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Shannon Theoretic Limits on Noisy

Compressive Sampling

Mehmet Akcakaya and Vahid Tarokh

Abstract

In this paper, we study the number of measurements requiregcbver a sparse signal @ with
L non-zero coefficients from compressed samples in the presehnoise. For a number of different
recovery criteria, we prove thét(L) (an asymptotically linear multiple df) measurements are necessary
and sufficient if L grows linearly as a function ol/. This improves on the existing literature that is
mostly focused on variants of a specific recovery algoritraadal on convex programming, for which
O(Llog(M — L)) measurements are required. We also show @dtlog(M — L)) measurements are

required in the sublinear regimé& & o(M)).

Index Terms

Shannon theory, compressive sampling, linear regime

. INTRODUCTION

Let C denote the complex field an@" the M-dimensional complex space. For aryc CV, let
||x||o denote the number of non-zero coefficientsxoMWhenevel|x||o = L << M, it is advantageous

to measure a linear combination of the components af
y = Ax,

where A is an N x M measurement matrix.

A decoder can then recoverfrom the observed vector by solving tifiy minimization problem

min [|x|lp S.t. y=Ax.
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This data acquisition technique for sparse signals is @¢&itenpressive sampling [4], [5]. However, the
optimization problem for recovery is NP-hard to solve [8].this light, alternative solution methods have

been studied in the literature. One such approach isCtheegularization approach, where one solves
min [|x|; S.t y=Ax,

and then establishes criteria under which the solutioni®pgtoblem is also that of th€, minimization
problem. By considering certain classes of Gaussian antiap&ourier ensembles, Candes and Tao
showed in [4] that this recovery problem could be solved for= O(M) with N = O(L) as long as
the observations are noiseless. Another strand of workidersssolving theL, recovery problem for a
specific class of measurement matrices, such as the Vanddenicames [1].

In practice, however, all the measurements are noisy, i.e.
y=Ax+n Q)

for some additive nois@ € C". This motivates our work, where we study Shannon theorgtiits on
the recovery of sparse signals in the presence of noise. Bpeifically, we are interested in the order
of the number of measurements requir@d,in terms of L, M. We consider the linear sparsity regime
M = BL for g > 2. It was shown in [1] that3 > 2 is required even in the noiseless setting for the
unique recovery of the signal.

Wainwright considered this problem with being Gaussian noise in [10], and derived information
theoretic limits on the noisy problem for a specific perfonte metric and a decoder that decodes to the
closest subspace, showing that for the linear sparsitynegihe number of measurements required is also
O(L). In [11], Wainwright studied the; constrained quadratic programming algorithm (LASSO) & th
noisy setting and showed that in this case the number of memsmts required i = O(L log(M —L)).
Therefore there is a gap between what is achievable thealtgtiwith an information theoretic decoder

and what is achievable with a practical decoder based;oregularization. The total power of the signal,
IxI3 = P

grows unboundedly as a function 8f according to the analysis in [10]. The reason for this rezquiEnt
is that at high dimensions, the performance metric in caraiibn is too stringent for an average case
analysis.

In this note, we consider various performance metrics, sofrehich are of more Shannon theoretic
spirit. We use a decoder based on joint typicality. Althosgich a decoder may not be computationally

feasible in practice, it enables us to characterize theopmdnce limits on the sparse representation
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problem. Using this decoder, we first derive a result simitathat of [10] for the same performance
metric. For the other performance metrics that are morésseal in nature, we derive results stating that
the number of required measurement®ig.) and thatP does not have to grow wittv.

The outline of this paper is given next. In Sectloh I, we defthe problem to be considered in this
paper, establish the notation and performance metricsstate our main results and their implications.
Section[Ill and Sectiof IV provide the proofs for the theosestated in Sectiohlll. In Sectidn] V, we

state analogous theorems for the sublinear sparsity redimeo(M).

Il. MAIN RESULTS

We consider the compressive sampling of an unknown vestag, CM. Let x have supportZ =

supfx), where
suppx) = {i | i # 0}

with [[x[lo = |Z| = L = [ M |, wherej > 2. We also define

p(x) = min foi]. )

We consider the noisy model given in Equatidn (1), wharés an additive noise vector with a
complex circularly-symmetric Gaussian distribution withro mean and covariance matuix/y, i.e.
n ~ Ng(0,2%1y). Due to the presence of noisg, cannot be recovered exactly. However, a sparse

recovery algorithm outputs an estimatewith ||x||o = L. We consider three performance metrics for the

estimate:
Error Metric 1: pi(%,x) = H({m, £0VieI}n{z;=0Vj¢ I}> 3)
: | 24 NnZ
Error Metric 2: p2(X,x) = H(’{Z |2 ‘7;0} | >1-— a> 4)
Error Metric 3: p3(X,x) = H( Z 22 > (1 — 7)P> (5)
ke{i|,#0}NT

wherel(-) is the indicator function and,~y € (0, 1).

Error Metric 1 is referred to as th@1 loss metric, and it is the one considered by Wainwright [10].
Error Metric 2 is a statistical extension of Error Metric Ihdaconsiders the recovery of most of the
subspace information of. Error Metric 3 is directly from Shannon Theory and chareeés the recovery
of most of the energy ok.

