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Abstract

MIMO systems are being considered as one of the key enaldicignblogies for future wireless
networks. However, the decrease in capacity due to the meesef interferers in MIMO networks is
not well understood. In this paper, we develop an analyfieahework to characterize the capacity of
MIMO communication systems in the presence of multiple MIMG®-channel interferers and noise.
We consider the situation in which transmitters have no okhstate information and all links undergo
Rayleigh fading. We first generalize the determinant regtgion of hypergeometric functions with
matrix arguments to the case when the argument matricesdigenrevalues of arbitrary multiplicity. This
enables the derivation dhe distribution of the eigenvalues of Gaussian quadratim$ and Wishart
matrices with arbitrary correlation, with application totb single-user and multiuser MIMO systems.
In particular, we derive the ergodic mutual information MMMO systems in the presence of multiple
MIMO interferers. Our analysis is valid for any number ofdrferers, each with arbitrary number of
antennas having possibly unequal power levels. This frasrievtherefore, accommodates the study of

distributed MIMO systems and accounts for different spat@sitions of the MIMO interferers.

Index Terms

Eigenvalues distribution, Gaussian quadratic forms, Hypemetric functions of matrix arguments,

Interference, MIMO, Wishart matrices.

I. INTRODUCTION

The use of multiple transmitting and receiving antennas mawide high spectral efficiency
and link reliability for point-to-point communication ifling environments [1], [2]. The analysis
of capacity for MIMO channels in [3] suggested practicaleiger structures to obtain such
spectral efficiency. Since then, many studies have beenateimthe analysis of MIMO systems,
starting fromthe ergodic [4] and outage [5] capacity for uncorrelatedrfigdo the case where
correlation is present at one of the two sides (either at tdw@stnitter or at the receiver) or at
both sides [6]—[8]. The effect of time correlation is stutlia [9].

Only a few papers, by using simulation or approximationselstudied the capacity of MIMO
systems in the presence of cochannel interference. Incpkatj a simulation study is presented
in [10] for cellular systems, assuming up ddransmit and3 receive antennas. The simulations
showed that cochannel interference can seriously deghedeverall capacity when MIMO links

are used in cellular networks. In [11], [12] it is studied wHer, in a MIMO multiuser scenario,

DRAFT



2 SUBM. TO IEEE TRANS. ON INF. TH

it is always convenient to use all transmitting antennawals found that for some values of SNR
and SIR, allocating all power into a single transmittingesamta, rather than dividing the power
equally among independent streams from the different aatgrwould lead to a higher overall
system mutual information. The study in [11], [12] adoptauliation to evaluate the capacity of
MIMO systems in the presence of cochannel interference tlaadlifficulties in the evaluations
limited the results to a scenario with two MIMO users emphgyat most two antenna elements.
In [13] the replica method is used to obtain approximate mumef the capacity for MIMO
systems with large number of antenna elements includingptesence of interference. The
approximation requires iterative numerical methods twes@ system of non-linear equations,
and its accuracy has to be verified by computer simulationsautiuser MIMO system with
specific receiver structures is analyzed for the interfeedimited case in [14], [15].

The MIMO capacity at high and low SNR for interference-liedtscenarios is addressed in
[16], [17]. A worst-case analysis for MIMO capacity with C&t the transmitter and at the
receiver, conditioned on the channel matrix, can be founfiL8). Asymptotic results for the
Rician channel in the presence of interference can be fourj9].

In this paper, we develop an analytical framework to analyweergodic capacity of MIMO
systems in the presence of multiple MIMO cochannel interieiand AWGN. Throughout the
paper we consider rich scattering environments in whichstradtters have no CSl, the receiver
has perfect CSlI, and all links undergo frequency flat Radagling. The key contributions of
the paper are as follows:

. Generalization of the determinant representation of lygm@metric functions with matrix
arguments to the case where matrices in the arguments hgeavalues with arbitrary
multiplicity.

« Derivation, using the generalized representation, of thet jp.d.f. of the eigenvalues of
complex Gaussian quadratic forms and Wishart matriced) aibitrary multiplicities for
the eigenvalues of the associated covariance matrix.

« Derivation of the ergodic capacity of single-user MIMO gst that accounts for arbitrary
power levels and arbitrary correlation across the trangrgientenna elements, or arbitrary
correlation at the receiver side.

« Derivation of capacity expressions for MIMO systems in tlespnce of multiple MIMO

interferers, valid for any number of interferers, each watiitrary number of antennas
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having possibly unequal power levels.

The paper is organized as follows: in Section Il we introdtiee system model for multiuser
MIMO setting, relating the ergodic capacity of MIMO systenmsthe presence of multiple
MIMO interferers to that of single-user MIMO systems with imderference. General results
on hypergeometric functions of matrix arguments are giveiséction Ill. The joint p.d.f. of
eigenvalues for Gaussian quadratic forms and Wishart cestivith arbitrary correlation is given
in Section IV. In Section V we give a unified expression for tagacity of single-user MIMO
systems that accounts for arbitrary correlation matrixreg side. Numerical results for MIMO
relay networks and multiuser MIMO are presented in Sectibnavid conclusions are given in
Section VII.

Throughout the paper vectors and matrices are indicatedols) JA| and det A denote the
determinant of matrixA, anda; ; is the(i,j)m element of A. Expectation operator is denoted
by E{-}, and in particulafEy{-} denotes expectation with respect to the random variahle
The superscript denotes conjugation and transpositibms the identity matrix (in particulak,
refers to the(n x n) identity matrix), t{ A} is the trace ofA and® is used for the direct sum
of matrices defined aA @ B = diag(A, B) [20].

