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Shannon Theoretic Limits on Noisy

Compressive Sampling
Mehmet Akçakaya and Vahid Tarokh

Abstract

In this paper, we study the number of measurements required to recover a sparse signal inCM with

L non-zero coefficients from compressed samples in the presence of noise. For a number of different

recovery criteria, we prove thatO(L) (an asymptotically linear multiple ofL) measurements are necessary

and sufficient ifL grows linearly as a function ofM . This improves on the existing literature that is

mostly focused on variants of a specific recovery algorithm based on convex programming, for which

O(L log(M − L)) measurements are required. We also show thatO(L log(M − L)) measurements are

required in the sublinear regime (L = o(M)).

Index Terms

Shannon theory, compressive sampling, linear regime

I. INTRODUCTION

Let C denote the complex field andCM the M -dimensional complex space. For anyx ∈ C
M , let

||x||0 denote the number of non-zero coefficients ofx. Whenever||x||0 = L << M , it is advantageous

to measure a linear combination of the components ofx as

y = Ax,

whereA is anN ×M measurement matrix.

A decoder can then recoverx from the observed vector by solving theL0 minimization problem

min ||x||0 s. t. y = Ax.
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This data acquisition technique for sparse signals is called compressive sampling [4], [5]. However, the

optimization problem for recovery is NP-hard to solve [8]. In this light, alternative solution methods have

been studied in the literature. One such approach is theL1 regularization approach, where one solves

min ||x||1 s. t. y = Ax,

and then establishes criteria under which the solution to this problem is also that of theL0 minimization

problem. By considering certain classes of Gaussian and partial Fourier ensembles, Candès and Tao

showed in [4] that this recovery problem could be solved forL = O(M) with N = O(L) as long as

the observations are noiseless. Another strand of work considers solving theL0 recovery problem for a

specific class of measurement matrices, such as the Vandermonde frames [1].

In practice, however, all the measurements are noisy, i.e.

y = Ax+ n (1)

for some additive noisen ∈ C
N . This motivates our work, where we study Shannon theoretic limits on

the recovery of sparse signals in the presence of noise. Morespecifically, we are interested in the order

of the number of measurements required,N in terms ofL,M . We consider the linear sparsity regime

M = βL for β > 2. It was shown in [1] thatβ > 2 is required even in the noiseless setting for the

unique recovery of the signal.

Wainwright considered this problem withn being Gaussian noise in [10], and derived information

theoretic limits on the noisy problem for a specific performance metric and a decoder that decodes to the

closest subspace, showing that for the linear sparsity regime, the number of measurements required is also

O(L). In [11], Wainwright studied theL1 constrained quadratic programming algorithm (LASSO) in the

noisy setting and showed that in this case the number of measurements required isN = O(L log(M−L)).

Therefore there is a gap between what is achievable theoretically with an information theoretic decoder

and what is achievable with a practical decoder based onL1 regularization. The total power of the signal,

||x||22 = P

grows unboundedly as a function ofN according to the analysis in [10]. The reason for this requirement

is that at high dimensions, the performance metric in consideration is too stringent for an average case

analysis.

In this note, we consider various performance metrics, someof which are of more Shannon theoretic

spirit. We use a decoder based on joint typicality. Althoughsuch a decoder may not be computationally

feasible in practice, it enables us to characterize the performance limits on the sparse representation
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problem. Using this decoder, we first derive a result similarto that of [10] for the same performance

metric. For the other performance metrics that are more statistical in nature, we derive results stating that

the number of required measurements isO(L) and thatP does not have to grow withN .

The outline of this paper is given next. In Section II, we define the problem to be considered in this

paper, establish the notation and performance metrics, andstate our main results and their implications.

Section III and Section IV provide the proofs for the theorems stated in Section II. In Section V, we

state analogous theorems for the sublinear sparsity regime, L = o(M).

II. M AIN RESULTS

We consider the compressive sampling of an unknown vector,x ∈ C
M . Let x have supportI =

supp(x), where

supp(x) = {i | xi 6= 0}

with ||x||0 = |I| = L =
⌊

1
β
M
⌋

, whereβ > 2. We also define

µ(x) = min
i∈I

|xi|. (2)

We consider the noisy model given in Equation (1), wheren is an additive noise vector with a

complex circularly-symmetric Gaussian distribution withzero mean and covariance matrixν2IN , i.e.

n ∼ NC(0, ν
2IN ). Due to the presence of noise,x cannot be recovered exactly. However, a sparse

recovery algorithm outputs an estimatex̂ with ||x̂||0 = L. We consider three performance metrics for the

estimate:

Error Metric 1: p1(x̂,x) = I

(

{

x̂i 6= 0 ∀i ∈ I
}

∩
{

x̂j = 0 ∀j /∈ I
}

)

(3)

Error Metric 2: p2(x̂,x) = I

( |{i | x̂i 6= 0} ∩ I|
|I| > 1− α

)

(4)

Error Metric 3: p3(x̂,x) = I

(

∑

k∈{i|x̂i 6=0}∩I

|xk|2 > (1− γ)P

)

(5)

whereI(·) is the indicator function andα, γ ∈ (0, 1).

Error Metric 1 is referred to as the0-1 loss metric, and it is the one considered by Wainwright [10].

Error Metric 2 is a statistical extension of Error Metric 1, and considers the recovery of most of the

subspace information ofx. Error Metric 3 is directly from Shannon Theory and characterizes the recovery

of most of the energy ofx.

Consider a sequence of vectors,{x(M)}M such thatx(M) ∈ C
M with I(M) = supp(x(M)), where

|I(M)| = L(M) =
⌊

1
β
M
⌋

. For x(M), we will consider an ensemble ofN × M Gaussian measurement
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matrices,A(M), whereN is a function ofM . Since the dependence ofL(M),I(M) andA(M) on M is

implied by the vectorx(M), we will omit the superscript for brevity, and denote the support of x(M) by

I, its size byL and any measurement matrix from the ensemble byA, whenever there is no ambiguity.

A decoder,D(·) will output a set of indices,D(y). For a specific decoder, we consider the average

probability of error, averaged over allGaussian measurement matrices, A with the (i, j)th term ai,j ∼
NC(0, 1):

perr(D|x(M)) = EA

(

perr(A|x(M))
)

, (6)

whereperr(A|x(M)) = P(D(y) 6= I) for y = Ax(M) + n andP(·) is the probability measure.