Consider a sequence of vectof™)1},, such thatx(™) ¢ CM with ZM) = supgxM)), where

IZ| = LD = [ LM |. Forx™), we will consider an ensemble of x M Gaussian measurement
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matrices,A(™) whereN is a function of M. Since the dependence &), 7(M) and A) on M is

implied by the vectox®™), we will omit the superscript for brevity, and denote the o of x(*) by

7, its size byl and any measurement matrix from the ensembleAbyhenever there is no ambiguity.
A decoder,D(-) will output a set of indicesP(y). For a specific decoder, we consider the average

probability of error, averaged over aBaussian measurement matrice’ with the (i, /)" terma; ; ~

Ne(0,1):

perr(D|X(M)) =Ea (pe”(A|x(M))), (6)

whereper(A|xM)) = P(D(y) # Z) for y = Ax™) 4+ n andP(-) is the probability measure.

We say a decoder achievasymptotic reliablesparse recovery ipeq(D|xM)) — 0 as M — .
Similarly we say asymptotic reliable sparse recovery ispustsible ifpe(D|x(*)) stays bounded away
from 0 asM — oc.

We also use the notation
f(z) = g(z)

for either f(x) = g(x) = 0 or for non-decreasing non-negative functiof\s) andg(z), if 3 z¢ such

that for all x > =z,

Similarly we sayf(x) < g(z) if g(x) > f(z).
Theorem 2.1:(Achievability for Error Metric 1) Let a sequence of sparstors, {x(M) ¢ CM},
with ||xM)jg = L = [%MJ whereg > 2 be given. Then asymptotic reliable recovery is possible for

{x(M)} with respect to Error Metric 1 if%;m) — 0o asL — oo and
N = Cl L (7)

for some constanf; > 1 that depends only off, u(x*)) andw.
Proof: The proof is given in Section 1I-Cl1. O
Corollary 2.2: Let the conditions of Theorein 2.1 be satisfied. Then for anysSian measurement
matrix, A, and for Error Metric 1~ log P(per(A|xM)) > €)/log L — oo asL — oo for any¢ € (0, 1].
Proof: Markov’s Inequality implies

EA(perr(A|X(M))) _ perr(D|X(M))
3 3
As shown in the proof of Theorem 2.1; log pen(D|x*))/log L — oo as L — oo, yielding the

P(pen(Alx1)) > ¢) <

desired result. 0
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Theorem 2.3:(Converse for Error Metric 1) Let a sequence of sparse vecfaf™) ¢ CM},, with
x(M)||y = L = |2M|, where > 2 be given. Then asymptotic reliable recovery is not possibte
B

{x(M)} with respect to Error Metric 1 if

N 8
<O log P (8)

for some constant’, > 0 that depends only o, P andv.
Proof: The proof is given in Section TIV-A]1. O

Corollary 2.4: Let a sequence of sparse vectdrs(™) € CM}, with x|l = L = | M ], where

B > 2 be given. Then fo > 0, for any Gaussian measurement mattk, and for Error Metric 1,
P (perr (AJxM)) — 1) goes to 1 exponentially fast as a functionf if N < égﬁ, whereCy < Cy
is a positive constant that depends only &P, v and¢.
Proof: The proof is given in Section 1V-A]1. O
Theorem 2.5:(Achievability for Error Metric 2) Let a sequence of sparstors, {x(M) ¢ CM},
with [|xM)[jg = L = | M|, where > 2 be given such thaLu*(x")) and P are constant. Then

asymptotic reliable recovery is possible fat(*)} with respect to Error Metric 2 if
N >~CsL 9)

for some constanf’; > 1 that depends only on, 8, u(x(*)) andw.

Proof: The proof is given in Section IlI-C|2. O
Corollary 2.6: Let the conditions of Theorein 2.5 be satisfied. Then for anysSian measurement
matrix, A, and for Error Metric 2)P(per(A|xM)) > ¢) is exponentially decaying to zero as a function

of M for any¢ € (0, 1].
Proof: As shown in the proof of Theoref 2.%.(D|x(™)) decays exponentially fast if/.
Applying Markov’s Inequality, yields the desired result. O
Theorem 2.7:(Converse for Error Metric 2) Let a sequence of sparse vecfaf’) ¢ CM},, with
Ix®Dlo = L = [%MJ , where > 2 be given such thaP is constant. Then asymptotic reliable recovery

is not possible fo{x(™)} with respect to Error Metric 2 if
N < CyL (10)

for some constanf’, > 0 that depends only on, 8, P andv.
Proof: The proof is given in Section 1V-A]2. O
Corollary 2.8: Let a sequence of sparse vectds{") € CM},, with [[x(™)||g = L = | ;M |, where

B > 2 be given such thaP is constant. Then fo¢ > 0, for any Gaussian measurement mate, and
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for Error Metric 2,P( err(A]x(M)) — 1) goes to 1 exponentially fast as a function/df if N < C4L,
whereCy < C4 is a non-negative constant that depends onlyxofi, P, v and¢.
Proof: The proof is analogous to the proof of Corollary]2.4. ]
Theorem 2.9:(Achievability for Error Metric 3) Let a sequence of sparstors, {x(M) ¢ CM},,
with |[x(M)|jg = L = | 3M], where3 > 2 be given such thaP is constant. Then asymptotic reliable

recovery is possible fofx(*)} with respect to Error Metric 3 if
N >~CsL (11)

for some constant’s > 1 that depends only of,~, P andwv.

