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The Communication Complexity of Correlation
Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan

Abstract—Let X and Y be finite non-empty sets and (X, Y ) a
pair of random variables taking values in X × Y . We consider
communication protocols between two parties, Alice and Bob,
for generating X and Y . Alice is provided an x ∈ X generated
according to the distribution of X , and is required to send a
message to Bob in order to enable him to generate y ∈ Y , whose
distribution is the same as that of Y |X=x. Both parties have access
to a shared random string generated in advance. Let T (X : Y )
be the minimum (over all protocols) of the expected number of
bits Alice needs to transmit to achieve this. We show that

I[X : Y ] ≤ T [X : Y ] ≤ I[X : Y ] + 2 log2(I[X : Y ] + 1) + O(1).

We also consider the worst-case communication required for this
problem, where we seek to minimize the average number of
bits Alice must transmit for the worst-case x ∈ X . We show
that the communication required in this case is related to the
capacity C(E) of the channel E, derived from (X, Y ), that maps
x ∈ X to the distribution of Y |X=x. We show that the required
communication T (E) satisfies

C(E) ≤ T (E) ≤ C(E) + 2 log2(C(E) + 1) + O(1).

Using the first result, we derive a direct sum theorem in
communication complexity that substantially improves the pre-
vious such result shown by Jain, Radhakrishnan and Sen [In
Proc. 30th International Colloquium of Automata, Languages and
Programming (ICALP), ser. LNCS, vol. 2719. 2003, pp. 300–315].

These results are obtained by employing a rejection sam-
pling procedure that relates the relative entropy between two
distributions to the communication complexity of generating one
distribution from the other.

Index Terms—mutual information, relative entropy, rejection
sampling, communication complexity, direct-sum

I. INTRODUCTION

LET X and Y be finite non-empty sets, and let (X,Y ) be a
pair of (correlated) random variables taking values in X×

Y . Consider the following communication problem between
two parties, Alice and Bob. Alice is given a random input
x ∈ X , sampled according to the distribution X . (We use the
same symbol to refer to a random variable and its distribution.)
Alice needs to transmit a message M to Bob so that Bob can
generate a value y ∈ Y , that is distributed according to the
conditional distribution Y |X=x (i.e., the pair (x, y) has joint
distribution (X,Y )). How many bits must Alice send Bob in
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any protocol that accomplishes this? It follows from the data
processing inequality in information theory that the minimum
expected number of bits of communication, which we shall
call T (X : Y ), is at least the mutual information I[X : Y ]
between X and Y , that is,

I[X : Y ] ∆= H[X] +H[Y ]−H[X,Y ],

where H[Z] denotes the Shannon entropy of the random
variable Z. (This lower bound follows from the following
sequence of inequalities: T (X : Y ) ≥ H[M ] ≥ I[X : M ] ≥
I[X : Y ], where the last inequality is the data processing
inequality (cf. [CT91, Page 32, Theorem 2.8.1]) applied to the
Markov chain X →M → Y .) In this paper, we are interested
in deriving an upper bound in terms of I[X : Y ] on the
expected length of the communication, which can be viewed
as a functional characterization of the quantity I[X : Y ].

One can also consider a version of this problem which
allows error. Formally, let Tλ(X : Y ) denote the minimum
expected number of bits Alice needs to send Bob so that
the joint distribution generated by the protocol, which we call
(X,Π(X)), is λ-close in total variation distance1 to the joint
distribution (X,Y ).

This problem was first studied by Wyner [Wyn75], who
considered its asymptotic version (with error), where Alice is
given several independently drawn samples (x1, . . . , xm) from
the distribution Xm and Bob needs to generate (y1, . . . , ym)
such that the output distribution of ((x1, y1), . . . , (xm, ym))
is λ-close to the distribution (X,Y )m. Wyner referred to the
amortized minimum expected number of bits Alice needs to
send Bob as the common information C(X : Y ) of the random
variables X and Y , i.e.,

C(X : Y ) ∆= lim inf
λ→0

[
lim
m→∞

Tλ(Xm : Y m)
m

]
. (I.1)

He then obtained the following remarkable information theo-
retic characterization of common information.

Theorem I.1 (Wyner’s theorem [Wyn75, Theorem 1.3]).

C(X : Y ) = min
W

I[XY : W ],

where the minimum is taken over all random variables W
such that X and Y are conditionally independent given W
(in other words, X →W → Y forms a Markov chain).

It can easily be verified that T (X : Y ) ≥ C(X : Y ) ≥
I[X : Y ] (See Section VI for a proof of these inequalities).
However, as we show in Section Section VI, both these
inequalities can be very loose. Thus, this seemingly natural

1The total variation distance between two distribution P and Q is defined
as maxS⊆X |P (S)−Q(S)|, which is also equal to 1

2
‖P −Q‖1 where ‖·‖1

is the `1-norm.
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problem does not offer us the functional characterization for
I[X : Y ] we were initially hoping for.

A. Protocols with shared randomness

Our first result shows that there is such a characterization
if Alice and Bob are allowed to share random information,
generated independently of Alice’s input. In fact, then Alice
need send no more than approximately I[X : Y ] bits to Bob.
In order to state our result precisely, let us first define the kind
of communication protocol Alice and Bob are expected to use.

Definition I.2 (One-way protocol). In a one-way protocol, the
two parties Alice and Bob share a random string R, and also
have private random strings RA and RB respectively. Alice
receives an input x ∈ X . Based on the shared random string R
and her own private random string RA, she sends a message
M(x,R,RA) to Bob. On receiving the message M , Bob
computes the output y = y(M,R,RB). The protocol is thus
specified by the two functions M(x,R,RA) and y(M,R,RB)
and the distributions for the random strings R, RA and RB .
For such a protocol Π, let Π(x) denote its (random) output
when the input given to Alice is x. Let TΠ(x) be the expected
length of the message transmitted by Alice to Bob, that is,
TΠ(x) = E[|M(x,R,RA)|]. Note that the private random
strings can be considered part of the shared random string if
we are not concerned about minimizing the amount of shared
randomness.

One can also consider protocols with multiple rounds of
communication. However, if our goal is only to minimize
communication, then one can assume without loss of gener-
ality that the protocol is one-way. This is because we can
include the random strings RA and RB as part of the shared
random string R, enabling Alice to determine Bob’s responses
to her messages on her own. She can then concatenate all her
messages and send them in one round.

Definition I.3. Given random variables (X,Y ), let

TRλ (X : Y ) ∆= min
Π

E
x←X

[TΠ(x)],

where Π ranges over all one-way protocols where (X,Π(X))
is λ-close in total variation distance to the distribution (X,Y ).
For the special case when λ = 0, we write TR(X : Y ) instead
of TR0 (X : Y ).

As in the case of T (X : Y ), the data processing inequality
implies that TR(X : Y ) is at least I(X : Y ); indeed, we have
TR(X : Y ) ≥ H[M ] ≥ H[M | R] ≥ I[X : M | R] = I[X :
M | R] + I[X : R] = I[X : MR] ≥ I[X : Y ], where we use
the fact that X and R are independent to conclude that I[X :
R] = 0, the chain rule for mutual information and the data
processing inequality (this time applied to the Markov chain
X → (M,R)→ Y ) to conclude that I[X : MR] ≥ I[X : Y ].

Our first result shows that this lower bound is essentially
tight, giving a characterization of mutual information (modulo
some lower order logarithmic terms2).

2All logarithms (denoted by lg) in this paper are with respect to base 2.

Result 1 (Characterization of mutual information).

I[X : Y ] ≤ TR(X : Y ) ≤ I[X : Y ]+2 lg(I[X : Y ]+1)+O(1).

We have an additive 2 lg(I[X : Y ] + 1) term in the upper
bound because our proof of the result employs a prefix-free
encoding of integers that requires lg n+ 2 lg lg(n+ 1) +O(1)
bits to encode the positive integer n. By using an encoding
that requires lg n+(1+ε) lg lg(n+1)+O(1) bits, the constant
2 can be improved to (1 + ε) for any ε > 0.

The above result does not place any bound on the amount of
randomness that Alice and Bob need to share. In fact, there
exist distributions (X,Y ) for which our proof of Result 1
requires Alice and Bob to share a random string of unbounded
length. However, by stating the question in terms of flows
in a suitably defined network, we can bound the amount of
shared randomness by O(lg lg |X |+lg |Y|) provided we allow
the expected communication to increase by O(lg lg(|Y|)) (see
Section VII).