We say a decoder achievesasymptotic reliablesparse recovery ifperr(D|x(M)) → 0 as M → ∞.

Similarly we say asymptotic reliable sparse recovery is notpossible ifperr(D|x(M)) stays bounded away

from 0 asM → ∞.

We also use the notation

f(x) ≻ g(x)

for either f(x) = g(x) = 0 or for non-decreasing non-negative functionsf(x) and g(x), if ∃ x0 such

that for all x > x0,
f(x)

g(x)
> 1.

Similarly we sayf(x) ≺ g(x) if g(x) ≻ f(x).

Theorem 2.1:(Achievability for Error Metric 1) Let a sequence of sparse vectors,{x(M) ∈ C
M}M

with ||x(M)||0 = L =
⌊

1
β
M
⌋

, whereβ > 2 be given. Then asymptotic reliable recovery is possible for

{x(M)} with respect to Error Metric 1 ifLµ
4(x(M))
logL → ∞ asL → ∞ and

N ≻ C1 L (7)

for some constantC1 > 1 that depends only onβ, µ(x(M)) andν.

Proof: The proof is given in Section III-C.1.

Corollary 2.2: Let the conditions of Theorem 2.1 be satisfied. Then for any Gaussian measurement

matrix,A, and for Error Metric 1,− log P(perr(A|x(M)) ≥ ξ)/ logL → ∞ asL → ∞ for anyξ ∈ (0, 1].

Proof: Markov’s Inequality implies

P(perr(A|x(M)) ≥ ξ) ≤ EA(perr(A|x(M)))

ξ
=

perr(D|x(M))

ξ
.

As shown in the proof of Theorem 2.1,− log perr(D|x(M))/ log L → ∞ as L → ∞, yielding the

desired result.

October 25, 2018 DRAFT



DRAFT 5

Theorem 2.3:(Converse for Error Metric 1) Let a sequence of sparse vectors, {x(M) ∈ C
M}M with

||x(M)||0 = L =
⌊

1
β
M
⌋

, whereβ > 2 be given. Then asymptotic reliable recovery is not possiblefor

{x(M)} with respect to Error Metric 1 if

N ≺ C2
L

logP
(8)

for some constantC2 > 0 that depends only onβ, P andν.

Proof: The proof is given in Section IV-A.1.

Corollary 2.4: Let a sequence of sparse vectors,{x(M) ∈ C
M}M with ||x(M)||0 = L =

⌊

1
β
M
⌋

, where

β > 2 be given. Then forξ > 0, for any Gaussian measurement matrix,A, and for Error Metric 1,

P
(

perr(A|x(M)) → 1) goes to 1 exponentially fast as a function ofM if N ≺ Ĉ2
L

logP , whereĈ2 < C2

is a positive constant that depends only onβ, P, ν andξ.

Proof: The proof is given in Section IV-A.1.

Theorem 2.5:(Achievability for Error Metric 2) Let a sequence of sparse vectors,{x(M) ∈ C
M}M

with ||x(M)||0 = L =
⌊

1
β
M
⌋

, whereβ > 2 be given such thatLµ2(x(M)) andP are constant. Then

asymptotic reliable recovery is possible for{x(M)} with respect to Error Metric 2 if

N ≻ C3 L (9)

for some constantC3 > 1 that depends only onα, β, µ(x(M)) andν.

Proof: The proof is given in Section III-C.2.

Corollary 2.6: Let the conditions of Theorem 2.5 be satisfied. Then for any Gaussian measurement

matrix, A, and for Error Metric 2,P(perr(A|x(M)) > ξ) is exponentially decaying to zero as a function

of M for any ξ ∈ (0, 1].

Proof: As shown in the proof of Theorem 2.5,perr(D|x(M)) decays exponentially fast inM .

Applying Markov’s Inequality, yields the desired result.

Theorem 2.7:(Converse for Error Metric 2) Let a sequence of sparse vectors, {x(M) ∈ C
M}M with

||x(M)||0 = L =
⌊

1
β
M
⌋

, whereβ > 2 be given such thatP is constant. Then asymptotic reliable recovery

is not possible for{x(M)} with respect to Error Metric 2 if

N ≺ C4L (10)

for some constantC4 ≥ 0 that depends only onα, β, P andν.

Proof: The proof is given in Section IV-A.2.

Corollary 2.8: Let a sequence of sparse vectors,{x(M) ∈ C
M}M with ||x(M)||0 = L =

⌊

1
β
M
⌋

, where

β > 2 be given such thatP is constant. Then forξ > 0, for any Gaussian measurement matrix,A, and

October 25, 2018 DRAFT
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for Error Metric 2,P
(

perr(A|x(M)) → 1) goes to 1 exponentially fast as a function ofM if N ≺ Ĉ4L,

whereĈ4 ≤ C4 is a non-negative constant that depends only onα, β, P, ν andξ.

Proof: The proof is analogous to the proof of Corollary 2.4.

Theorem 2.9:(Achievability for Error Metric 3) Let a sequence of sparse vectors,{x(M) ∈ C
M}M

with ||x(M)||0 = L =
⌊

1
β
M
⌋

, whereβ > 2 be given such thatP is constant. Then asymptotic reliable

recovery is possible for{x(M)} with respect to Error Metric 3 if

N ≻ C5 L (11)

for some constantC5 > 1 that depends only onβ, γ, P andν.

Proof: The proof is given in Section III-C.3.

Corollary 2.10: Let the conditions of Theorem 2.9 be satisfied. Then for any Gaussian measurement

matrix, A, and for Error Metric 3,P(perr(A|x(M)) > ξ) is exponentially decaying to zero as a function

of M for any ξ ∈ (0, 1].

Proof: The proof is analogous to the proof of Corollary 2.6.

Theorem 2.11:(Converse for Error Metric 3) Let a sequence of sparse vectors, {x(M) ∈ C
M}M with

||x(M)||0 = L =
⌊

1
β
M
⌋

, whereβ > 2 be given such thatP is constant and the non-zero terms decay to

zero at the same rate. Then asymptotic reliable recovery is not possible for{x(M)} with respect to Error

Metric 3 if

N ≺ C6L (12)

for some constantC6 ≥ 0 that depends only onβ, γ, P, µ(x(M)) andν.