Proof: The proof is given in Section II-Cl3. O
Corollary 2.10: Let the conditions of Theorein 2.9 be satisfied. Then for anysSian measurement
matrix, A, and for Error Metric 3)P(per(A|xM)) > ¢) is exponentially decaying to zero as a function

of M for any¢ € (0, 1].
Proof: The proof is analogous to the proof of Corollary]2.6. ]
Theorem 2.11:(Converse for Error Metric 3) Let a sequence of sparse vecfaf’) ¢ CM},, with
IxD[lp = L = [%MJ where > 2 be given such thaP is constant and the non-zero terms decay to
zero at the same rate. Then asymptotic reliable recovergtipassible for{x(*)} with respect to Error
Metric 3 if

N < CsL (12)

for some constanfs > 0 that depends only of, v, P, u(x*)) andv.

Proof: The proof is given in Section IV-Al3. O

Corollary 2.12: Let a sequence of sparse vectofg(*) € CM}y with |[x*|lp = L = [FM],

where 5 > 2 be given such thaP is constant and the non-zero terms decay to zero at the sdaeme ra
Then for¢ > 0, for any Gaussian measurement matdx,and for Error Metric 3P( err(Alx(M)) — 1)
goes to 1 exponentially fast as a functionlofif N < CsL, whereCs < Cj is a hon-negative constant
that depends only ofi, v, P, u(x™)), v and¢.

Proof: The proof is analogous to the proof of Corollary]2.4. O

A. Discussion of The Results

Theorenf 2.1l implies that for Error Metric (L) measurements are sufficient for asymptotic reliable

sparse recovery. There is a clear gap between this numbereaSurements an@ (L log(M — L))
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measurements required 4 constrained quadratic programming [11]. In this proofsitréquired that

Lpt(x™)
log L

Theoremg 2]5 and 2.9 show that for Error Metrics 2 and 3, thehau of required measurements to

— oo as L — oo, which implies thatP grows without bound as a function &f.

achieve asymptotic reliable sparse recoveryis= O(L). In this caseP remains constant, which is a
much less stringent requirement than that of Thedrein 2.tvé&ses to these theorems are established in
Theorems$ 2]3, 217 arid 2]11, which demonstrate ¢hdt) measurements are asymptotically necessary.
Finally we note that Corollaries_ 2.6 and 2.10 imply that widtherwhelming probability (i.e. the
probability goes tol exponentially fast as a function dff) a given N x M Gaussian measurement
matrix A can be used for asymptotic reliable sparse recovery (résplcfor Error Metrics 2 and 3) as
long asN = O(L). Similarly Corollaried 28 and 2.112 prove that a given Gaussnatrix A will have
Perr(A|xM)) — 1 (respectively for Error Metrics 2 and 3) with overwhelmingppability as long as
the number of measurements is less than specified constdiiplesuof L. Corollaries 2.2 and 2.4 are

similar in nature.

[11. A CHIEVABILITY PROOFS
A. Notation

Let a; denote thei™ column of A. For the measurement matrix, we defineA 7 to be the matrix
whose columns arga; : j € J}. For any given matriXB, we definellg to be the orthogonal projection
matrix onto the subspace spanned by the colummB,dfe. ITg = B(B*B)~!B*. Similarly, we define

IT; to be the projection matrix onto the orthogonal complemédrthis subspace, i.dlg =1 — Igp.

B. Joint Typicality

In our analysis, we will use Gaussian measurement matricgésiasuboptimal decoder based on joint
typicality, as defined below:

Definition 3.1: (Joint Typicality) We say anV x 1 noisy observation vectoyyf = Ax +n and a set
of indices7 C {1,2,..., M}, with |J| = L, ared-jointly typical if rank(A 7) = L and

_N-L,
N

wheren ~ N¢(0,21y), the (4, j)™ entry of A, a;; ~ N(0,1), and|x|[o = L.
Lemma 3.2:For an index sef C {1,2,...,M} with |Z| = L,

1
~ITE v <3, (13)

P(rankAz) < L) = 0.

Lemma 3.3:
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o LetZ = supfx) and assume (without loss of generality) that rghk) = L. Then foré > 0,
1l 2 N—-L , 52 N?
— - < - ].
IP’(‘NHHAIyH v > 6) < 2ex PN LTEN (14)
o Let 7 be an index set such tha¥| = L and|Z N J| = K < L, whereZ = supfix) and assume
that ranKA 7) = L. Theny and 7 are d-jointly typical with probability

1 N-L N — L Ypenglonl’ =8 \?
P ‘— I y|P- = 2‘ 5) < - 15
<N|| AJYH N ve| < = €xXp 4 Zkez\j|xk|2+y2 ) ( )

where

Proof: We first note that for
y=Ax+n= Zwiai—l—n,
i€l
we have

Oy, y =1z n,

and

Hj,;jy = Hjj( Z T;a; + n>.
1€I\T

Furthermorel‘[jz = UIDU}, whereUz is a unitary matrix that is a function dfa; : i € Z} (and
independent oh). D is a diagonal matrix withV — L diagonal entries equal to 1, and the rest equal to
0. It is easy to see that