B. Generating one distribution from another

The main tool in our proof of Result 1 is a sampling procedure
for generating one distribution from another. This sampling
procedure is of independent interest because it relates the rela-
tive entropy between two distributions and the communication
complexity of generating one distribution from the other.

Definition I.4 (relative entropy). The relative entropy or
Kullback-Leibler divergence between two probability distri-
butions P and Q on a finite set X is

S(P‖Q) =
∑
x∈X

P (x) lg
P (x)
Q(x)

.

Observe that S(P‖Q) is finite if and only if the support of
distribution P (i.e., the set of points x ∈ X such that P (x) >
0) is contained in the support of the distribution Q; also, it is
zero iff P = Q, but is otherwise always positive.

Let P and Q be two distributions such that the relative en-
tropy S(P‖Q) is finite. We consider the problem of generating
a sample according to P from a sequence of samples drawn
according to Q. Let 〈x1, x2, . . . , xi, . . . 〉 be a sequence of
samples, drawn independently, each with distribution Q. The
idea is to generate an index i∗ (a random variable depending
on the sample) so that the sample xi∗ has distribution P . For
example, if P and Q are identical, then we can set i∗ = 1 and
be done. It is easy to show3 that for any such procedure

E[`(i∗)] ≥ S(P‖Q),

where `(i∗) is the length of the binary encoding of i∗. We show
that there, in fact, exists a procedure that almost achieves this
lower bound.

3 For all x and i, αi
∆
= Pr[i∗ = i ∧ x∗i = x] ≤ Pr[xi = x] = Q(x);

thus, E[`(i∗) | xi∗ = x] ≥ H[i∗ | xi∗ = x]

=
∑
i

αi

P (x)
lg
P (x)

αi
≥ lg

P (x)

Q(x)
,

and E[`(i∗)] =
∑

x
P (x) E[`(i∗) | xi∗ = x] ≥ S(P‖Q).
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Lemma I.5 (Rejection sampling lemma). Let P and Q be
two distributions such that S(P‖Q) is finite. There exists a
sampling procedure REJ-SAMPLER which on input a sequence
〈x1, x2, . . . , xi, . . . 〉 of independently drawn samples from the
distribution Q outputs (with probability 1) an index i∗ such
that the sample xi∗ is distributed according to the distribution
P and the expected encoding length of the index i∗ is at most

S(P‖Q) + 2 lg(S(P‖Q) + 1) +O(1),

where the expectation is taken over the sample sequence and
the internal random coins of the procedure REJ-SAMPLER.

As in the case of Result 1, the constant 2 can be improved
to any constant (1 + ε) for any ε > 0.

C. Reverse Shannon theorem

In Result 1, we considered the communication cost averaged
over x ∈ X , chosen according to the distribution of X . We
now consider the worst-case communication over all x ∈ X
(but we still average over the random choices of the protocol).
Let X and Y be finite non-empty sets as before. Let PY be
the set of all probability distributions on the set Y . A channel
with input alphabet X and output alphabet Y is a function
E : X → PY . The Shannon capacity of such a channel is

C(E) ∆= max
(X,Y )

I[X : Y ],

where (X,Y ) is a pair of random variables taking values in
X × Y such that for all x ∈ X and y ∈ Y , Pr[Y = y |
X = x] = E(x)(y). A simulator for this channel (using a
noiseless communication channel and shared randomness) is
a one-way protocol Π such that for all x ∈ X , Bob’s output
Π(x) has distribution E(x). The goal is to minimize the worst-
case communication; let

T (E) = min
Π

max
x∈X

TΠ(x),

where the minimum is taken over all valid simulators Π of E.
It is easy to show and well known that T (E) ≥ C(E). We
show that this lower bound is essentially tight (modulo some
lower order logarithmic terms).

Result 2 (One-shot reverse Shannon theorem). T (E) ≤
C(E) + 2 lg(C(E) + 1) +O(1).

Such a result is called the Reverse Shannon Theorem as it
gives an (optimal) simulation of noisy channels using noiseless
channels and shared randomness. We use the term one-shot to
distinguish this result from the previously known asymptotic
versions. See Section I-E for a discussion of these results. As
in the case of Result 1, the constant 2 can be improved to
(1 + ε) for any ε > 0.

D. A direct-sum result in communication complexity

Result 1 has an interesting consequence in communication
complexity. To state this result, we need some standard defini-
tions from two-party communication complexity. We refer the
reader to the book by Kushilevitz and Nisan [KN97] for an
excellent introduction to communication complexity. Let X ,

Y and Z be finite non-empty sets, and let f : X ×Y → Z be
a function. A two-party protocol for computing f consists of
two parties, Alice and Bob, who get inputs x ∈ X and y ∈ Y
respectively, and exchange messages in order to compute
f(x, y) ∈ Z . A protocol is said to be k-round, if the two
parties exchange at most k messages.

For a distribution µ on X ×Y , let the ε-error k-round dis-
tributional communication complexity of f under µ (denoted
by Dµ,k

ε (f)), be the number of bits communicated (for the
worst-case input) by the best deterministic k-round protocol
for f with average error at most ε under µ. Let Rpub,k

ε (f), the
public-coins k-round randomized communication complexity
of f with worst case error ε, be the number of bits commu-
nicated (for the worst-case input) by the best k-round public-
coins randomized protocol, that for each input (x, y) computes
f(x, y) correctly with probability at least 1− ε. Randomized
and distributional complexity are related by the following
celebrated result of Yao [Yao77].

Theorem I.6 (Yao’s minmax principle [Yao77]). Rpub,k
ε (f) =

maxµDµ,k
ε (f)

For function f : X × Y → Z , the t-fold direct sum of f ,
f (t) : X t × Yt → Zt, is defined by

f (t)(〈x1, . . . , xt〉, 〈y1, . . . , yt〉)
∆= 〈f(x1, y1), . . . , f(xt, yt)〉.

It is natural to ask if the communication complexity of f (t) is
at least t times that of f . This is commonly known as the direct
sum question. The direct sum question is a very basic question
in communication complexity and had been studied for a long
time. Several results are known for this question in restricted
settings for deterministic and randomized protocols [KN97].
Recently Chakrabarti, Shi, Wirth and Yao [CSWY01] studied
this question in the simultaneous message passing (SMP)
model in which Alice and Bob, instead of communicating
with each other, send a message each to a third party Referee
who then outputs a z such that f(x, y) = z. They showed that
in this model, the Equality function EQ satisfies the direct
sum property. Their result also holds for any function that
satisfies a certain robustness requirement. Jain, Radhakrish-
nan and Sen [JRS05] showed that the claim holds for all
functions and relations, not necessarily those satisfying the
robustness condition, both in the one-way and the SMP model
of communication. In another work Jain, Radhakrishnan and
Sen [JRS03a] showed a weaker direct sum result for bounded-
round two-way protocols under product distributions over the
inputs. Their result was the following (here µ is a product
distribution on X ×Y and k represents the number of rounds):

Dµt,k
ε (f (t)) ≥ t

(
δ2

2k
·Dµ,k

ε+2δ(f)− 2
)

We show that Result 1 implies the following stronger claim.

Result 3 (Direct sum for communication complexity). For
any function f : X × Y → Z , and a product distribution µ
on X × Y , we have

Dµt,k
ε (f (t)) ≥ t

2

(
δDµ,k

ε+δ(f)−O(k)
)
.
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Applying Yao’s minimax principle (Theorem I.6), we have:

Rpub,k
ε (f (t)) ≥ max

µ

(
t

2

(
δDµ,k

ε+δ(f)−O(k)
))

.

where the maximum above is taken over all product distribu-
tions µ on X × Y .

Result 3 requires the distribution µ to be a product distri-
bution. If this requirement could be removed, we would be
able infer a direct sum result for randomized communication
complexity, namely

Rpub,k
ε (f (t)) ≥ t

2

(
δRpub,k

ε+δ (f)−O(k)
)
. (I.2)

In some cases, however, our result implies this claim: if for
some function f , the distribution µ that achieves the maximum
in Theorem I.6 when applied to Rpub,k

ε+δ (f) is a product
distribution, then (I.2) holds.

E. Related work

Asymptotic versions of our Results 1 and 2 were shown
(independently of our work) by Winter [Win02] and Bennett et
al. [BSST02] respectively.