II. SYSTEM MODELS

We consider a network scenario as shown in Fig. 1, where a M(M®), Ng) link, with Nt
and Vi denoting the numbers of transmitting and receiving antenrespectively, is subject to
N, MIMO co-channel interferers from other links, each withigdry number of antennas. The
Ng-dimensional equivalent lowpass signalafter matched filtering and sampling, at the output

of the receiving antennas can be written as

N
y=Hoxo+ > Hix;+n 1)
k=1
wherexy, x1, . . ., xy, denote the complex transmitted vectors with dimensigns Ny, ..., N1y,

respectively. Subscripd is used for the desired signal, while subscripts. ., N, are for the
interferers. The additive noisa is an Ngy-dimensional random vector with zero-mean i.i.d.
circularly symmetric complex Gaussian entries, each wittependent real and imaginary parts

having variances?/2, so thatE {nn'} = o?I. The power transmitted from the® user is
E {X;ka} = Pk
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Py, xo

Fig. 1. MIMO Network.

The matriced,, in (1) denote the channel matrices of s{2é: x Nt;,) with complex elements
hl(.f;) describing the gain of the radio channel between tidransmitting antenna of the!
MIMO interferers and the receiving antenna of the desired link. In particulBf, is the
matrix describing the channel of the desired link (see Fjg. 1

When considering statistical variations of the channe,dhannel gains must be described as
r.v.. In particular, we assume uncorrelated MIMO Rayleigtliig channels for which the entries
of H;, are i.i.d. circularly symmetric complex Gaussian r.v. wadro-mean and variance one, i.e.,
E {|h§f§)|2} = 1. With this normalization P, represents the short-term average received power
per antenna element from userwhich depends on the transmit power, path-loss, and shagow
between transmittet and the (interfered) receiver. Thus, the are in general different.

N|:0,

Conditioned to the channel matricg¥l,}," , the mutual information between the received

vector,y, and the desired transmitted vectsy, is [21]

T (%o v [{H,) = H (v [{HJ) —H (v | %0 () @
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where?(-) denotes differential entropy.

Here we consider the scenario in which the receiver has @ge@®8l, and all the transmitters
have no CSI. Note that the term CSI includes the informatlmouathe channels associated with
all other MIMO interfering users. In this case, since thersisl® not know what is the interference
seen at the receiver (if any), a reasonable strategy is dlcateser transmits circularly symmetric
Gaussian vector signals with zero mean and i.i.d. elem&htss, the transmit power per antenna
element of thek™" user is P,/ Nt,. Note that this model includes the case in which the power
levels of the individual antennas are different: it suffiteslecompose a transmitter into virtual
sub-transmitters, each with the proper power level.

Hence, conditioned on all channel matric{iﬂk}]k,\“ZO in (1), bothy andy|x, are circularly
symmetric Gaussian. Since the differential entropy of a S vector is proportional to
the logarithm of the determinant of its covariance matrixg wbtain the conditional mutual

information
det K,

det Ky\xo
where K, and Ky, respectively denote the covariance matricesyadnd y|x,, conditioned

Cuo ({(H1YL, ) = log 3)

on the channel gainfp‘Hk}ff':O. By expanding the covariance matrices using (1), the cuomdit
mutual information of a MIMO link in the presence of multip@IMO interferers with CSI

only at the receiver is then given by:

det <INR +HYAH! )

C ( H N ) —1 4
wu { tHidizo ) = log o (In, + HUHY) @)
where theNg x (32N, Nr,) matrix H is
H = [H,[Hy| - [Hy]
the Ng x (3N, Nr;) matrix H is
H = [H,[H]
the covariance matrice¥, & are
W =0 In;, @ 02Ing, ® - D on INTNI (5)
and
\‘I}:QQINTO@‘I’ (6)
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with
_ k
~ Npio?

(7)

Qi

With random channel matrices the mutual information in §hie difference between random
variables of the formog det (I + H<I>HT) where the elements @ are i.i.d. complex Gaussian
and ® is a covariance matrix. The statistics of such random vlsabas been investigated
in [6]—[8], assuming that the eigenvalues ®f were distinct. However, in the scenario under
analysis these results cannot be used directly, since ieddh eigenvalue; of ¥ and ¥ has
multiplicity Nt,.

We consider the ergodic mutual information as a performaneasure: taking the expectation

of (4) with respect to the distribution c{fHk},iV':O, we get

N N
G 2 B { Cuw ({H}Y) b = G (Z Nri, N \Il> —Cs (Z Nri, N, \Il> ®)
1=0

i=1

where Cgy (n1, nr, ®) = Enf{log det (I, + H®H')} denotes the ergodic mutual information
of a single-user MIMO@1, nr) Rayleigh fading channel with unit noise variance per raogiv
antenna and channel covariance mapiat the transmitter.

Note that the “building blockEx{log det (I+ H®HT)} is simple to evaluate when the
covariance matrix® is proportional to an identity matrix, which corresponds aotypical
interference-free case with equal transmit power amongrafismitting antennas (see, e.g.,
[4]). In contrast, in the presence of interference, the damae matrix is of the type indicated
in (5) and (6), where the power levels of the different useesia general different. Note that
even when the power for thé2 user is equally spread over th¥;, antennas, the matrices
in (5) and (6) are in general not proportional to identity rizas and their eigenvalues have
multiplicities greater than one. Therefore, studying MINgstems in the presence of multiple
MIMO cochannel interferers requires the characterizatib@sy (nr, ng, ®) in a general setting
in which the covariance matrisb has eigenvalues of arbitrary multiplicities.

