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Abstract

We derive bounds on the noncoherent capacity of wide-sense stationary uncorrelated scattering (WSSUS)

channels that are selective both in time and frequency, and are underspread, i.e., the product of the channel’s

delay spread and Doppler spread is small. For input signals that are peak constrained in time and frequency,

we obtain upper and lower bounds on capacity that are explicit in the channel’s scattering function, are

accurate for a large range of bandwidth and allow to coarsely identify the capacity-optimal bandwidth as a

function of the peak power and the channel’s scattering function. We also obtain a closed-form expression

for the first-order Taylor series expansion of capacity in the limit of large bandwidth, and show that our

bounds are tight in the wideband regime. For input signals that are peak constrained in time only (and,

hence, allowed to be peaky in frequency), we provide upper and lower bounds on the infinite-bandwidth

capacity and find cases when the bounds coincide and the infinite-bandwidth capacity is characterized

exactly. Our lower bound is closely related to a result by Viterbi (1967).

The analysis in this paper is based on a discrete-time discrete-frequency approximation of WSSUS

time- and frequency-selective channels. This discretization explicitly takes into account the underspread

property, which is satisfied by virtually all wireless communication channels.
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I. INTRODUCTION AND OUTLINE

1) Models for fading channels: Channel capacity is a benchmark for the design of any communi-

cation system. The techniques used to compute, or at least to bound, channel capacity often provide

guidelines for the design of practical systems, e.g., how to best utilize the resources bandwidth and

power, and how to design efficient modulation and coding schemes [1, Sec. III.3]. Our goal in this

paper is to analyze the capacity of wireless communication channels that are of direct practical

importance. We believe that an accurate stochastic model for such channels should take the following

aspects into account:

• The channel is selective in time and frequency, i.e., it exhibits memory in frequency and in

time, respectively.

• Neither the transmitter nor the receiver knows the instantaneous realization of the channel.

• The peak power of the input signal is limited.

These aspects are important because they arise from practical limitations of real-world communica-

tion systems: temporal variations of the environment and multipath propagation are responsible for

channel selectivity in time and frequency, respectively [2], [3]; perfect channel knowledge at the

receiver is impossible to obtain because channel state information needs to be extracted from the

received signal; finally, realizable transmitters are always limited in their peak output power [4]. The

above aspects are also fundamental as they significantly impact the behavior of channel capacity: for

example, the capacity of a block-fading channel behaves differently from the capacity of a channel

that is stationary in time [5]; channel capacity with perfect channel knowledge at the receiver is

always larger than the capacity without channel knowledge [6], and the signaling schemes necessary

to achieve capacity are also very different in the two cases [1]; finally, a peak constraint on the

transmit signal can lead to vanishing capacity in the large-bandwidth limit [7]–[9], while without a

peak constraint the infinite-bandwidth AWGN capacity can be attained asymptotically [7], [10]–[15].

Small scale fading of wireless channels can be sensibly modeled as a stochastic Gaussian linear

time-varying (LTV) system [2]; in particular, we base our developments on the widely used wide-

sense stationary uncorrelated scattering (WSSUS) model for random LTV channels [16], [12]. Like

most models for real-world channels, the WSSUS model is time continuous; however, almost all

tools for information-theoretic analysis of noisy channels require a discretized representation of the

channel’s input-output relation. Several approaches to discretize random LTV channels are proposed
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in the literature, e.g., sampling [8], [16], [17] or basis expansion [18], [19]; all these discretized

models incur an approximation error with respect to the continuous-time WSSUS model that is often

difficult to quantify. As virtually all wireless channels of practical interest are underspread, i.e., the

product of maximum delay and maximum Doppler shift is small, we build our information-theoretic

analysis upon a discretization of LTV channels, proposed by Kozek [20], that explicitly takes into

account the underspread property to minimize the approximation error in the mean-square sense.

2) Capacity of noncoherent WSSUS channels: Throughout the paper, we assume that both the

transmitter and receiver know the channel law1 but both are ignorant of the channel realization, a

setting often called noncoherent. In the following, we refer to channel capacity in the noncoherent

setting simply as “capacity”. In contrast, in the coherent setting the receiver is also assumed to know

the channel realization perfectly; the corresponding capacity is termed coherent capacity.

A general closed-form expression for the capacity of Rayleigh-fading channels is not known,

even if the channel is memoryless [22]. However, several asymptotic results are available. If only a

constraint on the average transmitted power is imposed, the AWGN capacity can be achieved in

the infinite-bandwidth limit also in the presence of fading. This result is quite robust, as it holds

for a wide variety of channel models [7], [10]–[15]. Verdú showed that flash signaling, which

implies unbounded peak power of the input signal, is necessary and sufficient to achieve the infinite-

bandwidth AWGN capacity on block-memoryless fading channels [14]; a form of flash signaling is

also infinite-bandwidth optimal for the more general time- and frequency-selective channel model

used in the present paper [15]. In contrast, if the peakiness of the input signal is restricted, the

infinite-bandwidth capacity behavior of most fading channels changes drastically, and the limit

depends on the type of peak constraint imposed [7]–[9], [13], [23]. In this paper, we shall distinguish

between a peak constraint in time and a peak constraint in time and frequency.

a) Peak constraint in time: No closed-form capacity expression, not even in the infinite-

bandwidth limit, seems to exist to date for time- and frequency-selective WSSUS channels. Viterbi’s

analysis [23] provides a result that can be interpreted as a lower bound on the infinite-bandwidth

capacity of time- and frequency-selective channels. This lower bound is in the form of the infinite-

bandwidth AWGN capacity minus a penalty term that depends on the channel’s power-Doppler

1This implies that the codebook and the decoding strategy can be optimized accordingly [21].
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profile [16]. For channels that are time selective but frequency flat, structurally similar expressions

were found for the infinite-bandwidth capacity [24], [25] and for the capacity per unit energy [26].

b) Peak constraint in time and frequency: Although a closed-form capacity expression valid

for all bandwidths is not available, it is known that the infinite-bandwidth capacity is zero for

various channel models [7]–[9]. This asymptotic capacity behavior implies that signaling schemes

that spread the transmit energy uniformly across time and frequency perform poorly in the large-

bandwidth regime. Even more useful for performance assessment would be capacity bounds for

finite bandwidth. For frequency-flat time-selective channels, such bounds can be found in [27],

[28], while for the more general time- and frequency-selective case treated in the present paper,

upper bounds seem to exist only on the rates achievable with particular signaling schemes, namely

for orthogonal frequency-division multiplexing (OFDM) with constant-modulus symbols [29],

and for multiple-input multiple-output (MIMO) OFDM with unitary space-frequency codes over

frequency-selective block-fading channels [30].

3) Contributions: We use the discrete-time discrete-frequency approximation of continuous-time

underspread WSSUS channels proposed in [20], to obtain the following results:

• We derive upper and lower bounds on capacity under a constraint on the average power and

under a peak constraint in both time and frequency. These bounds are valid for any bandwidth,

are explicit in the channel’s scattering function, and generalize the results on achievable rates

in [29]. In particular, our bounds allow to coarsely identify the capacity-optimal bandwidth

for a given peak constraint and a given scattering function.

• Under the same peak constraint in time and frequency, we find the first-order Taylor series

expansion of channel capacity in the limit of infinite bandwidth. This result extends the

asymptotic capacity analysis for frequency-flat time-selective channels in [28] to channels that

are selective in both time and frequency.

• In the infinite-bandwidth limit and for transmit signals that are peak-constrained in time only,

we recover Viterbi’s capacity lower bound [23]. In addition, we derive an upper bound that is

shown to coincide with the lower bound for a specific class of channels; hence, the infinite-

bandwidth capacity for this class of channels is established.

The results in this paper rely on several flavors of Szegö’s theorem on the asymptotic eigenvalue

distribution of Toeplitz matrices [31], [32]; in particular, we use various extensions of Szegö’s

theorem to two-level Toeplitz matrices, i.e., block-Toeplitz matrices that have Toeplitz blocks [33],
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[34]. Another key ingredient for several of our proofs is the relation between mutual information

and minimum mean-square error (MMSE) discovered recently by Guo et al. [35]. Furthermore, we

use a property of the information divergence of orthogonal signaling schemes derived by Butman

and Klass [36].

4) Notation: Uppercase boldface letters denote matrices and lowercase boldface letters designate

vectors. The superscripts T , ∗, andH stand for transposition, element-wise conjugation, and Hermitian

transposition, respectively. For two matrices A and B of appropriate dimensions, the Hadamard

product is denoted as A�B. We designate the identity matrix of dimension N × N as IN and

the all-zero vector of appropriate dimension as 0. We let diag(x) denote a diagonal square matrix

whose main diagonal contains the elements of the vector x. The determinant, trace, and rank of the

matrix X are denoted as det(X), tr(X), and rank(X), respectively, and λi(X) is the ith eigenvalue

of a square matrix X. The function δ(x) is the Dirac distribution, and δ[n] is defined as δ[0] = 1

and δ[n] = 0 for all n 6= 0. All logarithms are to the base e. The real part of the complex number z is

denoted<{z}. We writeA−B for the set difference between the setsA andB. For two functions f(x)

and g(x), the notation f(x) = o(g(x)) for x→ 0 means that limx→0 f(x)/g(x) = 0. With bxc we

denote the largest integer smaller or equal to x ∈ R. A signal is an element of the Hilbert space L2

of square integrable functions. The inner product between two signals f(x) and g(x) is denoted

as 〈f, g〉 =
∫∞
−∞ f(x)g∗(x)dx. For a random variable (RV) x with distributionQx, we write x ∼ Qx.

We denote expectation by E[·], and use the notation Ex[·] to stress that the expectation is taken

with respect to the RV x. We write D(Qx‖Qy) for the Kullback-Leibler (KL) divergence between

the two distributions Qx and Qy. Finally, CN (m,R) stands for the distribution of a jointly proper

Gaussian (JPG) random vector with mean m and covariance matrix R.

II. CHANNEL AND SYSTEM MODEL

A channel model needs to strike a balance between generality, accuracy, engineering relevance,

and mathematical tractability. In the following, we start from the classical WSSUS model for

LTV channels [16], [12] because it is a fairly general, yet accurate and mathematically tractable

model that is widely used. This model has a continuous-time input-output relation, which is difficult

to use as a basis for information-theoretic studies. However, if the channel is underspread it is

possible to closely approximate the original WSSUS input-output relation by a discretized input-

output relation that is especially suited for the derivation of capacity bounds. In particular, the bounds
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we derive in this paper can be directly related to the underlying continuous-time WSSUS channel

as they are explicit in its scattering function.

A. Time- and Frequency-Selective Underspread Fading Channels

1) The channel operator: A wireless channel can be described as a linear operator H : L2 → RH

that maps an input signal x(t) into an output signal r(t) ∈ RH, where RH ⊂ L2 denotes the range

space of H [37]. The corresponding noise-free input-output relation is then r(t) = (Hx)(t).

It is sensible to model wireless channels as random, for one because a deterministic description

of the physical propagation environment is too complex in most cases of practical interest, and

second because a stochastic description is much more robust, in the sense that systems designed on

the basis of a stochastic channel model can be expected to work in a variety of different propagation

environments [3]. Consequently, we assume that H is a random operator.

2) System functions: Because communication takes place over a finite bandwidth and a finite

time duration, we can assume that each realization of H is a Hilbert-Schmidt operator [38], [39].

Hence, the noise-free input-output relation of the LTV channel can be written as2 [38, p. 1083]

r(t) =
(
Hx
)
(t) =

∫
t′

kH(t, t′)x(t′)dt′ (1)

where the kernel kH(t, t′) can be interpreted as the channel response at time t to a Dirac impulse at

time t′. Instead of two variables that denote absolute time, it is common in the engineering literature

to use absolute time t and delay τ . This leads to the time-varying impulse response hH(t, τ) =

kH(t, t− τ) and the corresponding noise-free input-output relation [16]

r(t) =

∫
τ

hH(t, τ)x(t− τ)dτ. (2)

Two more system functions that will be important in the following developments are the time-varying

transfer function3

LH(t, f) =

∫
τ

hH(t, τ)e−j2πfτdτ (3)

2All integrals are from −∞ to∞ unless stated otherwise.
3 As H is of Hilbert-Schmidt type, the time-varying impulse response hH(t, τ) is square integrable, and the Fourier transforms

in (3) and (4) are well defined.
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and the spreading function

SH(ν, τ) =

∫
t

hH(t, τ)e−j2πνtdt =

∫∫
t f

LH(t, f)e−j2π(νt−τf)dtdf. (4)

In particular, if we rewrite the input-output relation (2) in terms of the spreading function SH(ν, τ)

as

r(t) =

∫∫
ν τ

SH(ν, τ)x(t− τ)ej2πtνdτdν (5)

we obtain an intuitive physical interpretation: the output signal r(t) is a weighted superposition

of copies of the input signal x(t) that are shifted in time by the delay τ and in frequency by the

Doppler shift ν.

3) Stochastic characterization and WSSUS assumption: For mathematical tractability, we need

to make additional assumptions on the system functions. First, we assume that LH(t, f) is a zero-

mean JPG random process in t and f . Indeed, the Gaussian distribution is empirically supported

for narrowband channels [2], and even ultrawideband (UWB) channels with bandwidth up to

several gigahertz can be modeled as Gaussian distributed [40]. By virtue of the Gaussian assump-

tion, LH(t, f) is completely characterized by its correlation function. Yet, this correlation function

is four-dimensional in general and thus difficult to work with. A further simplification is possible if

we assume that the channel process is wide-sense stationary in time t and uncorrelated in delay τ ,

the so-called WSSUS assumption [16]. As a consequence, LH(t, f) is wide-sense stationary both

in time t and frequency f , or, equivalently, SH(ν, τ) is uncorrelated in Doppler ν and delay τ [16]:

E[LH(t, f)L∗H(t′, f ′)] = RH(t− t′, f − f ′)

E[SH(ν, τ)S∗H(ν ′, τ ′)] = CH(ν, τ)δ(ν − ν ′)δ(τ − τ ′).

The function RH(t, f) is called the channel’s (time-frequency) correlation function, and CH(ν, τ) is

called the scattering function of the channel H. The two functions are related by a two-dimensional

Fourier transform,

CH(ν, τ) =

∫∫
t f

RH(t, f)e−j2π(νt−τf)dtdf. (6)
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As RH(t, f) is stationary in t and f , CH(ν, τ) is nonnegative and real-valued for all ν and τ , and

can be interpreted as the spectrum of the channel process. The power-delay profile of H is defined

as

pH(τ) =

∫
ν

CH(ν, τ)dν

and the power-Doppler profile as

qH(ν) =

∫
τ

CH(ν, τ)dτ.

The WSSUS assumption is widely used in wireless channel modeling [16], [12], [2], [1], [41], [42].

It is in good agreement with measurements of tropospheric scattering channels [12], and provides a

reasonable model for many types of mobile radio channels [43]–[45], at least over a limited time

duration and bandwidth [16]. Furthermore, the scattering function can be directly estimated from

measured data [46], [47], so that capacity expressions and bounds that explicitly depend on the

channel’s scattering function can be evaluated for many channels of practical interest.

Formally, the WSSUS assumption is mathematically incompatible with the requirement that H is

of Hilbert-Schmidt type, or, equivalently, that the system functions are square integrable, because sta-

tionarity in time t and frequencyf of LH(t, f) implies that LH(t, f) cannot decay to zero for t→∞

and f →∞. Similarly to the engineering model of white noise, this incompatibility is a mathematical

artifact and not a problem of real-world wireless channels: in fact, every communication system

transmits over a finite time duration and over a finite bandwidth.4 We believe that the simplification

the WSSUS assumption entails justifies this mathematical inconsistency.

B. The Underspread Assumption and its Consequences

Because the velocity of the transmitter, of the receiver, and of the objects in the propagation

environment is limited, so is the maximum Doppler shift ν0 experienced by the transmitted signal.

We also assume that the maximum delay is strictly smaller than 2τ0. For simplicity and without

loss of generality, throughout this paper, we consider scattering functions that are centered at τ = 0

and ν = 0, i.e., we remove any overall fixed delay and Doppler shift. The assumptions of limited

4A more detailed account on solutions to overcome the mathematical incompatibility between stationary and finite-energy models

can be found in [48, Sec. 7.5].
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Doppler shift and delay then imply that the scattering function is supported on a rectangle of

spread ∆H = 4ν0τ0,

CH(ν, τ) = 0 for (ν, τ) /∈ [−ν0, ν0]× [−τ0, τ0]. (7)

Condition (7) in turn implies that the spreading function SH(ν, τ) is also supported on the same

rectangle with probability 1 (w.p.1). If ∆H < 1, the channel is said to be underspread [16], [12],

[20]. Virtually all channels in wireless communication are highly underspread, with ∆H ≈ 10−3

for typical land-mobile channels and as low as 10−7 for some indoor channels with restricted

mobility of the terminals [49]–[51]. The underspread property of typical wireless channels is very

important, first because only (deterministic) underspread channels can be completely identified

from measurements [52], [53], and second because underspread channels have a well-structured set

of approximate eigenfunctions that can be used to discretize the channel operator, as described next.

1) Approximate diagonalization of underspread channels: As H is a Hilbert-Schmidt operator, its

kernel can be expressed in terms of its positive singular values {σi}, its left singular functions {ui(t)},

and its right singular functions {vi(t)} [37, Th. 6.14.1], according to

kH(t, t′) =
∞∑

i=−∞

σiui(t)v
∗
i (t
′). (8)

We denote by NH the null space of H, i.e., the space of input signals that the channel maps onto 0.

The set {vi(t)} is an orthonormal basis for the linear span of L2−NH, and {ui(t)} is an orthonormal

basis for the range space RH. Any input signal in NH is of no utility for communication purposes;

the remaining input signals in the linear span of L2 −NH, which we denote in the remainder of

the paper as input space, can be completely characterized by their projections onto the set {vi(t)}.

Similarly, the output signal r(t) = (Hx)(t) is completely described by its projections onto the

set {ui(t)}. These projections together with the kernel decomposition (8) yield a countable set of

scalar input-output relations, which we refer to as the diagonalization of H.

Because the right and left singular functions depend on the realization of H, diagonalization

requires perfect channel knowledge. But this knowledge is not available in the noncoherent setting.