Theorem I.7 ([Win02, Theorem 9 and Remark 10]). For every
pair of distributions (X,Y ) and λ > 0 and n, there exists a
one-way protocol Πn such that the distribution (Xn,Πn(Xn))
is λ-close in total variation distance to the joint distribution
(Xn, Y n) and furthermore,

max
x∈Xn

TΠn(x) ≤ nI[X : Y ] +O

(
1
λ

)
·
√
n.

Theorem I.8 (Reverse Shannon theorem [BSST02]). Let E
be a discrete memoryless channel with Shannon capacity C
and ε > 0. Then, for each block size n there is a deterministic
simulation protocol Πn for En which makes use of a noiseless
channel and prior random information R shared between
sender and receiver. The simulation is exactly faithful in the
sense that for all n, and for all x ∈ Xn, the output Πn(x)
has the distribution En(x), and it is asymptotically efficient
in the sense that

lim
n→∞

max
x∈Xn

Pr[TΠn(x) > n(C(E) + ε)] = 0.

Note that the asymptotic result of Winter [Win02] is slightly
stronger than what is stated above in that it actually bounds
the worst case number of bits communicated while our results
(and the above statement) bound the expected number of bits
communicated. Despite this, these asymptotic results (and their
stronger counterparts) follow immediately from our results by
routine applications of the law of large numbers.

a) One-shot vs. asymptotic results: In the light of the
above, it might seem natural to ask why one should be
interested in one-shot versions of known asymptotic results.
Our motivation for the one-shot versions is two-fold.
• The asymptotic equipartition property (cf. [CT91, Chap-

ter 3]) for distributions states that for sufficiently large
n, n independently drawn samples from a distribution
X almost always fall in what are called “typical sets”.

Typical sets have the property that all elements in it are
nearly equiprobable and the size of the typical set is
approximately 2nH[X]. Any property that is proved for
typical sets will then be true with high probability for
a large sequence of independently drawn samples. Thus,
to prove the asymptotic results, it suffices to prove the
same for typical sets. Thus, one might contend that these
asymptotic results are in fact properties of typical sets
and it could be the case that the results are in fact, not
true for the one-shot case. Our results show that this is
not the case and one need not resort to typical sets to
prove them.

• Second, our results provide tools for certain problems
in communication complexity (e.g., our improved direct
sum result). For such communication complexity appli-
cations, the asymptotic versions do not seem to suffice
and we require the one-shot versions.

b) Bounding shared randomness: As mentioned ear-
lier, we can bound the shared randomness in Result 1 by
O(lg |X |+ lg |Y|) if we are allowed to increase the expected
communication by an additive term of O(lg lg(|X | + Y|))
(see Section VII). This raises the natural question of tradeoffs
between shared randomness and expected communication. The
asymptotic version of this problem was recently solved by
Bennett and Winter (Personal Communication [BW06]).

c) Substate Theorem: Jain, Radhakrishnan and
Sen [JRS02] prove the following result relating the relative
entropy between two distributions P and Q to how well a
distribution is contained in another.

Theorem I.9 (Classical substate theorem, [JRS02]). Let P and
Q be two distributions such that k = S(P‖Q) is finite. For all
ε > 0 there exists a distribution P ′ such that ‖P ′ − P‖1 ≤ ε
and Q = αP ′+(1−α)P ′′ where P ′′ is some other distribution
and α = 2−O(k/ε).

The rejection sampling lemma (Lemma I.5) is a strength-
ening of the above theorem (the above theorem follows from
Lemma I.5 by an application of Markov’s inequality). In fact,
the classical substate theorem can then be used to prove a
weaker version of Result 1 and Result 2 which allows for
error. More precisely, one can infer (from Theorem I.9) that
TRλ (X : Y ) ≤ O(I[X : Y ])/λ) and TRλ (E) ≤ O(C(E)/λ).
Note Jain, Radhakrishnan and Sen [JRS02] actually showed a
quantum analogue of the above substate theorem. It is open if
there exist quantum analogues of our results.

d) Lower Bounds using message compression:
Chakrabarti and Regev [CR04] prove that any randomized
cell probe algorithm that solves the approximate nearest search
problem on the Hamming cube {0, 1}d using polynomial
storage and word size dO(1) requires a worst case query
time of Ω(lg lg d/ lg lg lg d). An important component in
their proof of this lower bound is the message compression
technique of Jain, Radhakrishnan and Sen [JRS03a]. The
rejection sampling lemma (Lemma I.5) can be used to
improve message compression of [JRS03a], which in turn
simplifies the lower bound argument of Chakrabarti and
Regev. It is likely that there are other similar applications.



5

Organization

The rest of the paper is organized as follows: We first
prove Results 1 and 2 assuming the rejection sampling lemma
(Lemma I.5) in Sections II and III respectively. We then
proceed to prove the rejection sampling lemma in Section IV.
The Direct Sum Result (Result 3) is then proved in Section V.
In Section VI, we give examples of joint distributions (X,Y )
that satisfy T (X : Y ) = ω(C(X : Y )) and C(X : Y ) =
ω(I[X : Y ]). Finally, in Section VII, we show how to reduce
the shared randomness at the expense of a small additive cost
in the expected communication.

II. PROOF OF RESULT 1

Result 1 follows easily from the rejection sampling lemma
(Lemma I.5) and the following well-known relationship be-
tween relative entropy and mutual information.

Fact II.1. I[X : Y ] = Ex←X [S(Y |X=x‖Y )].

In other words, the mutual information between any two
random variables X and Y is the average relative entropy
between the conditional distribution Y |X=x and the marginal
distribution Y .

Proof of Result 1: We may assume that the random string
shared by Alice and Bob is a sequence of independently
drawn samples 〈y1, y2, . . . 〉 according to the marginal
distribution Y . On input x ∈ X drawn according to the
distribution X , Alice uses the sampling procedure REJ-
SAMPLER (from Lemma I.5) to sample the conditional
distribution Y |X=x from the marginal distribution Y in order
to generate the index i∗. (Note that the conditional and
marginal distribution always satisfy S(Y |X=x‖Y ) < ∞).
Alice transmits the index i∗ to Bob, who then outputs
the sample yi∗ which has the required distribution. The
expected number of bits transmitted in this protocol is at most
Ex←X [S(Y |X=x‖Y ) + 2 lg(S(Y |X=x‖Y ) + 1) +O(1)]
which (by Fact II.1 and Jensen’s inequality) is at most
I[X : Y ] + 2 lg(I[X : Y ] + 1) +O(1).

III. PROOF OF THE ONE-SHOT REVERSE SHANNON
THEOREM (RESULT 2)

Fix the channel E, and let (X,Y ) be the random variables
that realize its channel capacity. Let Q be the marginal
distribution of Y .

Claim III.1. For all x ∈ X , S(E(x)‖Q) ≤ C(E).

The existence of a distribution Q with the above property
was also shown by Jain [Jai06] using a different argument.

Note that the result follows immediately from this claim
by invoking the rejection sampling lemma (Lemma I.5). The
resulting protocol uses samples drawn according to Q as
shared randomness and on input x ∈ X generates a symbol in
Y whose distribution is E(x). The communication required is
bounded by S(E(x)‖Q) + 2 lg(S(E(x)‖Q) + 1) + O(1); by
Claim III.1, this is at most lg C(E) + 2 lg(C(E) + 1) +O(1).

Proof of Claim III.1: For contradiction assume that
for some x0 ∈ X , we have S(E(x0)‖Q) > C(E). We
will show that by assigning greater probability to x0 than

it receives in X , we can obtain a pair of random variables
(X ′, Y ′) whose distribution is compatible with the channel,
but whose mutual information is strictly more than C(E)—a
contradiction. Formally, for α ∈ [0, 1], consider the random
variable Xα obtained by picking x0 with probability α and
X with probability (1 − α). Let Yα be a random variable
correlated with Xα such that for all x ∈ X and y ∈ Y ,
Pr[Yα = y | Xα = x] = E(x)(y); let Qα be the marginal
distribution of Yα. We will show that

dI[Xα : Yα]
dα

∣∣∣∣
α=0

= S(E(x0)‖Q)− I[X : Y ] > 0. (III.1)

It then follows that for some small enough α > 0,

I[Xα : Yα] > I[X0 : Y0] = C(E),

contradicting our assumption that

I[X0 : Y0] = I[X : Y ] = C(E).