1 ool)2 2
ITIx, yl|* = ||Dn'[7,
wheren’ has i.i.d. entries with distributio¢(0,v?). Without loss of generality, we may assume the
non-zero entries oD are on the firstV — L diagonals, thus
ID0’|[2 = [y 2+ - [y

Similarly, H}AJ = UJDUT , whereU ;7 is a unitary matrix that is a function dfa; : j € J} (and
independent oh and{a; : i € Z\7}) andD is as discussed above. Thafs = U}a,- has i.i.d. entries
with distribution N (0, 1) for all i € Z\J. It is easy to see that” = U}n also has i.i.d. entries with
Ne(0,v2). Thus

1T, yI? = [Dw[]* = i |* + - + Jwn-r,
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wherew; are i.i.d. with distributionN(0,0% ), where

Z |zp |2+ V2
keI\J
|I?

and(y M . We note that botlf2; and(2, are chi-square random variables with
.7

Let, = 1Bof
(N — L) degrees of freedom. Thus to bound these probabilities, wa baund the tail of a chi-square

random variable. We have,

N —-L 0
<' HHAI -y V2 >5> :P(‘Ql—(N—L)'>ﬁN>
) )
=P Ql—(N—L)<—§N +P Ql—(N—L)>ﬁN , (16)
and
T SRTCR el U _ _ il
]P’(‘NHHAJyH NV <5> —]P’<Qg (N — L)aj U%N
v? 1)
§]P’<Qg—(N—L)<—(N—L)<1——2>—1——2N> (17)
%7 77
For a chi-square random variable,with (N — L) degrees of freedom [3], [7],
]P’(Q— (N-1L)< —2\/(N—L))\) <e, (18)
and
IP(Q—(N—L) >2/(N= I +2\) < e (19)

By replacing2 = ©; and
- < SN >2
S \22yN - L
in Equation [(I18) and
1 26 S E N2
A=-"(yN-L+=ZN-VN-L) >——
4< T > TN -L+ AN

in Equation [(I19), we obtain using Equatidn16)

‘ HH H2 N_LV2‘>5 < ex _5_2 N2 + ex _5_2N—2
AzY N SSP T AN L P\TwiN Ly BN

October 25, 2018 DRAFT



DRAFT 10

Similarly by replacing2 = 25 and

N_—L 2 5 N 2
A= l—— 1= ) =77
2 o7 072y (N —-1L)

_(YN-L(, v 8 N Y
N 2 a% O’%N—L

in Equation [(18), we obtain using Equatidn17)

1, o N—-L, N-L a%—u2—5’>2
_ _ -~ < _
]P’<‘N||HAjy|| v <8) <exp —( )

~ox _N—L<Zkel\j’wk’2_5/>2
P 4 \XCrenglwelP+v2) |

C. Proofs of Theorems For Different Error Metrics

We define the event

E7 ={y andJ ared-jointly typical }

forall 7 c {1,...,M}, |J| = L.
We also define the error event
Ey = {rankAz) < L},

which results in an order reduction in the model, and imples the decoder is looking through subspaces
of incorrect dimension. By Lemnia_3.2, we ha®Rer,) = 0.

Since the relationship betweed andx (/) is implicit in the following proofs, we will suppress the
superscript and just write for brevity.

1) Proof of Theoreri 211 (Error Metric 1)Clearly the decoder fails ity or ES occur or when one
of £+ occurs forJ # Z. Thus

perr(D|X) = P(EO U Eg U Ej)
I, J#L,|J|=L

<P(EF)+ >,  P(Ey)
I, JT#L,|T|=L

We let N = (4Cy + 1)L whereCy > 2 +log(8 — 1) is a constant. Thug' = %5 = C{6 with
C} > 1. Also by the statement of Theordm 2.1, we hdyeé'(x) grows faster thaog L. We note that
this requirement is milder than that of [10], where the gtovetquirement is om?(x) rather tharu*(x).
Since the decoder needs to distinguish between even thdesmiabn-overlapping coordinates, we let

8 = (u?(x) for 0 < ¢ < 1. For computational convenience, we will only consi@és < ¢ < 1.
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By Lemmal3.B,

B(ES) < 2exp (_ (Cy  Lp*(x) )

V2 1202 (x)
and by the condition on the growth @f(x), the term in the exponent grows faster thiag L. Thus
P(ES) goes to0 faster tharexp(—log L).
Again by Lemmd 31, fot7 with |Zn J| = K,
N-L < Sken g lTkl> = >2>

P(Eg) < exp ( -
SinceY e 7 |lzk* > (L — K)u*(x), we have

N—L<(L—K)u2(><)—5’>2>7

4 (L — K)p?(x) + v? (20)

P(E7) < exp ( —
wherep(x) is defined in Equatiori{2).
The condition of Theorerin 2.1 gm(x) implies thatP(E ;) — 0 for all K. We note that this condition
also impliesP — oo as N grows without bound. This is due to the stringent requiretsh@mposed by
Error Metric 1 in high-dimensions.