Proof: The proof is given in Section IV-A.3.

Corollary 2.12: Let a sequence of sparse vectors,{x(M) ∈ C
M}M with ||x(M)||0 = L =

⌊

1
β
M
⌋

,

whereβ > 2 be given such thatP is constant and the non-zero terms decay to zero at the same rate.

Then forξ > 0, for any Gaussian measurement matrix,A, and for Error Metric 3,P
(

perr(A|x(M)) → 1)

goes to 1 exponentially fast as a function ofM if N ≺ Ĉ6L, whereĈ6 ≤ C6 is a non-negative constant

that depends only onβ, γ, P, µ(x(M)), ν andξ.

Proof: The proof is analogous to the proof of Corollary 2.4.

A. Discussion of The Results

Theorem 2.1 implies that for Error Metric 1,O(L) measurements are sufficient for asymptotic reliable

sparse recovery. There is a clear gap between this number of measurements andO(L log(M − L))
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measurements required byL1 constrained quadratic programming [11]. In this proof, it is required that
Lµ4(x(M))

logL → ∞ asL → ∞, which implies thatP grows without bound as a function ofN .

Theorems 2.5 and 2.9 show that for Error Metrics 2 and 3, the number of required measurements to

achieve asymptotic reliable sparse recovery isN = O(L). In this caseP remains constant, which is a

much less stringent requirement than that of Theorem 2.1. Converses to these theorems are established in

Theorems 2.3, 2.7 and 2.11, which demonstrate thatO(L) measurements are asymptotically necessary.

Finally we note that Corollaries 2.6 and 2.10 imply that withoverwhelming probability (i.e. the

probability goes to1 exponentially fast as a function ofM ) a givenN × M Gaussian measurement

matrix A can be used for asymptotic reliable sparse recovery (respectively for Error Metrics 2 and 3) as

long asN = O(L). Similarly Corollaries 2.8 and 2.12 prove that a given Gaussian matrixA will have

perr(A|x(M)) → 1 (respectively for Error Metrics 2 and 3) with overwhelming probability as long as

the number of measurements is less than specified constant multiples of L. Corollaries 2.2 and 2.4 are

similar in nature.

III. A CHIEVABILITY PROOFS

A. Notation

Let ai denote theith column ofA. For the measurement matrixA, we defineAJ to be the matrix

whose columns are{aj : j ∈ J }. For any given matrixB, we defineΠB to be the orthogonal projection

matrix onto the subspace spanned by the columns ofB, i.e. ΠB = B(B∗B)−1B∗. Similarly, we define

Π⊥
B to be the projection matrix onto the orthogonal complement of this subspace, i.e.Π⊥

B = I−ΠB.

B. Joint Typicality

In our analysis, we will use Gaussian measurement matrices and a suboptimal decoder based on joint

typicality, as defined below:

Definition 3.1: (Joint Typicality) We say anN × 1 noisy observation vector,y = Ax+ n and a set

of indicesJ ⊂ {1, 2, . . . ,M}, with |J | = L, areδ-jointly typical if rank(AJ ) = L and
∣

∣

∣

∣

1

N
||Π⊥

AJ
y||2 − N − L

N
ν2
∣

∣

∣

∣

< δ, (13)

wheren ∼ NC(0, ν
2IN ), the (i, j)th entry ofA, aij ∼ NC(0, 1), and ||x||0 = L.

Lemma 3.2:For an index setI ⊂ {1, 2, . . . ,M} with |I| = L,

P(rank(AI) < L) = 0.

Lemma 3.3:

October 25, 2018 DRAFT
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• Let I = supp(x) and assume (without loss of generality) that rank(AI) = L. Then forδ > 0,

P

(

∣

∣

∣

1

N
||Π⊥

AI
y||2 − N − L

N
ν2
∣

∣

∣
> δ

)

≤ 2 exp

(

− δ2

4ν4
N2

N − L+ 2δ
ν2N

)

. (14)

• Let J be an index set such that|J | = L and |I ∩ J | = K < L, whereI = supp(x) and assume

that rank(AJ ) = L. Theny andJ areδ-jointly typical with probability

P

(

∣

∣

∣

1

N
||Π⊥

AJ
y||2 − N − L

N
ν2
∣

∣

∣
< δ

)

≤ exp

(

− N − L

4

(

∑

k∈I\J |xk|2 − δ′
∑

k∈I\J |xk|2 + ν2

)2
)

, (15)

where

δ′ = δ
N

N − L
.

Proof: We first note that for

y = Ax+ n =
∑

i∈I

xiai + n,

we have

Π⊥
AI

y = Π⊥
AI

n,

and

Π⊥
AJ

y = Π⊥
AJ

(

∑

i∈I\J

xiai + n

)

.

FurthermoreΠ⊥
AI

= UIDU
†
I , whereUI is a unitary matrix that is a function of{ai : i ∈ I} (and

independent ofn). D is a diagonal matrix withN −L diagonal entries equal to 1, and the rest equal to

0. It is easy to see that

||Π⊥
AI

y||2 = ||Dn′||2,

wheren′ has i.i.d. entries with distributionNC(0, ν
2). Without loss of generality, we may assume the

non-zero entries ofD are on the firstN − L diagonals, thus

||Dn′||2 = |n′
1|2 + · · ·+ |n′

N−L|2.

Similarly, Π⊥
AJ

= UJDU
†
J , whereUJ is a unitary matrix that is a function of{aj : j ∈ J }

(

and

independent ofn and{ai : i ∈ I\J }
)

andD is as discussed above. Thusa′i = U
†
J ai has i.i.d. entries

with distributionNC(0, 1) for all i ∈ I\J . It is easy to see thatn′′ = U
†
Jn also has i.i.d. entries with

NC(0, ν
2). Thus

||Π⊥
AJ

y||2 = ||Dw||2 = |w1|2 + · · ·+ |wN−L|2,

October 25, 2018 DRAFT
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wherewi are i.i.d. with distributionNC(0, σ
2
J ), where

σ2
J =

∑

k∈I\J

|xk|2 + ν2.

