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Abstract

MIMO systems are being considered as one of the key enabling technologies for future wireless

networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is

not well understood. In this paper, we develop an analyticalframework to characterize the capacity of

MIMO communication systems in the presence of multiple MIMOco-channel interferers and noise.

We consider the situation in which transmitters have no channel state information and all links undergo

Rayleigh fading. We first generalize the determinant representation of hypergeometric functions with

matrix arguments to the case when the argument matrices haveeigenvalues of arbitrary multiplicity. This

enables the derivation ofthe distribution of the eigenvalues of Gaussian quadratic forms and Wishart

matrices with arbitrary correlation, with application to both single-user and multiuser MIMO systems.

In particular, we derive the ergodic mutual information forMIMO systems in the presence of multiple

MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of

antennas having possibly unequal power levels. This framework, therefore, accommodates the study of

distributed MIMO systems and accounts for different spatial positions of the MIMO interferers.

Index Terms

Eigenvalues distribution, Gaussian quadratic forms, Hypergeometric functions of matrix arguments,

Interference, MIMO, Wishart matrices.

I. INTRODUCTION

The use of multiple transmitting and receiving antennas canprovide high spectral efficiency

and link reliability for point-to-point communication in fading environments [1], [2]. The analysis

of capacity for MIMO channels in [3] suggested practical receiver structures to obtain such

spectral efficiency. Since then, many studies have been devoted to the analysis of MIMO systems,

starting fromthe ergodic [4] and outage [5] capacity for uncorrelated fading to the case where

correlation is present at one of the two sides (either at the transmitter or at the receiver) or at

both sides [6]–[8]. The effect of time correlation is studied in [9].

Only a few papers, by using simulation or approximations, have studied the capacity of MIMO

systems in the presence of cochannel interference. In particular, a simulation study is presented

in [10] for cellular systems, assuming up to3 transmit and3 receive antennas. The simulations

showed that cochannel interference can seriously degrade the overall capacity when MIMO links

are used in cellular networks. In [11], [12] it is studied whether, in a MIMO multiuser scenario,
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it is always convenient to use all transmitting antennas. Itwas found that for some values of SNR

and SIR, allocating all power into a single transmitting antenna, rather than dividing the power

equally among independent streams from the different antennas, would lead to a higher overall

system mutual information. The study in [11], [12] adopts simulation to evaluate the capacity of

MIMO systems in the presence of cochannel interference, andthe difficulties in the evaluations

limited the results to a scenario with two MIMO users employing at most two antenna elements.

In [13] the replica method is used to obtain approximate moments of the capacity for MIMO

systems with large number of antenna elements including thepresence of interference. The

approximation requires iterative numerical methods to solve a system of non-linear equations,

and its accuracy has to be verified by computer simulations. Amultiuser MIMO system with

specific receiver structures is analyzed for the interference-limited case in [14], [15].

The MIMO capacity at high and low SNR for interference-limited scenarios is addressed in

[16], [17]. A worst-case analysis for MIMO capacity with CSIat the transmitter and at the

receiver, conditioned on the channel matrix, can be found in[18]. Asymptotic results for the

Rician channel in the presence of interference can be found in [19].

In this paper, we develop an analytical framework to analyzethe ergodic capacity of MIMO

systems in the presence of multiple MIMO cochannel interferers and AWGN. Throughout the

paper we consider rich scattering environments in which transmitters have no CSI, the receiver

has perfect CSI, and all links undergo frequency flat Rayleigh fading. The key contributions of

the paper are as follows:

• Generalization of the determinant representation of hypergeometric functions with matrix

arguments to the case where matrices in the arguments have eigenvalues with arbitrary

multiplicity.

• Derivation, using the generalized representation, of the joint p.d.f. of the eigenvalues of

complex Gaussian quadratic forms and Wishart matrices, with arbitrary multiplicities for

the eigenvalues of the associated covariance matrix.

• Derivation of the ergodic capacity of single-user MIMO systems that accounts for arbitrary

power levels and arbitrary correlation across the transmitting antenna elements, or arbitrary

correlation at the receiver side.

• Derivation of capacity expressions for MIMO systems in the presence of multiple MIMO

interferers, valid for any number of interferers, each witharbitrary number of antennas
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having possibly unequal power levels.

The paper is organized as follows: in Section II we introducethe system model for multiuser

MIMO setting, relating the ergodic capacity of MIMO systemsin the presence of multiple

MIMO interferers to that of single-user MIMO systems with nointerference. General results

on hypergeometric functions of matrix arguments are given in Section III. The joint p.d.f. of

eigenvalues for Gaussian quadratic forms and Wishart matrices with arbitrary correlation is given

in Section IV. In Section V we give a unified expression for thecapacity of single-user MIMO

systems that accounts for arbitrary correlation matrix at one side. Numerical results for MIMO

relay networks and multiuser MIMO are presented in Section VI, and conclusions are given in

Section VII.

Throughout the paper vectors and matrices are indicated by bold, |A| anddetA denote the

determinant of matrixA, andai,j is the (i, j)th element ofA. Expectation operator is denoted

by E {·}, and in particularEX{·} denotes expectation with respect to the random variableX.

The superscript† denotes conjugation and transposition,I is the identity matrix (in particularIn

refers to the(n× n) identity matrix), tr{A} is the trace ofA and⊕ is used for the direct sum

of matrices defined asA⊕B = diag(A,B) [20].

II. SYSTEM MODELS

We consider a network scenario as shown in Fig. 1, where a MIMO-(NT0, NR) link, with NT0

andNR denoting the numbers of transmitting and receiving antennas, respectively, is subject to

NI MIMO co-channel interferers from other links, each with arbitrary number of antennas. The

NR-dimensional equivalent lowpass signaly, after matched filtering and sampling, at the output

of the receiving antennas can be written as

y = H0 x0 +

NI
∑

k=1

Hk xk + n (1)

wherex0,x1, . . . ,xNI denote the complex transmitted vectors with dimensionsNT0, NT1, . . . , NTNI
,

respectively. Subscript0 is used for the desired signal, while subscripts1, . . . , NI are for the

interferers. The additive noisen is an NR-dimensional random vector with zero-mean i.i.d.

circularly symmetric complex Gaussian entries, each with independent real and imaginary parts

having varianceσ2/2, so thatE
{

nn†
}

= σ2I. The power transmitted from thekth user is

E

{

x
†
kxk

}

= Pk.
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Fig. 1. MIMO Network.