To this aim, we derive in the next sections simple expressionthe hypergeometric functions
of matrix arguments with not necessarily distinct eigeneal then, we obtain the joint p.d.f.
of the eigenvalues of central Wishart matrices as well asdh&aussian quadratic forms with

arbitrary covariance matrix.
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[1l. HYPERGEOMETRIC FUNCTIONS WITH MATRIX ARGUMENTS HAVING ARBTRARY
EIGENVALUES

Hypergeometric functions with matrix arguments [22] haweei used extensively in multi-
variate statistical analysis, especially in problemsteglao the distribution of random matrices
[23]. These functions are defined in terms of a series of zpabinomials, and, as such, they
are functions only of the eigenvalues (or latent roots) ef dihgument matrices [22], [23].

Definition 1: The hypergeometric functions of two Hermitian x m matricesA andW are
defined by [22]

Z R @)+ (ap) Cu(A)Co(W
qu(alw“’%bl’m’bq;A’W):;Zibi---gbq;ﬁ oty ©

where C,(-) is a symmetric homogeneous polynomial of degkteén the eigenvalues of its
argument, callegdonal polynomialthe sumy__ is over all partitions of, i.e.,x = (ki,..., kn)
with ky > ky > - > k,, > 0, ky + ks +--- + k,, = k, and the generalized hypergeometric
coefficient (a),. is given by(a), = [T, (a — 5(i — 1)), with (a)y = ala+1)---(a+k - 1),
(a)g = 1.

We remark that zonal polynomials are symmetric polynomirathe eigenvalues of the matrix
argument. Therefore, hypergeometric functions are onhctions of the eigenvalues of their
matrix arguments. In other words, without loss of generalie can replace\ and W with the
diagonal matrices dia@\i, ... \,,) and diagw;, ... w,,), where\; andw; are the eigenvalues
of A and W, respectively. Clearly the order & and W is unimportant.

It is quite evident that these functions expressed as assafrizonal polynomials are in general
very difficult to manage and the form of (9) is not tractable farther analysis. Fortunately,
when the eigenvalues &f andW are all distinct, a simpler expression in terms of determisia
of matrices whose elements are hypergeometric functiorscafar arguments can be obtained
as follows [24, Lemma 3]:

Lemma 1:([Khatri, 1970]) LetA = diag()\, ... \,,) and W = diag(wy, . . . w,,) with Ay >
<>\, andw; > --- > w,,. Then we have

- vi™ (b) G|
F,(ay,...;ap;b1,...,0 A, W) =T(m)
pra i » ! " ;,(,m)(a) Hi<j ()\i_)‘j)niq (w; — w;)

(10)

DRAFT



8 SUBM. TO IEEE TRANS. ON INF. TH.

whereT,,)(n) = [T12,(n — )\, WM b)) = 110, 4_(bj —i+1)"" and theij™ element of
the (m x m) matrix G is defined in terms of hypergeometric functions of scalauangnts as
follows

gi,j :qu (&1,...,dp;i)l,...,gq;)\iwj> (11)

Important particular cases are

- |Go|
Fy (A, W) =T, (m (12)
ofol ) =L )Hiq (N = A) I Ly (wi — wy)
and
= L m) (1) |G|
Fy(r;A, W) = (13)
Mo AW = o ) Ty v — ) T (= )
where theij™ elements 0fG, and G, are given by and (1 — Aiwj)m""l, respectively.

These expressions have been recently used to study théowlistin of Gaussian quadratic
forms, to express the p.d.f. of the eigenvalues of Wishattiogs, and to analyze the information-
theoretic capacity and error rates of communication systenwolving multiple antennas [5]—[8],
[25]-[31]. However, it is important to underline that Lemrharequires the eigenvalues of the

matrices to be all distinct.

Here, we generalize Lemma 1 to include the case where thewalyes are not necessarily
distinct. To this aim we first need the following lemma.

Lemma 2:Let P : A — R be defined oveA C R™ as follows:

filwr) filwz) -+ fi(wm)

Plw,. w2 |t 5L (14)

fn(w1) fn(w2) -+ fn(wm)

wherew; > w, - -+ > w,,, and the functions’;(w) have derivatives’™ (w) = <) of orders

dw
at leastm — 1 throughout neighborhoods of the points, . . ., w,,.
Then, the continuous extensioﬁ(wl,wz,...,wm) of the function P(wy,ws, ..., w,,) to
those points inR™ with L coincident argumentox = wgy1 = - -wg. 1 1S obtained by
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removing the zero factors from the denominator in (14), aejplg the columns of the matrix

in (14) corresponding to the coincident arguments with thecessive derivativeﬁi(L_”(wK),

l=1,...,L, and dividing by a scaling factdr (L) = []'il.
For example, forw; = wy = - - - wy, this procedure gives

o 1

P(wy,wa, ..., wy) = T

FE D wn) [P w) - fulwn) filwen) - fi(wn)

(15)

for " wn) T ) e fnwn) f(wran) - f(w)
More generally, a similar expression is valid if there arerengroups of coinciding arguments:
in this case, for each group of coincident argumenis = ... = wg, ;1 the correspondent
columns of the matrix in (14) are to be replaced f:ﬁ_”(w[(), l=1,...,L, with a scaling

factor [T il.