Let Ω1 =
||Dn′||2

ν2 andΩ2 =
||Dw||2

σ2
J

. We note that bothΩ1 andΩ2 are chi-square random variables with

(N − L) degrees of freedom. Thus to bound these probabilities, we must bound the tail of a chi-square

random variable. We have,

P

(

∣

∣

∣

∣

1

N
||Π⊥

AI
y||2 − N − L

N
ν2
∣

∣

∣

∣

> δ

)

= P

(

∣

∣

∣

∣

Ω1 − (N − L)

∣

∣

∣

∣

>
δ

ν2
N

)

= P

(

Ω1 − (N − L) < − δ

ν2
N

)

+ P

(

Ω1 − (N − L) >
δ

ν2
N

)

, (16)

and

P

(

∣

∣

∣

∣

1

N
||Π⊥

AJ
y||2 − N − L

N
ν2
∣

∣

∣

∣

< δ

)

= P

(

∣

∣

∣

∣

Ω2 − (N − L)
ν2

σ2
J

∣

∣

∣

∣

<
δ

σ2
J

N

)

≤ P

(

Ω2 − (N − L) < −(N − L)

(

1− ν2

σ2
J

)

+
δ

σ2
J

N

)

(17)

For a chi-square random variable,Ω with (N − L) degrees of freedom [3], [7],

P

(

Ω− (N − L) ≤ −2
√

(N − L)λ
)

≤ e−λ, (18)

and

P

(

Ω− (N − L) ≥ 2
√

(N − L)λ+ 2λ
)

≤ e−λ. (19)

By replacingΩ = Ω1 and

λ =

(

δN

2ν2
√
N − L

)2

in Equation (18) and

λ =
1

4

(

√

N − L+
2δ

ν2
N −

√
N − L

)2

≥ δ2

4ν4
N2

N − L+ 2δ
ν2N

in Equation (19), we obtain using Equation (16)

P

(

∣

∣

∣

1

N
||Π⊥

AI
y||2 − N − L

N
ν2
∣

∣

∣
> δ

)

≤ exp

(

− δ2

4ν4
N2

N − L

)

+ exp

(

− δ2

4ν4
N2

N − L+ 2δ
ν2N

)

≤ 2 exp

(

− δ2

4ν4
N2

N − L+ 2δ
ν2N

)

.

October 25, 2018 DRAFT
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Similarly by replacingΩ = Ω2 and

λ =

(
√
N − L

2

(

1− ν2

σ2
J

)

− δ

σ2
J

N

2
√

(N − L)

)2

=

(
√
N − L

2

(

1− ν2

σ2
J

− δ

σ2
J

N

N − L

))2

in Equation (18), we obtain using Equation (17)

P

(

∣

∣

∣

1

N
||Π⊥

AJ
y||2 − N − L

N
ν2
∣

∣

∣
< δ

)

≤ exp

(

− N − L

4

(σ2
J − ν2 − δ′

σ2
J

)2
)

= exp

(

− N − L

4

(

∑

k∈I\J |xk|2 − δ′
∑

k∈I\J |xk|2 + ν2

)2
)

.

C. Proofs of Theorems For Different Error Metrics

We define the event

EJ = {y andJ areδ-jointly typical }

for all J ⊂ {1, . . . ,M}, |J | = L.

We also define the error event

E0 = {rank(AI) < L},

which results in an order reduction in the model, and impliesthat the decoder is looking through subspaces

of incorrect dimension. By Lemma 3.2, we haveP(E0) = 0.

Since the relationship betweenM andx(M) is implicit in the following proofs, we will suppress the

superscript and just writex for brevity.

1) Proof of Theorem 2.1 (Error Metric 1):Clearly the decoder fails ifE0 or EC
I occur or when one

of EJ occurs forJ 6= I. Thus

perr(D|x) = P
(

E0 ∪ EC
I

⋃

J ,J 6=I,|J |=L

EJ

)

≤ P(EC
I ) +

∑

J ,J 6=I,|J |=L

P(EJ )

We let N = (4C0 + 1)L whereC0 > 2 + log(β − 1) is a constant. Thusδ′ = 4C0+1
4C0

δ = C ′
0δ with

C ′
0 > 1. Also by the statement of Theorem 2.1, we haveLµ4(x) grows faster thanlogL. We note that

this requirement is milder than that of [10], where the growth requirement is onµ2(x) rather thanµ4(x).

Since the decoder needs to distinguish between even the smallest non-overlapping coordinates, we let

δ′ = ζµ2(x) for 0 < ζ < 1. For computational convenience, we will only consider2/3 < ζ < 1.
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By Lemma 3.3,

P(EC
I ) ≤ 2 exp

(

− ζ2C0

ν2
Lµ4(x)

ν2 + 2ζµ2(x)

)

and by the condition on the growth ofµ(x), the term in the exponent grows faster thanlogL. Thus

P(EC
I ) goes to0 faster thanexp(− logL).

Again by Lemma 3.3, forJ with |I ∩ J | = K,

P(EJ ) ≤ exp

(

− N − L

4

(

∑

k∈I\J |xk|2 − δ′
∑

k∈I\J |xk|2 + ν2

)2
)

Since
∑

k∈I\J |xk|2 ≥ (L−K)µ2(x), we have

P(EJ ) ≤ exp

(

− N − L

4

(

(L−K)µ2(x)− δ′

(L−K)µ2(x) + ν2

)2
)

, (20)

whereµ(x) is defined in Equation (2).

The condition of Theorem 2.1 onµ(x) implies thatP(EJ ) → 0 for all K. We note that this condition

also impliesP → ∞ asN grows without bound. This is due to the stringent requirements imposed by

Error Metric 1 in high-dimensions.

By a simple counting argument, the number of subsetsJ that overlapsI in K indices (and such that

rank(AJ ) = L) is upper-bounded by
(

L

K

)(

M − L

L−K

)

.

