
ar
X

iv
:c

s/
05

09
07

8v
2 

 [
cs

.I
T

] 
 1

4 
N

ov
 2

00
5

On the Feedback Capacity of Stationary Gaussian

Channels∗

Young-Han Kim

Information Systems Laboratory

Stanford University

Stanford, CA 94305-9510

yhk@stanford.edu

Abstract

The capacity of stationary additive Gaussian noise channels with feedback is

characterized as the solution to a variational problem. Toward this end, it is proved

that the optimal feedback coding scheme is stationary. When specialized to the

first-order autoregressive moving-average noise spectrum, this variational charac-

terization yields a closed-form expression for the feedback capacity. In particular,

this result shows that the celebrated Schalkwijk–Kailath coding scheme achieves

the feedback capacity for the first-order autoregressive moving-average Gaussian

channel, resolving a long-standing open problem studied by Butman, Schalkwijk–

Tiernan, Wolfowitz, Ozarow, Ordentlich, Yang–Kavčić–Tatikonda, and others.

1 Introduction and summary

We consider the additive Gaussian noise channel Yi = Xi + Zi, i = 1, 2, . . . , where
the additive Gaussian noise process {Zi}

∞
i=1 is stationary with Zn = (Z1, . . . , Zn) ∼

Nn(0, KZ,n) for each n = 1, 2, . . . . We wish to communicate a message W ∈ {1, . . . , 2nR}
over the channel Y n = Xn +Zn. For block length n, we specify a (2nR, n) feedback code
with codewords Xn(W,Y n−1) = (X1(W ), X2(W,Y1), . . . , Xn(W,Y

n−1)),W = 1, . . . , 2nR,
satisfying the average power constraint 1

n

∑n
i=1EX

2
i (W,Y

i−1) ≤ P and decoding function

Ŵn : Rn → {1, . . . , 2nR}. The probability of error P
(n)
e is defined by P

(n)
e = Pr{Ŵn(Y

n) 6=
W},where the messageW is uniformly distributed over {1, 2, . . . , 2nR} and is independent
of Zn. We say that the rate R is achievable if there exists a sequence of (2nR, n) codes

with P
(n)
e → 0 as n → ∞. The feedback capacity CFB is defined as the supremum of all

achievable rates. We also consider the case in which there is no feedback, corresponding
to the codewords Xn(W ) = (X1(W ), . . . , Xn(W )) independent of the previous channel
outputs. We define the nonfeedback capacity C, or the capacity in short, in a manner
similar to the feedback case.

Shannon [1] showed that the nonfeedback capacity is achieved by water-filling on the
noise spectrum, which is arguably one of the most beautiful results in information theory.
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More specifically, the capacity C of the additive Gaussian noise channel Yi = Xi + Zi,
i = 1, 2, . . . , under the power constraint P , is given by

C =

∫ π

−π

1

2
log

max{SZ(e
iθ), λ}

SZ(eiθ)

dθ

2π
(1)

where SZ(e
iθ) is the power spectral density of the stationary noise process {Zi}

∞
i=1 and

the water-level λ is chosen to satisfy

P =

∫ π

−π

max{0, λ− SZ(e
iθ)}

dθ

2π
. (2)

Although (1) and (2) give only a parametric characterization of the capacity C(λ) under
the power constraint P (λ) for each parameter λ ≥ 0, this solution is considered to be
simple and elegant enough to be called closed-form.

For the case of feedback, no such elegant solution exists. Most notably, Cover and
Pombra [2] characterized the n-block feedback capacity CFB,n for arbitrary time-varying
Gaussian channels via the asymptotic equipartition property (AEP) for arbitrary non-
stationary nonergodic Gaussian processes as

CFB,n = max
KV,n,Bn

1

2
log

det(KV,n + (Bn + I)KZ,n(Bn + I)′)1/n

det(KZ,n)1/n
(3)

where the maximum is taken over all positive semidefinite matrices KV,n and all strictly
lower triangular matrices Bn of sizes n × n satisfying tr(KV,n + BnKZ,n(Bn)