In contrast, if the singular functions of the random channel H did not depend on its particular

realization, we could diagonalize H without knowledge of the channel realization. This is the case,

for example, for random linear time-invariant (LTI) channels, where complex sinusoids are always

eigenfunctions, independently of the realization of the channel’s impulse response. Fortunately, the
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singular functions of underspread random LTV channels can be well approximated by deterministic

functions. More precisely, an underspread channel H has the following properties [20]:

1) All realizations of the underspread channel H are approximately normal, so that the singular

value decomposition (8) can be replaced by an eigenvalue decomposition.

2) Any deterministic unit-energy signal g(t) that is well localized5 in time and frequency is

an approximate eigenfunction of H in the mean-square sense, i.e., the mean-square error

E[‖〈H g, g〉g −H g‖2] is small if H is underspread. This error can be further reduced by an

appropriate choice of g(t), where the choice depends on the scattering function CH(ν, τ).

3) If g(t) is an approximate eigenfunction as defined in the previous point, then so is g(α,β)(t) =

g(t− α)ej2πβt for any time shift α ∈ R and any frequency shift β ∈ R.

4) For any (α, β), the time-varying transfer function LH(α, β) is an approximate eigenvalue of H

corresponding to the approximate eigenfunction g(α,β)(t), in the sense that the mean-square

error E
[∣∣〈H g(α,β), g(α,β)〉 − LH(α, β)

∣∣2] is small.

We use these properties of underspread operators to construct an approximation H̃ of the random

channel H that has a well-structured set of deterministic eigenfunctions. The errors incurred by

this approximation are discussed in detail in Appendix A. We then diagonalize this approximating

operator and exclusively consider the corresponding discretized input-output relation in the reminder

of the paper. Property 1, the approximate normality of H, together with Property 2 implies that

the kernel of the approximating operator H̃ can be synthesized as
∑∞

i=−∞ λizi(t)z
∗
i (t
′), where,

differently from (8), the λi are now random eigenvalues instead of random singular values, and

the zi(t) constitute a set of deterministic orthonormal eigenfunctions instead of random singular

functions. Property 2 means that we are at liberty to choose the approximate eigenfunctions zi(t)

among all signals that are well localized in time and frequency. In particular, we would like the result-

ing approximating kernel to be convenient to work with and the approximate eigenfunctions zi(t)

easy to implement, as discussed in Section II-B3; therefore, we choose the set of approximate

eigenfunctions to be highly structured. By Property 3, it is possible to use time- and frequency-

shifted versions of a single well-localized prototype function g(t) as eigenfunctions. Furthermore,

because the support of SH(ν, τ) is strictly limited in Doppler ν and delay τ , it follows from the

5We measure the joint time-frequency localization of a signal g(t) by the product between its effective duration and its effective

bandwidth, defined in (64).
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sampling theorem and the Fourier transform relation (4) that the samples LH(kT, nF ), taken on a

rectangular grid with T ≤ 1/(2ν0) and F ≤ 1/(2τ0), are sufficient to characterize LH(t, f) exactly.

Hence, we take as our set of approximate eigenfunctions the so-called Weyl-Heisenberg set {gk,n(t)},

where gk,n(t) = g(t − kT )ej2πnFt are orthonormal signals. The requirement that the gk,n(t) are

orthonormal and at the same time well localized in time and frequency implies TF > 1 [54], as a

consequence of the Balian-Low theorem [55, Ch. 8]. Large values of the product TF allow for better

time-frequency localization of g(t), but result in a loss of dimensions in signal space compared

with the critically sampled case TF = 1. The Nyquist condition T ≤ 1/(2ν0) and F ≤ 1/(2τ0)

can be readily satisfied for all underspread channels.

The samples LH(kT, nF ) are approximate eigenvalues of H by Property 4; hence, our choice

of approximate eigenfunctions results in the following approximating eigenvalue decomposition

for kH(t, t′)

kH(t, t′) ≈ keH(t, t′) =
∞∑

k=−∞

∞∑
n=−∞

LH(kT, nF )gk,n(t)g∗k,n(t′) (9)

where keH(t, t′) denotes the kernel of the approximating operator H̃. For TF > 1, the Weyl-

Heisenberg set {gk,n(t)} is not complete in L2 [54, Th. 8.3.1]. Therefore, the null space of H̃

is nonempty. As keH(t, t′) is only an approximation of kH(t, t′), this null space might differ fromNH.

Similarly, the range space of H̃ might differ fromRH. The characterization of the difference between

these spaces is an important open problem.

2) Canonical characterization of signaling schemes: The approximating random channel opera-

tor H̃ has a highly structured set of deterministic orthonormal eigenfunctions. We can, therefore,

diagonalize the input-output relation of the approximating channel without the need for channel

knowledge at both transmitter and receiver. Any input signal x(t) that lies in the input space of

the approximating operator is uniquely characterized by its projections onto the set {gk,n(t)}. All

physically realizable transmit signals are effectively band limited. As the prototype function g(t) is

well concentrated in frequency by construction, we can model the effective band limitation of x(t)

by using only a finite number of slots N in frequency. The resulting transmitted signal

x(t) =
∞∑

k=−∞

N−1∑
n=0

〈x, gk,n〉︸ ︷︷ ︸
=x[k,n]

gk,n(t) (10)

then has effective bandwidth W = NF . We call the coefficient x[k, n] the transmit symbol in the

time-frequency slot (k, n). The received signal can be expanded in the same basis. To compute the
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resulting projections, we substitute keH(t, t′) and the canonical input signal (10) into the integral

input-output relation (1), add white Gaussian noise w(t), and project the resulting noisy received

signal y(t) = (H̃x)(t) + w(t) onto the functions {gk,n(t)}, i.e.,

y[k, n] = 〈y, gk,n〉 = 〈H̃x, gk,n〉+ 〈w, gk,n〉︸ ︷︷ ︸
w[k,n]

=
∑
k′,n′

x[k′, n′]〈H̃gk′,n′ , gk,n〉+ w[k, n]

= LH(kT, nF )︸ ︷︷ ︸
h[k,n]

x[k, n] + w[k, n]

(11)

for all time-frequency slots (k, n). The last step in (11) follows from the orthonormality of the

set {gk,n(t)}. Orthonormality also implies that the discretized noise signal w[k, n] is JPG, indepen-

dent and identically distributed (i.i.d.) over time k and frequency n; for convenience, we normalize

the noise variance so that w[k, n] ∼ CN (0, 1) for all k and n. The diagonalized input-output

relation (11) is completely generic, i.e., it is not limited to a specific signaling scheme.

3) OFDM interpretation of the approximating channel model: The canonical signaling scheme (10)

and the corresponding discretized input-output relation (11), are not just tools to analyze channel

capacity, but also lead to a practical transmission system. The decomposition of the channel input

signal (10) can be interpreted as pulse-shaped (PS) OFDM [56], where discrete data symbols x[k, n]

are modulated onto a set of orthogonal signals, indexed by k and n. In addition, this perspective leads

to an operational interpretation of the error incurred when approximating kH(t, t′) as in (9). The

time- and frequency-dispersive nature of LTV channels leads to intersymbol interference (ISI) and

intercarrier interference (ICI) in the received PS-OFDM signal. This is apparent if we project r(t)

onto the function gk,n(t):

〈r, gk,n〉 = 〈Hx, gk,n〉 =
∞∑

k′=−∞

N−1∑
n′=0

x[k′, n′]〈Hgk′,n′ , gk,n〉

= 〈Hgk,n, gk,n〉x[k, n] +
∞∑

k′=−∞

N−1∑
n′=0

(k′,n′) 6=(k,n)

x[k′, n′]〈Hgk′,n′ , gk,n〉. (12)

The second term on the right-hand side (RHS) of (12) corresponds to ISI and ICI, while the first

term is the desired signal; we can approximate the first term as LH(kT, nF )x[k, n] by Property 4.

Comparison of (11) and (12) then shows that the input-output relation (11), which results from the
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approximation (9), can be interpreted as PS-OFDM transmission over the original channel H if

all ISI and ICI terms are neglected.

With proper design of the prototype signal g(t) and choice of the grid parameters T and F , both

ISI and ICI can be reduced [56]–[58]. The larger the product TF , the more effective the reduction

in ISI and ICI, as discussed in Appendix A. Heuristically, a good compromise between loss of

dimensions in signal space and reduction of the interference terms seems to result for TF ' 1.2 [56],

[58]. The cyclic prefix (CP) in a conventional CP-OFDM system incurs a similar dimension loss.

In (72), we provide an upper bound on mean-square energy of the interference term in (12), and

show how this upper bound can be minimized by a careful choice of the signal g(t) and of the

grid parameters T and F [20], [17], [58]. For general scattering functions, the optimization of the

triple {g(t), T, F} needs to be performed numerically; a general guideline is to choose T and F

such that (see Appendix A)

T

F
=
τ0
ν0

. (13)

To summarize, in this section we constructed an approximation H̃ of the random linear operator H

on the basis of the underspread property. The kernel of the approximating operator is synthesized

from the Weyl-Heisenberg set {gk,n(t)} as in (9), so that {gk,n(t)} is an orthonormal basis for the

input space and the range space of H̃. The decomposition of the input signal (10) can be interpreted

as PS-OFDM: this interpretation sheds light on one of the errors resulting from the approximation (9).

Finally, an important open problem is the characterization of the difference between the input spaces

of H and H̃, and between the range spaces of H and H̃.

C. Linear Time-Invariant and Linear Frequency-Invariant Channels

The properties of LTV underspread channels we listed in Section II-B are similar to the properties

of LTI and linear frequency-invariant (LFI) channels: both LTI and LFI channel operators are normal

and have a well-structured set of deterministic eigenfunctions (sinusoids parametrized by frequency

for LTI channels, and Dirac functions parametrized by time for LFI channels), with corresponding

eigenvalues equal to the samples of a channel system function (e.g., the transfer function in the

LTI case). Intuitively, LTI and LFI channels are limiting cases within the class of LTV channels

analyzed in this section; in fact, an LTV channel reduces to an LTI channel when ν0 = 0, and to

an LFI channel when τ0 = 0. Both LTI and LFI channels are then underspread, according to our
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definition. Yet, since LTI and LFI channel operators are not of Hilbert-Schmidt type [59, App. A],

the kernel diagonalization presented in Section II-B does not apply to these two classes of channels;

consequently, the capacity bounds we derive in Sections III and IV do not reduce to capacity bounds

for the LTI or the LFI case when ν0 = 0 or τ0 = 0, respectively.6

Quasi-LTI channels, i.e., channels that are slowly time varying (ν0 small but positive), and quasi-

LFI channels, i.e., channels that are slowly frequency varying (τ0 small but positive), can instead

be approximately diagonalized as described in Section II-B, as long as they are underspread.

D. Discrete-Time Discrete-Frequency Input-Output Relation

The discrete-time discrete-frequency channel coefficients {h[k, n]} constitute a two-dimensional

discrete-parameter stationary random process that is JPG with zero mean and correlation function

RH[k, n] = E[h[k′ + k, n′ + n]h∗[k′, n′]] = E
[
LH
(
(k′ + k)T, (n′ + n)F

)
L∗H(k′T, n′F )

]
. (14)

The two-dimensional power spectral density of {h[k, n]} is defined as

c(θ, ϕ) =
∞∑

k=−∞

∞∑
n=−∞

RH[k, n]e−j2π(kθ−nϕ), |θ| , |ϕ| ≤ 1/2. (15)

We shall often need the following expression for c(θ, ϕ) in terms of the scattering function CH(ν, τ):

c(θ, ϕ)
(a)
=

∞∑
k=−∞

∞∑
n=−∞

e−j2π(kθ−nϕ)

∫∫
ν τ

CH(ν, τ)ej2π(kTν−nFτ)dτdν

=

∫∫
ν τ

CH(ν, τ)
∞∑

k=−∞

ej2πkT(ν− θ
T )

∞∑
n=−∞

e−j2πnF(τ− ϕF )dτdν

(b)
=

1

TF

∫∫
ν τ

CH(ν, τ)
∞∑

k=−∞

δ

(
ν − θ − k

T

) ∞∑
n=−∞

δ

(
τ − ϕ− n

F

)
dτdν

=
1

TF

∞∑
k=−∞

∞∑
n=−∞

CH

(
θ − k
T

,
ϕ− n
F

)
(16)

6For deterministic LTI channels, a channel discretization that is useful for information-theoretic analysis is discussed in [13, Sec.

8.5].
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where (a) follows from the Fourier transform relation (6), and (b) results from Poisson’s summation

formula. The variance of each channel coefficient is given by

σ2
H =

1/2∫
−1/2

1/2∫
−1/2

c(θ, ϕ)dθdϕ

(a)
=

1

TF

∞∑
k=−∞

∞∑
n=−∞

1/2∫
−1/2

1/2∫
−1/2

CH

(
θ − k
T

,
ϕ− n
F

)
dθdϕ

(b)
=

1

TF

1/2∫
−1/2

1/2∫
−1/2

CH

(
θ

T
,
ϕ

F

)
dθdϕ

(c)
=

∫∫
ν τ

CH(ν, τ)dτdν

(17)

where (a) follows from (16), and (b) results because we chose the grid parameters to satisfy the

Nyquist conditions T ≤ 1/(2ν0) and F ≤ 1/(2τ0), so that periodic repetitions of the compactly

supported scattering function lie outside the integration region. Finally, (c) follows from the change

of variables ν = θ/T and τ = ϕ/F . For ease of notation, we normalize σ2
H = 1 throughout the

paper.

For each time slot k, we arrange the discretized input signal x[k, n], the discretized output

signal y[k, n], the channel coefficients h[k, n], and the noise samples w[k, n] in corresponding

vectors. For example, the N -dimensional vector that contains the input symbols in the kth time slot

is defined as

x[k] =
[
x[k, 0] x[k, 1] · · · x[k,N − 1]

]T
.

The output vector y[k], the channel vector h[k], and the noise vector w[k] are defined analogously.

This notation allows us to rewrite the input-output relation (11) as

y[k] = h[k]�x[k] + w[k] (18)
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for all k. In this formulation, the channel is a multivariate stationary process {h[k]} with matrix-

valued correlation function

Rh[k] = E
[
h[k′ + k]hH [k′]

]
=


RH[k, 0] R∗H[k, 1] . . . R∗H[k,N − 1]

RH[k, 1] RH[k, 0] . . . R∗H[k,N − 2]
...

... . . . ...

RH[k,N − 1] RH[k,N − 2] . . . RH[k, 0]

 . (19)

In most of the following analyses, we initially consider a finite number K of time slots and then

take the limit K → ∞. To obtain a compact notation, we stack K contiguous elements of the

multivariate input, channel, and output processes just defined. For the channel input, this results in

the KN -dimensional vector

x =
[
xT [0] xT [1] · · · xT [K − 1]

]T
. (20)

Again, the stacked vectors y, h, and w are defined analogously. With these definitions, we can now

compactly express the input-output relation (11) as

y = x�h + w. (21)

We denote the correlation matrix of the stacked channel vector h by Rh = E
[
hhH

]
. Because

the channel process {h[k, n]} is stationary in time and in frequency, Rh is a two-level Hermitian

Toeplitz matrix, given by

Rh =


Rh[0] RH

h [1] . . . RH
h [K − 1]

Rh[1] Rh[0] . . . RH
h [K − 2]

...
... . . . ...

Rh[K − 1] Rh[K − 2] . . . Rh[0]

 . (22)

E. Power Constraints

Throughout the paper, we assume that the average power of the transmitted signal is constrained

as (1/T ) E[‖x‖2] ≤ KP . In addition, we limit the peak power to be no larger than β times the

average power, where β ≥ 1 is the nominal peak- to average-power ratio (PAPR).

The multivariate input-output relation (21) allows to constrain the peak power in several different

ways. We analyze the following two cases:
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1) Peak constraint in time: The power of the transmitted signal in each time slot k is limited as

1

T

N−1∑
n=0

|x[k, n]|2 ≤ βP w.p.1. (23)

This constraint models the fact that physically realizable power amplifiers can only provide

limited output power [4].

2) Peak constraint in time and frequency: Regulatory bodies sometimes limit the peak power in

certain frequency bands, e.g., for UWB systems. We model this type of constraint by imposing

a limit on the squared amplitude of the transmitted symbols x[k, n] in each time-frequency

slot (k, n) according to

(1/T ) |x[k, n]|2 ≤ βP/N w.p.1. (24)

This type of constraint is more stringent than the peak constraint in time given in (23).

Both peak constraints above are imposed on the input symbols x[k, n], i.e., in the eigenspace of

the approximating channel operator. This limitation is mathematically convenient; however, the

peak value of the corresponding transmitted continuous-time signal x(t) in (10) also depends on the

prototype signal g(t), so that a limit on x[k, n] does not generally imply that x(t) is peak limited.

III. CAPACITY BOUNDS UNDER A PEAK CONSTRAINT IN TIME AND FREQUENCY

In the present section, we analyze the capacity of the discretized channel in (11) subject to the peak

constraint in time and frequency specified by (24). The link between the discretized channel (11) and

the continuous-time channel model established in Section II then allows us to express the resulting

bounds in terms of the scattering function CH(ν, τ) of the underspread WSSUS channel H.

As we assumed that the channel process {h[k, n]} has a spectral density [given in (16)], the vector

process {h[k]} is ergodic [60] and the capacity of the discretized underspread channel (21) is given

by [61, Ch. 12]

C(W ) = lim
K→∞

1

KT
sup
Q
I(y; x) [nat/s] (25)

for a given bandwidthW = NF . Here, the supremum is taken over the setQ of all input distributions

that satisfy the peak constraint (24) and the average-power constraint E[‖x‖2] ≤ KPT .

The capacity of fading channels with finite bandwidth has so far resisted all attempts at closed-form

solutions [62], [22], [63], even for the memoryless case; thus, we resort to bounds to characterize

the capacity (25). In particular, we present the following bounds:
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• An upper bound Uc(W ), which we refer to as coherent upper bound, that is based on the

assumption that the receiver has perfect knowledge of the channel realizations. This bound is

standard; it turns out to be useful for small bandwidth.

