average results based

drawn from the uniform distribution on the sphere satisfiesn the coherencg, by relying on Theorem 5l 4. For simplicity,

RIP, §, < & with probability at leastl — ¢ providedn > we consider the case in which is a unit-norm tight frame,

C3~2(klog(N/k)+log(e~1)). Although this fact seems to befor which || A||3 = £ In this case,[(35) is equivalent fo<

known, we are not aware of reference where this is rigorou%n. If additionally i = ¢/+/n, then conditions[{34) and

stated. (38) are both satisfied for fixed § provided

The next result relies on a theorem by Tropp [46, Theorem E< O,

B] that uses random support sefsand allows to work with
the coherencg:. alone. Note that choosing at random is This beats the square-root bottleneck and even removes the

perfectly in line with an average-case analysis. log-factor present in estimates for the restricted isometry co
Theorem 5.4: Let A € C™*N have unit norm columns and Stants, sed (11). Moreover, we have the additional advantag
coherence:. Let S C {1,..., N} be a set of cardinality > 4 that the coherence is much easier to estimate than thectesitri

chosen uniformly at random. Léte € (0, 1) and assume that ISOMelry constants. _ _
Combining Theoreri 514 with the average-case analysis of

pklog(e™!) < cd?, (34) Theorem$§4l4 and 4.5 shows that for a unit norm tight frame
EHAHQ < 1) (35) A of coherence: multichannel sparse recovery iy (5) can be
N 2= fel/4” ensured in the average-case provided Cp~2, which can be
 log(2)e1/2 4 as small ag: < Cn. Moreover, the failure probability decays
wherec = 71w ~ 0.64-107%. Then exponentially in the number of channels.
N In the next sections we provide further examples when we
| ALall> < forall ¢ S discuss particular choices of the matrix

(1 —9)4/log(e™1)

with probability at least —e. VI. COMPARISON WITHMULTICHANNEL GREEDY
Proof: The proof relies on [46, Theorem 12]. The ALGORITHMS

formulation below follows from [46] by settings

_ N B We now compare our results regardiig; optimization
1 1Y/ log(k/2) and estimat k/2+1)/log(k/2) <
1Z§E§)/)lc/>gc()§)( f(/)r)kag 4.es imatingog(k/2 + 1)/ log(k/2) < to those obtained for the greedy algorithmshresholding

_ Dy N _ andp-SOMP [25]. These are multichannel versions of simple
Theorem 5.5: AssumeA € C has unit norm co!um_ns thresholding and orthogonal matching pursuit. Fet p < oo

and coherenceg. !_et S c{l,...,N} be a set _o_f cardinality they produce a-sparse signal from measurements’ —

k = 4 chosen uniformly at random. The condition AX using a greedy search. To this end, we improve slightly

on previous average-case performance results in [25] &seth

algorithms in the noiseless setting.

/144 10g(3) log(2)~ 2k log(e1) + %HAH% <e 4§
(36)
implies
P([[A5As — I]| > ) <e. A. Greedy Methods
Using [34) and the value af the square-root i (36) becomes In p-thresholding, we select a sét of k indices whose
§/(2¢*/*). Combining this with[(3b) shows thdf (36) is satisp-correlation withY” are among thé: largest:
fied. Therefore|A5As — Iz < 6 with probability at least . . _
1 — ¢, which implies that lazYllp 2 lla3Yllp, Ve €S, V5 ¢ 5. (37)
1 After the supports is determined, the non-zero coefficients of

* —1 ~
[(AsAs)™ 2 < 1-5 X are computed via an orthogonal projection® = ATSY.



The p-SOMP algorithm is an iterative procedure. At eachow,
iteration, an atom indeX,, is selected, and a residual is
updated. At the first iteration the residual is simply =Y. dao 2 =g z* * *
! . ) ) P 8 — L7 _|_ a»a-a-Z»
After M iterations, the set of selected atoms beifig = Z LTI v Z LTI

. ) jes €S, ji
{,}M_,, the new residual is computed a8, = Y — ’ 2 JesI7 2
As, Xy = (I - Ps,,)Y where Xy, = AL Y and Ps,, = > lowl || 3 0502
AsMATSM is the orthogonal projection onto the linear span of = Fmm L TINTRIEG
the selected atoms. The next selected atom ; is the one J€S.3# 2
which maximizes the)-correlation with the residudy,, Substituting into[(40),