Thus

perr(D|x) ≤ 2 exp

(

− ζ2C0

ν2
Lµ4(x)

ν2 + 2ζµ2(x)

)

+

L−1
∑

K=0

(

L

L−K

)(

M − L

L−K

)

exp

(

− N − L

4

(

(L−K)µ2(x)− δ′

(L−K)µ2(x) + ν2

)2
)

= 2exp

(

− ζ2C0

ν2
Lµ4(x)

ν2 + 2ζµ2(x)

)

+
L
∑

K ′=1

(

L

K ′

)(

M − L

K ′

)

exp

(

− N − L

4

(

(K ′)µ2(x)− δ′

(K ′)µ2(x) + ν2

)2
)

We will now show that the summation goes to0 asM → ∞. We use the following bound

exp

(

K ′ log
( L

K ′

)

)

≤
(

L

K ′

)

≤ exp

(

K ′ log
(Le

K ′

)

)

(21)

to upper bound each term of summation,sK ′ by

sK ′ ≤ exp

(

K ′ log
(Le

K ′

)

+K ′ log
( (M − L)e

K ′

)

− N − L

4

(K ′µ2(x)− δ′

K ′µ2(x) + ν2

)2
)

= exp

(

L
K ′

L
log

e
K ′

L

+ L
K ′

L
log

(β − 1)e
K ′

L

− C0L
( LK ′

L
µ2(x)− δ′

LK ′

L
µ2(x) + ν2

)2
)
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We upper bound the whole summation by maximizing the function

f(z) = Lz log
e

z
+ Lz log

(β − 1)e

z
− C0L

( Lzµ2(x)− δ′

Lzµ2(x) + ν2

)2

= −2Lz log z + Lz(2 + log(β − 1)) − C0L
(Lzµ2(x) − ζµ2(x)

Lzµ2(x) + ν2

)2
(22)

for z ∈ [ 1
L
, 1]. If f(z) attains its maximum atz0, we then have

L
∑

K ′=1

sK ′ ≤ L exp(f(z0)).

For clarity of presentation, we will now state two technicallemmas.

Lemma 3.4:Let g(z) be a twice differentiable function on[a, b] that has a continuous second derivative.

If g(a) < 0, g(b) < 0, andg′(a) < 0, g′(b) > 0, andg′′(a) < 0, g′′(b) < 0, theng′′(x) is equal to 0 for

at least two points in[a, b].

Proof: Sinceg′(a) < 0 and g′(b) > 0, g′(x) has to be increasing in a subsetE ⊂ [a, b]. Then

g′′(x) > 0 for somex0 ∈ E. Since g′′(a) < 0, g′′(x0) > 0 and g′′(x) is continuous, there exists

x1 ∈ [a, x0] such thatg′′(x1) = 0. Similarly, sinceg′′(b) < 0, there existsx2 ∈ [x0, b] such that

g′′(x2) = 0.

Lemma 3.5:Let p(z) = a4z
4+a3z

3+a2z
2+a1z+a0 be a polynomial overR such thata4, a3, a0 > 0.

Thenp(z) can have at most two positive roots.

Proof: Let r(1)p , r
(2)
p , r

(3)
p , r

(4)
p be the roots ofp(z), counting multiplicities. Since

r(1)p r(2)p r(3)p r(4)p =
a0
a4

> 0,

the number of positive roots must be even, and since

r(1)p + r(2)p + r(3)p + r(4)p = −a3
a4

< 0,

not all the roots could be positive. The result follows.

Lemma 3.6:For L sufficiently large,f(z) (see Equation (22)) is negative for allz ∈ [ 1
L
, 1]. Moreover

the endpoints of the interval,z(1)0 = 1
L

andz(2)0 = 1 are its local maxima.

Proof: We first confirm thatf(z) is negative at the endpoints of the interval. We use the notation
−→≈ for denoting the behavior off(z) for largeL, and≺ and≻ for inequialities that hold asymptotically.

f

(

1

L

)

= 2 logL+ 2 + log(β − 1)− C0L
(µ2(x)(1 − ζ)

µ2(x) + ν2

)2
≺ 0 (23)

for sufficiently largeL, sinceLµ4(x) grows faster thanlogL. Also for largeL, we have

f(1) = L(2 + log(β − 1))− C0L
(µ2(x)(L− ζ)

Lµ2(x) + ν2

)2

−→≈L(2 + log(β − 1)− C0) ≺ 0. (24)
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We now examine the derivative off(z), given by

f ′(z) = −2L log z + L log(β − 1)− 2C0L
2µ4(x)(ν2 + ζµ2(x))

Lz − ζ

(Lzµ2(x) + ν2)3

Also,

f ′

(

1

L

)

= 2L logL+ L log(β − 1)− 2C0L
2µ4(x)(ν2 + ζµ2(x))

1− ζ

(µ2(x) + ν2)3

−→≈L

(

2 logL+ log(β − 1)− 2Ĉ0
Lµ4(x)

(µ2(x) + ν2)2

)

≺ 0

for sufficiently largeL, sinceLµ4(x) grows faster thanlogL. Similarly

f ′(1) = L log(β − 1)− 2C0L
2µ4(x)(ν2 + ζµ2(x))

L− ζ

(Lµ2(x) + ν2)3

−→≈L log(β − 1)− 2C0
1

µ2(x)
(ν2 + ζµ2(x)) ≻ 0

since 1
µ2(x) grows slower than

√

L
logL .

Additionally,

f ′′(z) = −2L

z
− 2C0L

2µ4(x)(ν2 + ζµ2(x))
(−2Lzµ2(x) + ν2 + 3ζµ2(x)

(Lzµ2(x) + ν2)4

)

L

=
−2L

z(Lzµ2(x) + ν2)4

(

(Lzµ2(x) + ν2)4 +C0L
2µ4(x)(ν2 + ζµ2(x))(−2Lzµ2(x) + ν2 + 3ζµ2(x))z

)

(25)

Thus,

f ′′

(

1

L

)

= −2L

(

L+ C0L
2µ4(x)(ν2 + ζµ2(x))

−2µ2(x) + ν2 + 3ζµ2(x)

(µ2(x) + ν2)4

)

≺ 0

and

f ′′(1) = −2L

(

1 + C0L
2µ4(x)(ν2 + ζµ2(x))

−2Lµ2(x) + ν2 + 3ζµ2(x)

(Lµ2(x) + ν2)4

)

−→≈ − 2L

(

1− 2C0
ν2 + ζµ2(x)

Lµ2(x)

)

≺ 0.