• An upper bound U1(W ) that is useful for medium to large bandwidth. This bound is explicit in

the channel’s scattering function and extends the upper bound [28, Prop. 2.2] on the capacity

of frequency-flat time-selective channels to general underspread channels that are selective in

time and frequency.

• A lower bound L1(W ) that extends the lower bound [27, Prop. 2.2] to general underspread

channels that are selective in time and frequency. This bound is explicit in the channel’s

scattering function only for large bandwidth.

A. Coherent Upper Bound

The assumption that the receiver perfectly knows the instantaneous channel realizations furnishes

the following capacity upper bound:
1

KT
sup
Q
I(y; x)

(a)

≤ 1

KT
sup
Q
I(y; x |h)

(b)

≤ 1

KT
sup

E[‖x‖2]≤KP T
I(y; x |h)

(c)
=

1

KT
sup
Rx

Eh

[
log det

(
IKN + (hhH)�Rx

)]
(d)

≤ N

T
Eh

[
log

(
1 +

PT

N
|h|2
)]

.

(26)

Here, (a) holds because the coherent mutual information, I(y; x |h), is an upper bound on the

corresponding mutual information in the noncoherent setting. Inequality (b) follows as we drop the

peak constraint and thus enlarge the set of admissible input distributions. The supremum of I(y; x |h)

over the resulting relaxed input constraint is achieved by a zero-mean JPG input vector x with

covariance matrix Rx = E
[
xxH

]
that satisfies tr(Rx) ≤ KP T [3]. To obtain (c), we use that,

conditioned on h, the output vector y is JPG and its covariance matrix can be expressed as

E
[
yyH |h

]
= IKN + Ex

[
(x�h)(x�h)H

]
= IKN + (hhH)�Rx

where the last equality results from the following elementary relation between Hadamard products

and outer products:

(x�h)(x�h)H = xxH �hhH . (27)
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Finally, (d) follows from Hadamard’s inequality, from the fact that by Jensen’s inequality the

supremum is achieved by Rx = (PT/N)IKN , and because the channel coefficients all have the

same distribution h[k, n] ∼ h ∼ CN (0, 1). As the upper bound (26) does not depend on K, we

obtain an upper bound Uc(W ) on capacity (25) as a function of bandwidth W if we set W = NF :

C(W ) ≤ Uc(W ) =
W

TF
Eh

[
log

(
1 +

PTF

W
|h|2
)]

. (28)

For a discretization of the WSSUS channel H different from the one in Section II-B, Médard

and Gallager [8] showed that the corresponding capacity vanishes with increasing bandwidth if

the peakiness of the input signal is constrained in a way that includes our peak constraint (24).

As the upper bound Uc(W ) monotonically increases in W , it is sensible to conclude that Uc(W )

does not accurately reflect the capacity behavior for large bandwidth. However, we demonstrate

in Section III-D by means of a numerical example that Uc(W ) can be quite useful for small and

medium bandwidth.

B. An Upper Bound for Large but Finite Bandwidth

To better understand the capacity behavior at large bandwidth, we derive an upper bound U1(W )

that captures the effect of diminishing capacity in the large-bandwidth regime. The upper bound

U1(W ) is explicit in the channel’s scattering function CH(ν, τ).

1) The upper bound:

Theorem 1: Consider an underspread Rayleigh-fading channel with scattering function CH(ν, τ);

assume that the channel input x satisfies the average-power constraint E[‖x‖2] ≤ KP T and

the peak constraint |x[k, n]|2 ≤ βPT/N w.p.1. The capacity of this channel is upper-bounded

as C(W ) ≤ U1(W ), where

U1(W ) =
W

TF
log

(
1 + α(W )P

TF

W

)
− α(W )A(W ) (29a)

with

α(W ) = min

{
1,

W

TF

(
1

A(W )
− 1

P

)}
(29b)

and

A(W ) =
W

β

∫∫
ν τ

log

(
1 +

βP

W
CH(ν, τ)

)
dτdν. (29c)
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Proof: To bound supQ I(y; x), we first use the chain rule for mutual information, I(y; x) =

I(y; x,h) − I(y; h |x). Next, we split the supremum over Q into two parts, similarly as in the

proof of [28, Prop. 2.2]: one supremum over a restricted set of input distributions Q|α that satisfy

the peak constraint (24) and have a prescribed average power, i.e., E[‖x‖2] = αKP T for some

fixed parameter α ∈ [0, 1], and another supremum over the parameter α. Both steps together yield

the upper bound

sup
Q
I(y; x) = sup

Q
{I(y; x,h)− I(y; h |x)}

= sup
0≤α≤1

sup
Q|α
{I(y; x,h)− I(y; h |x)}

≤ sup
0≤α≤1

{
sup
Q|α

I(y; x,h)− inf
Q|α

I(y; h |x)

}
.

(30)

Next, we bound the two terms inside the braces individually. While standard steps suffice for the

bound on the first term, the second term requires some more effort; we relegate some of the more

technical steps to Appendix B.

a) Upper bound on the first term: The output vector y depends on the input vector x only

through s = x�h, so that I(y; x,h) = I(y; s). To upper-bound the mutual information I(y; s),

we take s as JPG with zero mean and covariance matrix E
[
ssH
]

= E
[
xxH

]
�Rh. An upper bound

on the first term inside the braces in (30) now results if we drop the peak constraint on s. Then,

sup
Q|α

I(y; x,h) ≤ sup
E[‖x‖2]=αKP T

log det
(
IKN + E

[
xxH

]
�Rh

)
(a)

≤ sup
E[‖x‖2]=αKP T

K−1∑
k=0

N−1∑
n=0

log
(
1 + E

[
|x[k, n]|2

])
(b)

≤ KN log

(
1 +

αPT

N

) (31)

where (a) follows from Hadamard’s inequality and (b) from Jensen’s inequality.

b) Lower bound on the second term: We use the fact that the channel h is JPG, so that I(y; h |x) =

Ex

[
log det

(
IKN + (xxH)�Rh

)]
. Next, we expand the expectation operator as follows:

inf
Q|α

I(y; h |x) = inf
Q|α

Ex

[
log det

(
IKN + (xxH)�Rh

)]
= inf

Q∈Q|α

∫
x∈X

(
log det

(
IKN + (xxH)�Rh

)
‖x‖2

)
‖x‖2dQ

(32)
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where X = {x ∈ CKN : |x[k, n]|2 ≤ βPT/N,∀k, n} is the integration domain because the input

distribution Q satisfies the peak constraint (24). Both factors under the integral are nonnegative;

hence, we obtain a lower bound on the expectation if we replace the first factor by its infimum

over X .

inf
Q|α

I(y; h |x) ≥ inf
Q∈Q|α

∫
x̃∈X

(
inf
x∈X

log det
(
IKN + (xxH)�Rh

)
‖x‖2

)(
‖x̃‖2

)
dQ

= inf
x∈X

log det
(
IKN + (xxH)�Rh

)
‖x‖2

(
inf

Q∈Q|α

∫
‖x‖2dQ

)
︸ ︷︷ ︸
infQ|α E[‖x‖2]=αKP T

= αKP T inf
x∈X

log det
(
IKN + (xxH)�Rh

)
‖x‖2

.

(33)

As the matrix Rh is positive semidefinite, the above infimum is achieved on the boundary of the

admissible set [26, Sec. VI.A], i.e., by a vector x whose entries satisfy |x[k, n]|2 ∈ {0, βPT/N}.

We use this fact and the relation between mutual information and MMSE, recently discovered

by Guo et al. [35], to further lower-bound the infimum on the RHS in (33). The corresponding

derivation is detailed in Appendix B; it results in

inf
x∈X

log det
(
IKN + (xxH)�Rh

)
‖x‖2

≥ N

βPT

1/2∫
−1/2

1/2∫
−1/2

log

(
1 +

βPT

N
c(θ, ϕ)

)
dθdϕ (34)

where c(θ, ϕ), defined in (15), is the two-dimensional power spectral density of the channel pro-

cess {h[k, n]}. Finally, we use the bound (34) in (33), relate c(θ, ϕ) to the scattering functionCH(ν, τ)

by means of (16) and get

inf
Q|α

I(y; h |x) ≥ αKN

β

1/2∫
−1/2

1/2∫
−1/2

log

(
1 +

βP

NF

∞∑
k=−∞

∞∑
n=−∞

CH

(
θ − k
T

,
ϕ− n
F

))
dθdϕ

=
αKN

β

1/2∫
−1/2

1/2∫
−1/2

log

(
1 +

βP

NF
CH

(
θ

T
,
ϕ

F

))
dθdϕ

=
αKNTF

β

∫∫
ν τ

log

(
1 +

βP

NF
CH(ν, τ)

)
dτdν

(35)

where the last two equalities result from steps similar to the ones used in (17).

April 10, 2008 DRAFT



22

c) Completing the proof: We insert (31) and (35) in (30), divide by KT , and set W = NF to

obtain the following upper bound on capacity (25)

C(W ) ≤ sup
0≤α≤1

 W

TF
log

(
1 +

αPTF

W

)
− αW

β

∫∫
ν τ

log

(
1 +

βP

W
CH(ν, τ)

)
dτdν

 . (36)

As the function to maximize in (36) is concave in α, the maximizing value is unique. To conclude

the proof and obtain the bound (29), we perform an elementary optimization over α to find the

maximizing α(W ) given in (29b).

The upper bound in Theorem 1 generalizes the upper bound [29, Eq. (2)], which holds only for

constant modulus signals, i.e., for signals whose magnitude |x[k, n]| is the same for all k and n. The

bounds (29a) and [29, Eq. (2)] are both explicit in the channel’s scattering function, have similar

structure, and coincide for β = 1 when α(W ) = 1 in (29b).

2) Conditions for α(W ) = 1: If α(W ) = 1 independently of W , the first term of the upper

bound U1(W ) in (29a) can be interpreted as the capacity of an effective AWGN channel with

receive power P and W/(TF ) degrees of freedom, while the second term can be seen as a penalty

term that characterizes the capacity loss because of channel uncertainty. We highlight the relation

between this penalty term and the error in predicting the channel from its noisy past and future in

Appendix B. For α(W ) < 1, the upper bound (29a) has a more complicated structure, which is

difficult to interpret. We show in Appendix C that a sufficient condition for α(W ) = 1 is7

∆H ≤ β/(3TF ) (37a)

and

0 ≤ P

W
<

∆H

β

[
exp

(
β

2TF∆H

)
− 1

]
. (37b)

As virtually all wireless channels are highly underspread, as β ≥ 1, and as, typically, TF ≈ 1.25,

condition (37a) is satisfied in all cases of practical interest, so that the only relevant condition

is (37b); but even for large channel spread ∆H, this condition holds for all SNR values8P/W of

practical interest. As an example, consider a system with β = 1 and spread ∆H = 10−2; for this

choice, (37b) is satisfied for all SNR values less than 153 dB. As this value is far in excess of the

7More precisely, in Appendix C we derive a sufficient condition for α(W ) = 1 that implies (37).
8Recall that we normalized N0 = 1.
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receive SNR encountered in practical systems, we can safely claim that a capacity upper bound of

practical interest results if we substitute α(W ) = 1 in (29a).

3) Impact of channel characteristics: The spread ∆H and the shape of the scattering func-

tion CH(ν, τ) are important characteristics of wireless channels. As the upper bound (29) is explicit

in the scattering function, we can analyze its behavior as a function of ∆H and CH(ν, τ). We restrict

our discussion to the practically relevant case α(W ) = 1.

a) Channel spread: For fixed shape of the scattering function, the upper bound U1(W )

decreases for increasing spread ∆H. To see this, we define a normalized scattering function C̃H(ν̃, τ̃)

with unit spread,9 so that CH(ν, τ) = C̃H
(
ν/(2ν0), τ/(2τ0)

)
/∆H. By a change of variables, the

penalty term can now be written as

A(W ) =
W

β

∫∫
ν τ

log

(
1 +

βP

W
CH(ν, τ)

)
dτdν

=
W∆H

β

1/2∫
−1/2

1/2∫
−1/2

log

(
1 +

βP

W∆H
C̃H(ν̃, τ̃)

)
dτ̃dν̃.

(38)

Because ∆H log(1 + ρ/∆H) is monotonically increasing in ∆H for any positive constant ρ > 0, the

penalty term A(W ) increases with increasing spread ∆H. As the first term in (29a) does not depend

on ∆H, the upper bound U1(W ) decreases with increasing spread.

b) Shape of the scattering function: For fixed spread ∆H, the scattering function that results

in the lowest upper bound U1(W ) is the “brick-shaped” scattering function: CH(ν, τ) = 1/∆H

for (ν, τ) ∈ [−ν0, ν0] × [−τ0, τ0]. We prove this claim in two steps. First, we apply Jensen’s

inequality to the penalty term in (29c):∫∫
ν τ

log

(
1 +

βP

W
CH(ν, τ)

)
dτdν ≤ ∆H log

1 +
βP

W∆H

∫∫
ν τ

CH(ν, τ)dτdν


= ∆H log

(
1 +

βP

∆HW

)
.

(39)

Second, we note that a brick-shaped scattering function achieves this upper bound.

The observation that a brick-shaped scattering function minimizes the upper bound U1(W )

sheds some light on the common practice to use ν0 and τ0, rather than CH(ν, τ) in the design of a

9Recall that we normalized σ2
H = 1 in (17).
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communication system. A design on the basis of ν0 and τ0 is implicitly targeted at a channel with

brick-shaped scattering function, i.e., at the worst-case channel.

C. Lower Bound

1) A lower bound in terms of the multivariate spectrum of {h[k]}: To state our lower bound on

the capacity (25), we require the following definitions.

• Let C(θ) denote the matrix-valued power spectral density of the multivariate channel pro-

cess {h[k]}, i.e.,

C(θ) =
∞∑

k=−∞

Rh[k]e−j2πkθ, |θ| ≤ 1

2
. (40)

• Let I(y;x |h) denote the coherent mutual information of a scalar, memoryless Rayleigh-fading

channel y = hx + w with h ∼ CN (0, 1), additive noise w ∼ CN (0, 1), and zero-mean

constant-modulus input signal, i.e., |x|2 = γPT/N w.p.1.

Theorem 2: Consider an underspread Rayleigh-fading channel with scattering function CH(ν, τ).

Assume that the channel input x satisfies the average-power constraint E[‖x‖2] ≤ KP T and

the peak constraint |x[k, n]|2 ≤ βPT/N w.p.1. The capacity of this channel is lower-bounded

as C(W ) ≥ L1(W ), where

L1(W ) = max
1≤γ≤β

{
W

γTF
I(y;x |h)− 1

γT

1/2∫
−1/2

log det

(
IN +

γPTF

W
C(θ)

)
dθ

}
. (41)

Proof: We obtain a lower bound on capacity by computing the mutual information for a specific

input distribution. A simple scheme is to send symbols that have zero mean, are i.i.d. over time

and frequency slots and have constant magnitude, i.e., |x[k, n]|2 = PT/N for k = 0, 1, . . . , K − 1

and n = 0, 1, . . . , N − 1. The average power constraint is then satisfied with equality. We denote

a KN -dimensional input vector that follows this distribution by u; this vector has entries u[k, n]

that are first stacked in frequency and then in time, analogously to the definitions of x and y in

Section II-D.
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We use the chain rule for mutual information and the fact that mutual information is nonnegative

to obtain the following bound:

I(y; u) = I(y; u,h)− I(y; h |u)

= I(y; h) + I(y; u |h)− I(y; h |u)

≥ I(y; u |h)− I(y; h |u).

(42)

Next, we evaluate the two terms on the RHS of the above inequality separately. The first term

satisfies

I(y; u |h) = KN I(y;u |h) (43)

where we set h = h[k, n] and u = u[k, n] for arbitrary k and n because (i) the input vector u

has i.i.d. entries, and (ii) all channel coefficients have the same distribution. The second term equals

I(y; h |u) = Eu

[
log det

(
IKN +

(
uuH

)
�Rh

)]
= Eu

[
log det

(
IKN + diag(u) Rhdiag(u)H

)]
(a)
= Eu

[
log det

(
IKN + diag(u)H diag(u) Rh

)]
(b)
= log det

(
IKN +

PT

N
Rh

)
(44)

where (a) follows from the identity det
(
I + ABH

)
= det

(
I + BHA

)
for any A and B of

appropriate dimension [64, Th. 1.3.20], and (b) follows from the constant modulus assumption. We

now combine the two terms (43) and (44), set W = NF , divide by KT , and take the limit K →∞

to obtain the following lower bound:

C(W ) ≥ lim
K→∞

1

KT
I(y; u)

≥ W

TF
I(y;u |h)− lim

K→∞

1

KT
log det

(
IKN +

PTF

W
Rh

)
.

(45)

The correlation matrix Rh is two-level Toeplitz, with blocks that are N × N correlation matri-

ces Rh[k], as shown in (22) and (19), respectively. Hence, we can explicitly evaluate the limit

on the RHS of (45) and express it in terms of an integral over the matrix-valued power spectral

density C(θ) of the multivariate channel process {h[k]}. By direct application of [34, Th. 3.4], an
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extension of Szegö’s theorem (on the asymptotic eigenvalue distribution of Toeplitz matrices) to

two-level Toeplitz matrices, we obtain

lim
K→∞

1

KT
log det

(
IKN +

PTF

W
Rh

)
=

1

T

1/2∫
−1/2

log det

(
IN +

PTF

W
C(θ)

)
dθ. (46)

The lower bound that results upon substitution of (46) into (45) can be tightened by time-sharing [27,

Cor. 2.1]: we allow the input signal to have squared magnitude γPTF/W during a fraction 1/γ

of the total transmission time, where 1 ≤ γ ≤ β; that is, we set x =
√
γu during this time; for the

remaining transmission time, the transmitter is silent, so that the constraint on the average power is

satisfied.

The evaluation of L1(W ) in (41) is complicated by two facts: (i) the mutual information I(y;x |h)

in the first term on the RHS of (41) needs to be evaluated for a constant-modulus input; (ii) the

eigenvalues of C(θ) in the second term (the penalty term) can in general not be derived in closed form.

While efficient numerical algorithms exist to evaluate the coherent mutual information I(y;x |h)

for constant-modulus inputs [65], numerically computing the eigenvalues of theN×N matrix C(θ)

is challenging for channels of very wide bandwidth because the matrix C(θ) will be large. In the

following lemma, we present two bounds on the second term of L1(W ) that are easy to compute.