The matricesHk in (1) denote the channel matrices of size(NR×NTk) with complex elements

h
(k)
i,j describing the gain of the radio channel between thej th transmitting antenna of thekth

MIMO interferers and theith receiving antenna of the desired link. In particular,H0 is the

matrix describing the channel of the desired link (see Fig. 1).

When considering statistical variations of the channel, the channel gains must be described as

r.v.. In particular, we assume uncorrelated MIMO Rayleigh fading channels for which the entries

of Hk are i.i.d. circularly symmetric complex Gaussian r.v. withzero-mean and variance one, i.e.,

E

{

|h
(k)
i,j |

2
}

= 1. With this normalization,Pk represents the short-term average received power

per antenna element from userk, which depends on the transmit power, path-loss, and shadowing

between transmitterk and the (interfered) receiver. Thus, thePk are in general different.

Conditioned to the channel matrices{Hk}
NI
k=0, the mutual information between the received

vector,y, and the desired transmitted vector,x0, is [21]

I
(

x0 ; y | {Hk}
NI
k=0

)

= H
(

y | {Hk}
NI
k=0

)

−H
(

y | x0, {Hk}
NI
k=0

)

(2)
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whereH(·) denotes differential entropy.

Here we consider the scenario in which the receiver has perfect CSI, and all the transmitters

have no CSI. Note that the term CSI includes the information about the channels associated with

all other MIMO interfering users. In this case, since the users do not know what is the interference

seen at the receiver (if any), a reasonable strategy is that each user transmits circularly symmetric

Gaussian vector signals with zero mean and i.i.d. elements.Thus, the transmit power per antenna

element of thekth user isPk/NTk. Note that this model includes the case in which the power

levels of the individual antennas are different: it sufficesto decompose a transmitter into virtual

sub-transmitters, each with the proper power level.

Hence, conditioned on all channel matrices{Hk}
NI
k=0 in (1), bothy andy|x0 are circularly

symmetric Gaussian. Since the differential entropy of a Gaussian vector is proportional to

the logarithm of the determinant of its covariance matrix, we obtain the conditional mutual

information

CMU

(

{Hk}
NI
k=0

)

= log
detKy

detKy|x0

(3)

whereKy and Ky|x0 respectively denote the covariance matrices ofy and y|x0, conditioned

on the channel gains{Hk}
NI
k=0. By expanding the covariance matrices using (1), the conditional

mutual information of a MIMO link in the presence of multipleMIMO interferers with CSI

only at the receiver is then given by:

CMU

(

{Hk}
NI
k=0

)

= log
det
(

INR + H̃Ψ̃H̃†
)

det (INR +HΨH†)
(4)

where theNR × (
∑NI

i=1NTi) matrix H is

H = [H1|H2| · · · |HNI ]

theNR × (
∑NI

i=0NTi) matrix H̃ is

H̃ = [H0|H]

the covariance matricesΨ, Ψ̃ are

Ψ = ̺1 INT1
⊕ ̺2 INT2

⊕ · · · ⊕ ̺NI INTNI
(5)

and

Ψ̃ = ̺0 INT0
⊕Ψ (6)
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with

̺i =
Pi

NTiσ2
. (7)

With random channel matrices the mutual information in (4) is the difference between random

variables of the formlog det
(

I+HΦH†
)

where the elements ofH are i.i.d. complex Gaussian

and Φ is a covariance matrix. The statistics of such random variables has been investigated

in [6]–[8], assuming that the eigenvalues ofΦ were distinct. However, in the scenario under

analysis these results cannot be used directly, since in (4)each eigenvalue̺i of Ψ and Ψ̃ has

multiplicity NTi.

We consider the ergodic mutual information as a performancemeasure: taking the expectation

of (4) with respect to the distribution of{Hk}
NI
k=0, we get

CMU , E

{

CMU

(

{Hk}
NI
k=0

)}

= CSU

(

NI
∑

i=0

NTi, NR, Ψ̃

)

− CSU

(

NI
∑

i=1

NTi, NR,Ψ

)

(8)

whereCSU (nT, nR,Φ) , EH

{

log det
(

InR +HΦH†
)}

denotes the ergodic mutual information

of a single-user MIMO-(nT, nR) Rayleigh fading channel with unit noise variance per receiving

antenna and channel covariance matrixΦ at the transmitter.

Note that the “building block”EH

{

log det
(

I+HΦH†
)}

is simple to evaluate when the

covariance matrixΦ is proportional to an identity matrix, which corresponds toa typical

interference-free case with equal transmit power among alltransmitting antennas (see, e.g.,

[4]). In contrast, in the presence of interference, the covariance matrix is of the type indicated

in (5) and (6), where the power levels of the different users are in general different. Note that

even when the power for theith user is equally spread over theNTi antennas, the matrices

in (5) and (6) are in general not proportional to identity matrices and their eigenvalues have

multiplicities greater than one. Therefore, studying MIMOsystems in the presence of multiple

MIMO cochannel interferers requires the characterizationof CSU (nT, nR,Φ) in a general setting

in which the covariance matrixΦ has eigenvalues of arbitrary multiplicities.

To this aim, we derive in the next sections simple expressions for the hypergeometric functions

of matrix arguments with not necessarily distinct eigenvalues; then, we obtain the joint p.d.f.

of the eigenvalues of central Wishart matrices as well as that of Gaussian quadratic forms with

arbitrary covariance matrix.
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III. H YPERGEOMETRIC FUNCTIONS WITH MATRIX ARGUMENTS HAVING ARBITRARY

EIGENVALUES

Hypergeometric functions with matrix arguments [22] have been used extensively in multi-

variate statistical analysis, especially in problems related to the distribution of random matrices

[23]. These functions are defined in terms of a series of zonalpolynomials, and, as such, they

are functions only of the eigenvalues (or latent roots) of the argument matrices [22], [23].