Proof: See Appendix I. O

With Lemma 2 we can now generalize (12), (13) and, more gépe(0).
Lemma 3:Let A = diag(\y,...\n) and W = diag(wy, . .. w,,) with A; > --- > A, and

Wy > > W = Whyy = 00 = Whyp—1 > Wear > -+ > Wy, Then we have
3 [ (m) (m) G|
0Fo (A7 W) = (16)
where the elements d& are
)\Z'L—l-i-k_jeki’wk j:k,,]{f+L—1

et elsewhere

that is, the matriXG is the same as that appearing in (12) except thaL.tbelumns corresponding
to the coincident eigenvalues akg'eriwr \E=2ediwn  AZediwk N Ak Ak,

Proof: The proof is immediate by direct application of Lemma 2 wjtkw) = eiv,

1From here on we will use the same symbols for the function$, (I3), (10) and their continuous extension.
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Lemma 3 can be directly extended to more groups of coinciéanvalues. In general,
the rule is that each eigenvalue of multiplicity L > 1 gives rise toL columns\-—'er,
APt N2\ et et in the matrixG of (16), with the proper scaling factd ) (L).

Using Lemma 3 withk = m — L + 1 andw, = 0 results in the following corollary, for the
case where some eigenvalues are equal to zero.
Corollary 1: Let A = diag(\y, ... \,,) and W = diag(wy, . .. w,,) with A; > --- > )\, and

Wy > > W11 = Wp_pi2 = - = wy, = 0. Then we have
- 'y (m G
OFO (A7 W) = F( )(L) ‘ | m—L T, (18)
) (L) Hz’<j (i = Ay) Hi<j§m—L (wi —wy) [ T2, w;
where the elements d& are as follows
AP j=m—L+1,....,m
Gij = (19)

eNiWi elsewhere

We can apply a similar methodology to derive the generalesgion forlﬁo(-; -,+), as in the

following Lemma.

Lemma 4:Let A = diag(\y,...\n) and W = diag(wy, . .. w,,) with A; > --- > A, and

Wy > > Wy = Wi = - = Wiy—1 > Wi > -+ > Wy. Then we have
B T m -1 (L-1)L/2 L—-1 -1 L-2 . — I 9 A
Py(L) ™y ey O = ) Tlic i, (Wi = w5)
wherey = m —r — 1 and the {n x m) matrix A has elements as follows
ALmh=d () N T ETIRED e R+ L— 1
ai,j _ % ( J) J (21)

(1= Nw;)" elsewhere.

In other words, the matriA is the same as that appearing in (13), except that tbelumns cor-
responding to the. coincident eigenvalues ave ! (1 — A\wy,)” F 7Y, 0 A (1 — Awg) '™,
(1 — Nwg)”.

Proof: For the proof we apply Lemma 2 witfi(w) = (1 — \;wy)”, whosen! derivative
is £ (w) = (=X)"y(y = 1) -+ (v =+ 1) (1= Aawg) ™" O

Lemma 4 can be further generalized to more groups of cointeigenvalues: each eigenvalue

w of multiplicity L > 1 gives rise tal columns\F— (1—X\aw) =D 0 A2 (1—\w) ™2, \i(1—
Aw)Y~L (1 — \w)? in the matrix A of (20), and to a factof—1)(E=DE/2p L=t (4 — [ +
2)/T (L),

DRAFT



CHIANI, WIN, SHIN: MIMO NETWORKS. 11

Using Lemma 4 withk = m — L + 1 andw, = 0 results in the following corollary.
Corollary 2: Let A = diag(Ay, ... \,) and W = diag(wy, . . . wy,) with Ay > --- > ), and

Wy > > W11 = Wp_po = - = w, = 0. Then we have that (20) holds, with

A j=m—L+1,....m

2

am- = (22)
(1 — M\w;)” elsewhere.

In other words, the matriA has in this case the lastcolumns with elements” ' \-72 ..\ 1.

Finally, we give the result for thgF,(-).
Lemma 5:Let A = diag(\y,...\,) and W = diag(wy, ... w,,) with A\; > --- > ), and

Wy > > Wy = Why1 =+ = Wipp_1 > Weep > - > Wy. Then we have
~ - C|
F,(ay,...,apby,....b5; A, W) =E (23)
m g ! [Tic; (N = X)) T o, (wi = wy)
where the £ x m) matrix C has elements as follows
Cij =T F o (ar —m A LAk =g, by—m+ L+ k— j; Nw,) (24)
forj=k,....,k+L—1, and
Cij = qu (&1, cey dm 61, cey Blﬁ )\zwy)
elsewhere. In (23) the constaftis
m L-1 ,. ~ ~
= _ D (m) 0™ (0) T (@)@ (@)
Py (L) {™ (a) 11 (b)i(ba)i -« (by)s
Proof: See Appendix I. ]

IV. GAUSSIAN QUADRATIC FORMS WITH COVARIANCE MATRIX HAVING EIGENVALUES OF

ARBITRARY MULTIPLICITY

We now derive the joint p.d.f. of the eigenvalues for Gausgjaadratic forms and central
Wishart matrices with arbitrary one-sided correlation nmat

Lemma 6:Let H be a complex Gaussidp xn) random matrix with zero-mean, unit variance,
i.i.d. entries and lefb be an(n xn) positive definite matrix. The joint p.d.f. of the (real) naaro
ordered eigenvalues;, > X\, > ... > ), > 0 of the (p x p) quadratic formW = H®H' is
given by

Mmin

IEs (25)

i=1

@1, Bng) = KIVE)] |G, 1)
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wherenmin = min(n, p), V(x) is the @umin X nmin) Vandermonde matrix with elements; = =/,

—1 P(n—nmin) Z-L: ﬂilz‘p

L m;m;

andguy > p) - .. > pr are thel distinct eigenvalues o ~*, with corresponding multiplicities

mq, ..., my such thath:1 m; =n.