By a simple counting argument, the number of subggéthat overlap< in K indices (and such that
L\/M-L
K/)\L-K)

Gy Lpt(x)
v? V24 20p2(x)

L1 B _ _ 2(x) — &\ 2
+Z< L ><M L)exp N L((L K)uz(x) 52>
= \L-K)\L-K 4 (L— K)p?(x)+v
L 2
- C2Cy  Lp*(x) L\ (/M~-L N~ L[ (K"u?x)—¢
e ( 2 rraee )t 2w e ) T mem e
We will now show that the summation goes@as M — oo. We use the following bound

exp (K’ log (%)) < <I€,> < exp <K’ log (%)) 1)

to upper bound each term of summatieg, by

rank(A 7) = L) is upper-bounded by

Thus

perr(D’X) < 2exp (

Le
K’

< exp | K'log () + K'log (
Sk < exp ( og + og 7 1 K2(x) + 2

(M —L)e) _N- L<K’,u2(x) - 5’)2>

K e K (B—1)e LE 2(x) — 82
=exp [ L—log — + L— log S — CyL L,—
( s <L%u2<x> )
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We upper bound the whole summation by maximizing the functio
(B—1)e Lzp?(x) — &' >2
z Lzp?(x) + v?
Lap(x) — CM2(X))2
Lzp?(x) + v?

f(z) =Lz logg + Lzlog — C’OL<

— —2Lzlogz + L2(2 +log( — 1)) — COL( (22)

for z € [1,1]. If f(2) attains its maximum aty, we then have

L
S sk < Lexp(f(0)).
K'=1

For clarity of presentation, we will now state two technitexhmas.

Lemma 3.4:Let g(z) be a twice differentiable function dn, b] that has a continuous second derivative.
If g(a) <0, g(b) <0, andg’(a) <0, ¢'(b) >0, andg”(a) <0, ¢"(b) < 0, theng”(x) is equal to O for
at least two points ifa, b].

Proof: Sinceg'(a) < 0 andg’'(b) > 0, ¢’(x) has to be increasing in a subsBtC [a,b]. Then
g"(x) > 0 for somexy € E. Sinceg’(a) < 0, ¢"(z9) > 0 and ¢"(x) is continuous, there exists
x1 € la,zo] such thatg”(z1) = 0. Similarly, sinceg”(b) < 0, there existsty € [zg,b] such that
g"(z2) = 0. O

Lemma 3.5:Let p(z) = ay2* + a3z +a2? +a12+ag be a polynomial oveR such thatuy, as, ag > 0.
Thenp(z) can have at most two positive roots.
Proof: Let 7‘;,(,1),7“;(,2),7‘;3),7‘;,(,4) be the roots op(z), counting multiplicities. Since

a4

the number of positive roots must be even, and since

T,I()l) + T;z()z) + 7”;(;3) + 74124) — _% < O,
4
not all the roots could be positive. The result follows. 0

Lemma 3.6:For L sufficiently large,f(z) (see Equatior[ (22)) is negative for allc [%, 1]. Moreover
the endpoints of the intervakél) = + and z(()z) =1 are its local maxima.

Proof: We first confirm thatf(z) is negative at the endpoints of the interval. We use the iootat

=~ for denoting the behavior of (z) for large L, and< and > for inequialities that hold asymptotically.
1\ p2(x)(1 = ¢)\?
f<L> —2log L+ 2 + log(5 — 1) 00L< P00 ) <0 (23)

for sufficiently largeL, since Lu*(x) grows faster tharog L. Also for large L, we have

2 x —_
f(1) = L2 +log(B - 1)) — COL(%Y

R L2 +log(8 — 1) — Cp) < 0. (24)
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We now examine the derivative ¢f(z), given by

Lz—(

J'(2) = =2Llog = + Llog(5 — 1) = 200 L2 () (0" + G2 (0) (s

Also,

1-¢

1
73 ) =2L1o8L + Liog(s — 1) - 2602 (GO0 + GHA)

L
N Lyt
§L<2logL +log(B—1) — 200%) =<0

for sufficiently largeL, since Lu*(x) grows faster tharog L. Similarly

f'(1) = Llog(B — 1) — 2Co L1 (x) (V2 + Cp2(x))

RLlog(B—1) —2C, (V2 + Cp®(x)) = 0

p*(x)
since“%(x) grows slower than /ﬁ.
Additionally,
mey 2L 2 4 2 2 —2Lzp% (x) + 12 + 3¢ (x)
£2) == 200 0+ W) (g 1)

= ST T (““‘2(") P4 LA ()02 + CuP(0) (2L () 07 3<M2<x>>z>
(25)
Thus,
(1) = ~22(x) + 0 + 30°(x)
49 __2L<L+C°L2“4(X)(”2H“Z(X)) (26 + 17 ) -
and

F'(1) = —2L (1 + CoL2 1 (x) (v + (i (%)) L2002 7)1

2 2
= 2L<1 _ 20()%) < 0.
2 (x

Since f(z) is twice differentiable function off-, 1] with a continuous second derivative, Lemmal 3.4

—2Lp%(x) + V2% + 3Cu2(x)>

implies thatf”(z) crosses 0 at least twice in this interval. Next we examingtiignomial (see Equation

29)),
p(z) = (Lzp®(x) + 1)+ 200 L2 () (v? + (i (%)) (=2Lzp? (x) + 17 + 3(p* (x)) 2.