Lemma 3: Let

di = <

{
2

N

N−1∑
n=0

(N − n)RH[0, n]e−j2π
in
N

}
− 1. (47)

Then, the penalty term in (41) (for the case γ = 1) can be bounded as follows:

2ν0

N−1∑
i=0

log

(
1 +

PF

2ν0W
di

)

≥ 1

T

1/2∫
−1/2

log det

(
IN +

PTF

W
C(θ)

)
dθ

≥ W

∫∫
ν τ

log

(
1 +

P

W
CH(ν, τ)

)
dτdν. (48)

Furthermore, the following asymptotic results hold:

• The penalty term and its lower bound in (48) have the same Taylor series expansion around

the point 1/W = 0 up to any order.
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• For scattering functions that are flat in the Doppler domain, i.e., that satisfy10

CH(ν, τ) =
1

2ν0

pH(τ), (ν, τ) ∈ [−ν0, ν0]× [−τ0, τ0], (49)

the upper bound and the lower bound in (48) have the same Taylor series expansion around

the point 1/W = 0 up to any order.

Proof: See Appendix D.

The bounds (48) on the penalty term allow us to further bound L1(W ). If we replace the penalty

term in (41) with its upper bound in (48), we obtain the following lower bound on L1(W ) and,

hence, on capacity

L1(W ) ≥ L2(W ) = max
1≤γ≤β

{
W

γTF
I(y;x |h)− 2ν0

γ

N−1∑
i=0

log

(
1 +

γPF

2ν0W
di

)}
. (50)

The lower bound L2(W ) can be evaluated numerically in a much more efficient way than L1(W )

because the coefficients {di} can be computed from the samples {(N − n)RH[0, n]} through the

discrete Fourier Transform (DFT). If, instead, we replace the penalty term in (41) with its lower

bound in (48) we obtain

L1(W ) ≤ La(W ) = max
1≤γ≤β

{
W

γTF
I(y;x |h)− W

γ

∫∫
ν τ

log

(
1 +

γP

W
CH(ν, τ)

)
dτdν

}
. (51)

Furthermore, for large bandwidth we can replace the coherent mutual information I(y;x |h) in (51)

with its second-order Taylor series expansion [14, Th. 14] to obtain the approximation

La(W ) ≈ Laa(W ) = max
1≤γ≤β

{
P − γP 2TF

W
− W

γ

∫∫
ν τ

log

(
1 +

γP

W
CH(ν, τ)

)
dτdν

}
. (52)

It follows from Lemma 3 that L1(W ) and La(W ) have the same Taylor series expansion around 1/W =

0 up to any order, so that L1(W ) ≈ La(W ) ≈ Laa(W ) for large enough W . Furthermore, for

scattering functions that satisfy (49) (e.g., a brick-shaped scattering function), also L1(W ) and

L2(W ) have the same Taylor series expansion around 1/W = 0 up to any order. Hence, L2(W ) ≈

L1(W ) ≈ La(W ) for large enough W , for scattering functions that satisfy (49).

D. Numerical Example

We next evaluate the bounds found in the previous section for the following set of practically

relevant system parameters:

10The multiplication by 1/(2ν0) in (49) follows from the normalization σ2
H = 1.
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Fig. 1. The upper bounds Uc(W ) in (28) and U1(W ) in (29), as well as the lower bound L2(W ) in (50), and the large-bandwidth

approximations of L1(W ) in (51) and (52) for β = 1 and a brick-shaped scattering function with spread ∆H = 10−5.

• Brick-shaped scattering function with maximum delay τ0 = 0.5 µs, maximum Doppler shift ν0 =

5 Hz, and corresponding spread ∆H = 4τ0ν0 = 10−5.

• Grid parameters T = 0.35 ms and F = 3.53 kHz, so that TF ≈ 1.25 and T/F = τ0/ν0, as

suggested by the design rule (13).

• Receive power normalized with respect to the noise spectral density

P

1 W/Hz
= 2.42 · 107 sec−1 .

These parameter values are representative for several different types of systems. For example:
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(a) An IEEE 802.11a system with transmit power of 200 mW, pathloss of 118 dB, and receiver

noise figure [66] of 5 dB; the pathloss is rather pessimistic for typical indoor link distances and

includes the attenuation of the signal, e.g., by a concrete wall.

(b) A UWB system with transmit power of 0.5 mW, pathloss of 77 dB, and receiver noise figure

of 20 dB.

Fig. 1 shows the upper bounds Uc(W ) in (28) and U1(W ) in (29), as well as the lower bound L2(W )

in (50), and the large-bandwidth approximations La(W ) in (51) and Laa(W ) in (52), all for β = 1.

As brick-shaped scattering functions are flat in the Doppler domain, i.e., they satisfy the condition

in (49), it follows from Lemma 3 that the difference between La(W ) and the lower bound L2(W )

in (50) vanishes as W →∞. For our choice of parameters, this difference is so small even for finite

bandwidth that the curves for La(W ) and the lower bound L2(W ) cannot be distinguished in Fig. 1.

As L2(W ) ≤ L1(W ) ≤ La(W ), the lower bound L1(W ) is fully characterized as well.

The upper bound U1(W ) and the lower bound L1(W ) take on their maximum at a large but finite

bandwidth; beyond this critical bandwidth, additional bandwidth is detrimental and the capacity

approaches zero as bandwidth increases further. In particular, we can see from Fig. 1 that many

current wireless systems operate well below the critical bandwidth. It can furthermore be verified

numerically that the critical bandwidth increases with decreasing spread, consistent with our analysis

in Section III-B3. We also observed that the gap between upper and lower bounds increases with

increasing β.

For bandwidths smaller than the critical bandwidth, L1(W ) comes quite close to the coherent

upper bound Uc(W ); this seems to validate, at least for the setting considered, the standard receiver

design principle to first estimate the channel, and then use the resulting estimates as if they were

perfect.

The approximate lower bound Laa(W ) in (52) is accurate for bandwidths above the critical

bandwidth and very loose otherwise. Furthermore, U1(W ) and Laa(W ) seem to fully character-

ize C(W ) in the large-bandwidth regime. We will make this statement precise in the next section,

where we relate U1(W ) and L1(W ) to the first-order Taylor series expansion of C(W ) around the

point 1/W = 0.

April 10, 2008 DRAFT



30

E. Capacity in the Infinite-Bandwidth Limit

The plots in Fig. 1 of the upper bound U1(W ) and the lower bound L1(W ) seem to coincide

for large bandwidth, yet it is not clear a priori if the two bounds allow to characterize capacity in

the limit for W →∞. To address this question, we next investigate if both bounds have the same

first-order Taylor series expansion in 1/W around the point 1/W = 0.

Because the upper bound U1(W ) in (29) takes on two different forms, depending on the value of

the parameter α(W ) in (29b), its first-order Taylor series is somewhat tedious to derive. We state

the result in the following lemma and provide the derivation in Appendix E.

Lemma 4: Let

κH =

∫∫
ν τ

C2
H(ν, τ)dτdν. (53)

Then, the upper bound (29) in Theorem 1 admits the following first-order Taylor series expansion

around the point 1/W = 0:

U1(W ) =
c

W
+ o

(
1

W

)
(54a)

where

c = lim
W→∞

WU1(W ) =


P 2

2
(βκH − TF ) , if β >

2TF

κH

(βPκH)2

8TF
, if β ≤ 2TF

κH
.

(54b)

We show in Appendix F that the corresponding Taylor series expansion of the lower bound L1(W )

in (41) does not have the same first-order term c. This result is formalized in the following lemma.

Lemma 5: The lower bound (41) in Theorem 2 admits the following first-order Taylor series

expansion around the point 1/W = 0:

L1(W ) =
c

W
+ o

(
1

W

)
(55a)

where

c = lim
W→∞

WL1(W ) = βP 2
(κH

2
− TF

)
. (55b)
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As c in (54b) and c in (55b) are different, the two bounds U1(W ) and L1(W ) do not fully

characterize C(W ) in the wideband limit. In the next theorem, we show, however, that the first-

order Taylor series of U1(W ) in Lemma 4 indeed correctly characterizes C(W ) for W →∞.

Theorem 6: Consider an underspread Rayleigh-fading channel with scattering function CH(ν, τ).

Assume that the channel input x satisfies the average-power constraint E[‖x‖2] ≤ KP T and the

peak constraint |x[k, n]|2 ≤ βPT/N w.p.1. The capacity C(W ) of this channel has a first-order

Taylor series expansion around the point 1/W = 0 equal to the first-order Taylor series expansion

in (54).

Proof: We need a capacity lower bound different from L1(W ) with the same asymptotic

behavior for W → ∞ as the upper bound U1(W ). The key element in the derivation of this

new lower bound is an extension of the block-constant signaling scheme used in [28] to prove

asymptotic capacity results for frequency-flat time-selective channels. In particular, we use input

signals with uniformly distributed phase whose magnitude is toggled on and off at random with a

prescribed probability; hence, information is encoded jointly in the amplitude and in the phase. In

comparison, the signaling scheme used to obtain L1(W ) transmits a signal of constant amplitude in

all time-frequency slots. We present the details of the proof in Appendix G.

Similar to the capacity behavior of a discrete-time frequency-flat time-selective channel for

vanishing SNR [28], the first-order Taylor series coefficient in (54b) can take on two different forms

as a function of the channel parameters. However, the link in (16) between the discretized channel and

the WSSUS channel H allows us to conclude that β > 2TF/κH and thus c = P 2(βκH−TF )/2 for

virtually all channels of practical interest. In fact, by Jensen’s inequality, κH ≥ ∆−1
H (with equality

for brick-shaped scattering functions), so that 2TF∆H ≥ 2TF/κH, and a sufficient condition

for β > 2TF/κH is β > 2TF∆H. For typical values of TF (e.g., TF ≈ 1.25) and typical values

of ∆H (e.g., ∆H < 10−2), this latter condition is satisfied for any admissible β.

We state in Lemma 5 that the first-order term c in the Taylor series expansion of the lower

bound L1(W ) does not match the corresponding term c of the Taylor series expansion of capacity,

not even for realistic channel parameters as just discussed. Yet, the plots of the upper bound U1(W )

and the lower bound L1(W ) in Fig. 1 seem to coincide at large bandwidth. This observation is not

surprising as the ratio

c/c =
β(κH/2− TF )

(1/2)(κHβ − TF )
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approaches 1 for β and TF fixed as κH grows large. For example, we have c/c = 0.998 for the

same parameters we used for the numerical evaluation in Section III-D, i.e., ∆H = 10−3, β = 1,

and TF = 1.25.

IV. INFINITE-BANDWIDTH CAPACITY UNDER A PEAK CONSTRAINT IN TIME

So far we considered a peak constraint in time and frequency; we now analyze the case when

the input signal is subject to a peak constraint in time only, according to (23). The average-power

constraint E[‖x‖2] ≤ KP T remains in force. In addition, we focus on the infinite-bandwidth limit.

By means of a capacity lower bound that is explicit in the channel’s scattering function, we show

that the phenomenon of vanishing capacity in the wideband limit can be eliminated if we allow the

transmit signal to be peaky in frequency. Furthermore, using the same approach as in the proof of

Theorem 1, we obtain an upper bound on the infinite-bandwidth capacity that, for F = 1/(2τ0),

differs from the corresponding lower bound only by a Jensen penalty term. The two bounds coincide

for brick-shaped scattering functions when F = 1/(2τ0).

The infinite-bandwidth capacity of the channel (11) is defined as

C∞ = lim
N→∞

lim
K→∞

sup
S

1

KT
I(y; x), (56)

where the supremum is taken over the set S of all input distributions that satisfy the peak con-

straint (23) and the constraint E[‖x‖2] ≤ KPT on the average power.

A. Lower Bound

We obtain a lower bound on C∞ by evaluating the mutual information in (56) for a specific

signaling scheme. As signaling scheme, we consider a generalization in the channel’s eigenspace

of the on-off FSK scheme proposed in [67]. The resulting lower bound is given in the following

theorem.

Theorem 7: Consider an underspread Rayleigh-fading channel with scattering function CH(ν, τ);

assume that the channel input x satisfies the average-power constraint E[‖x‖2] ≤ KP T and the

peak constraint
∑N−1

n=0 |x[k, n]|2 ≤ βPT w.p.1. The infinite-bandwidth capacity of this channel is

lower-bounded as C∞ ≥ L∞, where

L∞ = P − 1

β

∫
ν

log(1 + βPqH(ν)) dν (57)
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and qH(ν) =
∫
τ
CH(ν, τ)dτ denotes the power-Doppler profile of the channel.

Proof: See Appendix H.

For β = 1, the lower bound in (57) coincides with Viterbi’s result on the rates achievable on

an AWGN channel with complex Gaussian input signals with spectral density qH(ν), modulated

by FSK tones [23, Eq. (39)]. Viterbi’s setup is relevant for our analysis, because, for a WSSUS

channel with power-Doppler profile qH(ν), the output signal that corresponds to an FSK tone can

be well-approximated by Viterbi’s transmit signal whenever the observation interval at the receiver

is large and the maximum delay τ0 of the channel is much smaller than the observation interval [13,

Sec. 8.6]. The proof technique used to obtain Theorem 7 is, however, conceptually different from

that in [23]. On the basis of the interpretation of Viterbi’s signaling scheme provided above, we can

summarize the proof technique in [23] as follows: first, a signaling scheme is chosen, namely FSK,

for transmission over a WSSUS channel; then, the resulting stochastic process at the channel output is

discretized by means of a Karhunen-Loève decomposition; finally, the result on the achievable rates

in [23, Eq. (39)] follows from an error exponent analysis of the discretized stochastic process and

from [13, Lemma 8.5.3]—Szegö’s theorem on the asymptotic eigenvalue distribution of self-adjoint

Toeplitz operators.

To prove Theorem 7, on the other hand, we first discretize the WSSUS underspread channel;

the rate achievable for a specific signaling scheme, which resembles FSK, yields then the infinite-

bandwidth capacity lower bound (57). The main tool used in the proof of Theorem 7 is a property

of the information divergence of FSK constellations, first presented by Butman & Klass [36].

For β →∞, i.e., when the input signal is subject only to an average-power constraint, L∞ in (57)

approaches the infinite-bandwidth capacity of an AWGN channel with the same receive power, as

previously demonstrated by Gallager [13]. The signaling scheme used in the proof of Theorem 7 is,

however, not the only scheme that approaches this limit when no peak constraints are imposed on the

input signal. In [15] we presented another signaling scheme, namely, TF pulse position modulation,

which exhibits the same behavior. The proof of [15, Th. 1] is similar to the proof of Theorem 7 in

Appendix H.

B. Upper Bound

In Theorem 8 below we present an upper bound on C∞ and identify a class of scattering functions

for which this upper bound and the lower bound (57) coincide if F = 1/(2τ0). Differently, from
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the lower bound, which can be obtained both by Viterbi’s approach and through our approach, the

upper bound presented below is heavily built on the discretization of the continuous-time WSSUS

underspread channel presented in Section II-B1.

Theorem 8: Consider an underspread Rayleigh-fading channel with scattering function CH(ν, τ);

assume that the channel input x satisfies the average-power constraint E[‖x‖2] ≤ KP T and the

peak constraint
∑N−1

n=0 |x[k, n]|2 ≤ βPT w.p.1. The infinite-bandwidth capacity of this channel is

upper-bounded as C∞ ≤ U∞, where

U∞ = P − F

β

∫∫
ν τ

log

(
1 +

βP

F
CH(ν, τ)

)
dτdν. (58)

Proof: See Appendix J.

As the upper bound (58) is a decreasing function of F , and as F has to satisfy the Nyquist

condition F ≤ 1/(2τ0), the upper bound is minimized when F = 1/(2τ0). For this value of F ,

Jensen’s inequality applied to the second term on the RHS of (58) yields:

1

2τ0β

∫∫
ν τ

log(1 + 2τ0βPCH(ν, τ)) dτdν ≤ 1

β

∫
ν

log

1 + βP

∫
τ

CH(ν, τ)dτ

 dν

=
1

β

∫
ν

log(1 + βPqH(ν)) dν.

(59)

Hence, for F = 1/(2τ0), the upper bound (58) and the lower bound (57) differ only by a Jensen

penalty term. It is interesting to observe that the Jensen penalty in (59) is zero whenever the scattering

function is flat in the delay domain, i.e., whenever CH(ν, τ) is of the form11

CH(ν, τ) =
1

2τ0
qH(ν), (ν, τ) ∈ [−ν0, ν0]× [−τ0, τ0]. (60)

In this case, upper bound and lower bound coincide and the infinite bandwidth capacity C∞ is fully

characterized by

C∞ = P − 1

β

∫
ν

log(1 + βPqH(ν)) dν. (61)

Expressions similar to (61) were found in [26] for the capacity per unit energy of a discrete-time

frequency-flat time-selective channel, and in [24], [25] for the infinite-bandwidth capacity of the

continuous-time counterpart of the same channel; in all cases a peak constraint is imposed on the

11The multiplication by 1/(2τ0) in (60) follows from the normalization σ2
H = 1.
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input signals. However, the results in [24]–[26] and our results are not directly related, as discussed

next.

1) Comparison with [24], [25]: The continuous-time time-selective frequency-flat channel

analyzed in [24], [25] belongs to the class of LFI channels. As explained in Section II-C, the

kernel of an LFI channel cannot be diagonalized as was done in Section II-B1 because LFI channels

are not of Hilbert-Schmidt type. Hence, the infinite-bandwidth capacity expressions found in [24],

[25] cannot be obtained from our upper and lower bounds simply by an appropriate choice of the

scattering function CH(ν, τ) and of the grid parameters T and F .

2) Comparison with [26]: For scattering functions that are flat in the delay domain [see (60)],

the discrete correlation function RH[k, n] of our channel is given by

RH[k, n] =

∫∫
ν τ

CH(ν, τ)ej2π(kTν−nFτ)dτdν

=
sin(2πnFτ0)

2πnFτ0

∫
ν

qH(ν)ej2πkTνdν.

If we replace F by 1/(2τ0), we obtain

RH[k, n] = δ[n]

∫
ν

qH(ν)ej2πkTνdν.