Iz, Yarllp = max lla;Yall, @8)  Plmip Yl < p)
< P ojaia; 27| > Omin —
Using the probability model[{21) average-case recovery - ; JE;# 7434y )| = Tmin TP

theorems forp-thresholding angp-SOMP have been proven 2

in [25], [24, Theorems 4,6,7,8]. We improve slightly on taesChoosingp = o1in/2 and applying Theorein 4.2 we obtain
in the following. (Note, however, that [25] also treats the
noisy case.) Our first result generalizes the one in [40] ¢ th
multichannel setup. < kexp(—L/2(07* —log(6~?) — 1))

P(min ||a*Y
(r;ggllaz ll2 < p)

where we used the definition of and p2(S). Similarly we
Theorem 6.1: Let A € C™*" have unit norm columns and estimate
local 2-coherence functionz(S) defined in [[(3D). LetX €

RY*L with supp X ¢ S whereS ¢ {1,...,N}, and such P(%agllaZYllz > Omin/2)

that the coefficients o are given by[(21) X = X &, where < (N —k —L/2(0~2 — loe(0~2) — 1

we choose the real spherical model fbr SetY = AX and = Jexp(=L/2 0g(677) = 1)).

R = max; 0;/ min; ;. If Combining the two estimates completes the proof for the real

case. Choosing the vectofs, j € S, from the complex unit

0= Ruz(S) <1, (39) sphereS(é and using Corollary_4]3 vyields the statement for

then the probability tha2-thresholding applied td fails to the complex case. =

recoverX is bounded by We now state the corresponding result 886OMP, which

9 9 slightly improves the one in [25] for the noiseless case.téNo
Nexp (=L/2(67" —log(67%) — 1)) that we restrict top = 2 here, although the theorem is easily

If we use the complex spherical model instead of the re@xtended to general values pf
spherical model ther/2 in the above probability estimate Theorem 6.2: Let A be a matrix with unit norm columns

may be replaced by.. and constants¥(S), u2(S) < 1 where S c {1,...,N}.
Assume that
The probability bound of Theorefl 6.1 is similar to that p12(8)* + (1 +€)(1 — €)' pa(S) <1 (41)
of Theoren{44. However, in contrast to our results 9x- 1-46(9) -

minimization, success of thresholding suffers a dependeng; somee < (0,1). Let X be a random coefficient matrix
on the diagonal matri¥. The larger the ratidk, the stronger it sypports that is selected according to the real Gaussian
the cond|t|0n[(39)_(_)n the maximal allowed spardityand the probability model, sed(21), and &t = AX. Then2-SOMP
larger the probability of error. applied toY recoversX in k steps with probability at least
k 2 42
Proof: We proceed similarly as in [40]. We denote By 1= N2V exp(=€ AL), (42)
the event thaR-thresholding fails. Clearly, where Ay, ~ /L is given by [Z5).
If we use the complex Gaussian model instead of the
real Gaussian model then the same conclusion holds ivith
< P(min||aY |2 < p) + P(max [a;Y |2 > p), replaced by2L in (@2).
ies tes Proof: See AppendixTII. [ ]
where p will be specified later. Denote by;, j € S, a Remark 6.3: (a) Due to the factor2* the probability
sequence of indepen.dent random vectors which are uniformly bound [@2) becomes effective only when the number
distributed on the unit sphere &". Then, of channels becomes comparable to the spafsityhis
drawback is very likely due to the analysis and is not
P(min [|a]Y |2 < p) = P [ min Zajajgjz;f <pl. observed in practice. However, it seems to be very
i€s i€s jes difficult to remove this factor by a more sophisticated
(40) proof technique.

P(©) = P(mi Y VY
(6) = P(min a; Y 2 < max Y |

2
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(b) We requiree < 1, so that the probability decay df {42) Conditions[(4B),[(44)[(45) fof. ;, thresholding and SOMP
is potentially slower than that given by Theoreml4.4. are rather similar. However, conditioh _{44) for threshotgi

(c) With § = e = 1/2 condition [41) is satisfied ifio(A) < involves the ratioR. If R is large then thresholding behaves
1/7 while the probability estimaté (#2) behaves like- much worse compared t6,; and SOMP. The probability

N2Fexp(—L/4). estimate[(4b) is the worst compared to the other two algmsth
(d) With the estimate$(S) < §*(S) and u2(S) < 6*(S), due to the factorz®. Therefore,l>; gives the best known
@13) with e = 3/11 is implied by theoretical average case result.