′) ≤ nP .
Note that we can also recover the nonfeedback case by taking Bn ≡ 0. When special-
ized to stationary noise processes, the Cover–Pombra characterization gives the feedback
capacity as a limiting expression

CFB = lim
n→∞

CFB,n

= lim
n→∞

max
KV,n,Bn

1

2
log

det(KV,n + (Bn + I)KZ,n(Bn + I)′)1/n

det(KZ,n)1/n
. (4)

Despite its generality, the Cover–Pombra formulation of the feedback capacity falls
short of what we can call a closed-form solution. It is very difficult, if not impossible, to
obtain an analytic expression for the optimal (K⋆

V,n, B
⋆
n) in (3) for each n. Furthermore,

the sequence of optimal {K⋆
V,n, B

⋆
n}

∞
n=1 is not necessarily consistent, that is, (K⋆

V,n, B
⋆
n)

is not necessarily a subblock of (K⋆
V,n+1, B

⋆
n+1). Hence the characterization (3) in itself

does not give much hint on the structure of optimal {K⋆
V,n, B

⋆
n}

∞
n=1 achieving CFB,n, or

more importantly, its limiting behavior.
In this paper, we make one step forward by proving

Theorem 1. The feedback capacity CFB of the Gaussian channel Yi = Xi + Zi, i =
1, 2, . . . , under the power constraint P , is given by

CFB = sup
SV (eiθ),B(eiθ)

∫ π

−π

1

2
log

SV (e
iθ) + |1 +B(eiθ)|2SZ(e

iθ)

SZ(eiθ)

dθ

2π

where SZ(e
iθ) is the power spectral density of the noise process {Zi}

∞
i=1 and the supremum

is taken over all power spectral densities SV (e
iθ) ≥ 0 and strictly causal filters B(eiθ) =

∑∞
j=1 bje

ijθ satisfying the power constraint 1
2π

∫ π

−π
(SV (e

iθ) + |B(eiθ)|2SZ(e
iθ)) dθ ≤ P.



Roughly speaking, this characterization shows the asymptotic optimality of a stationary
solution (KV,n, Bn) in (3) and hence it can be viewed as a justification for interchange of
the order of limit and maximum in (4).

Since Theorem 1 gives a variational expression of the feedback capacity, it remains to
characterize the optimal (S⋆

V (e
iθ), B⋆(eiθ)). In this paper, we provide a sufficient condition

for the optimal solution using elementary arguments. This result, when specialized to
the first-order autoregressive (AR) noise spectrum SZ(e

iθ) = 1/|1 + βeiθ|2,−1 < β < 1,
yields a closed-form solution for feedback capacity as CFB = − log x0, where x0 is the
unique positive root of the fourth-order polynomial

P x2 =
(1− x2)

(1 + |β|x)2
.

This result positively answers the long-standing conjecture by Butman [3, 4], Tiernan–
Schalkwijk [5, 6], and Wolfowitz [7]. In fact, we will obtain the feedback capacity formula
for the first-order autoregressive moving average (ARMA) noise spectrum, generalizing
the result in [8] and confirming a recent conjecture by Yang, Kavčić, and Tatikonda [9].

The rest of the paper is organized as follows. We prove Theorem 1 in the next section.
In Section 3, we derive a sufficient condition for the optimal (S⋆

V (e
iθ), B⋆(eiθ)) and apply

this result to the first-order ARMA noise spectrum to obtain the closed-form feedback
capacity. We also show that the Schalkwijk–Kailath–Butman coding scheme [10, 11, 3]
achieves the feedback capacity of the first-order ARMA Gaussian channel.

2 Proof of Theorem 1

We start from the Cover-Pombra formulation of the n-block feedback capacity CFB,n in
(3). Tracing the development of Cover and Pombra [2] backwards, we express CFB,n as

CFB,n = max
V n+BnZn

h(Y n)− h(Zn) = max
V n+BnZn

I(V n; Y n)

where the maximization is over all Xn of the form Xn = V n + BnZ
n, resulting in

Y n = V n + (I + Bn)Z
n, with strictly lower-triangular Bn and multivariate Gaussian

V n, independent of Zn, satisfying the power constraint E
∑n

i=1X
2
i ≤ nP.