Hence, for scattering functions that satisfy (60), and for F = 1/(2τ0), the discrete channel h[k, n] is

uncorrelated in frequency n. Consequently, the input-output relation (21) reduces to the input-output

relation of N parallel i.i.d. flat fading channels that are selective in time. However, as both the

average power constraint and the peak constraint are imposed on the overall channel and not on

each parallel channel separately, the infinite-bandwidth capacity (61) does not follow simply from

the capacity per unit energy of one of the parallel channels obtained in [26].

V. CONCLUSIONS

The underspread Gaussian WSSUS channel with a peak constraint on the input signal is a fairly

accurate and general model for wireless channels. Despite the model’s mathematical elegance and

simplicity, it appears to be difficult to compute the corresponding capacity. To nonetheless study

capacity as a function of bandwidth, we have taken a three-step approach: we first approximated the

kernel of the continuous-time WSSUS channel by a kernel that can be diagonalized, and obtained

an equivalent discretized channel; in a second step, we derived upper and lower bounds on the
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capacity of this discretized channel, and in a third step we expressed these bounds in terms of the

scattering function of the original continuous-time WSSUS channel. In Section II and Appendix A,

we partially characterize the approximation error that arises when the original continuous-time

underspread WSSUS channel operator is replaced by a normal operator whose eigenfunctions are

a Weyl-Heisenberg set. A complete characterization of the approximation error would require to

quantify the difference between the null spaces and between the range spaces of the original operator

and its approximation. This characterization is a fundamental open problem, even for deterministic

operators.

The capacity bounds derived in this paper are explicit in the channel’s scattering function, a

quantity that can be obtained from channel measurements. Furthermore, the capacity bounds

may serve as an efficient design tool even when the scattering function is not known completely,

and the channel is only characterized coarsely by its maximum delay τ0 and maximum Doppler

shift ν0. In particular, one can assume that the scattering function is brick-shaped within its support

area [−ν0, ν0]× [−τ0, τ0] and evaluate the corresponding bounds. As shown in Section III-B3b a

brick-shaped scattering function results in the lowest upper bound for given τ0 and ν0. Furthermore,

the bounds are particularly easy to evaluate for brick-shaped scattering functions and result in

analytical expressions explicit in the channel spread ∆H. Extensions of the capacity bounds for

input signals subject to a peak constraint in time and frequency to the case of spatially correlated

MIMO channels are provided in [68].

The multivariate discrete-time channel model considered in this paper, y[k] = h[k]�x[k]+w[k],

and the corresponding capacity bounds are also of interest in their own right, without the connection

to the underlying WSSUS channel. The individual elements of the vector h[k] do not necessarily need

to be interpreted as discrete frequency slots; for example, the block-fading model with correlation

across blocks in [69] can be cast into the form of our multivariate discrete-time model as well.

As our model is a generalization of the time-selective, frequency-flat channel model, it is not

surprising that the structure of our bounds for the case of a peak constraint both in time and frequency,

and a peak constraint in time only, is similar to the corresponding results in [27], [28] and [24]–[26],

respectively. The key difference between our proofs and the proofs in [26], [28], [24] is that our

derivation of the upper bounds (29) and (58) (see Appendix B and Appendix J, respectively) is

based on the relation between mutual information and MMSE described in [35]. Compared to the

proof in [26, Sec. VI], our approach has the advantage that it can easily be generalized to multiple
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dimensions—in our case time and frequency—and provides the new lower bound (73).

Numerical evaluation indicates that our bounds are surprisingly accurate over a large range of

bandwidth. For small bandwidth and hence high SNR, however, our bounds are no longer tight,

and a refined analysis along the lines of [5], [70] is called for. In the time-selective frequency-flat

case, it was shown in [5] that the high-SNR capacity behavior depends heavily on the spectral

density of the channel process. In particular, if the spectral density is zero on a set of positive

measure, capacity grows logarithmically in SNR, otherwise the growth is slower, and can even

be double-logarithmic. For the more general time- and frequency-selective channel considered

in this paper, the assumption that the scattering function is compactly supported implies that the

matrix-valued spectral density (40) of the multivariate discrete-time process is zero on a set of

positive measure whenever T < 1/(2ν0). This implies that the capacity of the approximating

channel operator grows logarithmically at high SNR [70] whenever the sampling rate in time is

strictly larger than the Nyquist rate. The high-SNR behavior of the capacity of the original channel

operator might be different, though. In the approximating discrete-time discrete-frequency input-

output relation (11), ISI and ICI are neglected [see (12)]. But the high-SNR behavior of a fading

channel is heavily influenced by ISI and ICI, as recently shown in [71].

The approximate kernel diagonalization presented in Section II-B1 can be extended to WSSUS

channels with non-compactly supported scattering function, as long as the area of the effective support

of the scattering function is small [72]. The capacity bounds corresponding to a non-compactly

supported scattering function are, however, more difficult to evaluate numerically, because the

periodic repetitions of the scattering function in (16) fall inside the integration region.

A challenging open problem is to characterize the capacity behavior of overspread channels, i.e.,

channels with spread ∆H > 1. The major difficulty resides in the fact that a set of deterministic

eigenfunctions can no longer be used to diagonalize the random kernel of the channel.

APPENDIX A

A. Approximate Eigenfunctions and Eigenvalues of the Channel Operator

The construction of the approximating channel operator in Section II-B1 relies on the following

two properties of underspread operators:

• Time and frequency shifts of a time- and frequency-localized prototype signal g(t) matched to

the channel’s scattering function CH(ν, τ), are approximate eigenfunctions of H.

April 10, 2008 DRAFT



38

• Samples of the time-varying transfer function LH(t, f) are the corresponding approximate

eigenvalues.

In this appendix, we make these claims more precise and give bounds on the mean-square ap-

proximation error—averaged with respect to the channel’s realizations—for both approximate

eigenfunctions and eigenvalues. The results presented in the remainder of this appendix are not

novel, as they already appeared elsewhere, sometimes in different form [20], [72], [56], [42]; the

goal of this appendix is rather to provide a self-contained exposition.

1) Ambiguity function: The design problem for g(t) can be restated in terms of its ambiguity

function Ag(ν, τ), which is defined as [73]

Ag(ν, τ) =

∫
t

g(t)g∗(t− τ)e−j2πνtdt.

Without loss of generality, we can assume that g(t) is normalized, so that Ag(0, 0) = ‖g‖2 = 1. For

two signals g(t) and f(t), the cross-ambiguity function is defined as

Ag,f (ν, τ) =

∫
t

g(t)f ∗(t− τ)e−j2πνtdt.

The following properties of the (cross-) ambiguity function are important in our context:

Property 1: The volume under the so-called ambiguity surface |Ag(ν, τ)|2 is constant [74]. In

particular, if g(t) has unit energy, then∫∫
ν τ

|Ag(ν, τ)|2 dτdν = 1.

Property 2: The ambiguity surface attains its maximum magnitude at the origin: |Ag(ν, τ)|2 ≤[
Ag(0, 0)

]2
= 1, for all ν and τ . This property follows from the Cauchy-Schwarz inequality, as

shown in [55].

Property 3: The cross-ambiguity function between the two time- and frequency-shifted signals

g(α,β)(t) = g(t− α)ej2πβt and g(α′,β′)(t) = g(t− α′)ej2πβ′t is given by

Ag(α,β),g(α′,β′)
(ν, τ) =

∫
t

g(t− α)ej2πβtg∗(t− α′ − τ)e−j2πβ
′(t−τ)e−j2πνtdt

(a)
= ej2πβ

′τe−j2π(ν+β′−β)α

∫
t′

g(t′)g∗(t′ − (α′ − α)− τ)e−j2π(ν+β′−β)t′dt′

= Ag(ν + β′ − β, τ + α′ − α)e−j2π(να−τβ′)e−j2π(β′−β)α

(62)
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where (a) follows from the change of variables t′ = t−α. As a direct consequence of (62), we have

Ag(α,β)
(ν, τ) = Ag(ν, τ)e−j2π(να−τβ). (63)

Property 4: Let the unit-energy signal g(t) have Fourier transformG(f), and denote by T0 andF0,

defined as

T 2
0 =

∫
t

t2 |g(t)|2 dt, F 2
0 =

∫
f

f 2 |G(f)|2 df, (64)

the effective duration and the effective bandwidth of g(t). Then T 2
0 and F 2

0 are proportional to the

second-order derivatives of Ag(ν, τ) at the point (ν, τ) = (0, 0) [74]

∂2Ag(ν, τ)

∂ν2

∣∣∣∣
(ν,τ)=(0,0)

= −4π2T 2
0

∂2Ag(ν, τ)

∂τ 2

∣∣∣∣
(ν,τ)=(0,0)

= −4π2F 2
0 .

Property 5: For the channel operator H in Section II-A,

〈H g, f〉 (a)
=

∫∫∫
t τ ν

SH(ν, τ)g(t− τ)ej2πtνf ∗(t)dτdνdt

=

∫∫
ν τ

SH(ν, τ)

[∫
t

f(t)g∗(t− τ)e−j2πtνdt

]∗
dτdν

=

∫∫
ν τ

SH(ν, τ)A∗f,g(ν, τ)dτdν = 〈SH, Af,g〉

where in (a) we used (5).

Properties 1 and 2, which constitute the radar uncertainty principle, imply that it is not possible

to find a signal g(t) with a corresponding ambiguity function Ag(ν, τ) that is arbitrarily well

concentrated in ν and τ [74]. The radar uncertainty principle is a manifestation of the classical

Heisenberg uncertainty principle, which states that the effective duration T0 and the effective

bandwidth F0 [both defined in (64)] of any signal in L2 satisfy T0F0 ≥ 1/(4π) [55, Th. 2.2.1]. In

fact, when g(t) has effective duration T0, and effective bandwidth F0, the corresponding ambiguity

function Ag(ν, τ) is highly concentrated on a rectangle of area 4T0F0; but this area cannot be made

arbitrarily small.
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2) Approximate Eigenfunctions:

Lemma 9 ([20, Ch. 4.6.1]): Let H be a WSSUS channel with scattering functionCH(ν, τ). Then,

for any unit-energy signal g(t), the mean-square approximation error incurred by assuming that g(t)

is an eigenfunction of H is given by

ε1 = E
[
‖〈H g, g〉g −H g‖2

]
=

∫∫
ν τ

CH(ν, τ)
(
1− |Ag(ν, τ)|2

)
dτdν. (65)

Proof: We decompose ε1 as follows:

E
[
‖〈H g, g〉g −H g‖2

]
= E

[
‖〈H g, g〉g‖2

]
+ E

[
‖H g‖2

]
− 2 E

[
|〈H g, g〉|2

]
= E

[
‖H g‖2

]
− E

[
|〈H g, g〉|2

]
.

(66)

Here, the last steps follows because g(t) has unit energy by assumption. We now compute the two

terms in (66) separately. The first term is equal to

E
[
‖H g‖2

] (a)
= E

∫
t

∣∣∣∣∣∣
∫∫
ν τ

SH(ν, τ)g(t− τ)ej2πtνdτdν

∣∣∣∣∣∣
2

dt


(b)
=

∫∫
ν τ

CH(ν, τ)

∫
t

g(t− τ)g∗(t− τ)dtdτdν

(c)
=

∫∫
ν τ

CH(ν, τ)dτdν

(67)

where (a) follows from (5), (b) from the WSSUS property, and (c) from the energy normalization

of g(t). For the second term we have

E
[
|〈H g, g〉|2

] (a)
= E

[
|〈SH, Ag〉|2

]
= E

∣∣∣∣∣∣
∫∫
ν τ

SH(ν, τ)A∗g(ν, τ)dτdν

∣∣∣∣∣∣
2

(b)
=

∫∫
ν τ

CH(ν, τ) |Ag(ν, τ)|2 dτdν

(68)

where (a) follows from Property 5 and (b) follows from the WSSUS property. To conclude the

proof, we substitute (67) and (68) in (66).

The error ε1 in (65) is minimized if g(t) is chosen so that Ag(ν, τ) ≈ Ag(0, 0) = 1 over the

support of the scattering function. If the channel is highly underspread, we can replace Ag(ν, τ)

on the RHS of (65) with its second-order Taylor series expansion around the point (ν, τ) = (0, 0);

Property 4 now shows that good time and frequency localization of g(t) is necessary for ε1 to be

small. If g(t) is taken to be real and even, the second-order Taylor series expansion of Ag(ν, τ)
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around the point (ν, τ) = (0, 0) takes on a particularly simple form because the first-order term is

zero, and we can approximate Ag(ν, τ) around (0, 0) as follows [74]:

Ag(ν, τ) ≈ 1− 2π
[
T 2

0 ν
2 + F 2

0 τ
2 − jντ/(4π)

]
.

Hence, when g(t) is real and even, good time and frequency localization of g(t) is also sufficient

for ε1 to be small.

3) Approximate Eigenvalues:

Lemma 10 ([72], [42]): Let H be a WSSUS channel with time-varying transfer functionLH(t, f)

and scattering function CH(ν, τ). Then, for any unit-energy signal g(α,β)(t) = g(t − α)ej2πβt,

the mean-square approximation error incurred by assuming that LH(α, β) is an eigenvalue of H

associated to g(α,β)(t) is given by

ε2 = E
[∣∣〈H g(α,β), g(α,β)〉 − LH(α, β)

∣∣2] =

∫∫
ν τ

CH(ν, τ) |1− Ag(ν, τ)|2 dτdν.

Proof: We use Property 5 and the Fourier transform relation (4) to write ε2 as

ε2 = E

∣∣∣∣∣∣
∫∫
ν τ

SH(ν, τ)
[
A∗g(α,β)

(ν, τ)− ej2π(να−τβ)
]
dτdν

∣∣∣∣∣∣
2

(a)
= E

∣∣∣∣∣∣
∫∫
ν τ

SH(ν, τ)ej2π(να−τβ)
[
A∗g(ν, τ)− 1

]
dτdν

∣∣∣∣∣∣
2

(b)
=

∫∫
ν τ

CH(ν, τ) |1− Ag(ν, τ)|2 dτdν.

(69)

Here, (a) follows from (63) and (b) is a consequence of the WSSUS property.

Similarly to what was stated for ε1 in the previous section, also in this case good time and

frequency localization of g(t) leads to small mean-square error ε2 if the channel is underspread.

B. OFDM Pulse Design for Minimum ISI and ICI

In Section II-B3 we introduced the concept of a PS-OFDM system that uses an orthonormal

Weyl-Heisenberg transmission set {gk,n(t)}, where gk,n(t) = g(t− kT )ej2πnFt, and provided the

criterion (13) for the choice of the grid parameters T and F to jointly minimize ISI and ICI. In
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this section, we detail the derivation that leads to (13). Let r(t) = (Hx)(t) denote the noise-free

channel output when the channel input x(t) is a PS-OFDM signal given by

x(t) =
∞∑

k=−∞

∞∑
n=−∞

x[k, n]gk,n(t).

For mathematical convenience, we consider the case of an infinite time and frequency horizon, and

assume that the input symbols {x[k, n]} are i.i.d., with zero mean and E
[
|x[k, n]|2

]
≤ 1, ∀k, n.

We want to quantify the mean-square error incurred by assuming that the projection of the received

signal r(t) onto the function gk,n(t) equals x[k, n]LH(kT, nF ), i.e., the error

ε3 = E
[
|〈r, gk,n〉 − x[k, n]LH(kT, nF )|2

]
where the expectation is over the channel realizations and the input symbols. We bound ε3 as follows:

ε3 = E
[∣∣〈r, gk,n〉 − x[k, n]〈H gk,n, gk,n〉

+ x[k, n]
(
〈H gk,n, gk,n〉 − LH(kT, nF )

)∣∣2]
(a)

≤ 2 E
[
|〈r, gk,n〉 − x[k, n]〈H gk,n, gk,n〉|2

]︸ ︷︷ ︸
ε4

+ 2 E
[∣∣x[k, n]

(
〈H gk,n, gk,n〉 − LH(kT, nF )

)∣∣2]
= 2ε4 + 2 E

[
|x[k, n]|2

]
E
[∣∣〈H gk,n, gk,n〉 − LH(kT, nF )

∣∣2]︸ ︷︷ ︸
ε2

≤ 2ε4 + 2ε2

where (a) holds because for any two complex numbers u and v we have that |u+ v|2 ≤ 2 |u|2+2 |v|2.

The error ε2 is the same as the one computed in Lemma 10. The error ε4 results from neglecting ISI

and ICI and can be bounded as follows:

ε4 = E
[
|〈r, gk,n〉|2

]
+ E

[
|x[k, n]|2

]
E
[
|〈H gk,n, gk,n〉|2

]
− 2<{E[x∗[k, n]〈r, gk,n〉〈H gk,n, gk,n〉∗]}

(a)
=

∞∑
k′=−∞

∞∑
n′=−∞

(k′,n′)6=(k,n)

E
[
|x[k′, n′]|2

]
E
[
|〈H gk′,n′ , gk,n〉|2

]
(b)

≤
∞∑

k′=−∞

∞∑
n′=−∞

(k′,n′) 6=(k,n)

E
[
|〈H gk′,n′ , gk,n〉|2

]
(70)
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where (a) follows because the x[k, n] are i.i.d. and zero mean, and (b) because E
[
|x[k, n]|2

]
≤ 1.

We now provide an expression for E
[
|〈H gk′,n′ , gk,n〉|2

]
that is explicit in the channel’s scattering

function:

E
[
|〈H gk′,n′ , gk,n〉|2

] (a)
= E

[∣∣∣〈SH, Agk,n,gk′,n′ 〉
∣∣∣2]

(b)
=

∫∫
ν τ

CH(ν, τ)
∣∣∣Agk,n,gk′,n′ (ν, τ)

∣∣∣2 dτdν
(c)
=

∫∫
ν τ

CH(ν, τ) |Ag(ν + (n′ − n)F, τ + (k′ − k)T )|2 dτdν

=

∫∫
ν τ

CH(ν − (n′ − n)F, τ − (k′ − k)T ) |Ag(ν, τ)|2 dτdν.