It remains to establish (III.1).

I[Xα : Yα]
= E

x←Xα
[S(E(x)‖Qα)]

= E
x←Xα

[S(E(x)‖Q)]− S(Qα‖Q)

= αS(E(x0)‖Q) + (1− α) E
x←X

[S(E(x)‖Q)]− S(Qα‖Q)

= αS(E(x0)‖Q) + (1− α)I[X : Y ]− S(Qα‖Q).

Since Qα(y) = αE(x0)(y) + (1− α)Q(y), we have

S(Qα‖Q) =
∑
y∈Y

(αE(x0)(y) + (1− α)Q(y)) ·

lg
(
αE(x0)(y) + (1− α)Q(y)

Q(y)

)
.

A quick calculation then yields:

dI[Xα : Yα]
dα

= S(E(x0)‖Q)− I[X : Y ]−∑
y∈Y

(E(x0)(y)−Q(y)) · lg
(
αE(x0)(y) + (1− α)Q(y)

Q(y)

)
.

Our claim (III.1) follows immediately.
This completes the proof of Result 2.

IV. THE REJECTION SAMPLING PROCEDURE

Let P and Q be two distributions on the set X such that
the relative entropy S(P‖Q) is finite. Recall that we need to
design a rejection sampling procedure that on input a sequence
of samples 〈x1, x2, . . .〉 independently drawn according to the
distribution Q, outputs an index i∗ such that xi∗ is distributed
according to P , and the expected encoding length of the index
i∗ is as small as possible.

The procedure REJ-SAMPLER we formally state below ex-
amines the samples 〈xi : i ∈ N〉 sequentially; after examining
xi it either accepts it (by returning the value i for i∗) or moves
on to the next sample xi+1. For x ∈ X and i ≥ 1, let αi(x)
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denote the probability that the procedure outputs i and xi = x.
We wish to ensure that for all x ∈ X ,

P (x) =
∞∑
i=1

αi(x).

Let pi(x) =
∑i
j=1 αi(x); thus, pi(x) is the probability

that the procedure halts with i∗ ≤ i and xi∗ = x. Let
p∗i =

∑
x∈X pi(x); hence, p∗i is the probability that the

procedure halts within i iterations. These quantities will be
determined once αi(x) is defined. We define αi(x) (and hence
pi(x) and p∗i ) inductively. For x ∈ X , let p0(x) = 0. For
i = 1, 2, . . . and for x ∈ X , let

αi(x) = min{P (x)− pi−1(x), (1− p∗i−1)Q(x)};
pi(x) = pi−1(x) + αi(x).

The definition of αi(x) can be understood as follows. The
first term P (x) − pi−1(x) ensures that pi(x) never exceeds
P (x). The second term (1 − p∗i−1)Q(x) has the following
interpretation. The probability that the procedure enters the i-
th iteration and gets to examine xi is precisely 1−p∗i−1. Since,
Pr[xi = x] = Q(x), the probability that the procedure outputs
i after examining xi = x can be at most (1− p∗i−1)Q(x). Our
definition of αi(x) corresponds to the greedy strategy, that
accepts the i-th sample, with as much probability as possible
under the constraint that pi(x) ≤ P (x) for all x ∈ X . The
following procedure implements this idea formally.

REJ-SAMPLER(P,Q)
RANDOM INPUT: 〈xi : i ∈ N〉 a sequence of samples
independently drawn from the distribution Q.

A. Compute the sequence 〈pi : i ∈ N〉 as defined
above.

B. For i← 1 to ∞ do
ITERATION (i)
a) Examine sample xi.
b) With probability βi(xi) =

min
{
P (xi)−pi−1(xi)
(1−p∗

i−1)Q(xi)
, 1
}
, output i and

halt.
Note that if we arrive at the i-th iteration,
then p∗i−1 < 1; also Q(xi) > 0. So, βi is
well defined.

Note that the probability that this procedure outputs i and
xi = x is precisely βi(x)(1 − p∗i−1)Q(x) = αi(x). We have
two claims.

Claim IV.1. For all x, 〈pi(x) : i = 1, 2, . . .〉 converges to
P (x).

Claim IV.2. Let ` be a prefix-free encoding of positive integers
such that `(n) ≤ lg n+2 lg lg(n+1)+O(1). Then, E[`(i∗)] =
S(P‖Q) + 2 lg(S(P‖Q) + 1) +O(1).

Proof of Claim IV.1: It is enough to show that for all
x ∈ X , pi(x) converges to P (x). Fix an x ∈ X . We will show
that for i = 1, 2, . . .,

αi(x) ≥ (P (x)− pi−1(x))Q(x), (IV.1)

and then induction to show P (x)−pi(x) ≤ P (x)(1−Q(x))i:
the inequality holds for i = 0 because p0(x) = 0, and for the
induction step we have

P (x)− pi(x) = P (x)− pi−1(x)− αi(x)
≤ (P (x)− pi−1(x))(1−Q(x))
≤ P (x)(1−Q(x))i.

Since S(P‖Q) <∞, we have that if P (x) > 0, then Q(x) >
0. Since, P (x) ≥ pi(x), we conclude that pi(x) converges to
P (x). It remains to establish (IV.1). First, observe that

1− p∗i−1 =
∑
y∈X

P (y)−
∑
y∈X

pi−1(y)

=
∑
y∈X

(P (y)− pi−1(y))

≥ P (x)− pi−1(x).

Now, (IV.1) follows immediately from the definition, αi(x) =
min{P (x)− pi−1(x), (1− p∗i−1)Q(x)}.

Proof of Claim IV.2: We show below that

E[lg i∗] ≤ S(P‖Q) +O(1). (IV.2)

Then, we have

E [`(i∗)] = E [lg i∗ + 2 lg lg(i∗ + 1) +O(1)]
= E [lg i∗] + 2 E [lg lg(i∗ + 1)] +O(1)
≤ E [lg i] + 2 lg (E [lg(i∗ + 1)]) +O(1)

[Jensen’s inequality: lg(·) is concave]
≤ E [lg i∗] + 2 lg (E [lg i∗] + 1) +O(1)
≤ S(P‖Q) +O(1) + 2 lg (S(P‖Q) +O(1)) +O(1)

[by (IV.2)]
= S(P‖Q) + 2 lg (S(P‖Q) + 1) +O(1).

It remains to show (IV.2). We have

E [lg i] =
∑
x∈X

∞∑
i=1

αi(x) · lg i. (IV.3)

The term corresponding to i = 1 is 0. To bound the other
terms we need to obtain a suitable bound on αi(x). Let i ≥ 2
and suppose αi(x) > 0. Then for j = 1, 2, . . . , i, pj−1(x) <
P (x), implying that for j = 1, 2, . . . , i − 1, αj(x) = (1 −
p∗j−1)Q(x) ≥ (1− p∗i−1)Q(x). Thus,

P (x) > pi−1(x) =
i−1∑
j=1

αj(x) ≥ (i− 1)(1− p∗i−1)Q(x),

which implies that

i ≤ 1
1− p∗i−1

· P (x)
Q(x)

+ 1. (IV.4)

We have shown this inequality assuming i ≥ 2 and αi(x) > 0,
but clearly it holds when i = 1 and α1(x) > 0. Returning to
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(IV.3) with this, we obtain

E [lg i] =
∑
x∈X

∞∑
i=1

αi(x) · lg i

≤
∑
x∈X

∞∑
i=1

αi(x) · lg
(

1
1− p∗i−1

· P (x)
Q(x)

+ 1
)

[by (IV.4)]

≤
∑
x∈X

∞∑
i=1

αi(x) · lg
(

1
1− p∗i−1

(
P (x)
Q(x)

+ 1
))

[since 0 ≤ p∗i−1 ≤ 1]

=
∞∑
i=1

(p∗i − p∗i−1) · lg
(

1
1− p∗i−1

)
+

∑
x∈X

P (x) · lg
(
P (x)
Q(x)

+ 1
)

≤
∫ 1

0

lg
1

1− p
dp+

∑
x∈X

P (x) · lg
(
P (x)
Q(x)

+ 1
)

= lg e+
∑
x∈X

P (x) lg
(
P (x)
Q(x)

)
+

∑
x∈X

P (x) lg
(

1 +
Q(x)
P (x)

)
≤ lg e+ S(P‖Q) +

∑
x∈X

P (x) · lg exp
(
Q(x)
P (x)

)
[since 1 + t ≤ exp(t)]

= S(P‖Q) + 2 lg e.