Define

C̃FB = sup
SV (eiθ),B(eiθ)

∫ π

−π

1

2
log

SV (e
iθ) + |1 +B(eiθ)|2SZ(e

iθ)

SZ(eiθ)

dθ

2π

where SZ(e
iθ) is the power spectral density of the noise process {Zi}

∞
i=1 and the supremum

is taken over all power spectral densities SV (e
iθ) ≥ 0 and strictly causal filters B(eiθ) =

∑∞
k=1 bke

ikθ satisfying the power constraint
∫ π

−π
(SV (e

iθ) + |B(eiθ)|2SZ(e
iθ)) dθ ≤ 2πP. In

the light of Szegő–Kolmogorov–Krein theorem, we can express C̃FB also as

C̃FB = sup
{Xi}

h(Y)− h(Z)

where the supremum is taken over all stationary Gaussian processes {Xi}
∞
i=−∞ of the

form Xi = Vi +
∑∞

k=1 bkZi−k where {Vi}
∞
i=−∞ is stationary and independent of {Zi}

∞
i=−∞

such that EX2
0 ≤ P . We will prove that CFB = C̃FB.



We first show that CFB,n ≤ C̃FB for all n. Fix n and let (K⋆
V,n, B

⋆
n) achieve CFB,n.

Consider a process {Vi}
∞
i=−∞ that is independent of {Zi}

∞
i=−∞ and blockwise i.i.d. with

V
(k+1)n
kn+1 ∼ Nn(0, K

⋆
V,n), k = 0,±1,±2, . . . . Define a process {Xi}

∞
i=−∞ as X

(k+1)n
kn+1 =

V
(k+1)n
kn+1 + B⋆

nZ
(k+1)n
kn+1 for all k. Similarly, let Yi = Xi + Zi, −∞ < i < ∞, be the corre-

sponding output process through the stationary Gaussian channel. Note that Y
(k+1)n
kn+1 =

V
(k+1)n
kn+1 +(I+B⋆

n)Z
(k+1)n
kn+1 for all k. For each t = 0, 1, . . . , n−1, define a process {Vi(t)}

∞
i=−∞

as Vi(t) = Vt+i for all i and similarly define {Xi(t)}
∞
i=−∞, {Yi(t)}

∞
i=−∞, and {Zi(t)}

∞
i=−∞.

Note that Yi(t) = Xi(t) +Zi(t) for all i and all t = 0, 1, . . . , n− 1, but Xn
1 (t) is not equal

to V n
1 (t) +B⋆

nZ
n
1 (t) in general.

From the independence of V n
1 and V 2n

n+1, we can easily check that

2CFB,n = I(V n
1 ; Y

n
1 ) + I(V 2n

n+1; Y
2n
n+1)

= h(V n
1 ) + h(V 2n

n+1)− h(V n
1 |Y

n
1 )− h(V 2n

n+1|Y
2n
n+1)

≤ h(V 2n
1 )− h(V 2n

1 |Y 2n
1 )

= I(V 2n
1 ; Y 2n

1 )

= h(Y 2n
1 )− h(Z2n

1 ).

By repeating the same argument, we get

CFB,n ≤
1

kn
(h(V kn

1 )− h(Zkn
1 )),

for all k. Hence, for all m = 1, 2, . . . , and each t = 0, . . . , n− 1, we have

CFB,n ≤
1

m

(

h(Y m
1 (t))− h(Zm

1 (t))
)

+ ǫm

=
1

m

(

h(Y m
1 (t))− h(Zm

1 )
)

+ ǫm

where ǫm absorbs the edge effect and vanishes uniformly in t as m→ ∞.
Now we introduce a random variable T uniform on {0, 1, . . . , n− 1} and independent

of {Vi, Xi, Yi, Zi}
∞
i=−∞. It is easy to check the followings:

(I) {Vi(T ), Xi(T ), Yi(T ), Zi(T )}
∞
i=−∞ is stationary with Yi(T ) = Xi(T ) + Zi(T ).