(71)

Here, (a) follows from Property 5, (b) from the WSSUS property, and (c) from Property 3. We

finally substitute (71) in (70) and obtain

ε4 ≤
∞∑

k′=−∞

∞∑
n′=−∞

(k′,n′)6=(k,n)

∫∫
ν τ

CH(ν − (n′ − n)F, τ − (k′ − k)T ) |Ag(ν, τ)|2 dτdν

=
∞∑

k=−∞

∞∑
n=−∞

(k,n)6=(0,0)

∫∫
ν τ

CH(ν − nF, τ − kT ) |Ag(ν, τ)|2 dτdν.
(72)

This error is small if the ambiguity surface |Ag(ν, τ)|2 of g(t) takes on small values on the periodically

repeated rectangles [−ν0 + nF, ν0 + nF ]× [−τ0 + kT, τ0 + kT ], except for the dashed rectangle

centered at the origin (see Fig. 2). This condition can be satisfied if the channel is highly underspread

and if the grid parameters T and F are chosen such that the solid rectangle centered at the origin

in Fig. 2 has large enough area to allow |Ag(ν, τ)|2 to decay. If g(t) has effective duration T0 and

effective bandwidth F0, the latter condition holds if T ≥ τ0 + T0, and F ≥ ν0 + F0. Given a

constraint on the product TF , good localization of g(t), both in time and frequency, is necessary

for the two inequalities above to hold.

The minimization of ε4 in (72) over all orthonormal Weyl-Heisenberg sets {gk,n(t)} is a difficult

task; numerical methods to minimize ε4 are described in [58]. The simple rule on how to choose the

grid parameters T and F provided in (13) is derived from the following observation: for known τ0

and ν0, and for a fixed product TF , the area 4(T − τ0)(F − ν0) of the solid rectangle centered at
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Fig. 2. The support set of the periodized scattering function in (72) are the rectangles with crisscross pattern, while the area on

which the ambiguity function Ag(ν, τ) should be concentrated to minimize ε4 is shaded in grey.

the origin in Fig. 2 is maximized if [20], [56], [58]

T

F
=
τ0
ν0

.

APPENDIX B

Lemma 11: Let {h[k]} be a stationary random process with correlation function

rh[k] = E[h[k′ + k]h∗[k′]]

and spectral density

ch(θ) =
∞∑

k=−∞

rh[k]e−j2πkθ, |θ| ≤ 1/2.
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Furthermore, let h =
[
h[0]h[1] . . . h[K − 1]

]
T , and denote the K × K covariance matrix of h

by Rh = E
[
hhH

]
. This covariance matrix is Hermitian Toeplitz with entries [Rh]i,j = rh[i− j].

Then, for any deterministic K-dimensional vector x with binary entries {0, 1} and for any ρ > 0,

the following inequality holds:

inf
x

1

‖x‖2
log det

(
IK + ρ(xxH)�Rh

)
≥

1/2∫
−1/2

log(1 + ρch(θ))dθ. (73)

Furthermore, in the limit K →∞, the above inequality is satisfied with equality if the entries of x

are all equal to 1.

Remark 1: The second statement in Lemma 11—that the infimum can be achieved by an all-1

vector in the limit for K → ∞—was already proved in [26, Sec. VI.B]. The proof in [26] relies

on rather technical set-theoretic arguments, so that it is not easy to see how the structure of the

problem—the stationarity of the process {h[k]}—comes into play. Therefore, it is cumbersome to

extend the proof in [26] to accommodate two-dimensional stationary processes as used in this paper.

Here, we provide an alternative proof that is significantly shorter, explicitly uses the stationarity

property, can be directly generalized to two-dimensional stationary processes (see Corollary 13

below), and yields the new lower bound (73) as an important additional result.

Our proof is based on the relation between mutual information MMSE discovered recently by

Guo et al. [35]. In the following lemma, we restate, for convenience, the mutual information-MMSE

relation for JPG random vectors12

Lemma 12: Let h be a K-dimensional random vector that satisfies E[‖h‖2] <∞, and let w be

a zero-mean JPG vector, w ∼ CN (0, IK), that is independent of h. Then, for any deterministic

K-dimensional vector x,

d

dγ
I(
√
γx�h + w; h) = E

[
‖x�h− x�E[h | √γx�h + w]‖2

]
. (74)

The expression on the RHS in (74) is the MMSE obtained when x�h is estimated from the noisy

observation
√
γx�h + w.

Proof of Lemma 11: We first derive the lower bound (73) and then show achievability in the

limit K →∞ in a second step. To apply Lemma 12, we rewrite the LHS of (73) as

1

‖x‖2
log det

(
IK + ρ(xxH)�Rh

)
=

1

‖x‖2
I(
√
ρx�h + w; h) (75)

12For a proof of Lemma 12, see [35, Sec. V.D].
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where w ∼ CN (0, IK) is a JPG vector. Without loss of generality, we assume that the vector x has

exactly M nonzero entries, with corresponding indices in the setM. Then,

1

‖x‖2
I(
√
ρx�h + w; h) =

(a)
=

1

‖x‖2

ρ∫
0

E
[
‖x�h− x�E[h | √γx�h + w]‖2

]
dγ

(b)
=

1

M

ρ∫
0

∑
m∈M

E
[∣∣h[m]− E

[
h[m] | {√γh[k] + w[k]}k∈M

]∣∣2] dγ
(c)

≥ 1

M

ρ∫
0

∑
m∈M

E
[∣∣h[m]− E

[
h[m] | {√γh[k] + w[k]}∞k=−∞

]∣∣2] dγ
(d)
=

ρ∫
0

E
[∣∣h[0]− E

[
h[0] | {√γh[k] + w[k]}∞k=−∞

]∣∣2] dγ.

(76)

Here, (a) follows from the relation between mutual information and MMSE in Lemma 12 in the

form given in [35, Eq. (47)]. Equality (b) holds because x has exactly M nonzero entries with

corresponding indices in M, and because the components of the observation that contain only

noise do not influence the estimation error. The argument underlying inequality (c) is that the

MMSE can only decrease if each h[m] is estimated not just from a finite set of noisy observations

of the random process {h[k]}, but also from noisy observations of the process’ infinite past and

future. This is the so-called infinite-horizon noncausal MMSE. Finally, we obtain (d) because the

process {h[k]} is stationary and its infinite horizon noncausal MMSE is, therefore, the same for all

indices m ∈M [75, Sec. V.D.1].

The infinite-horizon noncausal MMSE can be expressed in terms of the spectral density of the

process {h[k]} [75, Eq. (V.D.28)]:

E
[∣∣h[0]− E

[
h[0] | {√γh[k] + w[k]}∞k=−∞

]∣∣2] =

1/2∫
−1/2

ch(θ)

1 + γch(θ)
dθ. (77)

To obtain the desired inequality (73), we substitute (77) in (76), and (76) in (75), and note that the

resulting lower bound does not depend on x. We have therefore established a lower bound on the
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LHS of (73) as well. We finally integrate over γ and get

inf
x

1

‖x‖2
log det

(
IK + ρ(xxH)�Rh

)
≥

1/2∫
−1/2

ρ∫
0

ch(θ)

1 + γch(θ)
dγdθ

=

1/2∫
−1/2

log
(
1 + ρch(θ)

)
dθ.

To prove the second statement in Lemma 11, we choose x in (75) to be the all-1 vector for any

dimension K, and evaluate the limit K →∞ of the LHS of (75) by means of Szegö’s theorem on

the asymptotic eigenvalue distribution of a Toeplitz matrix [31], [32]:

lim
K→∞

1

K
log det(IK + ρRh) =

1/2∫
−1/2

log
(
1 + ρch(θ)

)
dθ. (78)

This shows that the lower bound in (73) can indeed be achieved in the limit K →∞ when x is the

all-1 vector.

Our proof allows for a simple generalization of Lemma 11 to two-dimensional stationary processes,

which are relevant to the problem considered in this paper. The generalization is stated in the

following corollary.

Corollary 13: Let {h[k, n]} be a random process that is stationary in k andnwith two-dimensional

correlation function rh[k, n] = E[h[k + k′, n+ n′]h∗[k′, n′]] and two-dimensional spectral density

ch(θ, ϕ) =
∞∑

k=−∞

∞∑
n=−∞

rh[k, n]e−j2π(kθ−nϕ), |θ| , |ϕ| ≤ 1/2.

Furthermore, let h[k] =
[
h[k, 0] h[k, 1] · · · h[k,N − 1]

]
T , let the KN -dimensional stacked vec-

tor h =
[
hT [0] hT [1] . . . hT [K − 1]

]
T , and denote theKN×KN covariance matrix of h by Rh =

E
[
hhH

]
. This covariance matrix is a two-level Toeplitz matrix. Then, for any KN -dimensional

vector x with binary entries {0, 1} and for any ρ > 0, the following inequality holds:

inf
x

1

‖x‖2
log det

(
IKN + ρ(xxH)�Rh

)
≥

1/2∫
−1/2

1/2∫
−1/2

log(1 + ρch(θ, ϕ))dθdϕ. (79)

Furthermore, in the limit K,N →∞, the above inequality is satisfied with equality if the entries

of x are all equal to 1.
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Proof: Without loss of generality, we assume that the vector x has exactlyM nonzero elements,

with corresponding indices in the setM. The arguments used in the proof of Lemma 11 directly

apply, and we obtain

1

‖x‖2
log det

(
IKN + ρ(xxH)�Rh

)
≥

ρ∫
0

E
[∣∣∣h[0, 0]− E

[
h[0, 0] | {√γh[k, n] + w[k, n]}∞k,n=−∞

]∣∣∣2] dγ.
To complete the proof, we use the two-dimensional counterpart of (77)—the closed-form expression

for the two-dimensional noncausal MMSE [76, Eq. (2.6)]—and we compute the two-dimensional

equivalent of (78) by means of the extension of Szegö’s theorem to two-level Toeplitz matrices

provided, e.g., in [33].

APPENDIX C

In this appendix, we show that a sufficient condition for

α(W ) = min

{
1,

W

TF

(
1

A(W )
− 1

P

)}
= 1, (80)

with A(W ) defined in (29c), is that

0 ≤ P

W
≤ 1

TF
, and ∆H ≤

β

3TF

or that

1

TF
<

P

W
<

∆H

β

[
exp

(
β

2TF∆H

)
− 1

]
.

For notational convenience, we set ρ = P/W . The necessary and sufficient condition under

which (80) holds can be restated as
W

A(W )
≥ 1

ρ
+ TF

or, equivalently, as

1

β

∫∫
ν τ

log(1 + ρβCH(ν, τ)) dτdν ≤
(

1

ρ
+ TF

)−1

. (81)

We now use Jensen’s inequality as in (39) to upper-bound the LHS of (81) and get the following

sufficient condition for α(W ) = 1:

∆H

β
log

(
1 +

βρ

∆H

)
≤
(

1

ρ
+ TF

)−1

. (82)

We next distinguish between two cases: ρ > 1/(TF ) and ρ ≤ 1/(TF ).
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Case ρ > 1/(TF ): We use the inequality(
1

ρ
+ TF

)
≤ 2TF

to lower-bound the RHS of (82) and obtain the following sufficient condition for α(W ) = 1:

∆H

β
log

(
1 +

βρ

∆H

)
≤ 1

2TF
.

This condition can be expressed in terms of ρ as

ρ <
∆H

β

[
exp

(
β

2TF∆H

)
− 1

]
. (83)

Case ρ ≤ (1/TF ): We further upper-bound the LHS of (82) by means of the inequality

1

x
log(1 + x) ≤ 1√

1 + x
, for all x ≥ 0

and get the following sufficient condition for α(W ) = 1:

ρ√
1 + βρ/∆H

≤
(

1

ρ
+ TF

)−1

.

This condition is satisfied for all ρ ∈ [0, 1/(TF )] as long as

∆H ≤ β/(3TF ). (84)

If we combine (83) and (84), the sufficient condition (37) follows.

APPENDIX D

PROOF OF LEMMA 3

1) Upper bound: We restate the penalty term in (41) in the more convenient form13

1

T

1/2∫
−1/2

log det

(
IN +

PT

N
C(θ)

)
dθ. (85)

We seek an upper bound on (85) that can be evaluated efficiently, even for largeN , and that is tight in

the limit N →∞. To obtain such a bound, we need to solve two problems: first, the eigenvalues of

the N×N Toeplitz matrix C(θ) are difficult to compute; second, the determinant expression in (85)

needs to be evaluated for all θ ∈ [−1/2, 1/2]. To upper-bound (85), we will replace C(θ) with a

suitable circulant matrix that is asymptotically equivalent [32] to C(θ). Asymptotic equivalence

13For simplicity and without loss of generality, we set γ = 1.
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guarantees tightness of the resulting bound in the limit N →∞. As the eigenvalues of a circulant

matrix can be computed efficiently via the discrete Fourier transform (DFT), the first problem is

solved. To solve the second problem, we use Jensen’s inequality.

We shall need the following result on the asymptotic equivalence between Toeplitz and circulant

matrices.

Lemma 14 (see [77]): Let T be an N ×N Hermitian Toeplitz matrix. Furthermore, let F be the

DFT matrix, i.e., the matrix F = [f0 f1 · · · fN−1] whose columns fn = [β0n β1n · · · β(N−1)n]T/
√
N

contain powers of the N th root of unity, β = ej2π/N . Construct from the matrix FHTF the diagonal

matrix D so that the entries on the main diagonal of D and on the main diagonal of FHTF are

equal. Then, T and the circulant matrix FDFH are asymptotically equivalent, i.e., the Frobenius

norm [64, Sec. 5.6] of the matrix
(
T− FDFH

)
/
√
N converges to zero as N →∞.

Our goal is to upper-bound a function of the form log det(IN + T/N). Because F is unitary, and

by Hadamard’s inequality,

log det

(
IN +

1

N
T

)
= log det

(
IN +

1

N
FHTF

)
≤ log det

(
IN +

1

N
D

)
= log det

(
IN +

1

N
FDFH

)
.

(86)

Since T and FDFH are asymptotically equivalent, we expect the difference between the LHS and

the RHS of the inequality (86) to vanish as N grows large. We formalize this result in the following

lemma, which follows directly from Szegö’s theorem on the asymptotic eigenvalue distribution of

Toeplitz matrices.

Lemma 15: Let {tn} be a sequence that satisfies t−n = t∗n for all n, and has Fourier transform

s(ϕ) =
∞∑

n=−∞

tne
−j2πnϕ, |ϕ| ≤ 1/2.

Let T be the N ×N Hermitian Toeplitz matrix constructed as

T =


t0 t−1 . . . t−(N−1)

t1 t0 . . . t−(N−2)

...
... . . . ...

tN−1 tN−2 . . . t0

 . (87)
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Then, the function log det(IN + T/N) admits the following Lth-order Taylor series expansion

around the point 1/N = 0:

log det

(
IN +

1

N
T

)
=

L∑
l=0

(−1)l

(l + 1)N l

1/2∫
−1/2

[s(ϕ)]l+1dϕ+ o

(
1

NL

)
. (88)

Furthermore, let F and D be as in Lemma 14. Then, log det
(
IN + FDFH/N

)
has the same Lth-

order Taylor series expansion around 1/N = 0 as log det(IN + T/N).

Proof: Let p be the essential supremum of s(ϕ), i.e., p is the smallest number that satis-

fies s(ϕ) ≤ p for all ϕ, except on a set of measure zero. Then for any N , the eigenvalues {λn}N−1
n=0

of the matrix T satisfy λn ≤ p [32, Lemma 6]. We now use the expansion in power series

log(1 + x) =
∞∑
l=1

(−1)l+1

l
xl, for |x| < 1

to rewrite f(1/N) = log det(IN + T/N) as

f(1/N) =
N−1∑
n=0

log

(
1 +

λn
N

)
=

N−1∑
n=0

∞∑
l=1

(−1)l+1

l

(
λn
N

)l

=
∞∑
l=1

(−1)l+1

l

1

N l−1

[
1

N

N−1∑
n=0

λln

]
, for N ≥ p. (89)

To compute the Taylor series expansion of f(1/N) around 1/N = 0 we need to evaluate f(1/N)

and its derivatives for N → ∞. We observe that Szegö’s theorem on the asymptotic eigenvalue

distribution of Toeplitz matrices implies that [32, Th. 9]

lim
N→∞

1

N

N−1∑
n=0

λln =

1/2∫
−1/2

[s(ϕ)]ldϕ. (90)

Consequently, it follows from (89) that

f(0) = lim
N→∞

f(1/N) =

1/2∫
−1/2

s(ϕ)dϕ,

f ′(0) = lim
N→∞

N [f(1/N)− f(0)] = −1

2

1/2∫
−1/2

[s(ϕ)]2dϕ,

April 10, 2008 DRAFT



52

and, for the lth derivative,

f (l)(0) = lim
N→∞

l!N l

[
f(1/N)− f(0)−

l−1∑
i=1

i!N if (i)(0)

]

= l!
(−1)l

l + 1

1/2∫
−1/2

[s(ϕ)]l+1dϕ.

The proof of the first statement in Lemma 15 is therefore concluded. The second statement follows

directly from the asymptotic equivalence between T and FDFH (see Lemma 14) and from [32,

Th. 2].