V. PROOF OF DIRECT SUM RESULT (RESULT 3)

Below we present our result in the two-party model for
computing functions f : X × Y → Z . However, the result
also holds for protocols computing relations R ⊆ X ×Y ×Z
in which Alice and Bob given x ∈ X and y ∈ Y respectively,
need to output a z ∈ Z such that (x, y, z) ∈ R.

Our proof uses the notion of information cost defined by
Chakrabarti et al. [CSWY01], and refined in several subse-
quent works [BJKS04], [JRS03a], [JRS03b], [JRS05].

Definition V.1 (Information cost). Let Π be a private coins
protocol taking inputs from the set X × Y , and let µ be a
distribution on the input set X × Y . Then, the information
cost of Π under µ is

ICµ(Π) = I[XY : M ],

where (X,Y ) represent the input to the two parties (chosen
according to the distribution µ) and M is the transcript of
the messages exchanged by the protocol on this input. For a
function f : X × Y → Z , let

ICµ,kε (f) = min
Π

ICµ(Π),

where Π ranges over all k-round private-coins protocols for
f with error at most ε under µ.

We immediately have the following relationship between
ICµ,kε and Dµ,k

ε .

Proposition V.2. ICµ,kε (f) ≤ Dµ,k
ε (f).

Proof: Let Π be a protocol whose communication is c ∆=
Dµ,k
ε (f). Let M denote the message transcript of Π. Then we

have, c ≥ H(M) ≥ I[XY : M ] ≥ ICµ,kε (f).
A key insight of Chakrabarti et al. [CSWY01] was that

one could show (approximately) a relationship in the opposite
direction when the inputs are being drawn from the uniform
distribution. They showed this for SMP protocols using a
kind of message compression. Their result was then extended
using different techniques involving the (classical) substate
theorem (Theorem I.9) by Jain et al. [JRS03a], [JRS05]. Using
this they showed that messages could be compressed to the
amount of information they carry about the inputs, under
all distributions for one-way and SMP protocols and under
product distributions for two-way protocols. These message
compression results then lead to corresponding direct sum
results. Using Result 1, we can considerably strengthen the
result of Jain et al. [JRS03a] for two-way protocols as follows.

Lemma V.3 (Message compression). Let ε, δ > 0. Let µ be
a distribution (not necessarily product) on the X × Y and
f : X × Y → Z . Then,

Dµ,k
ε+δ(f) ≤ 1

δ

[
2 · ICµ,kε (f) +O(k)

]
.

Jain et al. [JRS03a] also obtain a similar message com-
pression result however the dependence on k, the number of
rounds, in their result is much worse as mentioned in the
Introduction section.

The second ingredient in our proof of Result 3 is the
direct sum property of information cost, originally observed
by Chakrabarti et al. [CSWY01] for the uniform distribution.

Lemma V.4 (Direct sum for information cost). Let µ be
a product distribution on X × Y . Then, ICµ

t,k
ε (f (t)) ≥ t ·

ICµ,kε (f).

This is the only place in the proof where we require µ to
be a product distribution.

Before proving these lemmas, let us show that they imme-
diately imply our theorem.

Proof of Result 3: Let µ be a product distribution on
X × Y . Then we have

Dµt,k
ε (f (t)) ≥ ICµ

t,k
ε (f (t))

≥ t · ICµ,kε (f)

≥ t

2

(
δDµ,k

ε+δ(f)−O(k)
)
,

where the first inequality follows from Proposition V.2, the
second from Lemma V.4 and the last from Lemma V.3.

Proof of Lemma V.3: Let µ be a distribution on X ×
Y . Fix a private-coins protocol Π that achieves the optimum
information cost ICµ,kε (f). Let (X,Y ) be the random variables
representing the inputs of Alice and Bob distributed according
to µ. We will use the following notation: M = M(X,Y ) will
be the transcript of the protocol; for i = 1, 2, . . . , k, Mi will
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denote the i-th message of the transcript M and M1,i will
denote the first i messages in M . Now, we have from the
chain rule for mutual information (cf. [CT91]).

I[XY : M ] =
k∑
i=1

I[XY : Mi |M1,i−1]. (V.1)

We now construct another protocol Π′ as follows. The idea is
as follows. For i = 1, 2, . . . , k, the party that sent Mi in Π,
will now instead use Result 1 to generate the message Mi for
the other party by sending about I[XY : Mi |M1,i−1] bits on
the average. Suppose, we manage to generate the first i − 1
messages in Π′ with distribution exactly as that of M1,i−1, and
the (partial) transcript so far is m. For the rest of this paragraph
we condition on M1,i−1 = m, and describe how the next
message is generated. Assume that it is Alice’s turn to send
the next message. We have two observations concerning the
distributions involved. First, the prefix m of the transcript has
already been generated and hence both parties can condition
on this information. In particular, the conditional distribution
(Mi |M1,i−1 = m) is known to both Alice and Bob and (pre-
generated) samples from it can be used as shared randomness.
Second, since Π is a private-coins protocol, for each x ∈ X ,
the conditional random variable (Mi(x, Y ) | M1,i−1(x, Y ) =
m), is independent of Y . Hence on input x, Alice knows the
distribution of (Mi(x, Y ) |M1,i−1(x, Y ) = m).

The second observation in particular implies (using chain
rule for information),

I[XY : Mi |M1,i−1 = m] = I[X : Mi |M1,i−1 = m].

Thus, by Result 1, Alice can arrange for (Mi|M1,i−1 = m)
to be generated on Bob’s side by sending at most

2I[X : Mi |M1,i−1 = m] +O(1)

bits on the average; the overall communication in the i-th
round is the average of this quantity over all choices m, that
is, at most

2I[XY : Mi |M1,i−1] +O(1).

By applying this strategy for all rounds, we note from (V.1)
that we obtain a public-coins k-round protocol Π′, with
expected communication 2I[XY : M ] +O(k) bits, and error
at most ε as in Π. Using Markov’s inequality, we conclude that
the number of bits sent by the protocol is at least 1

δ times this
quantity with probability at most δ. By truncating the long
runs and then fixing the private random sequences suitably,
we obtain a deterministic protocol Π′′ with error at most
ε+ δ and communication at most 1

δ (2I[XY : M ] +O(k)) =
1
δ (2 · ICµ,kε (f)+O(k)). The lemma now follows from this and
the definition of Dµ,k

ε+δ(f).
Proof of Lemma V.4: Let µ be a product distribu-

tion on X × Y . Fix a k-round private-coins protocol Π
for f (t) that achieves ICµ

t,k
ε (f (t)). For this protocol Π the

input is chosen according to µt. We denote this input by
(X,Y ) = (X1X2 · · ·Xt, Y1Y2 · · ·Yt) and note that the 2t
random variables involved are mutually independent. Let M
denote the transcript of this protocol when run on the input

(X,Y ). Now, we have from chain rule for mutual information
and independence of the 2t random variables as above,

ICµ
k,k
ε (f) = I[XY : M ] ≥

t∑
i=1

I[XiYi : M ].

We claim that each term in the sum of the form I[XiYi : M ]
is at least ICµ,kε . Indeed, consider the following protocol Π′

for f derived from Π. In Π′, on receiving the input (x, y) ∈
X × Y , Alice and Bob simulate Π as follows. They insert x
and y as the i-th component of their respective inputs for Π,
and generate the remaining components based on the product
distribution µ. They can do so using private coins since µ is
a product distribution. This results in a k-round private coins
protocol Π′ for f with error at most ε under µ, since the error
of Π was at most ε under µk. Clearly, ICµ(Π) = I[XiYi : M ].

VI. SEPARATING T (X : Y ), C(X : Y ) AND I[X : Y ]
For any pair of random variables (X,Y ), it easily follows

from the definitions that T (X : Y ) ≥ C(X : Y ). Furthermore,
by Wyner’s theorem (Theorem I.1)

C(X : Y ) = min
W

I[XY : W ],

where W is such that X and Y are independent when
conditioned on W . Note, however, that

I[XY : W ] ≥ I[X : W ] ≥ I[X : Y ].