Definition 1: The hypergeometric functions of two Hermitianm×m matricesΛ andW are

defined by [22]

pF̃q (a1, . . . , ap; b1, . . . , bq;Λ,W) ,

∞
∑

k=0

∑

κ

(a1)κ · · · (ap)κ
(b1)κ · · · (bq)κ

Cκ(Λ)Cκ(W)

k!Cκ(Im)
(9)

whereCκ(·) is a symmetric homogeneous polynomial of degreek in the eigenvalues of its

argument, calledzonal polynomial, the sum
∑

κ is over all partitions ofk, i.e.,κ = (k1, . . . , km)

with k1 ≥ k2 ≥ · · · ≥ km ≥ 0, k1 + k2 + · · · + km = k, and the generalized hypergeometric

coefficient(a)κ is given by(a)κ =
∏m

i=1

(

a− 1
2
(i− 1)

)

ki
with (a)k = a(a + 1) · · · (a + k − 1),

(a)0 = 1.

We remark that zonal polynomials are symmetric polynomialsin the eigenvalues of the matrix

argument. Therefore, hypergeometric functions are only functions of the eigenvalues of their

matrix arguments. In other words, without loss of generality we can replaceΛ andW with the

diagonal matrices diag(λ1, . . . λm) and diag(w1, . . . wm), whereλi andwj are the eigenvalues

of Λ andW, respectively. Clearly the order ofΛ andW is unimportant.

It is quite evident that these functions expressed as a series of zonal polynomials are in general

very difficult to manage and the form of (9) is not tractable for further analysis. Fortunately,

when the eigenvalues ofΛ andW are all distinct, a simpler expression in terms of determinants

of matrices whose elements are hypergeometric functions ofscalar arguments can be obtained

as follows [24, Lemma 3]:

Lemma 1: ([Khatri, 1970]) LetΛ = diag(λ1, . . . λm) andW = diag(w1, . . . wm) with λ1 >

· · · > λm andw1 > · · · > wm. Then we have

pF̃q (a1, . . . , ap; b1, . . . , bq;Λ,W) = Γ(m)(m)
ψ

(m)
q (b)

ψ
(m)
p (a)

|G|
∏

i<j (λi − λj)
∏

i<j (wi − wj)
(10)
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whereΓ(m)(n) ,
∏m

i=1(n − i)!, ψ(m)
q (b) =

∏m
i=1

∏q
j=1(bj − i + 1)i−1 and theij th element of

the (m ×m) matrix G is defined in terms of hypergeometric functions of scalar arguments as

follows

gi,j = pFq

(

ã1, . . . , ãp; b̃1, . . . , b̃q;λiwj

)

(11)

with ãi = ai −m+ 1 and b̃i = bi −m+ 1.

Important particular cases are

0F̃0 (Λ,W) = Γ(m)(m)
|G0|

∏

i<j (λi − λj)
∏

i<j (wi − wj)
(12)

and

1F̃0 (r;Λ,W) =
Γ(m)(m)

ψ
(m)
1 (r)

|G1|
∏

i<j (λi − λj)
∏

i<j (wi − wj)
(13)

where theij th elements ofG0 andG1 are given byeλiwj and (1− λiwj)
m−r−1, respectively.

These expressions have been recently used to study the distribution of Gaussian quadratic

forms, to express the p.d.f. of the eigenvalues of Wishart matrices, and to analyze the information-

theoretic capacity and error rates of communication systems involving multiple antennas [5]–[8],

[25]–[31]. However, it is important to underline that Lemma1 requires the eigenvalues of the

matrices to be all distinct.

Here, we generalize Lemma 1 to include the case where the eigenvalues are not necessarily

distinct. To this aim we first need the following lemma.

Lemma 2:Let P : A → R be defined overA ⊂ R
m as follows:

P (w1, . . . , wm) ,
1

∏

i<j(wi − wj)
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(w1) f1(w2) · · · f1(wm)

...
... · · ·

...

fm(w1) fm(w2) · · · fm(wm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(14)

wherew1 > w2 · · · > wm, and the functionsfi(w) have derivativesf (n)
i (w) = dnfi(w)

dwn of orders

at leastm− 1 throughout neighborhoods of the pointsw1, . . . , wm.

Then, the continuous extension̆P (w1, w2, . . . , wm) of the functionP (w1, w2, . . . , wm) to

those points inRm with L coincident argumentswK = wK+1 = · · ·wK+L−1 is obtained by
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removing the zero factors from the denominator in (14), replacing the columns of the matrix

in (14) corresponding to the coincident arguments with the successive derivativesf (L−l)
i (wK),

l = 1, . . . , L, and dividing by a scaling factorΓ(L)(L) =
∏L−1

i=1 i!.

For example, forw1 = w2 = · · ·wL, this procedure gives

P̆ (w1, w2, . . . , wm) =
1

∏

i<j,wi 6=wj
(wi − wj)

∏L−1
i=1 i!

·

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(L−1)
1 (w1) f

(L−2)
1 (w1) · · · f1(w1) f1(wL+1) · · · f1(wm)

...
...

... · · ·
...

f
(L−1)
m (w1) f

(L−2)
m (w1) · · · fm(w1) fm(wL+1) · · · fm(wm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (15)

More generally, a similar expression is valid if there are more groups of coinciding arguments:

in this case, for each group of coincident argumentswK = . . . = wK+L−1 the correspondent

columns of the matrix in (14) are to be replaced byf (L−l)
i (wK), l = 1, . . . , L, with a scaling

factor
∏L−1

i=1 i!.

Proof: See Appendix I.

With Lemma 2 we can now generalize (12), (13) and, more generally, (10).

Lemma 3:Let Λ = diag(λ1, . . . λm) andW = diag(w1, . . . wm) with λ1 > · · · > λm and

w1 > · · · > wk = wk+1 = · · · = wk+L−1 > wk+L > · · · > wm. Then we have1

0F̃0 (Λ,W) =
Γ(m)(m)

Γ(L)(L)

|G|
∏

i<j (λi − λj)
∏

i<j,wi 6=wj
(wi − wj)

(16)

where the elements ofG are

gi,j =







λL−1+k−j
i eλiwk j = k, . . . , k + L− 1

eλiwj elsewhere
(17)

that is, the matrixG is the same as that appearing in (12) except that theL columns corresponding

to the coincident eigenvalues areλL−1
i eλiwk , λL−2

i eλiwk , . . . , λ2i e
λiwk , λie

λiwk , eλiwk .

Proof: The proof is immediate by direct application of Lemma 2 withfi(w) = eλiw.