To apply the bound (86) to our problem of upper-bounding the penalty term (85), we need to

compute the diagonal entries of FHC(θ)F. Similarly to (87), we denote the entries of the power

spectral density Toeplitz matrix C(θ) as {cn(θ)}N−1
n=−(N−1). As a consequence of (19) and (40), C(θ)

is Hermitian, i.e., c−n(θ) = c∗n(θ). Furthermore, again by (19) and (40), each entry cn(θ) is related

to the discrete-time discrete-frequency correlation function RH[k, n] according to

cn(θ) =
∞∑

k=−∞

RH[k, n]e−j2πkθ

(a)
=

1

T

∞∑
k=−∞

∫
τ

CH

(
θ − k
T

, τ

)
e−j2πnFτdτ

(b)
=

1

T

∞∑
k=−∞

τ0∫
−τ0

CH

(
θ − k
T

, τ

)
e−j2πnFτdτ

(91)

where (a) follows from the Fourier transform relation (6), and the Poisson summation formula as

in (16), and in (b) we used that CH(ν, τ) is zero outside [−τ0, τ0]. Consequently, the ith element on

the main diagonal of FHC(θ)F, which we denote as di(θ), can be expressed as a function of the
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entries of C(θ) as follows

di(θ) =
1

N

N−1∑
p=0

N−1∑
q=0

β−iqcq−p(θ)β
ip

=
1

N

N−1∑
p=0

N−1∑
q=0

cq−p(θ)β
−i(q−p)

=
1

N

N−1∑
n=−(N−1)

(N − |n|)cn(θ)e−j2π
in
N

= <

{
2

N

N−1∑
n=0

(N − n)cn(θ)e−j2π
in
N

}
− c0(θ)

(92)

where we set n = q − p and used c−n(θ) = c∗n(θ). We can now establish an upper bound on the

penalty term (85) in terms of the {di(θ)} on the basis of (86):

1

T

1/2∫
−1/2

log det

(
IN +

PT

N
C(θ)

)
dθ =

1

T

1/2∫
−1/2

log det

(
IN +

PT

N
FHC(θ)F

)
dθ

≤ 1

T

1/2∫
−1/2

N−1∑
i=0

log

(
1 +

PT

N
di(θ)

)
dθ

(a)
=

1/(2T )∫
−1/(2T )

N−1∑
i=0

log

(
1 +

PT

N
di(νT )

)
dν

(b)
=

ν0∫
−ν0

N−1∑
i=0

log

(
1 +

PT

N
di(νT )

)
dν

(93)

where (a) follows from the change of variables ν = θ/T and (b) holds because CH(ν, τ) is zero

for ν outside [−ν0, ν0], and because, by assumption T ≤ 1/(2ν0), so that CH(ν − k/T, τ) is zero

whenever k 6= 0; hence, by (91) and (92), also cn(νT ) and di(νT ) are zero for ν outside [−ν0, ν0].

We proceed to remove the dependence on ν. To this end, we further upper-bound (93) by means

of Jensen’s inequality and obtain the desired upper bound in (48);
ν0∫

−ν0

N−1∑
i=0

log

(
1 +

PT

N
di(νT )

)
dν ≤ 2ν0

N−1∑
i=0

log

1 +
PT

2ν0N

ν0∫
−ν0

di(νT )dν


= 2ν0

N−1∑
i=0

log

(
1 +

P

2ν0N
di

) (94)
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where we set di = T
∫ ν0
−ν0 di(νT )dν. As we have by (91) that

T

ν0∫
−ν0

cn(νT )dν =
∞∑

k=−∞

ν0∫
−ν0

τ0∫
−τ0

CH

(
ν − k

T
, τ

)
e−j2πnFτdτdν

=

ν0∫
−ν0

τ0∫
−τ0

CH(ν, τ)e−j2πnFτdτdν

= RH[0, n],

it follows from (92) that

di = <

{
2

N

N−1∑
n=0

(N − n)RH[0, n]e−j2π
in
N

}
− 1

as defined in (47).

As a consequence of Lemma 15, the penalty term (85) and its upper bound in (93) have the same

Taylor series expansion around the point 1/N = 0, while the upper bound on the penalty term given

on the RHS of (94) has the same Taylor series expansion around the point 1/N = 0 as (85) only

when the Jensen penalty in (94) is zero. This happens for scattering functions that are flat in the

Doppler domain, or, equivalently, that satisfy (49).

We next provide an explicit expression for the Taylor series expansion of the penalty term (85)

around 1/N = 0; this expression will be needed in the next section, as well as in Appendix F. As

the Fourier transform
∑∞

n=−∞ cn(θ)ej2πnϕ of the sequence {cn(θ)} is the two-dimensional power

spectral density c(θ, ϕ) defined in (15), we have by Lemma 15 that

1

T

1/2∫
−1/2

log det

(
IN +

PT

N
C(θ)

)
dθ =

1

T

L∑
l=0

(−1)l

(l + 1)N l

1/2∫
−1/2

1/2∫
−1/2

[PTc(θ, ϕ)]l+1dϕdθ + o

(
1

NL

)

= P

L∑
l=0

(−1)l

l + 1

(
P

NF

)l ∫∫
ν τ

[CH(ν, τ)]l+1dτdν + o

(
1

NL

)
(95)

where in the last step we first used (16) and then proceeded as in (17).
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2) Lower bound: To lower-bound the penalty term (85), we use Lemma 11 in Appendix B for

the case when x is an N -dimensional vector with all-1 entries and obtain

1

T

1/2∫
−1/2

log det

(
IN +

PT

N
C(θ)

)
dθ ≥ N

T

1/2∫
−1/2

1/2∫
−1/2

log

(
1 +

PT

N
c(θ, ϕ)

)
dϕdθ

= NF

∫∫
ν τ

log

(
1 +

PT

N
CH(ν, τ)

)
dτdν

(96)

where in the last step we again first used (16) and then proceeded as in (17). We next show that the

penalty term (85) and its lower bound (96) have the same Taylor series expansion [given in (95)].

For any fixed (ν, τ) the function NF log(1 + PTCH(ν, τ)/N) is nonnegative, and monotonically

increasing in N . Hence, by the monotone convergence theorem [78, Th. 11.28], we can expand the

logarithm inside the integral on the RHS of (96) into a Taylor series. The resulting Taylor series

expansion coincides with the Taylor series expansion of (85) stated in (95).

APPENDIX E

PROOF OF LEMMA 4

To prove Lemma 4, we need to evaluate limW→∞WU1(W ), where U1(W ) is the upper bound

in (29). Our analysis is similar to the asymptotic analysis of an upper bound on capacity in [28,

Prop. 2.1], with the main difference that we deal with a time- and frequency-selective channel

whereas the channel analyzed in [28] is frequency flat. We start by computing the first-order Taylor

series expansion of A(W ) in (29c) around 1/W = 0. This first-order Taylor series expansion

follows directly from Appendix D, and is given by:

A(W ) =
W

β

∫∫
ν τ

log

(
1 +

βP

W
CH(ν, τ)

)
dτdν

= P − βP 2

2W

∫∫
ν τ

C2
H(ν, τ)dτdν

︸ ︷︷ ︸
κH

+ o

(
1

W

)
.

(97)

We now use (97) to evaluate the minimum in (29b).

lim
W→∞

W

TF

(
1

A(W )
− 1

P

)
= lim

W→∞

W

TF

(
1

P − βκHP 2/(2W ) + o(1/W )
− 1

P

)
= lim

W→∞

W

TFP

(
1

1− βPκH/(2W ) + o(1/W )
− 1

)
(a)
= lim

W→∞

W

TFP

(
βPκH

2W
+ o

(
1

W

))
=
βκH

2TF

(98)
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where we used the Taylor series expansion 1/(1−x) = 1+x+o(x) for x→ 0 to obtain equality (a).

Because α(W ) is defined in (29b) as the minimum

α(W ) = min

{
1,

W

TF

(
1

A(W )
− 1

P

)}
we need to distinguish two cases.

• If β > 2TF/κH, we get limW→∞ α(W ) = 1, so that, for sufficiently large bandwidth, the

upper bound (29a) can be expressed as

U1(W ) =
W

TF
log

(
1 + P

TF

W

)
− A(W )

= P − 1

2
P 2TF

W
− P +

βP 2

2W
κH + o

(
1

W

)
=

P 2

2W
(βκH − TF ) + o

(
1

W

)
.

(99)

Consequently, we obtain the first-order Taylor series coefficient

c = lim
W→∞

WU1(W ) =
P 2

2
(βκH − TF ) .

• If β ≤ 2TF/κH, we get

lim
W→∞

α(W ) = lim
W→∞

W

TF

(
1

A(W )
− 1

P

)
so that for sufficiently large bandwidth

U1(W ) =
W

TF
log

(
P

A(W )

)
+

W

TF

(
A(W )

P
− 1

)
=

W

TF

(
A(W )

P
− 1− log

(
1 +

A(W )

P
− 1

))
.

(100)

We now use the Taylor series x− log(1 + x) = x2/2 + o(x2) for x→ 0 on the RHS of (100)

to get

U1(W ) =
W

2TF

(
A(W )

P
− 1

)2

+ o

(
1

W

)
(a)
=

W

2TF

(
βPκH

2W
+ o

(
1

W

))2

+ o

(
1

W

)
=

(βPκH)2

8TFW
+ o

(
1

W

) (101)

where (a) follows from the Taylor series expansion of A(W ) in (97). Hence, the first-order

Taylor series coefficient of the upper bound U1(W ) is given by

c = lim
W→∞

WU1(W ) =
(βPκH)2

8TF
.

Both cases taken together yield (54).
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APPENDIX F

PROOF OF LEMMA 5

To prove Lemma 5, we need to evaluate limW→∞WL1(W ), where L1(W ) is the lower bound (41).

The first term in (41) is the coherent mutual information of a scalar Rayleigh-fading channel with

zero-mean constant-modulus input. This mutual information has the following first-order Taylor

series expansion around 1/W = 0 [14, Th. 14]:

W

γTF
I(y;x |h) = P − γP 2TF

W
+ o

(
1

W

)
. (102)

We now analyze the second term in (41); its Taylor series expansion around 1/W = 0 (for the

case γ = 1) is given in (95). If we truncate this expansion to first order and take into account the

factor γ, we obtain

1

γT

1/2∫
−1/2

log det

(
IN +

γPTF

W
C(θ)

)
dθ = P − γP 2

2W
κH + o

(
1

W

)
(103)

where κH is defined in (53). We then combine (102) and (103) to get the desired result

lim
W→∞

WL1(W ) = lim
W→∞

max
1≤γ≤β

W

[
P − γP 2TF

W
− P +

γP 2κH

2W
+ o

(
1

W

)]
= βP 2(κH/2− TF ).

APPENDIX G

PROOF OF THEOREM 6

To prove Theorem 6, we need to find a lower bound on C(W ) whose first-order Taylor series

expansion matches that of the upper bound U1(W ) given in (54). To obtain such a lower bound,

we compute the mutual information for a specific input distribution that (slightly) generalizes the

input distribution used in [28]. For a given time duration KT and bandwidth NF , we shall first

specify the distribution of the input symbols that belong to a generic K ′ ×N ′ rectangular block in

the time-frequency plane, where K ′ and N ′ are fixed and K ′ ≤ K, N ′ ≤ N , and then describe the

joint distribution of all input symbols in the overall K ×N rectangle; transmission over the K ×N

rectangle is denoted as a channel use. Within a K ′ ×N ′ block, we use i.i.d. zero-mean constant-

modulus signals. We arrange these signals in a K ′N ′-dimensional vector d in the same way as
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in (20), i.e., we stack first in frequency and then in time. Finally, we let the input vector for the

K
′ ×N ′ block be x̃ = bd, where b is a binary RV with distribution

b =


√
βPT/N, with probability ζ ,

0, with probability 1− ζ .

This means that the i.i.d. constant-modulus vector d undergoes on-off modulation with duty cycle ζ .

The above signaling scheme satisfies the peak constraint (24) by construction. The covariance matrix

of the input vector x̃ is given by

E
[
x̃x̃H

]
= Eb

[
Eex[x̃x̃H | b

]]
= ζ

βPT

N
IK′N ′

so that for ζ ≤ 1/β the signaling scheme also satisfies the power constraint E[‖x̃‖2] ≤ K
′
N
′
PT/N .

In the remainder of this appendix we will assume that ζ ≤ 1/β. The input-output relation for the

transmission of the K ′ ×N ′ block can now be written as

ỹ = x̃� h̃ + w̃

where the K ′N ′-dimensional stacked output vector ỹ, the corresponding stacked channel vector h̃,

and the stacked noise vector w̃ are defined in the same way as the stacked input vector x̃. Finally,

we define the correlation matrix of the channel vector h̃ as Reh = E
[
h̃h̃H

]
.

Let now l = bK/K ′c and m = bN/N ′c. In a channel use, we let the KN -dimensional input

vector s with entries {s[k, n]} be constructed as follows: we use lK ′ ·mN ′ out of the KN entries

of s to form lm subvectors, each of dimension K ′N ′ , and we leave the remaining KN − lK ′ ·mN ′

entries unused. For p = 0, 1, . . . , l−1 and q = 0, 1, . . . ,m−1, the (p, q)th subvector is constructed

from the entries of s in the set {s[k, n] : k = pK
′
, pK

′
+ 1, . . . , (p+ 1)K

′ − 1; n = qN
′
, qN

′
+

1, . . . , (q+1)N
′−1}. Finally, we assume that the lm subvectors are independent and are distributed

as x̃, so that

E
[
‖s‖2

]
= lmE

[
‖x̃‖2

]
≤ lmK

′
N
′
PT/N ≤ KPT.

Hence, the vector s satisfies both the average power constraint and the peak constraint (24) in Sec-

tion II-E. Finally, we have

C(W ) = lim
K→∞

1

KT
sup
Q
I(y; x) ≥ lim

K→∞

1

KT
I(y; s)

(a)

≥ lim
K→∞

lm

KT
I(ỹ; x̃)

(b)
=

m

K ′T
I(ỹ; x̃)

(104)
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where (a) follows from the chain rule of mutual information (the intermediate steps are detailed

in [28, App. A]), and in (b) we used

lim
K→∞

l

K
= lim

K→∞

bK/K ′c
K

=
1

K ′
.

Because we are only interested in the asymptotic behavior of the lower bound (104), it suffices

to analyze the second-order Taylor series expansion of I(ỹ; x̃) around 1/N = 0. As the entries of x̃

are peak-constrained, and h̃ is a proper complex vector, we can use the expansion derived in [79,

Cor. 1] to obtain14

I(ỹ; x̃) =
1

2
tr

{
Eex
[(

Eeh
[
(h̃� x̃)

(
h̃� x̃

)H])2
]}

− 1

2
tr

{(
Eeh,ex

[
(h̃� x̃)

(
h̃� x̃

)H])2
}

+ o

(
1

N2

)
. (105)

In the following, we analyze the two trace terms separately.

The first term is:

tr

{
Eex
[(

Eeh
[
(h̃� x̃)

(
h̃� x̃

)H])2
]}

(a)
= tr

{
Eex
[(

Reh�(x̃x̃H
))2]}

(b)
= tr

{
Eex
[(

Reh�(x̃x̃H
))H(

Reh�(x̃x̃H
))]}

(c)
= tr

{
Eex
[
RHeh
((

x̃∗x̃T
)
�Reh�(x̃x̃H

))]}
(d)
= ζ tr

{
RHeh

(
Reh�Eex

[(
x̃∗x̃T

)
�
(
x̃x̃H

)∣∣∣∣∣b =

√
βPT

N

])}
(e)
= ζ

(
βPT

N

)2

tr
{
RHeh Reh} .

(106)

Here, (a) follows from (27), (b) follows because Reh and x̃x̃H are Hermitian and (c) follows from

the identity [80, p. 42]

tr
{(

A�B
)H

C
}

= tr
{
AH(B∗�C)

}
.

We obtain (d) as the Hadamard product is commutative and (e) holds because the entries of the

matrix
(
x̃∗x̃T

)
�
(
x̃x̃H

)
are all equal to (βPT )2/N2 w.p.1 given that b =

√
βPT/N .

14Differently from [79, Cor. 1], the Taylor series expansion is for N →∞; furthermore, we have N0 = 1, and the SNR is given

by K
′
N

′
PT/N .
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To evaluate the second trace term in (105), we once more use the identity (27):

tr

{(
Eeh,ex

[
(h̃� x̃)

(
h̃� x̃

)H])2
}

= tr

{(
Reh� ζβPTN

IK′N ′

)2
}

= K
′
N
′
(
ζβPT

N

)2
(107)

where the last equality follows because we normalized RH[0, 0] = σ2
H = 1 (see Section II-D).

Next, we substitute the trace terms (106) and (107) into the second-order expansion of mutual

information in (105), which, together with the lower bound in (104), results in the following lower

bound on limW→∞WC(W ), valid for any fixed K ′ and N ′:

lim
W→∞

WC(W ) ≥ lim
N→∞

mNF

K ′T
I(ỹ; x̃)

= lim
N→∞

mNF

2K ′T

[
ζ

(
βPT

N

)2

tr
{
RHeh Reh}

−K ′N ′
(
ζβPT

N

)2

+ o

(
1

N2

)]

=
(

lim
N→∞

m

N

) (ζβP )2

2

[
TF

ζK ′
tr
{
RHeh Reh}−N ′TF

]

=
(ζβP )2

2

[
TF

ζK ′N ′
tr
{
RHeh Reh}− TF

]

(108)

where in the last step we used limN→∞m/N = limN→∞bN/N
′c/N = 1/N

′ .

If we now take K ′ and N ′ sufficiently large, the RHS of (108) can be made arbitrarily close to its

limit for K ′ →∞ and N ′ →∞. This limit admits a closed-form expression in CH(ν, τ). In fact,

lim
K
′
,N
′→∞

1

K ′N ′
tr
{
RHeh Reh} (a)

= lim
K
′
,N
′→∞

1

K ′N ′

K
′∑

k=1

N
′∑

n=1

λ2
k,n(Reh)

(b)
=

1/2∫
−1/2

1/2∫
−1/2

[
c(θ, ϕ)

]2
dθdϕ

(c)
=

1

TF

∫∫
ν τ

[
CH(ν, τ)

]2
dτdν

︸ ︷︷ ︸
κH

.

(109)

Here, (a) follows because Reh is Hermitian and its K ′N ′ eigenvalues {λk,n} are real. The matrix Reh
is two-level Toeplitz and its entries belong to the sequence {RH[k, n]} with two-dimensional power
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spectral density c(θ, ϕ) defined in (15); then, (b) follows from the extension of (90) to two-level

Toeplitz matrices provided in [33]. Finally, to obtain (c) we proceed as in (17). If we now replace (109)

in (108) for K ′ →∞ and N ′ →∞ we obtain,

lim
K′ ,N ′→∞

lim
W→∞

WC(W ) =
(ζβP )2

2

(
κH

ζ
− TF

)
. (110)

If we choose ζ = 1/β whenever β > 2TF/κH, and ζ = κH/(2TF ) otherwise, the limit (110)

equals the first-order Taylor series coefficient c of the upper bound U1(W ) in (54b). Hence, the

first-order Taylor series expansion of the lower bound (108) can be made to match the first-order

Taylor series expansion of the upper bound (29) as closely as desired.