Sincef(z) is twice differentiable function on[ 1
L
, 1] with a continuous second derivative, Lemma 3.4

implies thatf ′′(z) crosses 0 at least twice in this interval. Next we examine thepolynomial (see Equation

(25)),

p(z) = (Lzµ2(x) + ν2)4 + 2C0L
2µ4(x)(ν2 + ζµ2(x))(−2Lzµ2(x) + ν2 + 3ζµ2(x))z.

Sincep(z) satisfies the conditions of Lemma 3.5, we conclude that it hasat most two positive roots, and

thus at most two roots ofp(z) can lie in [ 1
L
, 1]. In other wordsf ′′(z) can cross0 for z ∈ [ 1

L
, 1] at most
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twice. Combining this with the previous information, we conclude thatf ′′(z) crosses 0 exactly twice in

this interval, and thatf ′(z) crosses 0 only once, and this point is a local minima off(z). Thus the local

maxima off(z) are the endpointsz(1)0 = 1
L

andz(2)0 = 1.

Thus we have,

perr(D|x) ≤ 2 exp

(

− ζ2C0

ν2
Lµ4(x)

ν2 + 2ζµ2(x)

)

+
L−1
∑

K=0

exp(max{f(z(1)0 ), f(z
(2)
0 )})

= 2 exp

(

− ζ2C0

ν2
Lµ4(x)

ν2 + 2ζµ2(x)

)

+ exp

(

logL+max

{

f

(

1

L

)

, f(1)

}

)

From Equations (23) and (24), it is clear thatlog(L)+max

{

f

(

1
L

)

, f(1)

}

→ −∞ asL → ∞. Hence

with the conditions of Theorem 2.1,perr(D|x) → 0 asL → ∞.

2) Proof of Theorem 2.5 (Error Metric 2):For asymptotic reliable recovery with Error Metric 2, we

require thatP(EJ ) goes to 0 for onlyK ≤ (1− α)L with α ∈ (0, 1). By a re-examination of Equation

(20), we observe that the right hand side of

P(EJ ) ≤ exp

(

− N − L

4

(

αLµ2(x) − δ′

αLµ2(x) + ν2

)2
)

converges to 0 asymptotically, even whenLµ2(x) converges to a constant. In this caseP does not have

to grow with N . We let δ > 0 (and henceδ′) be a constant, and letN = (4Ĉ3 + 1)L for

Ĉ3 > β

(

αLµ2(x) + ν2

αLµ2(x)− δ′

)2

. (26)

Given the decay rate ofµ2(x) and thatδ′ > 0 is arbitrary, we note that this constant only depends on

α, β, µ(x) andν. Hence

perr(D|x) ≤ P(EC
I ) +

(1−α)L
∑

K=0

(

L

L−K

)(

M − L

L−K

)

exp

(

− N − L

4

(

(L−K)µ2(x)− δ′

(L−K)µ2(x) + ν2

)2
)

≤ 2 exp

(

− δ2

4ν4
4Ĉ3 + 1

4Ĉ3 +
2δ
ν2 (4Ĉ3 + 1)

N

)

+

L
∑

K ′=αL

exp

(

LH

(

K ′

L

)

+ (M − L)H

(

K ′

M − L

)

− Ĉ3L

(

K ′µ2(x)− δ′

K ′µ2(x) + ν2

)2
)

,

whereH(a) = −a log(a)− (1− a) log(1− a) is the entropy function fora ∈ [0, 1]. SinceK ′ is greater

than a linear factor ofL and sinceP is a constant, and using Equation (26), we seeperr(D|x) → 0

exponentially fast asL → ∞.
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3) Proof of Theorem 2.9 (Error Metric 3):An error occurs for Error Metric 3 if

∑

k∈I\J

|xk|2 ≥ γP.

Thus we can bound the error event forJ from Lemma 3.3 as

P(EJ ) ≤ exp

(

− N − L

4

(

γP − δ′

γP + ν2

)2
)

Let δ′ > 0 be a fraction ofγP . We denote the number of index setsJ ⊂ {0, 1, . . . ,M} with |J | = L

asT∗ and note thatT∗ ≤
(

M
L

)

. Thus,

perr(D|x) ≤ 2 exp

(

− δ2

4ν4
N

N − L+ 2δ
ν2N

N

)

+

(

M

L

)

exp

(

− N − L

4

(

γP − δ′

γP + ν2

)2
)

.

ForN > C5L, a similar argument to that of Section III-C.2 proves thatperr(D|x) → 0 exponentially fast

asL → ∞, whereC5 depends only onβ, γ, P andν.

IV. PROOFS OFCONVERSES

Throughout this section, we will writex for x(M) whenever there is no ambiguity.

A. Genie-Aided Decoding and Connection with Noisy Communication Systems

Let the support ofx be I = {i1, i2, . . . , iL} with i1 < i2 < · · · < iL. We assume a genie provides

xI = (xi1 , xi2 , . . . , xiL)
T to the decoder defined in Section II.

Clearly we have

perr ≥ pgenie
err

1) Proof of Theorem 2.3 (Error Metric 1):We derive a lower bound on the probability of genie-aided

decoding error for any decoder. Consider a Multiple Input Single Output (MISO) transmission model

given by an encoder, a decoder and a channel. The channel is specified byH = [xi1xi2 . . . xiL ] = xT
I .

The encoder,E1 : {0, 1}M → C
L×N , maps one of the

(

M
L

)

possible binary vectors of (Hamming) weight

L to a codeword inCL×N . This codeword is then transmitted over the MISO channel inN channel uses.

The decoder is a mappingD1 : C
N → {0, 1}M such that its output̂c has weightL.