5*(S) < 1/3 2) Union of Dirac a_nd Fourier: C_onsider then X 2n matr_ix
' A = (I|F), where[ is then x n identity matrix andF is
(e) By Propositiorf 5]2 the conditiofi*(S) < 1/3 implies the normalized» x n Fourier matrix. The coherence of is
||ATSa,3||2 < 1/2forall ¢ ¢ S, i.e., the bounded norm easily seen to be: = 1//n. By Proposition 51 condition
condition ([22) of the average case recovery result f@@32), || ALac|> < a with o = 1/2 is satisfied for all support
mixed/s ;. In other words, the condition in (d) for SOMPsetsS of cardinality at most provided

is slightly stronger than the one fég ;. T or—1 1
\/;Jr o 2
B. Comparison If S is chosen at random then a much better bound (up to

We now compare the average-case recovery conditions égnstants) is obtained using Theoriem 5.4. In our special, cas
mixed {5 1, thresholding and SOMP for the following choicesiowever, further improvement is possible. A reformulation
of the matrix A which we will also use in the numericalof a result of [5], see also [46, Proposition 3] shows the
experiments: following. If the supportS consists o arbitrary elements of
{1,...,n} andk, random elements ofn + 1,...,2n} then

1) Random spherical ensemble; ) - ;
with probability at leastt — e we haved(S) < 1/2 provided

2) Union of Dirac and Fourier;
3) Time-Frequency shifts of the Alltop window. k=ky+ky < cn (47)

1) Random spherical ensemble: Assume that the random \/log (&) + 10g(n)7
columns of A € R™" are independent and uniformly ) )
distributed on the spher§”—!. Let S be a support set of sizeW'th ¢ = 0.25. In particulark < n/.4 and the same reasoning
k.. Then according to Propositién®.2 the conditjoti,a||, < @S in the proof of Theore 3.4 yields
a < 1 of Theorem4M} is implied by*(5) < 1 < 1/2, IALaglls < o = 1/2.
while by Propositio 5]3 the latter holds with probability a
least1 — e provided Using one of the complex probability models in Theorem

[4.4, the failure probability ofs ;-minimization is bounded by
n = max{C\(a)k, Ca(e) log(N/€)}. (43)  Nexp(—L(4 —log(4) — 1)) = N exp(—cL) with ¢ ~ 1.61.

Assuming, for examplen = 1/4, under the probability To_pompute the performance of threshold_ing, note that

model [Z1), the probability that reconstruction By, fails condition [39),2Rp,(5) < 2RuVk < 6 < 1, is satisfied
is bounded from above b exp(—L/2(15 —log(16))) +¢ = Provided
N exp(—cL) + € with ¢ ~ 6.1137. n>—=k. (48)
We now compare this result with the condition of Theorem
6.1 concerning thresholding. As notedInl(32)(S) < 6*(S). Assuming that the non-zero rows of the matdx in the

Therefore, by Proposition 5.3 we have probability model [(2Ll) on the coefficients are indepen-
. dent and uniformly distributed on the complex unit sphere
0 =2Rp2(S) < 2R6"(S) <1 S¢~ !, the failure probability of thresholding is bounded by
with probability at leasti — ¢ provided Nexp(—L(6~2 —log(0~?) — 1)).
R2 Assumingd(S) <6 =1/2 anduvk < 1/7, i.e.,
n > 09—2 max {klog(R/0),log(N/e)} (44) n> 49k, (49)
and the failuregprobabilitgy of thresholding is bounded byhe condition of Remark 8.3(c) is satisfied since byl (32),
N exp(—L/2(07% —log(07%) — 1)) + €. (2(S) < vk < 1/7. Then by Theorei 8.2 SOMP fails with

Letus finally cqnsider Theore@.z for SOMP. By Proposrobability at mostV2* exp(— A2, /4) assuming the complex
tion[5.3 the conditios*(S) < 1/3 in RemarK6.B is satisfied Gaussian probability model. Assuming as in the discussion

with probability at leastl — ¢ provided of £, that the support set is such thiat arbitrary elements
n > max {C1k, Cs log(N/e)} (45) of {1,...,n} qnd ko random elements ofn + 1,.. .,2n.}-
are chosen withk = ki + ko then the assumed condition
and the failure probability of SOMP is bounded by 5(S) < 1/2 is true with probability at least — ¢ provided
N2¥exp(—9/121 A2) + ¢ (a5) @) holds.