1From here on we will use the same symbols for the functions (12), (13), (10) and their continuous extension.
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Lemma 3 can be directly extended to more groups of coincidenteigenvalues. In general,

the rule is that each eigenvaluew of multiplicity L > 1 gives rise toL columnsλL−1
i eλiw,

λL−2
i eλiw, . . . , λ2i e

λiw, λie
λiw, eλiw in the matrixG of (16), with the proper scaling factorΓ(L)(L).

Using Lemma 3 withk = m − L + 1 andwk = 0 results in the following corollary, for the

case where some eigenvalues are equal to zero.

Corollary 1: Let Λ = diag(λ1, . . . λm) andW = diag(w1, . . . wm) with λ1 > · · · > λm and

w1 > · · · > wm−L+1 = wm−L+2 = · · · = wm = 0. Then we have

0F̃0 (Λ,W) =
Γ(m)(m)

Γ(L)(L)

|G|
∏

i<j (λi − λj)
∏

i<j≤m−L (wi − wj)
∏m−L

i=1 wL
i

(18)

where the elements ofG are as follows

gi,j =







λm−j
i j = m− L+ 1, . . . , m

eλiwj elsewhere.
(19)

We can apply a similar methodology to derive the general expression for1F̃0(·; ·, ·), as in the

following Lemma.

Lemma 4:Let Λ = diag(λ1, . . . λm) andW = diag(w1, . . . wm) with λ1 > · · · > λm and

w1 > · · · > wk = wk+1 = · · · = wk+L−1 > wk+L > · · · > wm. Then we have

1F̃0 (r;Λ,W) =
Γ(m)(m)

Γ(L)(L)

(−1)(L−1)L/2

ψ
(m)
1 (r)

·
γL−1(γ − 1)L−2 · · · (γ − L+ 2) |A|
∏

i<j (λi − λj)
∏

i<j,wi 6=wj
(wi − wj)

(20)

whereγ = m− r − 1 and the (m×m) matrix A has elements as follows

ai,j =







λL−1+k−j
i (1− λiwj)

γ−(L−1+k−j) j = k, . . . , k + L− 1

(1− λiwj)
γ elsewhere.

(21)

In other words, the matrixA is the same as that appearing in (13), except that theL columns cor-

responding to theL coincident eigenvalues areλL−1
i (1− λiwk)

γ−(L−1) , . . . , λi (1− λiwk)
γ−1 ,

(1− λiwk)
γ.

Proof: For the proof we apply Lemma 2 withfi(w) = (1− λiwk)
γ , whosenth derivative

is f (n)
i (w) = (−λi)

nγ(γ − 1) · · · (γ − n + 1) (1− λiwk)
γ−n.

Lemma 4 can be further generalized to more groups of coincident eigenvalues: each eigenvalue

w of multiplicity L > 1 gives rise toL columnsλL−1
i (1−λiw)

γ−(L−1), . . . , λ2i (1−λiw)
γ−2, λi(1−

λiw)
γ−1, (1 − λiw)

γ in the matrixA of (20), and to a factor(−1)(L−1)L/2γL−1 · · · (γ − L +

2)/Γ(L)(L).
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Using Lemma 4 withk = m− L+ 1 andwk = 0 results in the following corollary.

Corollary 2: Let Λ = diag(λ1, . . . λm) andW = diag(w1, . . . wm) with λ1 > · · · > λm and

w1 > · · · > wm−L+1 = wm−L+2 = · · · = wm = 0. Then we have that (20) holds, with

ai,j =







λm−j
i j = m− L+ 1, . . . , m

(1− λiwj)
γ elsewhere.

(22)

In other words, the matrixA has in this case the lastL columns with elementsλL−1
i , λL−2

i , . . . , λi, 1.

Finally, we give the result for thepF̃q(·).

Lemma 5:Let Λ = diag(λ1, . . . λm) andW = diag(w1, . . . wm) with λ1 > · · · > λm and

w1 > · · · > wk = wk+1 = · · · = wk+L−1 > wk+L > · · · > wm. Then we have

pF̃q (a1, . . . , ap; b1, . . . , bq;Λ,W) = Ξ
|C|

∏

i<j (λi − λj)
∏

i<j,wi 6=wj
(wi − wj)

(23)

where the (m×m) matrix C has elements as follows

ci,j = λL−1+k−j
i pF̃q (a1 −m+ L+ k − j, . . . , bq −m+ L+ k − j;λiwj) (24)

for j = k, . . . , k + L− 1, and

ci,j = pF̃q

(

ã1, . . . , ãp; b̃1, . . . , b̃q;λiwj

)

elsewhere. In (23) the constantΞ is

Ξ =
Γ(m)(m)

Γ(L)(L)

ψ
(m)
q (b)

ψ
(m)
q (a)

L−1
∏

i=1

(ã1)i(ã2)i · · · (ãp)i

(b̃1)i(b̃2)i · · · (b̃q)i
.

Proof: See Appendix I.

IV. GAUSSIAN QUADRATIC FORMS WITH COVARIANCE MATRIX HAVING EIGENVALUES OF

ARBITRARY MULTIPLICITY

We now derive the joint p.d.f. of the eigenvalues for Gaussian quadratic forms and central

Wishart matrices with arbitrary one-sided correlation matrix.

Lemma 6:Let H be a complex Gaussian(p×n) random matrix with zero-mean, unit variance,

i.i.d. entries and letΦ be an(n×n) positive definite matrix. The joint p.d.f. of the (real) non-zero

ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λnmin ≥ 0 of the (p × p) quadratic formW = HΦH† is

given by

fλ(x1, . . . , xnmin) = K |V(x)|
∣

∣

∣
G̃(x,µ)

∣

∣

∣

nmin
∏

i=1

xp−nmin
i (25)
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wherenmin = min(n, p), V(x) is the (nmin×nmin) Vandermonde matrix with elementsvi,j = xi−1
j ,

K =
(−1)p(n−nmin)

Γ(nmin)(p)

∏L
i=1 µ

mip
(i)

∏L
i=1 Γ(mi)(mi)

∏

i<j

(

µ(i) − µ(j)

)mimj
(26)

andµ(1) > µ(2) . . . > µ(L) are theL distinct eigenvalues ofΦ−1, with corresponding multiplicities

m1, . . . , mL such that
∑L

i=1mi = n.