The first inequality comes from the monotonicity of mutual
information which in turn follows from the chain rule for mu-
tual information. The second inequality is the data processing
inequality applied to the Markov chain X → W → Y . Thus,
we have T (X : Y ) ≥ C(X : Y ) ≥ I[X : Y ]. In this section,
we will show that both these inequalities are strict for (X,Y )
defined as follows.

Definition VI.1. Let W = (i, b) be a random variable
uniformly distributed over the set [n] × {0, 1}. Now, let X
and Y be random variables taking values in {0, 1}n, such
that

(a) Pr[X = z | W = (i, b)],Pr[Y = z | W = (i, b)] ={
2−(n−1) z[i] = b
0 otherwise

.

(b) X and Y are independent when conditioned on W .

It is easy to see that X and Y are uniformly distributed n-bit
strings (but not independent). Hence, H[X] = H[Y ] = n.

Proposition VI.2. For (X,Y ) defined as above, we have:

(a) I[X : Y ] = O
(
n−

1
3

)
.

(b) C(X : Y ) = 2− I[X : Y ] = 2−O
(
n−

1
3

)
.

(c) T (X : Y ) = Θ(lg n).

Note that in the above example, though C(X : Y ) and I[X :
Y ] differ by a super-constant multiplicative factor, they only
differ by a constant additive term. We can construct another
joint distribution (X ′, Y ′) by taking m independent copies of
the joint distribution (X,Y ) (i.e., (X ′, Y ′) = (X,Y )m). It
then follows from the chain rule for mutual information that



9

I[X ′ : Y ′] = I[Xm : Y m] = mI[X : Y ] = o(m). However,
C(X ′ : Y ′) = C(Xm : Y m) = mC(X : Y ) = Θ(m)4. This
implies that it is not possible to bound C(X : Y ) from above
by a linear function in I[X : Y ].

Proof of part (a): Given X = x for some n-bit string x,
the conditional distribution Y |X=x is given by

Pr[Y = y | X = x] =
agr(x, y)
n2n−1

where agr(x, y) is the number of bit positions x and y agree
on. We can now compute the conditional entropy H[Y | X]
as follows:

H[Y | X] = −
∑

x∈{0,1}n

1
2n

n∑
k=0

(
n

k

)
k

n2n−1
lg

k

n2n−1

= −
n∑
k=0

(
n

k

)
k

n2n−1
lg

k

n2n−1

= −
n∑
k=1

(
n− 1
k − 1

)
1

2n−1
lg

k

n2n−1

= −
n−1∑
k=0

(
n− 1
k

)
1

2n−1
·

[lg(k + 1)− (n+ lg n− 1)]

= n+ lg n− 1−
n−1∑
k=0

(
n− 1
k

)
1

2n−1
lg(k + 1)

≥ n+ lg n− 1−
(

1− 2−O(n1/3)
)
·

lg
[
n

2

(
1 +

1
n1/3

)]
− 2−O(n1/3) · lg n

= n+ lg n− 1

−
(

1− 2−O(n1/3)
)
·
(

lg n− 1 +
lg e
n1/3

)
−2−O(n1/3) · lg n

[ since lg(1 + δ) ≤ δ lg e]

= n−O
(

1
n1/3

)
Thus, I[X : Y ] = H[Y ]−H[Y | X] = O(n−

1
3 ).

Proof of part (b): By Wyner’s theorem (Theorem I.1),

C(X : Y ) = min
W ′

I[XY : W ′]

= H[XY ]−max
W ′

H[XY |W ′]

= H[X] +H[Y ]− I[X : Y ]−max
W ′

H[XY |W ′]

= 2n− I[X : Y ]−max
W ′

H[XY |W ′].

where the random variable W ′ is such that I[X : Y |W ′] = 0.
We already know that I[X : Y ] = O

(
n−

1
3

)
. So, part (b) will

follow if we show

max
W ′

H[XY |W ′] = 2n− 2. (VI.1)

4C(Xm : Ym) = lim infλ→0 limk→∞(T (Xmk : Ymk)/k) = m ·
lim infλ→0 limk→∞(T (Xmk : Ymk)/mk) = mC(X : Y ) where the
first and third equalities follow from (I.1)

Let W ′ be such that I[X : Y | W ′] = 0. Consider any w in
the support of W ′. Let Xw be the set of x ∈ {0, 1}n such
that Pr[X = x |W ′ = w] > 0. Similarly, define Yw. We must
have that |Xw|+ |Yw| ≤ 2n, since otherwise there must exist
an x such that Pr[X = x ∧ Y = x̄] > 0 where x̄ is the n-bit
string obtained by complementing each bit of x. This implies
that |Xw × Yw| ≤ 22n/4. Thus,

max
W ′

H[XY |W ′] ≤ 2n− 2.

Now, if we let W ′ be the random variable W used in
Definition VI.1, we have H[XY |W ] = 2(n− 1). Hence,

max
W ′

H[XY |W ′] ≥ 2n− 2.

This justifies (VI.1) and completes the proof of part (b).
To prove part (c), we will use a theorem of Harper [Har66],

which states that Hamming balls in the hypercube have the
smallest boundary. The following version, due to Frankl and
Füredi (see Bollobás [Bol86, Theorem 3, page 127]), will be
the most convenient for us. First, we need some notation.

e) Notation.: For x, y ∈ {0, 1}n, let d(x, y) be the
Hamming distance between x and y, that is, the number
of positions where x and y differ. For non-empty subsets
A,B ⊆ {0, 1}n, let

d(A,B) ∆= min{d(a, b) : a ∈ A and b ∈ B}.

We say that a subset S ⊆ {0, 1}n is a Hamming ball centered
at x ∈ {0, 1}n if for all y, y′ ∈ {0, 1}n, if y ∈ S and
d(x, y′) < d(x, y), then y′ ∈ S. Let

Ball(x, d) = {y ∈ {0, 1}n : d(x, y) ≤ d} .

Theorem VI.3 ([Bol86, Theorem 3, page 127]). Let A and B
be non-empty subsets of {0, 1}n. Then, we can find Hamming
balls A0 and B0 centered at 0n and 1n respectively, such that
|A0| = |A|, |B0| = |B|, and d(A0,B0) ≥ d(A,B).

Corollary VI.4. If A and B are non-empty sets of strings such
that d(A,B) ≥ d ≥ 2, then

min{|A|, |B|} ≤ exp
(
− (d− 2)2

2n

)
2n.

Proof: By Theorem VI.3, we may assume that A and B
are balls centered at 0n and 1n. Suppose |A| ≤ |B|, and let r
be a non-negative integer such that

Ball(0n, r) ⊆ A ⊆ Ball(0n, r + 1).

Then, 2r+d ≤ n, that is, r+1 ≤ (n−d+2)/2. It then follows
using the Chernoff bound (see, e.g., Alon and Spencer [AS00,
Theorem A.1.1, page 263]) that

|A| ≤ |Ball(0n, r + 1)| ≤ exp
(
− (d− 2)2

2n

)
· 2n.

Proof of part (c): It is easy to see that T (X : Y ) ≤
dlg ne+1: on receiving x ∈ {0, 1}n, Alice sends Bob an index
i uniformly distributed in [n] and the bit x[i]; on receiving
(i, b), Bob generates a random string y ∈ {0, 1} such that
y[i] = b, with each of the 2n−1 possibilities being equally
likely.
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It remains to show that T (X : Y ) = Ω(lg n). It follows from
the definition of T (X : Y ) that T (X : Y ) ≥ minW ′ H[W ′],
where the minimum is over all random variables W ′ such that
X and Y are conditionally independent given W ′. Thus, it is
enough to show that any such W ′ has entropy Ω(lg n). Let
W ′ be one such random variable. We show below that for all
w

Pr[W ′ = w] = O

(√
lg n
n

)
.

That is, we show that the min-entropy of W ′ is Ω(lg n); it
follows that the entropy of W ′ is Ω(lg n)

Fix w such that α ∆= Pr[W ′ = w] > 0. Let

Xw =
{
x ∈ {0, 1}n : Pr[X = x |W ′ = w] > 2−(n+1)

}
;

Yw =
{
y ∈ {0, 1}n : Pr[X = y |W ′ = w] > 2−(n+1)

}
.