Similar conclusions on the comparison of the three algo-
with A2 ~ L if the real Gaussian probability model is usedrithms as in the previous example apply. We note, however,
L
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that in contrast tof, ; and SOMP, the performance boundNote that® = I is favorable for thresholding, while the choice
for thresholding does not require a probability model on th&f 3 should have no influence on the performancé-of and

support setS. only a mild influence on SOMP.
3) Time-Frequency shifts of Alltop window: Letn > 5be |n the following figures the results of various simulation
a prime. Denote bY(T.g)¢ = gr—r modn aNd (Msg)e = runs are plotted (we always usdd0 simulations for each

e?mist/ng, the cyclic shift and modulation operator, respecchoice of parameters).

tively. ThenT,.M,, r,s =0,...,n — 1 forms the set of time- ; ;
TS U In Fig. e plot the results when choosing from a
frequency shifts. Let, = -Le27*/ be the so-called Alltop ra ‘9. 1 we p utts W Ing

. ] Vn iy ndom spherical ensemble of size = 32 columns and
window. Then defined to be then x n? matrix with columns  x; _ 956 rows for I, — 1,2,4. The matrixX was generated
being the time-frequency shifts, Mg, r,s = 0,...,n = 1. according to model (1). The improvement with increasing
The coherence ol is u = 1/+/n [41]. is clearly evident.

As in the Fourier-Dirac case, under condition](48) and the
complex probability model of Theoreim 6.1, thresholdindsfai
with probability at most\V exp(—L(6~2 — log(6~2) — 1)). Recovery Rate forl, ,

non-zero coefficients of the failure probability of SOMP 0 ° D arsity Level 20 2
is bounded byN2* exp(—A3; /2) + ¢ due to Theoreri 62.

For the analysis off,, and SOMP we assume that the TR | =
supportS is chosen uniformly at random. A4 is the union 008 ) |
of n orthonormal bases we hayei|? = n. Then choosing 8 TN
6 = 3/4 in Theoren{ 5.4 yields that under the condition % o6

n > Cklog(e™!) g \
704l
with a constantC (which also implies[(35)) we have é !
@ 0.2
|ALaella < 3v/clog /2 (e ) <a forall £ ¢ S
with probability at leastl — ¢ wherea = 3,/c ~ 0.0773. By % ARE AT MR
Theoreni 44, using one of the complex probability modeks, th Sparsity Level
failure probability of¢s ; is then bounded by exp(—caL)+e (@
with ¢ = a? - IQg(a_Q) - L ] Recovery Rate for SOMP

For the analysis of SOMP we choose= 1/2 in Theo- L S o ‘ —
rem[5.5. Assuming that the square-root in](36) is less than R k=2
2e~1/41 is equivalent to g 08 LTl

g =32
n > Cklog(e™!) (50) 8 o6
with an appropriate”, and condition[(36) is satisfied. Then E
with probability at leastl — ¢ we have§*(S) < 1/2. g0
Furthermore, as suggested by Remiark 6.3(b) the condition §
12(S) < 1/12 is also implied by[(50) sincgs(S) < Viu = 02
}1/%. Assuming the complex Gaussian probability model on o
the

(b)

VIl. NUMERICAL SIMULATIONS L Recovery‘Rate forThreshoIding :
We tested the three algorithnfs ; minimization, thresh- Zz
olding and SOMP using the three different types of matrices 50'8 B
indicated in the previous section. The support Sebf the >
sparse coefficient matrice¥ was always selected uniformly g°
at random while the non-zero coefficients were selected at &
random using one of the following choices of the probability g o4
model [21),X° = X&: §02
1) & is chosen to be a real Gaussian random matrix (i.e., all
entries independent and standard normally distributed); 0 D Y S .
¥ has independent diagonal entries with standard normal 0 D arsity Level 20 2

distribution.
2) ® is chosen to be a complex Gaussian random matrix
(I'e" the real and Imaginary parts of each entry aﬁ. Multichannel recovery withX generated according to model (1)

4 ) 1.
chosen independently according to a standard nornaa%A chosen from a random spherical ensemble,#g), (b) SOMP, (c)
distribution); X is equal to the identity. Thresholding.