The (n× n) matrix G̃(x,µ) has elements

g̃i,j =







(−xj)
di e−µ(ei)

xj j = 1, . . . , nmin

[n− j]di µ
n−j−di
(ei)

j = nmin + 1, . . . , n
(27)

where[a]k = a(a− 1) · · · (a− k + 1), [a]0 = 1, ei denotes the unique integer such that

m1 + . . .+mei−1 < i ≤ m1 + . . .+mei

and

di =

ei
∑

k=1

mk − i.

Proof: See Appendix I.

Note that Lemma 6 gives, in a compact form, the general joint distribution for the eigenvalues

of a central Wishart (p ≥ n), and central pseudo-Wishart or quadratic form (n ≥ p), with

arbitrary one-sided correlation matrix with not-necessarily distinct eigenvalues.

In fact, Lemma 6 can be used for bothp ≥ n andn ≥ p; in particular, forn ≥ p we have
∏nmin

i=1 x
p−nmin
i = 1 in (25), while forp ≥ n the second row in (27) disappears and(−1)p(n−nmin) = 1

in (26).

Moreover, using Lemma 6 and the results in [32], [33] we can also derive the marginal

distribution of individual eigenvalues or of an arbitrary subset of the eigenvalues.

V. ERGODIC MUTUAL INFORMATION OF A SINGLE-USER MIMO SYSTEM

In this section we provide a unified analysis of the ergodic mutual information of a single-user

MIMO system with arbitrary power levels/correlation amongthe transmitting antenna elements

or arbitrary correlation at the receiver, admitting correlation matrices with not-necessarily distinct

eigenvalues.

Let us consider the function

CSU (n, p,Φ) = EH

{

log det
(

Ip +HΦH†
)}

(28)
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whereΦ is a generic(n × n) positive definite matrix andH is a (p × n) random matrix with

zero-mean, unit variance complex Gaussian i.i.d. entries.

Now, consider a single-user MIMO-(nT, nR) Rayleigh fading channel withΨT,ΨR denoting

the (nT × nT) transmit and(nR × nR) receive correlation matrices, respectively, having diagonal

elements equal to one. Assume the transmit vectorx is zero-mean complex Gaussian, with

arbitrary (but fixed)(nT × nT) covariance matrixQ = E
{

xx†
}

so that tr{Q} = P . Then,

the function (28) can be used to express the ergodic mutual information in the following cases

[6]–[8]:

1) the MIMO-(nT, nR) channel with no correlation at the receiver (ΨR = I), covariance matrix

at the transmitter sideΨT, and transmit covariance matrixQ.

In this case the mutual information isCSU (nT, nR,Φ) with Φ = (1/σ2)ΨTQ. If also

ΨT = I, we haveΦ = (1/σ2)Q and therefore tr{Φ} = P/σ2.

2) the MIMO-(nT, nR) channel with no correlation at the transmitter (ΨT = I), covariance

matrix at the receiver sideΨR, and equal power allocationQ = P/nTI.

In this case the capacity isCSU (nR, nT,Φ) with Φ = (P/nTσ
2)ΨR, giving tr{Φ} =

(P/σ2)(nR/nT), in accordance to [6, Theorem 1].

In both casesP/σ2 represents the SNR per receiving antenna.

By indicating withnmin = min(n, p) and withfλ(·, . . . , ·) the joint p.d.f. of the (real) ordered

non-zero eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λnmin > 0 of the (p × p) random matrixW = HΦH†,

we can write:

CSU (n, p,Φ) = E

{

nmin
∑

i=1

log (1 + λi)

}

=

∫

· · ·

∫

Dord

fλ(x1, . . . , xnmin)

nmin
∑

i=1

log (1 + xi) dx (29)

where the multiple integral is over the domainDord = {∞ > x1 ≥ x2 ≥ . . . ≥ xnmin > 0} and

dx = dx1 dx2 · · · dxnmin.

The nested integral in (29) can be evaluated using the results from previous sections and

Appendix II, leading to the following Theorem.

Theorem 1:The ergodic mutual information of a MIMO Rayleigh fading channel with CSI at

the receiver only and one-sided correlation matrixΦ having eigenvalues of arbitrary multiplicities

DRAFT
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is given by

CSU (n, p,Φ) = K

nmin
∑

k=1

det
(

R(k)
)

. (30)

In the previous equationnmin = min(n, p), the matrixR(k) has elements

r
(k)
i,j =























(−1)di
∫∞

0
xp−nmin+j−1+die−xµ(ei)dx j = 1, . . . , nmin, j 6= k

(−1)di
∫∞

0
xp−nmin+j−1+die−xµ(ei) log (1 + x) dx j = 1, . . . , nmin, j = k

[n− j]di µ
n−di−j
(ei)

j = nmin + 1, . . . , n

(31)

and [a]k, ei, di, K are defined as in Lemma 6, whereµ(1) > µ(2) . . . > µ(L) are theL distinct

eigenvalues ofΦ−1, with corresponding multiplicitiesm1, . . . , mL.

Proof:

In Section IV it is shown that the joint p.d.f. of the ordered eigenvalues ofW can be written

as (25), where the elements ofV(x), G̃(x,µ) are real functions ofx1, . . . , xnmin. Thus, by using

Appendix II, the multiple integral in (29) reduces to (30).

Note that the integral in (31) can be evaluated easily with standard numerical techniques;

however, the integral can be further simplified, using the identities
∫∞

0
xme−xµdx = m!/µm+1,

and
∫∞

0
xme−xµ ln(1 + x)dx = m! eµ

∑m
i=0 Γ(i − m,µ)/µi+1, whereΓ(·, ·) is the incomplete

Gamma function.

Theorem 1 gives, in a unified way, the exact mutual information for MIMO systems, encom-

passing the cases ofnR ≥ nT and nT ≥ nR with arbitrary correlation at the transmitter or at

the receiver, avoiding the need for Monte Carlo evaluation.The application of the results in

Sections III-V enables a unified analysis for MIMO systems, which allow the generalization

for ergodic and outage capacity [6]–[8], [29], for optimum combining multiple antenna systems

[26], [27], for MIMO-MMSE systems [28], for MIMO relay networks [34], [35], as well as for

multiuser MIMO systems and for distributed MIMO systems, accounting arbitrary covariance

matrices. For example, after the first derivation of the hypergeometric functions of matrices with

non-distinct eigenvalues in [36], other applications to multiple antenna systems have appeared

in [32], [37]–[40].