The (v x n) matrix G(x, ) has elements

(—xj)di e He)Ti 7=1,... Nmin

9ij = L (27)
[n_j]d.ﬂ(ei] & j:nmin—i-l,...,n

(3

wherefa|y, = a(a—1)---(a — k+ 1), [a]o = 1, e; denotes the unique integer such that
mi+ ...+ Mg <Z§m1—|——|—mel

and .
d; = imk — 1.
Proof: See Appendix I. = ]

Note that Lemma 6 gives, in a compact form, the general jasttidution for the eigenvalues
of a central Wisharty{ > n), and central pseudo-Wishart or quadratic form % p), with
arbitrary one-sided correlation matrix with not-necesgatistinct eigenvalues.

In fact, Lemma 6 can be used for bgth> n andn > p; in particular, forn > p we have
[]imin zP~"mn = 1 in (25), while forp > n the second row in (27) disappears gnd )P(n—nmin) = 1
in (26).

Moreover, using Lemma 6 and the results in [32], [33] we caso alerive the marginal

distribution of individual eigenvalues or of an arbitranybset of the eigenvalues.

V. ERGODIC MUTUAL INFORMATION OF A SINGLE-USERMIMO SYSTEM

In this section we provide a unified analysis of the ergodi¢ualinformation of a single-user
MIMO system with arbitrary power levels/correlation amaihg transmitting antenna elements
or arbitrary correlation at the receiver, admitting caatieln matrices with not-necessarily distinct
eigenvalues.

Let us consider the function
Csu (n, p, ®) = Ex{log det (I, + H®H')} (28)

DRAFT
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where ® is a generic(n x n) positive definite matrix and is a (p x n) random matrix with
zero-mean, unit variance complex Gaussian i.i.d. entries.

Now, consider a single-user MIMQ:r, ng) Rayleigh fading channel witl+, ¥ denoting
the (nt x nt) transmit andng x ngr) receive correlation matrices, respectively, having dego
elements equal to one. Assume the transmit vegtas zero-mean complex Gaussian, with
arbitrary (but fixed)(nr x nt) covariance matrixQ = E {xx'} so that t{Q} = P. Then,
the function (28) can be used to express the ergodic mutt@iniation in the following cases
[6]-{8]:

1) the MIMO-nt, ngr) channel with no correlation at the receiver{ = I), covariance matrix

at the transmitter sid@+, and transmit covariance matrQ.
In this case the mutual information &y (nr,nr, ®) with & = (1/0%)®1Q. If also
¥t =1, we have® = (1/6%)Q and therefore tf®} = P/o>.
2) the MIMO+nt,ngr) channel with no correlation at the transmittdr{ = I), covariance
matrix at the receiver sid@g, and equal power allocatio® = P/n+1.
In this case the capacity 6sy (ng,nt, ®) with ® = (P/nto?)Pg, giving tr{®} =
(P/o?)(nr/n7), in accordance to [6, Theorem 1].

In both cases”/o? represents the SNR per receiving antenna.

By indicating withnmi, = min(n, p) and with f5(-,...,-) the joint p.d.f. of the (real) ordered

non-zero eigenvalues, > \, > ... > )\, . > 0 of the (p x p) random matrixW = H®HT,

Mmin

we can write:
=1

_ / I ) S log (14 ;) dx (29)
Dord

=1
where the multiple integral is over the domélil,y = {co > xy > 29> ... >z, > 0} and
dx = dxydzy - - - dx,,,
The nested integral in (29) can be evaluated using the sefuin previous sections and
Appendix Il, leading to the following Theorem.
Theorem 1:The ergodic mutual information of a MIMO Rayleigh fading anal with CSI at

the receiver only and one-sided correlation madrixiaving eigenvalues of arbitrary multiplicities
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is given by

Csu (n,p,®) = K Y _det (RW) (30)

In the previous equationy, = min(n, p), the matrixR*) has elements

(—1)% fooo P~ mintI =1t di o =T ey) (] e j=1,....,nmin, j £ k

(k)

Tij

=9 (~1)4 fooo gPrminti = di o= ey Jog (1 +2)de j=1,...,0mn, j =k (31)

[ = dla, iy J=nmn+1,....n

and [aly, e;, d;, K are defined as in Lemma 6, whegig,y > 1) ... > iz are thelL distinct
eigenvalues ofd~!, with corresponding multiplicitiesn,, ..., my.
Proof:

In Section IV it is shown that the joint p.d.f. of the orderedesvalues ofW can be written
as (25), where the elements ¥f(x), é(x, p) are real functions ofy, ..., z,_ . Thus, by using
Appendix I, the multiple integral in (29) reduces to (30). O

Note that the integral in (31) can be evaluated easily widndard numerical techniques;
however, the integral can be further simplified, using thmtdiesfooo ame Mdy = m!/um T,
and [ e In(1 + z)de = mlet Y " (i —m,pu)/p™, whereT'(-,-) is the incomplete
Gamma function.

Theorem 1 gives, in a unified way, the exact mutual infornmatar MIMO systems, encom-
passing the cases oz > nt andnt > ng with arbitrary correlation at the transmitter or at
the receiver, avoiding the need for Monte Carlo evaluatidme application of the results in
Sections IlI-V enables a unified analysis for MIMO systemsijjcl allow the generalization
for ergodic and outage capacity [6]-[8], [29], for optimu@ntbining multiple antenna systems
[26], [27], for MIMO-MMSE systems [28], for MIMO relay netwés [34], [35], as well as for
multiuser MIMO systems and for distributed MIMO systemsgc@mting arbitrary covariance
matrices. For example, after the first derivation of the Ingpemetric functions of matrices with
non-distinct eigenvalues in [36], other applications toltiple antenna systems have appeared
in [32], [37]-40].