Then, for all x ∈ Xw and y ∈ Yw, we have

α2−2(n+1) < Pr[(X,Y ) = (x, y) ∧W ′ = w]
≤ Pr[(X,Y ) = (x, y)]

=
agr(x, y)
n22n−1

,

that is, agr(x, y) > αn/8. Furthermore, since for all x,
Pr[X = x | W ′ = w] ≤ 2−n/α and

∑
x∈{0,1}n Pr[X =

x | W ′ = w] = 1, we have |Xw| ≥ α2n−1. Similarly
|Yw| ≥ α2n−1. We thus obtain two sets Xw, Yw ⊆ {0, 1}n,
each with at least α2n−1 elements, such that every x ∈ Xw

and y ∈ Yw satisfies agr(x, y) > αn/8. Our goal is to show
that this implies that α is small.

Let Y ′w be the set of strings whose complements belong to
Yw. Since agr(x, y) > αn/8 for all x ∈ Xw and y ∈ Yw, the
Hamming distance between Xw and Y ′w is more than αn/8.
By Corollary VI.4, we conclude that

α2n−1 ≤ exp
(
− (αn− 16)2

128

)
2n,

which implies that α = O

(√
lnn
n

)
, for all large enough n.

VII. REDUCING THE SHARED RANDOMNESS

In the preceding sections, we did not formally bound the
amount of shared randomness used by the protocol. We now
address this shortcoming, and show how one can reduce
the number of shared random bits used substantially, while
increasing the communication only slightly. Our main result
is the following.

Theorem VII.1. For all pairs of random variables (X,Y ),
there is a one-way protocol Π for generating (X,Y ) (so that
(X,Π(X)) has the same distribution as (X,Y )) such that

1) the expected communication from Alice to Bob is
at most I[X : Y ] + O(lg(I[X : Y ] + 1)) +
O(lg lg |support(Y )|);

2) the number of bits of shared randomness read by either
party is O(lg lg |support(X)|+ lg |support(Y )|).

To justify this theorem, we will present a protocol that
satisfies the requirements. We will derive our semiprotocol
from a probabilistic argument, which we state using the
language of graphs.

Definition VII.2 (Protocol graphs). A protocol graph
G(M,N) is a labeled directed acyclic graph with a source
s, a sink t, and two layers in between: V with M vertices
and W with N . The source s is connected by an edge to each
of the M vertices in the layer V . Each of the N vertices in
the third layer W is connected to the sink t. The remaining
edges go from V to W . We use E to denote the set of these
edges. There is a labeling ` : E → {0, 1}∗, such that for each
v ∈ V , the labeling ` when restricted to the edges incident on
v is a prefix-free encoding for those edges.

In our argument, Alice and Bob will work based on a graph
G(M,N), viewing [M ] as the set of shared random strings,
and [N ] as the set over which Bob’s output must be distributed.
The edges of the graphs and the labels on them will determine
how Bob interprets Alice’s message. This is made precise in
the following definition.

Definition VII.3 (Protocols based on graphs). Let G(M,N)
be a protocol graph and let P be a distribution on [N ]. In
a protocol for P based on G, Alice sends a message to Bob
so as to enable him to generates a string w ∈ [N ] whose
distribution is P . Such a protocol operates as follows.
• Shared randomness: Alice and Bob share a random

string R picked with uniform distribution from [M ], so
R has dlgMe bits;

• Message: Alice computes her message m ∈ {0, 1}∗
based on the random string, her input and her private
coins;

• Output: On receiving the message m ∈ {0, 1}∗, Bob
outputs w ∈ [N ], where (R,w) is the unique edge of G
incident on R with label m.

The cost of a protocol is the expected number of bits Alice
transmits.

Lemma VII.4 (Main lemma). For all distributions Q on [N ]
and M ≥ N , there is a distribution G(M,N) on protocol
graphs, such that for each distribution P on [N ], with proba-
bility greater than 1− 2−M , there is a protocol for P based
on G with cost S(P‖Q) +O(lg(S(P‖Q) + 1)) +O(lg lgN).

Before proving this lemma, let us first see how this imme-
diately implies Theorem VII.1.

Proof of Theorem VII.1: We apply Lemma VII.4
with Q as the distribution of Y , P as Px, the dis-
tribution of Y conditioned on X = x, and M =
max{dlg |support(X)|e , |support(Y )|}. Since there are at
most 2M choices for x ∈ support(X), we conclude from
the union bound that there is an instance Ĝ of the protocol
graph G(M,N), such that for each x ∈ support(X), there is a
protocol Πx for Px based on Ĝ, using O(lgM) bits of shared
randomness and S(Px‖Q)+O(lg(S(Px‖Q)+1))+O(lg lgN)
bits of communication. Since Bob’s actions are determined
completely by the protocol graph, he acts in the same way in
all these protocols. The protocol for (X,Y ) is now straight-
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forward: on input x, Alice sends a message assuming she
is executing Πx, and Bob interprets this message as before
using the graph Ĝ, and is guaranteed to output a string y ∈
support(Y ) with distribution Px. We thus have a protocol for
(X,Y ). Furthermore, it follows from Fact II.1 (see Section II)
that the cost of this protocol is I[X : Y ] + O(lg I[X :
Y ]) + O(lg lgN). The number of bits of shared randomness
is dlgMe = O(lg lg |support(X)|+ lg |support(Y )|).

A. Proof of Lemma VII.4

To prove Lemma VII.4, we will view a protocol with low
communication as a low-cost flow in a suitably constructed
capacitated protocol graph. Then, we will construct a random
graph that admits such a low-cost flow with high probability.

Definition VII.5 (Capacities, flows). Let G(M,N) be a
protocol graph and P a distribution on [N ]. Then, GP is
the capacitated version of G where the edges of the form
(s, v) have capacity 1

M , edges of the form (w, t) have capacity
P (w), and all other edges have infinite capacity. We represent
these capacities by the map ` : E → R. An α-flow for
the distribution P based on the graph G(M,N) is a flow
f : E(G) → [0, 1] in GP such that the total flow is at least
α. We write just flow instead of 1-flow. The cost of a flow f
is
∑
e∈E f(e)|`(e)|.

Proposition VII.6. Let G(M,N) be a protocol graph and P
be a distribution on [N ]. If there is a flow in G for P with
cost C, then there is a protocol for P with shared randomness
O(lgM) and cost C.

Proof: Fix a flow f in G for P . We will show how Alice
picks the label to transmit in order to enable Bob to generate
a string in [N ] with the required distribution. If the shared
random string is R, Alice picks the edge e = (R,w) leaving
R with probability Mf(e) and transmits its label `(e). Bob’s
actions are now determined, and it is easy to verify that the
string he produces has the required distribution.

Now, Lemma VII.4 follows immediately by combining the
above proposition with the following lemma, which is the main
technical observation of this section.

Lemma VII.7. For all distributions Q on [N ] and M ≥ N ,
there is a random variable G(M,N) each of whose instances
is a protocol graph G(M,N), such that for each distribution
P on [N ], with probability at least 1 − 2−M , there is a flow
for P based on G with cost S(P‖Q) + O(lgS(P‖Q)) +
O(lg lgN).

Proof: To define the random graph G(M,N), we need
to define the set, E(V,W ) of edges that go from V = [M ] to
W = [N ], and their labeling. In our random graph, E(V,W )
will be the union of two sets E0 and E1; the labels of the
edges in E0 begin with a 0 and the labels of the edges in E1

begin with a 1.
• The edges in E0: E0 = [M ]× [N ], with the edge (i, j)

labeled by 0 · [j], where [j] denotes the binary encoding
of j using dlgNe bits;

• The edges in E1: The labels of the edges in this set start
with a 1. These edges are generated randomly as follows.

For each i ∈ [M ] and each k ∈ Z+, we have one edge
with label 1·τ(k), where τ : Z+ → {0, 1}∗ is a prefix-free
encoding of Z+ with |τ(k)| ≤ lg k+O(lg(1+lg k)). The
other end point of this edge is chosen randomly from the
set [N ] with distribution Q (independently for different i
and k).