VI. NUMERICAL RESULTS
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Let us first apply Theorem 1 to the analysis of a single-user MIMO system with unequal

power levels among the transmitting antennas. Figure 2 shows the ergodic mutual information2

of a MIMO-(6, 3) Rayleigh channel, where the relative transmitted power levels are{1+∆, 1+

∆, 1 + ∆, 1 −∆, 1 −∆, 1 −∆}. The particular cases∆ = 0 and∆ = 1 are equivalent to the

equal power levels over6 and3 transmitting antennas, respectively. This figure shows howthe

capacity decreases as∆ increases from0 to 1, with a behavior in accordance to analysis based

on majorization theory [41].

As another example of application, we evaluate the performance of MIMO relay networks in

Rayleigh fading [34], [35]. For such networks the network capacity is upper bounded by [35,

eq. (5)], which can be easily put in the formCu = 1
2
EH

{

log det
(

I+HΦH†
)}

, and evaluated

in closed form by Theorem 1. In Fig. 3 we report the exactCu as obtained from Theorem 1,

compared with the Jensen’s inequality [35, Theorem 1]. The figure has been obtained for a

source node with4 antennas,5 relays each equipped with2 antennas, as a function of the total

equivalent SNR here defined asSNR = tr {Φ}. We assume, for the5 relays, that the received

power is distributed proportionally to the weights{1, 2, 5, 10, 20}. It can observed that the results

based on the Jensen’s inequality can be overly optimistic.

As a third example of application we evaluate, using (8) together with Theorem 1, the exact

expression of the ergodic mutual information of MIMO systems in the presence of multiple

MIMO interferers in Rayleigh fading. In particular, the eigenvalues to be used in Theorem 1 are

given by µ(i) = 1/̺i = σ2NTi/Pi, allowing an easy analysis for several scenarios. We define

the average SNR per receiving antenna asSNR = P0/σ
2 giving ̺0 = SNR/NT0, and the SIR

asSIR = P0/
∑

i≥1 Pi.3 Fig. 4 shows the ergodic mutual information for a MIMO-(6, 6) system

as a function of the SIR, in the presence of one MIMO cochannelinterferer havingNT1 equal

power transmitting antennas. It can be noted that the capacity decreases with the increase in the

number of interfering antenna elements, tending to the curve obtained by using the Gaussian

approximation.4 Despite the fact that the received vectory in (1) is Gaussian conditioned on

2For the numerical results we use the base 2 of logarithm in allformulas, giving a mutual information in bits/s/Hz.

3We recall that, with our normalization on the channel gains,the mean received power from useri is Pi, and our definition

of SIR account for thetotal interference power.

4With Gaussian approximation the performance is evaluated as if interference were absent, except the overall noise power is

set toσ2 +
P

i≥1 Pi, giving a signal-to-interference-plus-noise ratioSINR =
`

1
SNR + 1

SIR

´−1
.
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the channel matrices, and that the elements ofHk are Gaussian, approximating the cumulative

interference as a spatially white complex Gaussian vector is pessimistic for analyzing MIMO

systems in the presence of interference, unless the number of transmitting antenna of the interferer

is large compared with that of the desired user. This is because the Gaussian approximation

implicitly assumes that the receiver does not exploit the CSI of the interferers (single-user

receiver), whereas the exact capacity accounts for the knowledge of all CSI at the receiver. In

the same figure we also report, using circles, the capacity ofa single-user MIMO-(NT0, NR−NT1)

for NR > NT1. It can be observed that the capacity of the MIMO-(NT0, NR) in the presence of

NT1 interfering antenna elements approaches asymptotically,for large interference power, to a

floor given by the capacity of a single-user MIMO-(NT0, NR −NT1) system. This behavior can

be thought of as usingNT1 DoF at the receiver to null the interference in a small SIR regime.

On the other hand, whenNR ≤ NT1 the capacity approaches to zero for small SIR. This is due

to the limited DoF at the receiver (related to the numberNR of receiving antenna elements) that

prevents mitigating all interfering signals (one from eachantenna elements) while, at the same

time, processing theNT0 useful parallel streams, as previously observed for multiple antenna

systems with optimum combining [2], [26], [27].

Finally, in Fig. 5 we consider a MIMO-(NT0, 6) system in the presence of one and two

MIMO interferers in the network, each equipped with the samenumber of antennas as for the

desired user. We clearly see here two different regions: forsmall SIR the interference effect is

dominant, and it is better for all users to employ the minimumnumber of transmitting antennas

(i.e., MIMO-(3, 6) for all users), so as to allow the receiver to mitigate the interfering signals.

On the contrary, for large SIR the channel tends to that of a single-user MIMO system and it

is better to employ the maximum number of transmitting antennas. In the same figure we also

report the capacity for interference-free channels, whichrepresents the asymptotes of the four

curves, as well as the Gaussian approximation, which incorrectly indicates that it is always better

to use the largest possible number of transmitting antennas.

It can be also verified that, in a network where all nodes are using the same MIMO-(n, n)

systems, larger values ofn achieve higher mutual information, for all values of SIR andSNR.

Note, however, that when increasing the number of antennas and users, correlation may arise in

the channel matrices.
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VII. CONCLUSION

We have studied MIMO communication systems in the presence of multiple MIMO interferers

and noise. To this aim, we first generalized the determinant representations for hypergeometric

functions with matrix arguments to the case where the eigenvalues of the argument matrices have

arbitrary multiplicities. Then, we derived a unified formula for the joint p.d.f. of the eigenvalues

for central Wishart matrices and Gaussian quadratic forms,allowing arbitrary multiplicities for

the covariance matrix eigenvalues. These new results enable the analysis of many scenarios

involving MIMO systems. For example, we derived a unified expression for the ergodic mutual

information of MIMO Rayleigh fading channels, which applies to transmit or receive correlation

matrices with eigenvalues of arbitrary multiplicities. Wehave shown how to apply the new

expressions to MIMO networks, deriving in closed form the ergodic mutual information of

MIMO systems in the presence of multiple MIMO interferers.