VI. NUMERICAL RESULTS
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Let us first apply Theorem 1 to the analysis of a single-useM®Isystem with unequal
power levels among the transmitting antennas. Figure 2 shioevergodic mutual informatién
of a MIMO-(6, 3) Rayleigh channel, where the relative transmitted powesltegre{1 + A, 1+
A1+ A 1—A1—A1— A}. The particular caseA = 0 and A = 1 are equivalent to the
equal power levels over and 3 transmitting antennas, respectively. This figure shows tiav
capacity decreases dsincreases front) to 1, with a behavior in accordance to analysis based
on majorization theory [41].

As another example of application, we evaluate the perfoomaf MIMO relay networks in
Rayleigh fading [34], [35]. For such networks the networlpaeity is upper bounded by [35,
eq. (5)], which can be easily put in the foré}, = ;Ex{logdet (I+ H®H')}, and evaluated
in closed form by Theorem 1. In Fig. 3 we report the exégtas obtained from Theorem 1,
compared with the Jensen’s inequality [35, Theorem 1]. Tgaré has been obtained for a
source node withl antennasj relays each equipped withantennas, as a function of the total
equivalent SNR here defined &\R = tr {®}. We assume, for thé relays, that the received
power is distributed proportionally to the weigHts, 2, 5, 10, 20}. It can observed that the results
based on the Jensen’s inequality can be overly optimistic.

As a third example of application we evaluate, using (8) tegewith Theorem 1, the exact
expression of the ergodic mutual information of MIMO sysgein the presence of multiple
MIMO interferers in Rayleigh fading. In particular, the eivalues to be used in Theorem 1 are
given by y;y = 1/0; = 0>Nr,/P;, allowing an easy analysis for several scenarios. We define
the average SNR per receiving antennagS&R = P, /02 giving oo = SNR/ N+, and the SIR
asSIR = R/ Zm P,.2 Fig. 4 shows the ergodic mutual information for a MIM®:6) system
as a function of the SIR, in the presence of one MIMO cochairtetferer havingN+, equal
power transmitting antennas. It can be noted that the cypdecreases with the increase in the
number of interfering antenna elements, tending to theecobtained by using the Gaussian

approximatiorf. Despite the fact that the received vectoiin (1) is Gaussian conditioned on

2For the numerical results we use the base 2 of logarithm ifomthulas, giving a mutual information in bits/s/Hz.

3We recall that, with our normalization on the channel gaths, mean received power from useis P;, and our definition
of SIR account for thelotal interference power.
“With Gaussian approximation the performance is evaluaseidl iaterference were absent, except the overall noise pisve

set too? +Y°,., P;, giving a signal-to-interference-plus-noise raBtNR = (gix + six)
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the channel matrices, and that the element$ipfare Gaussian, approximating the cumulative
interference as a spatially white complex Gaussian vestqressimistic for analyzing MIMO
systems in the presence of interference, unless the nurhtvanemitting antenna of the interferer
is large compared with that of the desired user. This is lsmrdhe Gaussian approximation
implicitly assumes that the receiver does not exploit thd GfSthe interferers (single-user
receiver), whereas the exact capacity accounts for the ledge of all CSI at the receiver. In
the same figure we also report, using circles, the capac#ysoigle-user MIMO-Nt, Nr— Nt;)

for Ngr > Nt,. It can be observed that the capacity of the MINI®r,, NR) in the presence of
Nt interfering antenna elements approaches asymptoti¢alyarge interference power, to a
floor given by the capacity of a single-user MIMO%,, Ngr — N1;) system. This behavior can
be thought of as using/t; DoF at the receiver to null the interference in a small SIRmeg
On the other hand, wheNr < Nt, the capacity approaches to zero for small SIR. This is due
to the limited DoF at the receiver (related to the numbgrof receiving antenna elements) that
prevents mitigating all interfering signals (one from eactienna elements) while, at the same
time, processing théVy, useful parallel streams, as previously observed for meltgmtenna

systems with optimum combining [2], [26], [27].

Finally, in Fig. 5 we consider a MIMQ#+,,6) system in the presence of one and two
MIMO interferers in the network, each equipped with the sammber of antennas as for the
desired user. We clearly see here two different regionssiioall SIR the interference effect is
dominant, and it is better for all users to employ the minimuumber of transmitting antennas
(i.e., MIMO-(3,6) for all users), so as to allow the receiver to mitigate theriieting signals.
On the contrary, for large SIR the channel tends to that ohglsiuser MIMO system and it
is better to employ the maximum number of transmitting améesn In the same figure we also
report the capacity for interference-free channels, whegresents the asymptotes of the four
curves, as well as the Gaussian approximation, which iectlyrindicates that it is always better

to use the largest possible number of transmitting antennas

It can be also verified that, in a network where all nodes anmeguthe same MIMO, n)
systems, larger values af achieve higher mutual information, for all values of SIR &NR.
Note, however, that when increasing the number of antenmasisers, correlation may arise in

the channel matrices.
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VIlI. CONCLUSION

We have studied MIMO communication systems in the presehorutiiple MIMO interferers
and noise. To this aim, we first generalized the determingprtesentations for hypergeometric
functions with matrix arguments to the case where the emjeeg of the argument matrices have
arbitrary multiplicities. Then, we derived a unified forraudbr the joint p.d.f. of the eigenvalues
for central Wishart matrices and Gaussian quadratic foathswing arbitrary multiplicities for
the covariance matrix eigenvalues. These new results erthbl analysis of many scenarios
involving MIMO systems. For example, we derived a unifiedresgion for the ergodic mutual
information of MIMO Rayleigh fading channels, which apgli® transmit or receive correlation
matrices with eigenvalues of arbitrary multiplicities. \ilave shown how to apply the new
expressions to MIMO networks, deriving in closed form thgoglic mutual information of

MIMO systems in the presence of multiple MIMO interferers.