We wish to show that for all distributions P on [N ], with high
probability, there is a low-cost flow in G for P (that is, a flow
of value 1 in GP ). We will do this in two steps. First, we
will show using the max-flow min-cut theorem that with high
probability there is a low-cost

(
1− 1

lgN

)
-flow in G for P

using the edges in E1. To turn this into a proper flow, we will
send some additional flow along the edges in E0. Since the
total value of the flow along edges in E0 is

(
1

lgN

)
, this will

not significantly increase the cost.
Consider the subgraph G1 of GP (M,N) obtained by re-

taining only those edges (i, j) in E1 whose labels lie in
the set {1 · τ(1), 1 · τ(2), . . . , 1 · τ(L(j))}, where L(j) ∆=⌈
3(P (j)/Q(j)) lg2N

⌉
. To show that G1 has a

(
1− 1

lgN

)
-

flow with high probability, we show that (with high probabil-
ity) it has no cut of size 1− 1

lgN , that is the removal of no set
of edges of total capacity less than 1 − 1

lgN can disconnect
t from s. Since the edges going between [M ] and [N ] have
infinite capacity, each edge in any such cut is incident on either
s or t. Fix a set of edges C of total capacity less than 1− 1

lgN .
Let S = {i ∈ V : (s, i) 6∈ C} and T = {j ∈ W : (j, t) 6∈ C}.
We will show that with high probability C is not an s-t cut
in G1. Note that |S| > M

lgN and
∑
i∈T P (i) > 1

lgN . For C to
be a cut, there should be no edge in G1 connecting S and T ,
which happens with probability at most (recall that the edges
in E1 are generated independently):

Pr[C is a cut in G1] ≤
∏
j∈T

(1−Q(j))L(j)|S|

≤
∏
j∈T

exp(−L(j)Q(j)|S|)

[because 1− x ≤ e−x]

< exp

−3(lg2N)|S|
∑
j∈T

P (j)


≤ exp(−3M).

Since there are at most 2M choices for S and at most 2N

choices for T , there are at most 2M+N choices for C. Thus, we
have Pr[there is a small cut in GP1 ] < 2M+N exp (−3M) ≤
2−M (since M ≥ N ). By the max-flow min-cut theorem, with
probability at least 1 − 2−M , G1 has a flow with value at
least 1 − 1

lgN and cost
∑
j∈T P (j)|τ(L(j))| = S(P‖Q) +

O(lg(S(P‖Q) + 1)) + O(lg lgN) (due to concavity of the
lg(·) function). We convert this ( 1

lgN )-flow into a proper flow
by using the edges in E0 to supply the remaining 1

lgN units.
Since the edges in E0 have labels of length at most 1+dlgNe
and the total flow through these edges is at most 1

lgN , the
resulting increase in cost is O(1).
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[Bol86] BÉLA BOLLOBÁS. Combinatorics: Set Systems, Hypergraphs,
Families of Vectors and Combinatorial Probability. Cambridge
University Press, 1986. doi:10.2277/0521337038.

[BSST02] CHARLES H. BENNETT, PETER W. SHOR, JOHN A. SMOLIN,
and ASHISH V. THAPLIYAL. Entanglement-assisted capacity of
a quantum channel and the reverse Shannon theorem. IEEE
Transactions on Information Theory, 48(10):2637–2655, October
2002. (Preliminary Version in Proc. Quantum Information:
Theory, Experiment and Perspectives Gdansk, Poland, 10 - 18
July 2001). doi:10.1109/TIT.2002.802612.

[BW06] CHARLES H. BENNETT and ANDREAS WINTER. Personal
communication, 2006.

[CR04] AMIT CHAKRABARTI and ODED REGEV. An optimal ran-
domised cell probe lower bound for approximate nearest neigh-
bour searching. In Proceedings of the 45th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 473–482.
Rome, Italy, 17–19 October 2004. doi:10.1109/FOCS.2004.12.

[CSWY01] AMIT CHAKRABARTI, YAOYUN SHI, ANTHONY WIRTH, and
ANDREW CHI-CHIH YAO. Informational complexity and the
direct sum problem for simultaneous message complexity. In
Proceedings of the 42nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 270–278. Las Vegas, Nevada,
14–17 October 2001. doi:10.1109/SFCS.2001.959901.

[CT91] THOMAS M. COVER and JOY A. THOMAS. Elements of Informa-
tion Theory. Wiley-Interscience, 1991. doi:10.1002/0471200611.

[Har66] LAWRENCE H. HARPER. Optimal numberings and isoperimetric
problems on graphs. J. Combinatorial Theory, 1(3):385–394,
1966. doi:10.1016/S0021-9800(66)80059-5.

[HJMR07] PRAHLADH HARSHA, RAHUL JAIN, DAVID MCALLESTER, and
JAIKUMAR RADHAKRISHNAN. The communication complexity
of correlation. In Proceedings of the 22nd IEEE Conference on
Computational Complexity, pages 10–23. San Diego, California,
13–16 June 2007. doi:10.1109/CCC.2007.32.

[Jai06] RAHUL JAIN. Communication complexity of remote state prepa-
ration with entanglement. Quantum Information and Computa-
tion, 6(4–5):461–464, July 2006. Available from: http://www.
rintonpress.com/journals/qiconline.html.

[JRS02] RAHUL JAIN, JAIKUMAR RADHAKRISHNAN, and PRANAB SEN.
Privacy and interaction in quantum communication complexity
and a theorem about the relative entropy of quantum states. In
Proceedings of the 43rd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 429–438. Vancouver, Canada,
16–19 November 2002. doi:10.1109/SFCS.2002.1181967.

[JRS03a] ———. A direct sum theorem in communication complexity
via message compression. In JOS C. M. BAETEN, JAN KAREL
LENSTRA, JOACHIM PARROW, and GERHARD J. WOEGIN-
GER, eds., Proceedings of the 30th International Colloquium
of Automata, Languages and Programming (ICALP), volume
2719 of Lecture Notes in Computer Science, pages 300–315.
Springer-Verlag, Eindhoven, Netherlands, 30 June–4 July 2003.
doi:10.1007/3-540-45061-0 26.

[JRS03b] ———. A lower bound for the bounded round quantum commu-
nication complexity of set disjointness. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer Science (FOCS),
pages 220–229. Cambridge, Massachusetts, 11–14 October 2003.
doi:10.1109/SFCS.2003.1238196.

[JRS05] ———. Prior entanglement, message compression and privacy
in quantum communication. In Proceedings of the 20th IEEE
Conference on Computational Complexity, pages 285–296. San
Jose, California, 12–15 June 2005. doi:10.1109/CCC.2005.24.

[KN97] EYAL KUSHILEVITZ and NOAM NISAN. Communication
Complexity. Cambridge University Press, 1997.
doi:10.2277/052102983X.

[Win02] ANDREAS WINTER. Compression of sources of probability dis-
tributions and density operators, 2002. arXiv:quant-ph/0208131.

[Wyn75] AARON D WYNER. The common information of two dependent
random variables. IEEE Transactions on Information Theory,
21(2):163–179, March 1975.

[Yao77] ANDREW CHI-CHIH YAO. Probabilistic computations: Toward a
unified measure of complexity (extended abstract). In Proceedings
of the 18th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 222–227. Providence, Rhode Island,
31 October–1 November 1977.

http://dx.doi.org/10.1002/0471722154
http://dx.doi.org/10.1016/j.jcss.2003.11.006
http://dx.doi.org/10.2277/0521337038
http://dx.doi.org/10.1109/TIT.2002.802612
http://dx.doi.org/10.1109/FOCS.2004.12
http://dx.doi.org/10.1109/SFCS.2001.959901
http://dx.doi.org/10.1002/0471200611
http://dx.doi.org/10.1016/S0021-9800(66)80059-5
http://dx.doi.org/10.1109/CCC.2007.32
http://www.rintonpress.com/journals/qiconline.html
http://www.rintonpress.com/journals/qiconline.html
http://dx.doi.org/10.1109/SFCS.2002.1181967
http://dx.doi.org/10.1007/3-540-45061-0_26
http://dx.doi.org/10.1109/SFCS.2003.1238196
http://dx.doi.org/10.1109/CCC.2005.24
http://dx.doi.org/10.2277/052102983X
http://arxiv.org/abs/quant-ph/0208131

	Introduction
	Protocols with shared randomness
	Generating one distribution from another
	Reverse Shannon theorem
	A direct-sum result in communication complexity
	Related work

	Proof of [Result]thm:mutinfo
	Proof of the one-shot reverse Shannon theorem ([Result]one-shot-reverse-Shannon)
	The rejection sampling procedure
	Proof of Direct Sum Result ([Result]thm:directsum)
	Separating T(X:Y), C(X:Y) and I[X:Y]
	Reducing the shared randomness
	Proof of [Lemma]lm:semiprotocol

	References