APPENDIX H

PROOF OF THEOREM 7

To obtain a lower bound on C∞, we compute the rate achievable in the infinite-bandwidth limit

for a specific signaling scheme. Similarly to the proof of Theorem 6 in Appendix G, it suffices

to specify only the distribution of the input symbols that belong to a generic rectangular block

in the time-frequency plane. Differently from Appendix G, we take the generic block to be of

dimension K ′ × N , where K ′ is fixed and K ′ ≤ K. We denote the input symbols in each time-

frequency slot of the K ′ ×N block as x̃[k, n] and arrange them in a vector where—differently from

Section II-D—we first stack along time and then along frequency. The K ′-dimensional vector that

contains the input symbols in the nth frequency slot is defined as

x̃[n] =
[
x̃[0, n] x̃[1, n] · · · x̃[K

′ − 1, n]
]T

and the K ′N -dimensional vector that contains all symbols in the block is

x̃ =
[
x̃T [0] x̃T [1] · · · x̃T [N − 1]

]T
. (111)

We define the stacked channel vector h̃, the stacked noise vector w̃, and the stacked output vector ỹ

in a similar way. The input-output relation corresponding to the K ′ ×N block is

ỹ = x̃� h̃ + w̃. (112)

Finally, we denote the correlation matrix of the channel vector h̃ by Reh; this matrix is again two-

level Toeplitz. Within the K ′ ×N block, we use a signaling scheme that is a generalization of the

on-off FSK scheme proposed in [67], and can be viewed as FSK in the channel’s eigenspace.
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t
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T 2T−T

F

2F
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·
·
·

0
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−F

Fig. 3. Slots in the time-frequency plane occupied by the symbol ex3 for the case K′ = 4.

Definition 16 (On-off Weyl-Heisenberg keying—OO-WHK): Let x̃i for i = 0, 1, . . . , N − 1 de-

note a K ′N -dimensional vector with entries x̃i[k, n] that satisfy |x̃i[k, n]|2 = βPTδ[i − n]. We

transmit each x̃i with probability p = 1/(Nβ), for i = 0, 1, . . . , N − 1, and the all-zero K ′N -

dimensional vector 0 with probability 1− 1/(Nβ).

Fig. 3 shows the time-frequency slots occupied by the symbol x̃3 for K ′ = 4. Steps similar to

the one detailed in Appendix G [see (104)] yield the following lower bound on C∞:

C∞ = lim
N→∞

lim
K→∞

sup
S

1

KT
I(y; x) ≥ lim

N→∞

1

K ′T
I(ỹ; x̃). (113)

Since this lower bound holds for any finite K ′ we can tighten it if we take the supremum over K ′ ;

this leads to

C∞ ≥ sup
K′

lim
N→∞

1

K ′T
I(ỹ; x̃). (114)
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We next decompose the mutual information in (114) as the difference of KL divergences [81,

Eq. (10)]

1

K ′T
I(ỹ; x̃) =

1

K ′T
Eex[D(Qey | ex‖Qey | ex=0

)]
− 1

K ′T
D
(
Qey‖Qey | ex=0

)
(115)

and evaluate the two terms separately. As Qey | ex = CN
(
0, IK′N +

(
x̃x̃H

)
�Reh), we can use

the closed-form expression for the KL divergence of two JPG random vectors a ∼ CN (0,Ra)

and b ∼ CN (0, I) [14, Eq. (59)]

D(CN (0,Ra) ‖ CN (0, I)) = tr(Ra − I)− log det(Ra) . (116)

Thus, the expected divergence in (115) can be expressed as

1

K ′T
Eex[D(Qey | ex‖Qey | ex=0

)]
=

1

K ′T
Eex[tr{(x̃x̃H

)
�Reh}]

− 1

K ′T
Eex[log det

(
IK′N +

(
x̃x̃H

)
�Reh)]

= P − 1

K ′TNβ

N−1∑
i=0

log det
(
IK′N +

(
x̃(i)

(
x̃(i)
)H)�Reh

)
.

(117)

The last step follows because each nonzero vector is transmitted with probability 1/(Nβ) in the

OO-WHK signaling scheme of Definition 16, and because the diagonal entries of Reh are normalized

to 1. We next exploit the structure of the signaling scheme, and the fact that the correlation matrix Reh
is two-level Toeplitz, to simplify the determinant in the second term on the RHS of (117) as

det
(
IK′N +

(
x̃(i)

(
x̃(i)
)H)�Reh

)
= det

(
IK′ + βPTReh[0]

)
(118)

for all i, and where h̃[0] =
[
h[0, 0] h[1, 0] · · · h[K

′ − 1, 0]
]
T and Reh[0] = E[h̃[0]h̃H [0]]. We next

substitute our intermediate results (115), (117), and (118) into the lower bound (114) to obtain

C∞ ≥ P − inf
K′

{
1

βK ′T
log det

(
IK′ + βPTReh[0]

)
+ lim

N→∞

1

K ′T
D
(
Qey‖Qey | ex=0

)}
. (119)

In Appendix I it is shown that

lim
N→∞

1

K ′T
D
(
Qey‖Qey | ex=0

)
= 0.
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To conclude, we simplify the second term on the RHS of (119) as

inf
K′

1

βK ′T
log det

(
IK′ + βPTReh[0]

) (a)
=

1

βT

1/2∫
−1/2

log

(
1 + βP

∞∑
k=−∞

qH

(
θ + k

T

))
dθ

(b)
=

1

β

∫
ν

log(1 + βPqH(ν)) dν.

Here, in (a) we used Lemma 11 in Appendix B for the case when x is a K ′-dimensional vector

with all-1 entries, as well as

c(θ) =
∞∑

k=−∞

RH[k, 0]e−j2πkθ

=

∫∫
ν τ

CH(ν, τ)
∞∑

k=−∞

ej2πkT(ν− θ
T )dτdν

=
1

T

∞∑
k=−∞

qH

(
θ − k
T

)
.

Finally, (b) holds because qH(ν) is compactly supported on [−ν0, ν0], and T ≤ 1/(2ν0). A change

of variables ν = θ/T yields the final result.

APPENDIX I

Lemma 17: Consider a channel with input-output relation15(112)

y = x�h + w

where the K ′N -dimensional vectors y, x, h, and w are defined as in (111), i.e., stacking is first

along time and then along frequency. Then,

lim
N→∞

1

K ′
D
(
Qy‖Qy |x=0

)
= 0 (120)

for the OO-WHK scheme in Definition 16 of Appendix H.

Proof: Let qy and qy |x be the probability density functions (PDFs) associated with the proba-

bility distributions Qy and Qy |x, respectively. By definition of the KL divergence,

D
(
Qy‖Qy |x=0

)
= Ey

[
log

(
qy(y)

qy |x=0(y)

)]
. (121)

15To keep the notation compact, in this appendix we drop the tilde notation [cf. (112)].
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For the OO-WHK scheme in Definition 16, the PDF qy of the output vector can be written as

qy =

(
1− 1

β

)
qy |x=0 +

1

Nβ

N−1∑
i=0

qy |x=xi . (122)

The output random vector y has the same distribution as the noise vector w ∼ CN (0, IK′N)

when x = 0. Hence, qy |x=0 = qw. To express (121) in a more convenient form, we define the

following RV:

SN(w) =
N−1∑
i=0

[(
1− 1

β

)
+

1

β

qy |x=xi(w)

qw(w)

]
︸ ︷︷ ︸

si(w)

.

We can express the KL divergence (121) as a function of the RV SN(w) as follows:

Ey

[
log

(
qy(y)

qy |x=0(y)

)]
=

∫
y

log

(
qy(y)

qy |x=0(y)

)
qy(y)dy

=

∫
y

log

((
1− 1

β

)
+

1

Nβ

N−1∑
i=0

qy |x=xi(y)

qy |x=0(y)

)

×

[(
1− 1

β

)
qy |x=0(y) +

1

Nβ

N−1∑
i=0

qy |x=xi(y)

]
dy

=

∫
y

SN(y)

N
log

(
SN(y)

N

)
qy |x=0︸ ︷︷ ︸

qw

(y)dy

= Ew

[
SN(w)

N
log

(
SN(w)

N

)]
.

To prove Lemma 17, it suffices to show that the sequence of RVs {VN(w)} where

VN(w) =
SN(w)

N
log

(
SN(w)

N

)
converges to 0 in mean as N → ∞. To prove this result, we first show that {VN(w)} converges

to 0 w.p.1. Then we argue that the sequence forms a backward submartingale [82, p. 474 and p. 499]

so that it converges to 0 also in mean by the submartingale convergence theorem [83, Sec. 32.IV].

A. Convergence w.p.1

The RVs si(w) are i.i.d. for i = 0, 1, . . . , N − 1. As this result is rather tedious to prove, we

postpone its proof to Appendix I-C. It is instead straightforward to prove that these RVs have mean 1.

In fact,

Ew[si(w)] =

∫
w

[(
1− 1

β

)
+

1

β

qy |x=xi(w)

qw(w)

]
qw(w)dw = 1.
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It then follows from the strong law of large numbers that

lim
N→∞

SN(w)

N
= Ew[s0(w)] = 1 w.p.1

and, as the function r(x) = x log x is continuous, we have by [78, Th. 4.6] that

lim
N→∞

VN(w) = lim
N→∞

r

(
SN(w)

N

)
= r

(
lim
N→∞

SN(w)

N

)
= 0 w.p.1.

B. Convergence in Mean

As the RVs {si(w)} are i.i.d., the sequence {VN(w)} and the decreasing sequence ofσ-fields {GN},

where GN is the smallest σ-field with respect to which the random variables {SN(w), SN+1(w), · · · }

are measurable, form a backward (or reverse) submartingale [82, p. 474 and p. 499]. This result

follows because the pair ({SN(w)/N} , {GN}) is a backward martingale [82, p. 499], and because

the function r(x) = x log x is convex.

Since {VN(w)} is a backward submartingale and {VN(w)} converges to 0 w.p.1 as N → ∞,

{VN(w)} converges to 0 asN →∞ also in mean. This result follows by the backward submartingale

convergence theorem below:

Theorem 18 (see [83, Sec. 32.IV]): Let {XN} be a backward submartingale with respect to a

decreasing sequence of σ-fields {GN}. Then {XN} converges w.p.1 and in mean to X <∞ if and

only if E[|X1|] <∞ and limN→∞ E[XN ] > −∞.

To conclude the proof, we need to show that the technical conditions in Theorem 18 hold, i.e.,

that the sequence {VN(w)} satisfies

lim
N→∞

Ew[VN(w)] > −∞ (123)

and

Ew[|V1(w)|] = Ew[|s0(w) log s0(w)|] <∞. (124)

The first inequality follows from Jensen’s inequality and because the si(w) have mean 1:

Ew[VN(w)] = Ew

[
r

(
SN(w)

N

)]
≥ r

(
Ew

[
SN(w)

N

])
= 0 ∀N.

The second inequality is proven in Appendix I-D.
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C. The Random Variables si(w) are i.i.d.

To show that the RVs

si(w) =

[(
1− 1

β

)
+

1

β

qy |x=xi(w)

qw(w)

]
are i.i.d., we first simplify qy |x=xi as

qy |x=xi(w) =
exp
[
−wH

(
IK′N +

(
xix

H
i

)
�Rh

)−1
w
]

πK
′N det(IK′N + (xixHi )�Rh)

=

exp

(
−

N−1∑
n=0
n6=i

‖w[n]‖2 −wH [i]A−1w[i]

)

πK
′N det(A)

(125)

where we set

A = IK′ + βPTRh[0] (126)

and where, as usual, w =
[
wT [0] wT [1] · · · wT [N − 1]

]
T . To obtain (125) we apply the determi-

nant equality (118) to simplify the denominator. For the numerator, we used that, for the OO-WHK

in Definition 16, the matrix IK′N +
(
xix

H
i

)
�Rh is block diagonal, with N − 1 blocks equal to IK′

and one block equal to A = IK′ +βPTRh[0]. Hence, its inverse is also block diagonal, with N − 1

blocks equal to IK′ and one block equal to A−1. Next, we use (125) to express the ratio qy |x=xi/qw

as

qy |x=xi(w)

qw(w)
=

1

det(A)
exp
[
‖w[i]‖2 −wH [i]A−1w[i]

]
. (127)

This last result implies that each si(w) depends only on the random noise vector w[i]. As the noise

is white, the random vectors w[i] are i.i.d. for all i. Hence, the RVs si(w) are i.i.d. as well.

D. Proof of Inequality (124)

As x log x ≥ −e−1 for all x > 0, we have that |x log x| ≤ x log x+ 2e−1; hence,

Ew[|s0(w) log s0(w)|] ≤ Ew[s0(w) log s0(w)] + 2e−1.
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We next use the convexity of x log x and that β ≥ 1 to upper-bound s0(w) log s0(w) as

s0(w) log s0(w) =

[(
1− 1

β

)
+

1

β

qy |x=x0(w)

qw(w)

]
log

[(
1− 1

β

)
+

1

β

qy |x=x0(w)

qw(w)

]
(a)

≤ 1

β

[
qy |x=x0(w)

qw(w)

]
log

[
qy |x=x0(w)

qw(w)

]
(b)

≤
[
qy |x=x0(w)

qw(w)

]
log

[
qy |x=x0(w)

qw(w)

] (128)

where (a) follows from the definition of convexity, and in (b) we used that β ≥ 1. If we take the

expectation on both sides of (128), we get

E[s0(w) log s0(w)] ≤
∫
w

[
qy |x=x0(w)

qw(w)

]
log

[
qy |x=x0(w)

qw(w)

]
qw(w)dw

(a)

≤
∫
w

qy |x=x0(w)

∣∣∣∣log

[
qy |x=x0(w)

qw(w)

]∣∣∣∣ dw
(b)
=

∫
w

exp
(
−
∑N−1

n=1 ‖w[n]‖2 −wH [0]A−1w[0]
)

πK
′N det(A)

×

∣∣∣∣∣log

(
exp
(
‖w[0]‖2 −w[0]HA−1w[0]

)
det(A)

)∣∣∣∣∣ dw
(c)

≤
∫

w[0]

exp
(
−wH [0]A−1w[0]

)
πK

′
det(A)

×
[
‖w[0]‖2 + w[0]HA−1w[0] + log(det(A))

]
dw[0]

<∞.

where (a) follows because qy |x=x0(w) > 0 for all w; in (b) we used (125) and (127), while to

obtain (c) we first integrated over {w[n]}N−1
n=1 and then we used the triangle inequality and that A is

positive definite with eigenvalues larger or equal to 1 [see (126)]. The last inequality holds because A

satisfies the trace constraint tr(A) = K
′
(1 +βPT ), which implies that its eigenvalues are bounded.

APPENDIX J

PROOF OF THEOREM 8

We use the decomposition of mutual information as a difference of KL divergences (115), and

upper-bound supS I(y; x) in (56) because the KL divergence is nonnegative:

sup
S
I(y; x) = sup

S

{
Ex

[
D
(
Qy |x‖Qy |x=0

)]
−D

(
Qy‖Qy |x=0

)}
(129)
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≤ sup
S

Ex

[
D
(
Qy |x‖Qy |x=0

)]
. (130)

As in the proof of Theorem 1, we rewrite the supremum over the distributions in the set S as a

double supremum over α ∈ [0, 1] and over the restricted set of input distributions S|α that satisfy

the average power constraint E[‖x‖2] = αKP T and the peak constraint (23). Then, we use the

closed-form expression for the KL divergence of two multivariate Gaussian vectors (116) and we

follow the same arguments as in the proof of Theorem 1:

1

KT
sup
S

Ex

[
D
(
Qy |x‖Qy |x=0

)]
= sup

0≤α≤1
sup
S|α

{
αP − 1

KT
E
[
log det

(
IKN +

(
xxH

)
�Rh

)]}
= sup

0≤α≤1

{
αP − inf

S|α

1

KT
E
[
log det

(
IKN +

(
xxH

)
�Rh

)]}
≤ sup

0≤α≤1

{
αP − αP inf

x

log det
(
IKN +

(
xxH

)
�Rh

)
‖x‖2

}

= P − P inf
x

log det
(
IKN +

(
xxH

)
�Rh

)
‖x‖2

. (131)

The infimum in (131) has the same structure as the infimum (33) in the proof of Theorem 1. Hence,

as Rh is positive semidefinite, we can conclude that the infimum (131) is achieved on the boundary

of the admissible set. Differently from the proof of Theorem 1, however, the input signal is subject

to a peak constraint in time so that the admissible set is defined by the two conditions

|x[k, n]|2 ∈ {0, βPT}
N−1∑
n=0

|x[k, n]|2 ≤ βPT, w.p.1.
(132)

Hence, a necessary condition for a vector x to minimize log det
(
IKN +

(
xxH

)
�Rh

)
/‖x‖2 is the

following: for any fixed k, x[k, n] may be different from 0 only for at most one discrete frequency n.

An example of such a vector is shown in Fig. 4. Even if the structure of the vector minimizing the

second term on the RHS of (131) is known, the infimum (131) does not seem to admit a closed-form

expression. We can obtain, however, the following closed-form lower bound on the infimum if

we replace the constraint
∑N−1

n=0 |x[k, n]|2 ≤ βPT w.p.1 in (132) with the less stringent constraint

|x[k, n]|2 ≤ βPT w.p.1 for all k and n. The infimum of log det
(
IKN +

(
xxH

)
�Rh

)
/‖x‖2 over
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t

f

T 2T−T

F

2F

· · ·

·
·
·

0

0

−F

Fig. 4. The entries in the time-frequency plane of a vector x that satisfies the necessary condition to minimize

log det
`
IKN +

`
xxH

´
�Rh

´
/‖x‖2 in (132) for the case K = 4.

the vectors x that belong to the new admissible set can be bounded as in (34), after replacing βPT/N

by βPT and proceeding as in (17):

inf
x

1

‖x‖2
log det

(
IKN +

(
xxH

)
�Rh

)
≥ 1

βPT

1/2∫
−1/2

1/2∫
−1/2

log(1 + βPTc(θ, ϕ)) dθdϕ

=
F

βP

∫∫
ν τ

log

(
1 +

βP

F
CH(ν, τ)

)
dτdν.

(133)

To conclude the proof, we substitute (133) in (131) and obtain the desired upper bound (58).
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