Sincep(z) satisfies the conditions of Lemrha B.5, we conclude that itdhasost two positive roots, and

thus at most two roots gf(z) can lie in[1,1]. In other wordsf”(z) can cros9) for z € [1,1] at most
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twice. Combining this with the previous information, we cbrde thatf”(z) crosses 0 exactly twice in
this interval, and thaf’(z) crosses 0 only once, and this point is a local minimg @f). Thus the local
maxima of f(z) are the endpoints((]l) =1 and z(()z) =1 O

Thus we have,

L—-1
+ 3" exp(max{f(="), f(z)})

K=0

= 2exp (— Cig'o 2 f_éz(;)(x)) + exp <logL+maX{f<%>af(1)} )

From Equationd(23) and (R4), it is clear theg(L)+ max {f(%),f(l)} — —oo asL — co. Hence
with the conditions of Theorefm 2.ber(D|x) — 0 as L — cc.

C2Cy L,LL4(X)
per(D[x) < 2exp <_ v2 12 4 2(u2(x)

2) Proof of Theorern 215 (Error Metric 2)For asymptotic reliable recovery with Error Metric 2, we
require thatP(E ) goes to 0 for onlyK < (1 — «)L with a € (0,1). By a re-examination of Equation
(20), we observe that the right hand side of

N — L[ aLp?(x) =& \?
e oo (T (1))

converges to 0 asymptotically, even whep?(x) converges to a constant. In this caBedoes not have
to grow with N. We let§ > 0 (and hence?) be a constant, and le¥ = (4C5 + 1)L for

aLu?(x) + v? > 2

aLp?(x) — ¢ (26)

ég > 5<
Given the decay rate gf?(x) and thats’ > 0 is arbitrary, we note that this constant only depends on

a, B, u(x) andv. Hence

(1-a)L 2 1 2
L M—L N-—-L{(L—-K)u*(x)—29
Pen(D]x) §]P)(Eg)+ Z <L—K> <L—K> exp(— 4 <((L—K)) 2((x))—|—1/2> )
K=0 a
52 403—1-1
<2 - —— - N
- eXP( 4v4403+§—§(403+1) )

L 2
K’ K’ R K’,uz(x) _
LH(|— M—-LH|—— ) -C3L| ——F——
e 3 o () ron- (575 () )
where H(a) = —alog(a) — (1 — a)log(1 — a) is the entropy function for € [0, 1]. Since K’ is greater
than a linear factor of. and sinceP is a constant, and using Equatidn](26), we pggD|x) — 0

exponentially fast ag, — oo.
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3) Proof of Theorerh 219 (Error Metric 3)An error occurs for Error Metric 3 if

> zkl? = 4P

keI\J

Thus we can bound the error event {@rfrom Lemma3.B as

N—L/~P—§\?
P(EJ)SGXI)(— 1 <VWP+V2>>

Let &' > 0 be a fraction ofyP. We denote the number of index sefsc {0,1,..., M} with |J| =L

asT,. and note thaf, < (}7). Thus,

52 N M N—L{yP—-d)\?
DIx) < 2 — N - :
per(D[x) < 2exp ( AAN — L+ 12/_625]\[ ) * <L> P ( 4 <’7P+I/2>

For N > C5L, a similar argument to that of Sectibn IlI-C.2 proves that(D|x) — 0 exponentially fast

as L — oo, whereCs depends only orf, v, P andv.

IV. PROOFS OFCONVERSES

Throughout this section, we will write for x(*/) whenever there is no ambiguity.

A. Genie-Aided Decoding and Connection with Noisy Comnaiioic Systems

Let the support ofk beZ = {iy,ia,...,ir} with i3 < iy < --- < ir. We assume a genie provides
x7 = (25,, 24y, ...,2;, )] to the decoder defined in Sectibh II.
Clearly we have

enie
Perr = DIy

1) Proof of Theorerh 213 (Error Metric 1)We derive a lower bound on the probability of genie-aided
decoding error for any decoder. Consider a Multiple Inputgk& Output (MISO) transmission model
given by an encoder, a decoder and a channel. The channetdffisp byH = [z, x;, ... 2;,] = xL.
The encoderg; : {0, 1} — C**V, maps one of th¢"') possible binary vectors of (Hamming) weight
L to a codeword irC¥*", This codeword is then transmitted over the MISO channéViohannel uses.
The decoder is a mappir@; : CV — {0, 1} such that its outpué has weightL.