APPENDIX |

PROOFs

A. Proof of Lemma 2

For ease of notation and without loss of generality we cansitle cases = 1, where the
application of the lemma leads to (15). For the proof we pedcey induction. First, the result
in (15) is obvious forL = 1, since in this case (15) coincides with (14). Then, we mustssh
that if (15) is true for anyL then it is also true for. + 1. So, assuming that (15) holds far,

we must find

lim  P(wi, ..., wy).
W[41 WL,

In this regard note that, withy;, = w, = --- = wy, the productHKj’wﬁéwj (w; — w;) in (15)
contains exactlyl, factors with values £ w;, — wr1. Thus, by rewritingwy,; = wy — € we
have

. o 1

lim  P(wy,...,wy,) = 1

1 .,
WLH1WL Hi<j7wi7éwj7j7él/+1(wi —wp) [ !
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W wp) - filwr) filwp —€) oo fiwp)

Jim — | : . (32)

e»OeL

(L=1)

m(wp) e fm(wr) fo(wp —€) - frn(wm)

We can now apply the Taylor expansion to the functions

L n
ftw—0 =3 "L o, (39)
n=0

whereO(¢) denotes omitted terms of order We also know from basic algebra that, seen as a
function of a column with the others fixed, the determinard ignear function of the entries in

the given column, as is clear for example from the Laplaceaegn. Therefore, we have

lim p(wl,...,wm):
WL 41—WL
L
1 , 1 (—e)"
= lim [ O(e) + —
L—1 .
Hi<j,wi;éwj,j7éL+1<wi - U)j) Hi:ll il 0 ( et nZ:% nl
A wn) - fulwn) Ao - fu(wn)
(34)
P wr) e fwr) £ (wr) < fn(wn)
In the summation above the determinants for= 0,...,L — 1 are zero since there are

coincident columns. So, in the limit far— 0 only the term of gradd. remains.
By simplifying and reordering the first + 1 columns of the matrix in (34), with a cyclic

permutation having sign equal te-1)%, we finally have

. 1
lim  P(wi,...,wy) = L
WL—WL41 7 7 Hi<j,wﬁéwj (wl - wj) Hi:l il

DRAFT



CHIANI, WIN, SHIN: MIMO NETWORKS. 19

fl(L)(wLH) o filwpg) filwoye) -0 filwn)

(35)

FP(wp) - fuwiin) fu(wiss) - fon(wm)

which is again in the form of (15). This concludes the proofibguction of Lemma 2 for
wy = -+ = wWp.

The extension to differenk’ and more groups of coincident arguments is straightforward

B. Proof of Lemma 5.

The derivatives of the hypergeometric function of scalguarents can be expressed as

- (@1)n - - - (ap)

ﬁqu(al,...,ap;bl,...,bq;z): "pF’q(al+n,...,ap+n;b1+n,...,bq+n;z).

(bl)n e (bq)n
Using this result in Lemma 2 and (10) with

fl(w) = qu <C~L1, .o .,dp; 61, .o .,i)q; )\ﬂU)

gives Lemma 5.

C. Proof of Lemma 6

Here, based on Section lll, we prove Lemma 6 concerning tgengalues distribution of
Gaussian quadratic forms. The problem is related to theillision of random matrices of the
form W = H®H', whereH is a Gaussiar(p x n) matrix with uncorrelated entries andl
is a (n x n) positive definite matrix that represents the covariancerimat the channel. The
eigenvalues distribution has been studied for the two ptessiases: > p andp > n in [6],
[7], assuming a covariance matrii with distinct eigenvalues (i.e., unit multiplicity). We tee
generalize the results to matricéswith arbitrary eigenvalue multiplicities.

Let us first recall the distributions for the case of covartematrix with distinct eigenvalues.
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1) Correlation on the shortest side - distinct eigenvalu&ébe casep > n has been analyzed
in [6], where it is shown that the joint p.d.f. of the (realdered eigenvalues;, > X\ > ... > A\,

of Wiis
1 H?:l :w;l')
Lioy(p) [icj (i — 1)

wherey; are then distinct eigenvalues o, V(x) is the @ x n) Vandermonde matrix with

Iz, ... x,) =

V) IGE ) [ ]2 (36)
j=1

elementsy; ; = x§‘1 and whereG(x, p) is a (o x n) matrix with elementsy; ; = e #%.

2) Correlation on the largest side - distinct eigenvalu®¥e here briefly derive the joint p.d.f.
for the eigenvalues oW when® has all distinct eigenvalues amd> p, based on the results in
Section Ill. Note that this case has been analyzed also iby#bllowing a different approach.

First we recall that, given & x n) random matrixH with n > p and p.d.f.
qPne—tr HHY (37)
the p.d.f. of the(p x p) quadratic form
W = H®H', (38)

where the(n x n) matrix ® is positive definite, is given by [42], [43]

W[
W) —

Then, the joint p.d.f. of the (real) ordered eigenvalues> X\, > ... > )\, of W is given by

7 oy (71, -W). (39)

using the results in [22, eq. (93)] as
p

falzr, .. mp) = Ki @77 oFy (@7, =W) W[ ] (21 — 2,)* (40)
1<J
where
1
Ki=——. (41)
! Fp(n)rp(p)

Note that in (40) the two matriceB~! andW are of dimensiongn xn) and(px p), respectively.
So, in (40) we evaluatgl, (@', B) whereB = —-W & 0-1, is obtained by adding — p zero
eigenvalues to-W [7].