APPENDIX I

PROOFS

A. Proof of Lemma 2

For ease of notation and without loss of generality we consider the caseK = 1, where the

application of the lemma leads to (15). For the proof we proceed by induction. First, the result

in (15) is obvious forL = 1, since in this case (15) coincides with (14). Then, we must show

that if (15) is true for anyL then it is also true forL+ 1. So, assuming that (15) holds forL,

we must find

lim
wL+1→wL

P̆ (w1, . . . , wm).

In this regard note that, withw1 = w2 = · · · = wL the product
∏

i<j,wi 6=wj
(wi − wj) in (15)

contains exactlyL factors with valueǫ , wL − wL+1. Thus, by rewritingwL+1 = wL − ǫ we

have

lim
wL+1→wL

P̆ (w1, . . . , wm) =
1

∏

i<j,wi 6=wj ,j 6=L+1(wi − wj)
∏L−1

i=1 i!
·
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· lim
ǫ→0

1

ǫL

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(L−1)
1 (wL) · · · f1(wL) f1(wL − ǫ) · · · f1(wm)

...
... · · ·

...

f
(L−1)
m (wL) · · · fm(wL) fm(wL − ǫ) · · · fm(wm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (32)

We can now apply the Taylor expansion to the functions

fi(w − ǫ) =

L
∑

n=0

f
(n)
i (w)

(−ǫ)n

n!
+O(ǫL+1), (33)

whereO(ǫ) denotes omitted terms of orderǫ. We also know from basic algebra that, seen as a

function of a column with the others fixed, the determinant isa linear function of the entries in

the given column, as is clear for example from the Laplace expansion. Therefore, we have

lim
wL+1→wL

P̆ (w1, . . . , wm) =

=
1

∏

i<j,wi 6=wj ,j 6=L+1(wi − wj)
∏L−1

i=1 i!
· lim
ǫ→0

(

O(ǫ) +
1

ǫL

L
∑

n=0

(−ǫ)n

n!

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(L−1)
1 (wL) · · · f1(wL) f

(n)
1 (wL) · · · f1(wm)

...
... · · ·

...

f
(L−1)
m (wL) · · · fm(wL) f

(n)
m (wL) · · · fm(wm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





















. (34)

In the summation above the determinants forn = 0, . . . , L − 1 are zero since there are

coincident columns. So, in the limit forǫ → 0 only the term of gradeL remains.

By simplifying and reordering the firstL + 1 columns of the matrix in (34), with a cyclic

permutation having sign equal to(−1)L, we finally have

lim
wL→wL+1

P̆ (w1, . . . , wm) =
1

∏

i<j,wi 6=wj
(wi − wj)

∏L
i=1 i!

·
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·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(L)
1 (wL+1) · · · f1(wL+1) f1(wL+2) · · · f1(wm)

...
... · · ·

...

f
(L)
m (wL+1) · · · fm(wL+1) fm(wL+2) · · · fm(wm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(35)

which is again in the form of (15). This concludes the proof byinduction of Lemma 2 for

w1 = · · · = wL.

The extension to differentK and more groups of coincident arguments is straightforward.

B. Proof of Lemma 5.

The derivatives of the hypergeometric function of scalar arguments can be expressed as

dn

dzn
pF̃q (a1, . . . , ap; b1, . . . , bq; z) =

(a1)n · · · (ap)n
(b1)n · · · (bq)n

pF̃q (a1 + n, . . . , ap + n; b1 + n, . . . , bq + n; z) .

Using this result in Lemma 2 and (10) with

fi(w) = pF̃q

(

ã1, . . . , ãp; b̃1, . . . , b̃q;λiw
)

gives Lemma 5.

C. Proof of Lemma 6

Here, based on Section III, we prove Lemma 6 concerning the eigenvalues distribution of

Gaussian quadratic forms. The problem is related to the distribution of random matrices of the

form W = HΦH†, whereH is a Gaussian(p × n) matrix with uncorrelated entries andΦ

is a (n × n) positive definite matrix that represents the covariance matrix of the channel. The

eigenvalues distribution has been studied for the two possible casesn ≥ p and p ≥ n in [6],

[7], assuming a covariance matrixΦ with distinct eigenvalues (i.e., unit multiplicity). We here

generalize the results to matricesΦ with arbitrary eigenvalue multiplicities.

Let us first recall the distributions for the case of covariance matrix with distinct eigenvalues.
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1) Correlation on the shortest side - distinct eigenvalues:The casep ≥ n has been analyzed

in [6], where it is shown that the joint p.d.f. of the (real) ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λn

of W is

fλ(x1, . . . , xn) =
1

Γ(n)(p)

∏n
i=1 µ

p
i

∏

i<j (µi − µj)
|V(x)| |G(x,µ)|

n
∏

j=1

xp−n
j (36)

whereµi are then distinct eigenvalues ofΦ−1, V(x) is the (n× n) Vandermonde matrix with

elementsvi,j = xi−1
j and whereG(x,µ) is a (n× n) matrix with elementsgi,j = e−µixj .

2) Correlation on the largest side - distinct eigenvalues:We here briefly derive the joint p.d.f.

for the eigenvalues ofW whenΦ has all distinct eigenvalues andn ≥ p, based on the results in

Section III. Note that this case has been analyzed also in [7]by following a different approach.

First we recall that, given a(p× n) random matrixH with n ≥ p and p.d.f.

π−pne−trHH†

(37)

the p.d.f. of the(p× p) quadratic form

W = HΦH†, (38)

where the(n× n) matrix Φ is positive definite, is given by [42], [43]

f(W) =
|W|n−p

π(p−1)p/2 Γ(p)(n) |Φ|p
0F̃0

(

Φ−1,−W
)

. (39)

Then, the joint p.d.f. of the (real) ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λp of W is given by

using the results in [22, eq. (93)] as

fλ(x1, . . . , xp) = K1 |Φ|−p
0F̃0

(

Φ−1,−W
)

|W|n−p ·

p
∏

i<j

(xi − xj)
2 , (40)

where

K1 =
1

Γp(n)Γp(p)
. (41)

Note that in (40) the two matricesΦ−1 andW are of dimensions(n×n) and(p×p), respectively.

So, in (40) we evaluate0F̃0 (Φ
−1,B) whereB = −W⊕ 0 · Ip is obtained by addingn− p zero

eigenvalues to−W [7].