Let ¢ € {0,1} and suppc) = J = {j1,j2,-..,4r} With ji < jo < .-+ < jp. Letz =

(Qk jrs Ak jos - - -+ A gy )Ty WhETEAy, ,, is the (m,n)™ term of A. The codebook is specified by

Qﬁ1={(z17 zy ... z%)‘jC{laQw--’M}"j’:L}’
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and has siz€’). The output of the channey; is
yp = Hzf 410,  for k=1,2,...,N,

wherey;, andn;, are thek™ coordinates of andn respectively. The average signal powe]E($]zk*7H2) =
L, and the noise variance B2 = 2. The capacity of this channel iN channel uses (without channel

knowledge at the transmitter) is given by [9]

1E P
CMISO:N10g<1+ (= | )HHT>:N10g <1+—2>.
L Enk v

After N channel useg2/59 > 0 if log () > Crso. Using

()< (mlu().

we obtain the equivalent condition

< mMH@) — o(M),

whereL = gM, and H () is the entropy function.

To prove Corollary 24, we first show that with high probaigjlall codewords of a Gaussian codebook
satisfy a power constraint. Combining this with the strooguwerse of the channel coding theorem will

complete the proof [6]. IfA is chosen from a Gaussian distribution, then by Inequdlifi),(

(ot sy ) (en(3) ) som (- () -9

foranyJ C {1,2,...,M},|J| = Land fork =1,2,...,N. Let A = 2,/BH (5) + £+ 2(BH () +¢)
for ¢ > 0. By the union bound over all’Y) possible index sety’ andk = 1,2,...,N,
19><1||z,€||2 (L+A), VI, k::l,...,N) >1— Nexp (—£L).

If the power constraint is satisfied, then the strong comvefsthe channel coding theorem implies that
perr(A]x) goes to 1 exponentially fast if/ if
N < 1 MH<%>
log < n (1+A)>
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2) Proof of Theoremi 217 (Error Metric 2)For any givenx with ||x|lo = L, we will prove the

contrapositive. LetPe(jw) denote the probability of error with respect to Error Me®idor x € CM. We
show thatV = C4L if Pe(z,M) — 0.
Consider a single input single output systesj,whose input isc € {0,1}*, and whose output is

¢ € {0, 1}, such that|c|[o = [|¢|lo = L, and||c—¢||o < 2aL. The last condition states that the support

Pe(jw ) = 0. We are interested in the rates

of ¢ and that of¢c overlap in more tharil — «)L locations, i.e

at which one can communicate reliably over
LS M du(ci,é;), wherec is ii.d. distributed amond’) binary vectors of

2L __ 2
% = 70“ We also note that

In our cased(c,¢) =
length A and weightZ, anddg (-, -) is the Hamming distance. Thus <
S can be viewed as consisting of an encoder a MISO channel and a decodér; as described in

Sectior IV-A.1. Since the source is transmitted within alison %a over the MISO channel, we have [2]

2
R(%) < Cumrso-

In order to boundR(%a), we first state a technical lemma

Lemma 4.1:Let a € (0,1] and5 > 2, and let

c(z) = H(z) + (8 — 1)H<B - 1>
~2z10g() — (1~ 2)log(1 — 2) + (8 — 1) log(B — 1) — (8 — 1 — 2)log(8 — 1 - =),

where H(-) is the entropy function. Then fot € [0,qa], ¢(z) > 0, and¢(z) attains its maximum at

zZ = min (a, %)
Proof: By definition of H(-), ¢(z) > 0 for z € [0, a]. By examining
d(z) = —2log(z) +log(1 — z) +log(8 — 1 — 2) = log <(1 — z)(ﬁ2— 1= z)>,
z
it is easy to see that(z) > 0 for z € <O,min (cv, %)} andd(z) < 0 otherwise. O
DRAFT
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Thus we have

= H(c)— H(c|¢)

I(c,¢) A A
llello=l&llo=L,||c—¢|lo<2a L

e () - (3 (1) (Y1)

> MH<%> ~log(M +1) ~ log < > e (LH@) e L)H<M[i L>>>

K=0

llello=ll€llo=L,[|c—¢[o<2aL

MH(%) —log(M + 1) — log(aL + 1) — L(H(a) +(B - 1)H<%>> if o < 67:

>

=

0 if o>

b

where the first inequality follows since given c is among> %~ (&) (™) possible binary vectors

within Hamming distanc@a L from ¢. The second inequality follows from Inequalify {27), ané third
inequality follows by Lemma 411.
Thus R(%) > LC,p — o(L), where

T
L

BH(%) — H(a) — (B — 1)H<%1> if o <

0 if >

b

Cop= (28)

=)
Q‘I
—_

Therefore ifPe(jVI) =0, then
P
LC’aﬁ — O(L) < Nlog <1 + ﬁ)

or equivalently for largel/,
Cap

log (1 + 5)

The contrapositive statement proves Theokem 2.7.

N >~ L.

3) Proof of Theorerh 2.11 (Error Metric 3)For Error Metric 3, we assume thatx) = max;e7 |2
andu(x) = min;ez |x;| both decay at rat@(\/%). ThusP is constant. In the absence of this assumption,
some terms ofk can be asymptotically dominated by noise. Such terms ammportant for recovery
purposes, and therefore could be replaced by zeros (in tiv@tae of x) with no significant harm.