(II) {Xi(T )}
∞
i=−∞ satisfies the power constraint

EX2
0 (T ) = E[E(X2

0 (T )|T )] =
1

n
tr(K⋆

V,nB
⋆
nKZ,n(B

⋆
n)

′) ≤ P.

(III) {Vi(T )}
∞
i=−∞ and {Zi(T )}

∞
i=−∞ are orthogonal; i.e., EVi(T )Zj(T ) = 0 for all i, j.

(IV) Although there is no linear relationship between {Xi(T )} and {Zi(T )}, {Xi(T )}
still depends on {Zi(T )} in a strictly causal manner. More precisely, for all i ≤ j,

E(Xi(T )Zj(T )|Z
i−1
−∞(T )) = E

(

E(Xi(T )Zj(T )|Z
i−1
−∞(T ), T )|Z i−1

−∞(T )
)

= E
(

E(Xi(T )|Z
i−1
−∞(T ), T )E(Zj(T )|Z

i−1
−∞(T ), T )|Z i−1

−∞(T )
)

= E
(

E(Xi(T )|Z
i−1
−∞(T ), T )E(Zj(T )|Z

i−1
−∞(T ))|Z i−1

−∞(T )
)

= E(Xi(T )|Z
i−1
−∞(T ))E(Zj(T )|Z

i−1
−∞(T )),

and for all i,

Var(Xi(T )− Vi(T )|Z
i−1
−∞(T )) = E

(

Var(Xi(T )− Vi(T )|Z
i−1
−∞(T ), T )|Z i−1

−∞(T )
)

= 0.



Finally, define {Ṽi, X̃i, Ỹi, Z̃i}
∞
i=−∞ to be a jointly Gaussian stationary process with the

same mean and autocorrelation as {Vi(T ), Xi(T ), Yi(T ), Zi(T )}
∞
i=−∞. It is easy to check

that {Ṽi, X̃i, Ỹi, Z̃i} also satisfies the properties (I)–(IV) and hence that {Ṽi} and {Z̃i}
are independent. It follows from these properties and the Gaussianity of {Ṽi, X̃i, Ỹi, Z̃i}
that there exists a sequence {bk}

∞
k=1 such that X̃i = Ṽi +

∑∞
k=1 bkZ̃i−k. Thus we have

CFB,n ≤
1

m

(

h(Y m
1 (T )|T )− h(Zm

1 )
)

+ ǫm

≤
1

m

(

h(Y m
1 (T ))− h(Zm

1 )
)

+ ǫm

≤
1

m

(

h(Ỹ m
1 )− h(Zm

1 )
)

+ ǫm.

By letting m→ ∞ and using the definition of C̃FB, we obtain

CFB,n ≤ h(Ỹ)− h(Z) ≤ C̃FB. (5)

For the other direction of the inequality, we use the notation C̃FB(P ) and CFB,n(P )
to stress the dependence on the power constraint P . Given ǫ > 0, let {Xi = Vi +
∑∞

k=1 bkZi−k}
∞
i=−∞ achieve C̃FB(P )− ǫ under the power constraint P . The corresponding

channel output is given as

Yi = Vi + Zi +
∞
∑

k=1

bkZi−k (6)

for all i = 0,±1,±2, . . . .
Now, for eachm = 1, 2, . . . , we define a single-sided nonstationary process {Xi(m)}∞i=1

in the following way:

Xi(m) =

{

Ui + Vi +
∑i−1

k=1 bkZi−k i ≤ m,
Ui + Vi +

∑m
k=1 bkZi−k i > m

where U1, U2, . . . are i.i.d. ∼ N(0, ǫ). Thus, Xi(m) depends causally on Z i−1
1 for all

i and m. Let {Yi(m)}∞i=1 be the corresponding channel output Yi(m) = Xi(m) + Zi,
i = 1, 2, . . . , for each m = 1, 2, . . . . We can show that there exists an m⋆ so that

lim
n→∞

1

n

n
∑

i=1

EX2
i (m

⋆) ≤ P + 2ǫ

and

lim
n→∞

1

n
h(Y n

1 (m
⋆)) ≥ h(Y)− ǫ (7)

where h(Y) is the entropy rate of the stationary process defined in (6). Consequently,
for n sufficiently large,

1

n

n
∑

i=1

EX2
i (m

⋆) ≤ n(P + 3ǫ)

and
1

n
(h(Y n

1 (m
⋆))− h(Zn

1 )) ≥ C̃FB(P )− 2ǫ.