Differently from the previous literature, we can now difgctise Corollary 1 and get im-
mediately the joint p.d.f. of the ordered eigenvalues of the< p) matrix W whenn > p

as.
(—1pn=p) TTE f
Loy(p)  Tlicy (i — 115)

I, wp) = V)] G(x, 1)l (42)
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wherey; are the eigenvalues @1, all of multiplicity one hereV (x) is the {x p) Vandermonde

matrix, and the x m) matrix G(x, u) has elements as follows

e it j=1...,p

9ij = n—j . (43)
% j=p+1,....n
that is, the matrixG(x, p) is
_e—ulm c.. eTHITP M?—p—l ,U?_p_z cee g 1_
e—H2TL ... p—H2Tp Iug_p_l g_p_2 e opg 1 g(x, 1)
X?
T T e
_g(X, :un)_
_6—unm1 s @ HnTp luz—:n—l luz—p—2 Cee fp 1_

3) Generalization to covariance matrix with arbitrary emalues: Note that (36) and (42)
are only valid for covariance matrices with all distinct emgalues (multiplicity one). So, we
must now generalize these expressions to the case of ijteeeseigenvalueg; with arbitrary
multiplicities. This step is possible by using Lemma 2.

In fact, we note that in both (36) and (42) we have a ratio offthen

G
Gx,p)] (45)
[L<; (i — 1)
By using Lemma 2, for each eigenvalue with multiplicity, we must replace the rows of

G(x, ) with their successive derivatives with respect to the aigkre, and divide by'(,,,,) (m;),

obtaining
g™ h(x, )
g (x, ua))
(0)
g (X7M(1))
G 1
G, —_det : (46)

iy (o= 1) " TL T (m) Ty (0 =)™ |
gy (Xv :U(L))

g(l) (Xv ,U(L))
g0 (x, pry)
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where the row vectog”) (x, 1) is the ™" derivative of the rowg(x, 1) in (36) or (44). Thej"

element ofg¥) (x, 1) is so derived to be

U s .
l ! (—x;) e7he J=1....p
g =9 () = SR (47)
[n— gl ™ j=p+1,...,n
The relation between the row index, and the derivative ordel, can be established by
introducing the functior; indicating the eigenvalug.,) € {1y, - ... u )} to be used in row

1 of the matrix in the RHS of (46). It is easy to verify thatis the unique integer such that
my+ ...+ me,1 <1 <mg+ ...+ me,.

Then, the derivative order for the roms [ = d;, where

k=1
Thus, the generic element of the matrix in the RHS of (4695.1@(#(62.)).
Combining (36), (42) and (46) we have Lemma 6.

APPENDIX I

AN IDENTITY ON MULTIPLE INTEGRALS INVOLVING DETERMINANTS

Theorem 2:Given an arbitraryp x p matrix ® (x) with ij0 elements®;(z;), an arbitrary

n X n matrix ¥ (x), n > p, with elements
\I/Z(JIJ) j: 1,,])
‘Ili,j ]:p—|—1,,n

and two arbitrary functiong(-) and£(-) the following identity holds:

/“'/pm'q’(x" - |@<x>|g§<xm>gé<xi>dx
_ ;det <{Cf('?},-,j:1...,n) (48)
) >

where the multiple integral is over the domdm,q = {b > =1 > « >z, >a},

(k) _ ff () V;(z) £(2) Uk, (é(@) drj=1,...,p
v Wi J=p+1,...,n
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and the functionU;, ;(z) is defined by

x if k=
Uy,j(z) = (49)
i k£

Proof: As this theorem is an extension of [6, Theorem 3], it is sudfitifor the proof to

follow the same steps reported there. O
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Fig. 2. Ergodic mutual information for single-user MIMO ss1s as a function of SNR over Rayleigh uncorrelated fading
with nt = 6, ng = 3. Half of the antennas with power (normalized}- A, the others withl — A, i.e., with transmitted power
levels (normalized) equal t91 + A, 1+ A1+ A 1— A1 — A1 — A}
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Fig. 3. Bound on the network capacity for MIMO relay networl8ource with4 antennasp relays with2 antennas each,

power levels per relay proportional {d, 2, 5, 10, 20}.
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MIMO(6,6), SNR=10 dB, one interferer with Nantennas

Ergodic mutual information (bits/s/Hz)

SIR (dB)

Fig. 4. Ergodic mutual information for MIMO-(6,6) as a fuimt of SIR in the presence of one MIMO cochannel interferer
with Nty = 1,2,4,6,10. The SNR is set to 10 dB. The Gaussian approximation of thexrference is also shown. Diamond:
capacity of a single-user MIM@6, 6). Circles: capacity of a single-user MIM@ 6 — Nt;) (only for Nt; = 1,2,4).
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Fig. 5. Ergodic mutual information as a function of the sigtaatotal interference ratio. MIMO system witNr = 6 receiving
antenna SNR = 10 dB. The Gaussian approximation of the interferencess ahown. Scenario with one and two interferers,
each with the same number of transmitting antennas as theedeser. Cases df, 4,5 and 6 transmitting antennas. Circles:

capacity of single-user MIM@Nq, NR).
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