(©
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. . . . R Rate for |
In Fig.[2 we consider all three methods whdris a union ecovery Rate 1o,

of Dirac and Fourier bases, each with elements. Therefore, : —~L=1
n =32 and N = 64. The matrixX was generated according 08 ceb=20 ]
. . . . = U « L=4
to model (2). In this setting the performance using thredingl & s
is reasonable, though still worse thé, and SOMP. G;TO_G, —L=16 |
o
1S
Q
R 24
ecovery Rate for |2,1 =04l |
l© © 0 6 9 o000 9 0—g B O 2
=
£
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In this paper we analyzed the average-case performance
Recovery Rate for Thresholding . . . .
1o o ous & etttk of ¢5; recovery of multichannel signals. Our main result is
that under mild conditions on the sparsity and measurement
208 ] matrix, the probability of failure decays exponentiallythwi
é‘; the number of channels. To develop this result we assumed
S 0.6 ] a probability model on the non-zero coefficients of a jointly
o . -
s sparse signal. The results we obtained appear to be the best-
504 ] known theoretical results on multichannel recovery. Using
é . _ the tools we developed for analyzing tiig; approach, we
W 0.2} s ] also improved slightly on previous performance bounds for
N thresholding and SOMP.
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© APPENDIXI

PROOF OFTHEOREM[4.2
Fig. 2. Multichannel recovery withX generated according to model (2)

?’r‘]d Ah""ld!mi"” of the Dirac and Fourier bases, @)1, (b) SOMP. (©)  The proof uses the following extension of Khintchine’s
resnolding. inequality to higher dimensions stated in [27],

Finally, in Fig.[3 we plot the results when using time- i P /2 T (ﬂ)
frequency shifts of the Alltop window with = 29 and N = E Z a7zl < (2) 2 a2
29% = 841. Here the results of thresholding are extremely poor = AL r(%) 2
and therefore not plotted. 2

In all three cases, SOMP performs better than ¢he for all p > 2 and all vectors: € R*. By splitting in real and
approach. However, both show clear performance advantageginary parts it easily follows that this inequality alsolds
with increasingL. for all « € C*. We may assume without loss of generality that
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a2 = 1. Then an application of Markov’s inequality yields ¢ ¢ S with probability at leastl — e provided [38) holds with
) a suitable constant. If additionally— v < min;—;  n s? <
Za 7 >u max,=i.. N sf < E for v = 6/4 then (1 - 5)ch||% <
|DAz|3 = ||Vz|3 < (1 + 6)||z|3 for all z with suppz C

S U {¢} for somef ¢ S. By a union bound and($2) this

? holds with probability at least — 2¢ provided [38) holds and

=P |exp | AL/2 Zaij > exp(ALu?/2) 2N exp(—d%n/64) < ¢, the latter being equivalent ta >
j 5 6462 log(2N/¢). Adjusting the constant il (83) completes the
9 proof.
< exp(—ALu?/2)E |exp | AL/2 ZajZJ
J 2
21
= exp(—ALu2/2 (AL/2)’ a0 APPENDIXIII
xp( /2 ; /2 ; ’ PROOF OFTHEOREMI[6.2
2
— ;[(L/2
< exp(~ALu?/2) S X 'F/LJ;Z
i=0 (L/2) We assume that until a certain step SOMP has selected only
) > L/2 correct indices, collected id C S. Let us first estimate the
= exp(=ALu”/2) Z probability that it selects a correct element$f, J also in
=0

1 the next step.