Let a(y,x) = min (%, 1). Let Pe(SM) denote the probability of error with respect to Error Metric
3 for x € CM. If Pe(jw) = 0 and if an index set7 is recovered, ther ;.7\ ; lzx|? < P, where
Z = supgx). This implies that|Z\J| < «(v,x)L. Thus Pe(,jw) = 0 implies thatPe(jV[) = 0 when

recoveringa(y, x) fraction of the support ok. As shown in Section IV-AI2, reliable recovery &fis
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not possible if
Ca(r%),8

log <1 + V—PQ>

whereC,(, x) 5 is @ constant (as defined in Equationl(28)) that only dependg 6, ;(x) and P for a

N < L,

givenx.

V. SUBLINEAR REGIME

For completeness, we also state the equivalent theorenesy ivh- o(M). The proofs follow the same
steps as those in the linear regime. For the proofs of coavesults, we use the bounds from Equation
(21) instead of those of Equation (27).

Theorem 5.1:(Achievability for Error Metric 1) Let a sequence of sparstors, {x(M) ¢ CM},,
with ||x*)||o = L = o(M) be given. Then asymptotic reliable recovery is possible{for!)} with

respect to Error Metric 1 if.u*(x™)) — 0o asL — oo and
N = O} Llog(M — L) (29)

for some constant’, > 0 that depends only op(x(*)) andv.
Proof: The proof is similar to that of Theorem 2.1, wiff{z) replaced by

— — 2p?(x) — (uP(x
ML L> B N4 L<L£Z/(ﬂzx) —Ckuug )>2

k(z) = —2Lzlogz+ 2Lz + Lzlog (

The behavior of(z), k'(z) andk” () at the endpoint§+, 1}, is the same as that in the proof of Theorem

2.1 wheneverV = C{Llog(M — L). The result follows. O
Theorem 5.2:(Converse for Error Metric 1) Let a sequence of sparse vecfaf™) e CM1,, with

|x(M)||y = L = o(M) be given. Then asymptotic reliable recovery is not possibie{x(*)} with

respect to Error Metric 1 if

Llog(M — L)
N — 30
=<0 log P (30)
for some constant?, > 0 that depends only o® andv.

Proof: The proof is similar to that of Theorem 2.3. O

Theorem 5.3:(Achievability for Error Metric 2) Let a sequence of sparstors, {x(M) ¢ CM},,
with ||x™)||g = L = o(M) be given such thaku?(x™)) and P are constant. Then asymptotic reliable

recovery is possible fofx(*)} with respect to Error Metric 2 if

N = C4 Llog(M — L) (31)
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for some constant} > 0 that depends only on, u(x)) andwv.
Proof: The proof is similar to that of Theorem 2.5. O
Theorem 5.4:(Converse for Error Metric 2) Let a sequence of sparse vecfaf™) € CM1,, with
[x(M)||y = L = o(M) be given such thaP is constant. Then asymptotic reliable recovery is not esi

for {x(™)} with respect to Error Metric 2 if
N < C} Llog(M — L) (32)

for some constant’} > 0 that depends only on, P andwv.
Proof: We have the following technical lemma,
Lemma 5.5:Let a € (0,1] and L = o(M), and let

M—L
d(z) =2z — 2zlog(z) —|—zlog( T >

Then forz € [0, «], and for sufficiently largel/, d(z) attains its maximum at = .
Proof: By examining
M—-L M—-L
/ = — _— =
d'(z) = 2log(z)+log< 7 ) log( 72 ),
it is easy to see that'(z) >~ 0 for sufficiently large)/. O

Continuation of the proof of the theoremfhus we have,

I(c,¢c = H(c) — H(c|¢)
(8) llello=llello=L,|lc—¢[lo<2aL (c) (c|

> Llog (%) “log (};ii:oexp <K10g< > +Klo g< I_{L)e>>>

> Llog(M) — aLlog(M — L) — o(Llog M)

llello=ll€llo=L,[|e—¢[[o<2aL

(1 —a)Llog(M — L) —o(Llog M),

where the first inequality follows from Inequality (21), atite second inequality follows by Lemrha b.5

for sufficiently largeM. The rest of the proof is analogous to that of Theokem 2.7. O
Theorem 5.6:(Achievability for Error Metric 3) Let a sequence of sparstors, {x(M) ¢ CM},,

with |[x(™)||g = L = o(M) be given such thaP is constant. Then asymptotic reliable recovery is

possible for{x(™)} with respect to Error Metric 3 if
N = C! Llog(M — L) (33)

for some constant > 0 that depends only ony, P andv.

Proof: The proof is similar to that of Theorem 2.9. O
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Theorem 5.7:(Converse for Error Metric 3) Let a sequence of sparse vecfaf’) ¢ CM},, with
[x(M)||g = L = o(M) be given such thaP is constant and the non-zero terms decay to zero at the

same rate. Then asymptotic reliable recovery is not passitsl{x(*)} with respect to Error Metric 3 if
N < C§ Llog(M — L) (34)

for some constanf, > 0 that depends only on, P, u(x™)) andwv.

Proof: As in the proof of Theorel 211, we lei(y,x) = min (-4, 1), and conclude that

Lp*(x)’
Pe(SM) = 0 implies thatPe(j”) = 0 when recoveringx(vy, x) fraction of the support ok. The rest of the
proof is analogous to that of TheorémI5.4. O
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