Therefore, we can conclude that

CFB,n(P + 3ǫ) ≥ C̃FB(P )− 2ǫ

for n sufficiently large. Finally, using continuity of CFB(P ) = limn→∞CFB,n(P ) in P , we
let ǫ→ 0 to get CFB(P ) ≥ C̃FB, which, combined with (5), implies that

CFB(P ) = C̃FB(P ).

3 Example: First-order ARMA noise spectrum

With the ultimate goal of an explicit characterization of CFB as a function of SZ and P ,
we wish to solve the optimization problem

maximize
∫ π

−π
log
(

SV (e
iθ) + |1 + B(eiθ)|2SZ(e

iθ)
)

dθ
2π

subject to B(eiθ) strictly causal

SV (e
iθ) ≥ 0

∫ π

−π
SV (e

iθ) + |B(eiθ)|2SZ(e
iθ) dθ

2π
≤ P.

(8)

Suppose that SZ(e
iθ) is bounded away from zero. Then, under the change of variable

SY (e
iθ) = SV (e

iθ) + |1 +B(eiθ)|2SZ(e
iθ),

we rewrite (8) as

maximize
∫ π

−π
logSY (e

iθ) dθ
2π

subject to B(eiθ) strictly causal

SY (e
iθ) ≥ |1 +B(eiθ)|2SZ(e

iθ)
∫ π

−π
SY (e

iθ)− (B(eiθ) +B(e−iθ) + 1)SZ(e
iθ) dθ

2π
≤ P.

(9)

Take any ν > 0, φ, ψ1 ∈ L∞, and ψ2, ψ3 ∈ L1 such that φ(eiθ) > 0, log φ ∈ L1, ψ1(e
iθ) =

ν − φ(eiθ) ≥ 0,
[

ψ1(e
iθ) ψ2(e

iθ)

ψ2(eiθ) ψ3(e
iθ)

]

� 0,

and A(eiθ) := ψ2(e
iθ)+ νSZ(e

iθ) ∈ L1 is anticausal. Since any feasible B(eiθ) and SY (e
iθ)

satisfy
[

SY (e
iθ) 1 +B(eiθ)

1 +B(eiθ) S−1
Z (eiθ)

]

� 0,

we have

tr

([

SY 1 +B

1 +B S−1
Z

][

ψ1 ψ2

ψ2 ψ3

])

= φ1SY + ψ2(1 +B) + ψ2(1 +B) + ψ3S
−1
Z ≥ 0.

From the fact that log x ≤ x− 1 for all x ≥ 0, we get the inequality

logSY ≤ − log φ+ φSY − 1

= − log φ+ νSY − ψ1SY − 1

≤ − log φ+ νSY + ψ2(1 +B) + ψ2(1 +B) + ψ3S
−1
Z − 1. (10)



Further, since A ∈ L1 is anticausal and B ∈ H∞ is strictly causal, AB ∈ L1 is strictly
anticausal and

∫ π

−π

A(eiθ)B(eiθ)
dθ

2π
=

∫ π

−π

A(eiθ)B(eiθ)
dθ

2π
= 0. (11)

By integrating both sides of (10), we get

∫ π

−π

log SY ≤

∫ π

−π

− log φ+ νSY + ψ2(1 +B) + ψ2(1 +B) + ψ3S
−1
Z − 1

≤

∫ π

−π

− log φ+ ν
(

(B+B+1)SZ + P
)

+ ψ2(1 +B) + ψ2(1 +B) + ψ3S
−1
Z − 1

=

∫ π

−π

− log φ+ ψ2 + ψ2 + ψ3S
−1
Z + ν(SZ + P )− 1 + AB + AB

=

∫ π

−π

− log φ+ ψ2 + ψ2 + ψ3S
−1
Z + ν(SZ + P )− 1 (12)

where the second inequality follows from the power constraint in (9) and the last equality
follows from (11).