Differently from the previous literature, we can now directly use Corollary 1 and get im-

mediately the joint p.d.f. of the ordered eigenvalues of the(p × p) matrix W when n ≥ p

as:

fλ(x1, . . . , xp) =
(−1)p(n−p)

Γ(p)(p)

∏n
i=1 µ

p
i

∏

i<j (µi − µj)
|V(x)| |G(x,µ)| (42)
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whereµi are the eigenvalues ofΦ−1, all of multiplicity one here,V(x) is the (p×p) Vandermonde

matrix, and the (m×m) matrix G(x,µ) has elements as follows

gi,j =







e−µixj j = 1, . . . , p

µn−j
i j = p + 1, . . . , n

(43)

that is, the matrixG(x,µ) is

G(x,µ) ,



























e−µ1x1 · · · e−µ1xp µn−p−1
1 µn−p−2

1 · · · µ1 1

e−µ2x1 · · · e−µ2xp µn−p−1
2 µn−p−2

2 · · · µ2 1

...
...

...
... · · ·

...

e−µnx1 · · · e−µnxp µn−p−1
n µn−p−2

n · · · µn 1



























=















g(x, µ1)

g(x, µ2)
...

g(x, µn)















. (44)

3) Generalization to covariance matrix with arbitrary eigenvalues: Note that (36) and (42)

are only valid for covariance matrices with all distinct eigenvalues (multiplicity one). So, we

must now generalize these expressions to the case of interest, i.e., eigenvaluesµi with arbitrary

multiplicities. This step is possible by using Lemma 2.

In fact, we note that in both (36) and (42) we have a ratio of theform

|G(x,µ)|
∏

i<j (µi − µj)
. (45)

By using Lemma 2, for each eigenvalue with multiplicitymi we must replace the rows of

G(x,µ) with their successive derivatives with respect to the eigenvalue, and divide byΓ(mi)(mi),

obtaining

|G(x,µ)|
∏

i<j (µi − µj)
→

1
∏

i Γ(mi)(mi)
∏

i<j

(

µ(i) − µ(j)

)mimj
det













































g(m1−1)(x, µ(1))
...

g(1)(x, µ(1))

g(0)(x, µ(1))
...

g(mL−1)(x, µ(L))
...

g(1)(x, µ(L))

g(0)(x, µ(L))













































(46)
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where the row vectorg(l)(x, µ) is the lth derivative of the rowg(x, µ) in (36) or (44). Thej th

element ofg(l)(x, µ) is so derived to be

g
(l)
j = g

(l)
j (µ) =







(−xj)
l e−µxj j = 1, . . . , p

[n− j]l µ
n−j−l j = p+ 1, . . . , n.

(47)

The relation between the row index,i, and the derivative order,l, can be established by

introducing the functionei indicating the eigenvalueµ(ei) ∈
{

µ(1), . . . , µ(L)

}

to be used in row

i of the matrix in the RHS of (46). It is easy to verify thatei is the unique integer such that

m1 + . . .+mei−1 < i ≤ m1 + . . .+mei.

Then, the derivative order for the rowi is l = di, where

di =

ei
∑

k=1

mk − i.

Thus, the generic element of the matrix in the RHS of (46) isg
(di)
j (µ(ei)).

Combining (36), (42) and (46) we have Lemma 6.

APPENDIX II

AN IDENTITY ON MULTIPLE INTEGRALS INVOLVING DETERMINANTS

Theorem 2:Given an arbitraryp × p matrix Φ (x) with ij th elementsΦi(xj), an arbitrary

n× n matrix Ψ (x), n ≥ p, with elements






Ψi(xj) j = 1, . . . , p

Ψi,j j = p+ 1, . . . , n

and two arbitrary functionsξ(·) and ξ̃(·) the following identity holds:
∫

. . .

∫

Dord

|Φ (x)| · |Ψ (x)|

p
∏

m=1

ξ(xm)

p
∑

i=1

ξ̃(xi)dx

=

p
∑

k=1

det

(

{

c
(k)
i,j

}

i,j=1...,n

)

(48)

where the multiple integral is over the domainDord = {b ≥ x1 ≥ x2 ≥ . . . ≥ xp ≥ a} ,

c
(k)
i,j =







∫ b

a
Φi(x)Ψj(x) ξ(x)Uk,j

(

ξ̃(x)
)

dx j = 1, . . . , p

Ψi,j j = p+ 1, . . . , n
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and the functionUk,j(x) is defined by

Uk,j(x) ,











x if k = j

1 if k 6= j.
(49)

Proof: As this theorem is an extension of [6, Theorem 3], it is sufficient for the proof to

follow the same steps reported there.
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Fig. 2. Ergodic mutual information for single-user MIMO systems as a function of SNR over Rayleigh uncorrelated fading

with nT = 6, nR = 3. Half of the antennas with power (normalized)1+∆, the others with1−∆, i.e., with transmitted power

levels (normalized) equal to{1 +∆, 1 + ∆, 1 + ∆, 1−∆, 1−∆, 1−∆}.
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Fig. 3. Bound on the network capacity for MIMO relay networks. Source with4 antennas,5 relays with2 antennas each,

power levels per relay proportional to{1, 2, 5, 10, 20}.

DRAFT



28 SUBM. TO IEEE TRANS. ON INF. TH.

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
SIR (dB)

0

2

4

6

8

10

12

14

16

18

MIMO(6,6), SNR=10 dB, one interferer with N
T1

 antennas

N
T1

=1,2,4,6,10, Gauss.

PSfrag replacements

E
rg

o
d

ic
m

u
tu

al
in

fo
rm

at
io

n
(b

its
/s

/H
z)

SIR (dB)

Fig. 4. Ergodic mutual information for MIMO-(6,6) as a function of SIR in the presence of one MIMO cochannel interferer

with NT1 = 1, 2, 4, 6, 10. The SNR is set to 10 dB. The Gaussian approximation of the interference is also shown. Diamond:

capacity of a single-user MIMO-(6, 6). Circles: capacity of a single-user MIMO-(6, 6−NT1) (only for NT1 = 1, 2, 4).
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Fig. 5. Ergodic mutual information as a function of the signal-to-total interference ratio. MIMO system withNR = 6 receiving

antenna,SNR = 10 dB. The Gaussian approximation of the interference is also shown. Scenario with one and two interferers,

each with the same number of transmitting antennas as the desired user. Cases of3, 4, 5 and6 transmitting antennas. Circles:

capacity of single-user MIMO-(NT0, NR).
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