= eXP(—)\LUQ/z)ma (51)  we denote byP; = A;A', the orthogonal projection onto
the span of the columns o in J, and@Q; = I — P;. The
where (a); = a(a +1)(a + 2)---(a + 1 — 1) denotes the residual at the current iteration is given B, = QY =

Pochhammer symbol. The last equation is due to the fact thaf 4, x = @, Asx®. SOMP selects a correct index f\ J
Yco (‘1)7 A! is the Taylor series ofl —\) =%, which converges in the next step if

for A < 1 Minimizing (&) with respect to\ gives\ =1 —

u~2. Inserting this value yields the statement of the theorem. ~ max |a;QrAsE®||2 > max la;QrAsE®2.  (53)
APPENDIX I By Theorem 11 in [25] (wh|ch is proven using Theorem] 4.6;
PROOF OFPROPOSITIONG.3 note that there is a slight error in [25] in the computation

of the constantd;) we have the following concentration of

Consider first the case of Gaussian or Bernoulli matrlce easure inequalities

According to Theorem 2.1 in [38] (see also Lemma 5.1 in [1]),
we haveHAgAS — I||2 > ¢ with probability at most2(1 +

. - ; P 1 QrAsED|s < (1 Co(L
12/6)F exp(—co/9nd?) with ¢y = 7/18. A similar estimate (erélg\)g'aé@] s2@llz < (1+€)Co(L)x

holds for || A% ,Asue — I]|2 with £ ¢ S. A union bound over . 5 1o
all ¢ ¢ S yields §*(S) > ¢ with probability at mos2N (1 + X max WQJASZH) < exp(—€"Ag),
12/6)* exp(—co/9nd?). This term is less thanif (B3) holds.
Now consider a random matri¥ € R™*" with indepen- P <max|aZQJASZ<I>|2 > (1 —¢€)Co(L)x
dent columns that are uniformly distributed on the sphere #8
Sm=1. Then ¥ has the same distribution a8 A, where A xmax|a;§QJA52|2> < 9¢ exp(—€2A2),
is Gaussian matrix as abov® = diag(s;’,...,sy') and ¢S
sj = /n||®;]l2 where®; € R" is a vector of independentwhere A;, is the constant in[{25) andy(L) = E||Z||» with
standard normally-distributed random variables. We now ug — (Z1,...,Z1) being a vector of independent standard

the following measure concentration inequality [3, Caoll normal variables. Now we assume that

(2.3)] or [4, eq. (2.6)] for a standard Gaussian vedor R",
n (1+€)Ca(L) max [la;QsAsZll2
B(|1Z])3 > 1) < exp(=7"n/4), eS\7
-7

1—¢€)C X AsY|[. 54
P(| Z]|3 < (1 —y)n) < exp(—y*n/4). = )C2 (L )%as la; QA2 (54)

Then by the above and a union bound the probability that

By a union bound this implies that SOMP fails can be bounded by
1
—y< mi 2< 2 — . < .
P17, min &< mox <) (e 107Qu A0l < s 47 A58
>1— 2N exp(—v*n/4). (52) < (I8¢ + 1) exp(—€?A3). (55)

By the above reasoning, we haye— §/3)||z||3 < |[Az||2 < Let us consider now the maximum on the right hand side of
(1 + 6/3)||z||3 for all  with suppxz C S U {¢} for some (&4). First note that’;a, = a, for all ¢ € J, in other words



Qja, = 0. Hence, we can estimate [6]

1QrASY3 = Yo\ AL 3
I?%a;(HCLgQJ s¥|3 %@(H s\JAG s Qradllz

< max Z o (Qraj, ae)|?

# jeS\J

(7]

(8]
<

max 0'1-2 max
ieS\J " (¢S

(Quaj, an)|*.
JjeS\J [0l
Furthermore, for ¢ S we have [10]

1/2
> (Quaj, a0 (11
JES\J
= A5\, (I — Py)acl2
< [ A%\ sacllz + [ A% A (AT A) ™ Afa|2

<p2(S\J)+ HAE\JAJHzH(A§AJ)71H2||AL*1W||2

= [| A\ Qa2

[12]

[13]

[14]
6(S) pi2(5)
< e — = -
where we used the fact thAtg\JAJ is a submatrix o5 As—  [16]

I
Next we consider the maximum on the left hand side @f7
(54). We can estimate

max [la;QuAs I3 = max Z o2[(Quar, a;)|?
JES\J

inf a;,a;)|%
nf 1(Quas.0)|

(18]

[19]

> max 042

T Les\J [20]

Furthermore, forj € S\ J
(Quaj,a;)| = (I — Pr)aj,a;)]
=1 —ajA;(A5A,) " Ay
> 1= [|A%al* (A5 A) 2
>1— p2(8)*(1—6(8)) "

[21]

[22]

[23]

[24]
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