Checking the equality conditions in (12), we find the following sufficient condition for
the optimality of a specific (SY (e

iθ), B(eiθ)).

Lemma 1. Suppose SZ(e
iθ) is bounded away from zero. Suppose B(eiθ) ∈ H∞ is strictly

causal with
∫ π

−π

|B(eiθ)|2SZ(e
iθ)

dθ

2π
= P. (13)

If there exists λ > 0 such that

λ ≤ ess inf
θ∈[−π,π)

|1 +B(eiθ)|2SZ(e
iθ)

and that
λ

1 +B(e−iθ)
− B(eiθ)SZ(e

iθ) ∈ L1

is anticausal, then B(eiθ) along with SV (e
iθ) ≡ 0 attains the feedback capacity.

Now we turn our attention to the first-order autoregressive moving average noise
spectrum SZ(z), defined by

SZ(e
iθ) =

∣

∣

∣

∣

1 + αeiθ

1 + βeiθ

∣

∣

∣

∣

2

, α ∈ [−1, 1], β ∈ (−1, 1). (14)

This spectral density corresponds to the stationary noise process defined by Zi+βZi−1 =
Ui+αUi−1, where {Ui}

∞
i=−∞ is a white Gaussian process with zero mean and unit variance.

We find the feedback capacity of the first-order ARMA Gaussian channel in the following.

Theorem 2. Suppose the noise process {Zi}
∞
i=1 has the power spectral density SZ(z)

defined in (14). Then, the feedback capacity CFB of the Gaussian channel Yi = Xi +
Zi, i = 1, 2, . . . , under the power constraint P , is given by

CFB = − log x0



where x0 is the unique positive root of the fourth-order polynomial

P x2 =
(1− x2)(1 + σαx)2

(1 + σβx)2
(15)

and

σ = sgn(β − α) =

{

1, β ≥ α,
−1, β < α.

Proof sketch. Without loss of generality, we assume that |α| < 1. The case |α| = 1 can
be handled by a simple perturbation argument. When |α| < 1, SZ(e

iθ) is bounded away
from zero, so that we can apply Lemma 1.

Here is the bare-bone summary of the proof: We will take the feedback filter of the
form

B(z) =
1 + βz

1 + αz
·

yz

1− σxz
(16)

where x ∈ (0, 1) is an arbitrary parameter corresponding to each power constraint P ∈
(0,∞) under the the choice of y = x2−1

σx
· 1+σαx
1+σβx

. Then, we can show that B(z) satisfies
the sufficient condition in Lemma 1 under the power constraint

P =

∫ π

−π

|B(eiθ)|2SZ(e
iθ)

dθ

2π
=

∫ π

−π

y2

|1− xeiθ|2
dθ

2π
=

y2

1− x2
.

The rest of the proof is the actual implementation of this idea. We skip the details.

Although the variational formulation of the feedback capacity (Theorem 1), along
with the sufficient condition for the optimal solution (Lemma 1), leads to the simple
closed-form expression for the ARMA(1) feedback capacity (Theorem 2), one might be
still left with somewhat uneasy feeling, due mostly to the algebraic and indirect nature
of the proof. Now we take a more constructive approach and interpret the properties of
the optimal feedback filter B⋆.

Consider the following coding scheme. Let V ∼ N(0, 1). Over the channel Yi =
Xi+Zi, i = 1, 2, . . . , the transmitter initially sends X1 = V and subsequently refines the
receiver’s knowledge by sending

Xn = (σx)−(n−1)(V − V̂n−1) (17)

where x is the unique positive root of (15) and V̂n = E(V |Y1, . . . , Yn) is the minimum
mean-squared error estimate of V given the channel output up to time n. We will show
that

lim inf
n→∞

1

n
I(V ; V̂n) ≥

1

2
log

(

1

x2

)

while

lim sup
n→∞

1

n

n
∑

i=1

X2
i ≤ P,

which proves that the proposed coding scheme achieves the feedback capacity.
Define, for n ≥ 2,

Y ′
n = dnV + Un + (−α)n−1(αU0 − βZ0)



where

dn =

(

1 + σβx

1 + σαx

)

(1− (−σαx)n)(σx)−(n−1).