Let c ∈ {0, 1}M and supp(c) = J = {j1, j2, . . . , jL} with j1 < j2 < · · · < jL. Let zJk =

(ak,j1 , ak,j2, . . . , ak,jL)
T , wheream,n is the (m,n)th term ofA. The codebook is specified by

C1 =

{

(

zJ1 zJ2 . . . zJN

)

∣

∣

∣

∣

∣

J ⊂ {1, 2, . . . ,M}, |J | = L

}

,
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and has size
(

M
L

)

. The output of the channel,y is

yk = HzIk + nk for k = 1, 2, . . . , N,

whereyk andnk are thekth coordinates ofy andn respectively. The average signal power isE(||zJk ||2) =
L, and the noise variance isEn2

k = ν2. The capacity of this channel inN channel uses (without channel

knowledge at the transmitter) is given by [9]

CMISO = N log

(

1 +
1

L

E(||zJk ||2)
En2

k

HH†

)

= N log

(

1 +
P

ν2

)

.

After N channel uses,pMISO
err > 0 if log

(

M
L

)

> CMISO. Using

1

M + 1
exp

(

MH

(

L

M

))

≤
(

M

L

)

≤ exp

(

MH

(

L

M

))

, (27)

we obtain the equivalent condition

N <
1

log
(

1 + P
ν2

)MH

(

1

β

)

− o(M),

whereL = βM , andH(·) is the entropy function.

To prove Corollary 2.4, we first show that with high probability, all codewords of a Gaussian codebook

satisfy a power constraint. Combining this with the strong converse of the channel coding theorem will

complete the proof [6]. IfA is chosen from a Gaussian distribution, then by Inequality (19),

P

(

1

L
||zJk ||2 >

(

1 + 2

(

√

βH

(

1

β

)

+ ξ

)

+ 2

(

βH

(

1

β

)

+ ξ

)

)

≤ exp

(

−
(

βH

(

1

β

)

+ ξ

)

L

)

for anyJ ⊂ {1, 2, . . . ,M}, |J | = L and fork = 1, 2, . . . , N . Let Λ = 2
√

βH
(

1
β

)

+ ξ+2
(

βH
(

1
β

)

+ ξ
)

for ξ > 0. By the union bound over all
(

M
L

)

possible index setsJ andk = 1, 2, . . . , N ,

P

(

1

L
||zJk ||2 <

(

1 + Λ
)

, ∀J , k = 1, . . . , N

)

≥ 1−N exp
(

− ξL
)

.

If the power constraint is satisfied, then the strong converse of the channel coding theorem implies that

perr(A|x) goes to 1 exponentially fast inM if

N ≺ 1

log

(

1 + P (1+Λ)
ν2

)MH

(

1

β

)

.
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2) Proof of Theorem 2.7 (Error Metric 2):For any givenx with ||x||0 = L, we will prove the

contrapositive. LetP (M)
e2 denote the probability of error with respect to Error Metric2 for x ∈ C

M . We

show thatN ≻ C4L if P
(M)
e2 → 0.

Consider a single input single output system,S, whose input isc ∈ {0, 1}M , and whose output is

ĉ ∈ {0, 1}M , such that||c||0 = ||ĉ||0 = L, and||c− ĉ||0 ≤ 2αL. The last condition states that the support

of c and that of̂c overlap in more than(1−α)L locations, i.e.P (M)
e2 = 0. We are interested in the rates

at which one can communicate reliably overS.

In our cased(c, ĉ) = 1
M

∑M
k=1 dH(ci, ĉi), wherec is i.i.d. distributed among

(

M
L

)

binary vectors of

lengthM and weightL, anddH(·, ·) is the Hamming distance. ThusD ≤ 2αL
M

= 2α
β

. We also note that

S can be viewed as consisting of an encoderE1, a MISO channel and a decoder,D1 as described in

Section IV-A.1. Since the source is transmitted within distortion 2α
β

over the MISO channel, we have [2]

R

(

2α

β

)

< CMISO.

In order to boundR
(

2α
β

)

, we first state a technical lemma.

Lemma 4.1:Let α ∈ (0, 1] andβ > 2, and let

c(z) = H(z) + (β − 1)H

(

z

β − 1

)

= −2z log(z)− (1− z) log(1− z) + (β − 1) log(β − 1)− (β − 1− z) log(β − 1− z),

whereH(·) is the entropy function. Then forz ∈ [0, α], c(z) ≥ 0, and c(z) attains its maximum at

z = min
(

a, β−1
β

)

.

Proof: By definition ofH(·), c(z) ≥ 0 for z ∈ [0, α]. By examining

c′(z) = −2 log(z) + log(1− z) + log(β − 1− z) = log

(

(1− z)(β − 1− z)

z2

)

,

it is easy to see thatc′(z) ≥ 0 for z ∈
(

0,min
(

α, β−1
β

)

]

andc′(z) < 0 otherwise.

October 25, 2018 DRAFT



DRAFT 18

Thus we have

I(c, ĉ)
∣

∣

∣

||c||0=||ĉ||0=L,||c−ĉ||0≤2αL
= H(c)−H(c | ĉ)

∣

∣

∣

||c||0=||ĉ||0=L,||c−ĉ||0≤2αL

≥ log

(

M

L

)

− log

( αL
∑

K=0

(

L

K

)(

M − L

K

))

≥ MH

(

1

β

)

− log(M + 1)− log

(

αL
∑

K=0

exp

(

LH

(

K

L

)

+ (M − L)H

(

K

M − L

))

)

≥











MH

(

1
β

)

− log(M + 1)− log(αL+ 1)− L

(

H(α) + (β − 1)H

(

α
β−1

))

if α ≤ β−1
β

0 if α > β−1
β

,

where the first inequality follows since given̂c, c is among
∑αL

K=0

(

L
K

)(

M−L
K

)

possible binary vectors

within Hamming distance2αL from ĉ. The second inequality follows from Inequality (27), and the third

inequality follows by Lemma 4.1.

ThusR
(

2α
β

)

≥ LCα,β − o(L), where

Cα,β =











βH

(

1
β

)

−H(α)− (β − 1)H

(

α
β−1

)

if α ≤ β−1
β

0 if α > β−1
β

(28)

Therefore ifP (M)
e2 = 0, then

LCα,β − o(L) < N log

(

1 +
P

ν2

)

or equivalently for largeM ,

N ≻ Cα,β

log

(

1 + P
ν2

)L.

The contrapositive statement proves Theorem 2.7.