Then one can show that Y ′
n can be represented as a linear combination of Y1, . . . , Yn and

hence that

E(V − V̂n)
2 ≤ E

(

V −

(

n
∑

k=2

dkY
′
k

))2

.

Furthermore, we can check that

E(V − (
∑n

k=2 dkY
′
k))

2

E(V − (
∑n−1

k=2 dkY
′
k))

2
→

1

x2
,

whence

lim sup
n→∞

1

n
logE(V − V̂n)

2 ≤ log

(

1

x2

)

or equivalently,

lim inf
n→∞

1

n
I(V ; V̂n) ≥

1

2
log

(

1

x2

)

.

On the other hand, for n ≥ 2,

EX2
n = x−2(n−1)E(V − V̂n−1)

2 ≤ x−2(n−1)E

(

V −

(

n−1
∑

k=2

dkY
′
k

))2

,

which converges to

lim
n→∞

x−2(n−1)

∑n−1
k=2 d

2
k

=
(1 + σαx)2

(1 + σβx)2
· (x−2 − 1) = P.

Hence, we have shown that the simple linear coding scheme (17) achieves the ARMA(1)
feedback capacity.

The coding scheme described above uses the minimum mean-square error decoding
of the message V , or equivalently, the joint typicality decoding of the Gaussian random
codeword V , based on the general asymptotic equipartition property of Gaussian pro-
cesses shown by Cover and Pombra [2, Theorem 5]. Instead of the Gaussian codebook
V , the transmitter initially sends a real number θ which is chosen from some equally
spaced signal constellation Θ, say, Θ = {−1,−1+δ, . . . , 1−δ, 1}, δ = 2/(2nR − 1), and
subsequently corrects the receiver’s estimation error by sending θ− θ̂n (up to appropriate
scaling as before) at time n, where θ̂n is the minimum variance unbiased linear estimate
of θ given Y n−1. Now we can verify that the optimal maximum-likelihood decoding is
equivalent to finding θ∗ ∈ Θ that is closest to θ̂n, which results in the error probability

P (n)
e ≤ erfc

(

√

c0x−2n/22nR
)

where erfc(x) = 2√
π

∫∞
x

exp(−t2)dt is the complementary error function and c0 is a con-
stant independent of n. This proves that the Schalkwijk–Kailath–Butman coding scheme
achieves CFB = − log x with doubly exponentially decaying error probability.



4 Concluding remarks

Although it is still short of what we can call a closed-form solution in general, our
variational characterization of Gaussian feedback capacity gives an exact analytic answer
for a certain class of channels, as demonstrated in the example of the first-order ARMA
Gaussian channel. Our development can be further extended in two directions. First, one
can investigate properties of the optimal solution (S⋆

V , B
⋆). Without much surprise, one

can show that feedback increases the capacity if and only if the noise spectrum is white.
Furthermore, it can be shown that taking S⋆

V ≡ 0 does not incur any loss in maximizing
the output entropy, resulting in a simpler maximin characterization of feedback capacity:

CFB = sup
{bk}

inf
{ak}

1

2
log

(

∫ π

−π

∣

∣

∣
1−

∞
∑

k=1

ake
ikθ
∣

∣

∣

2∣
∣

∣
1−

∞
∑

k=1

bke
ikθ
∣

∣

∣

2

SZ(e
iθ)

dθ

2π

)

where the supremum is taken over all {bk} satisfying
∫ π

−π

∣

∣

∣

∑∞
k=1 bke

ikθ
∣

∣

∣

2

SZ(e
iθ) dθ

2π
≤ P.

Secondly, one can focus on the finite-order ARMA noise spectrum and show that the
k-dimensional generalization of Schalkwijk–Kailath–Butman coding scheme is optimal
for the ARMA spectrum of order k. This confirms many conjectures based on numerical
evidences, including the recent study by Yang, Kavčić, and Tatikonda [9]. These results
will be reported separately in [12].
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