3) Proof of Theorem 2.11 (Error Metric 3):For Error Metric 3, we assume thatρ(x) = maxi∈I |xi|
andµ(x) = mini∈I |xi| both decay at rateO

(

√

1
L

)

. ThusP is constant. In the absence of this assumption,

some terms ofx can be asymptotically dominated by noise. Such terms are unimportant for recovery

purposes, and therefore could be replaced by zeros (in the definition of x) with no significant harm.

Let α(γ,x) = min
(

γP
Lµ2(x) , 1

)

. Let P (M)
e3 denote the probability of error with respect to Error Metric

3 for x ∈ C
M . If P

(M)
e3 = 0 and if an index setJ is recovered, then

∑

k∈I\J |xk|2 ≤ γP , where

I = supp(x). This implies that|I\J | ≤ α(γ,x)L. Thus P
(M)
e3 = 0 implies thatP (M)

e2 = 0 when

recoveringα(γ,x) fraction of the support ofx. As shown in Section IV-A.2, reliable recovery ofx is
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not possible if

N ≺ Cα(γ,x),β

log

(

1 + P
ν2

)L,

whereCα(γ,x),β is a constant (as defined in Equation (28)) that only depends on γ, β, µ(x) andP for a

givenx.

V. SUBLINEAR REGIME

For completeness, we also state the equivalent theorems, whenL = o(M). The proofs follow the same

steps as those in the linear regime. For the proofs of converse results, we use the bounds from Equation

(21) instead of those of Equation (27).

Theorem 5.1:(Achievability for Error Metric 1) Let a sequence of sparse vectors,{x(M) ∈ C
M}M

with ||x(M)||0 = L = o(M) be given. Then asymptotic reliable recovery is possible for{x(M)} with

respect to Error Metric 1 ifLµ4(x(M)) → ∞ asL → ∞ and

N ≻ C ′
1 L log(M − L) (29)

for some constantC ′
1 > 0 that depends only onµ(x(M)) andν.

Proof: The proof is similar to that of Theorem 2.1, withf(z) replaced by

k(z) = −2Lz log z + 2Lz + Lz log

(

M − L

L

)

− N − L

4

(Lzµ2(x)− ζµ2(x)

Lzµ2(x) + ν2

)2
.

The behavior ofk(z), k′(z) andk′′(z) at the endpoints{ 1
L
, 1}, is the same as that in the proof of Theorem

2.1 wheneverN = C ′
1L log(M − L). The result follows.

Theorem 5.2:(Converse for Error Metric 1) Let a sequence of sparse vectors, {x(M) ∈ C
M}M with

||x(M)||0 = L = o(M) be given. Then asymptotic reliable recovery is not possiblefor {x(M)} with

respect to Error Metric 1 if

N ≺ C ′
2

L log(M − L)

logP
(30)

for some constantC ′
2 > 0 that depends only onP andν.

Proof: The proof is similar to that of Theorem 2.3.

Theorem 5.3:(Achievability for Error Metric 2) Let a sequence of sparse vectors,{x(M) ∈ C
M}M

with ||x(M)||0 = L = o(M) be given such thatLµ2(x(M)) andP are constant. Then asymptotic reliable

recovery is possible for{x(M)} with respect to Error Metric 2 if

N ≻ C ′
3 L log(M − L) (31)
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for some constantC ′
3 > 0 that depends only onα, µ(x(M)) andν.

Proof: The proof is similar to that of Theorem 2.5.

Theorem 5.4:(Converse for Error Metric 2) Let a sequence of sparse vectors, {x(M) ∈ C
M}M with

||x(M)||0 = L = o(M) be given such thatP is constant. Then asymptotic reliable recovery is not possible

for {x(M)} with respect to Error Metric 2 if

N ≺ C ′
4 L log(M − L) (32)

for some constantC ′
4 > 0 that depends only onα,P andν.

Proof: We have the following technical lemma,

Lemma 5.5:Let α ∈ (0, 1] andL = o(M), and let

d(z) = 2z − 2z log(z) + z log
(M − L

L

)

.

Then forz ∈ [0, α], and for sufficiently largeM , d(z) attains its maximum atz = α.

Proof: By examining

d′(z) = −2 log(z) + log
(M − L

L

)

= log
(M − L

Lz2

)

,

it is easy to see thatd′(z) ≻ 0 for sufficiently largeM .

Continuation of the proof of the theorem:Thus we have,

I(c, ĉ)
∣

∣

∣

||c||0=||ĉ||0=L,||c−ĉ||0≤2αL
= H(c) −H(c | ĉ)

∣

∣

∣

||c||0=||ĉ||0=L,||c−ĉ||0≤2αL

≥ L log

(

M

L

)

− log

(

αL
∑

K=0

exp

(

K log

(

Le

K

)

+K log

(

(M − L)e

K

))

)

≥ L log(M)− αL log(M − L)− o(L logM) ≥ (1− α)L log(M − L)− o(L logM),

where the first inequality follows from Inequality (21), andthe second inequality follows by Lemma 5.5

for sufficiently largeM . The rest of the proof is analogous to that of Theorem 2.7.

Theorem 5.6:(Achievability for Error Metric 3) Let a sequence of sparse vectors,{x(M) ∈ C
M}M

with ||x(M)||0 = L = o(M) be given such thatP is constant. Then asymptotic reliable recovery is

possible for{x(M)} with respect to Error Metric 3 if

N ≻ C ′
5 L log(M − L) (33)

for some constantC ′
5 > 0 that depends only onγ, P andν.

Proof: The proof is similar to that of Theorem 2.9.
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Theorem 5.7:(Converse for Error Metric 3) Let a sequence of sparse vectors, {x(M) ∈ C
M}M with

||x(M)||0 = L = o(M) be given such thatP is constant and the non-zero terms decay to zero at the

same rate. Then asymptotic reliable recovery is not possible for {x(M)} with respect to Error Metric 3 if

N ≺ C ′
6 L log(M − L) (34)

for some constantC ′
6 ≥ 0 that depends only onγ, P, µ(x(M)) andν.

Proof: As in the proof of Theorem 2.11, we letα(γ,x) = min
(

γP
Lµ2(x) , 1

)

, and conclude that

P
(M)
e3 = 0 implies thatP (M)

e2 = 0 when recoveringα(γ,x) fraction of the support ofx. The rest of the

proof is analogous to that of Theorem 5.4.

REFERENCES
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