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Time Reversal and Exchange Symmetries of
Unitary Gate Capacities

Aram W. Harrow and Peter W. Shor

Abstract—Unitary gates are interesting resources for quantum
communication in part because they are always invertible and are
intrinsically bidirectional. This paper explores these two symme-
tries: time-reversal and exchange of Alice and Bob. We will present
examples of unitary gates that exhibit dramatic separations be-
tween forward and backward capacities (even when the back com-
munication is assisted by free entanglement) and between entan-
glement-assisted and unassisted capacities, among many others.
Along the way, we will give a general time-reversal rule for relating
the capacities of a unitary gate and its inverse that will explain why
previous attempts at finding asymmetric capacities failed. Finally,
we will see how the ability to erase quantum information and de-
stroy entanglement can be a valuable resource for quantum com-
munication.

Index Terms—Asymmetric, capacity, coherent, erase, quantum,
reverse, unitary.

I. INTRODUCTION: COMMUNICATION USING

BIPARTITE UNITARY GATES

T HIS paper investigates the asymptotic communication ca-
pacities of bipartite unitary quantum gates; for example, a

controlled-NOT (CNOT) gate with control qubit held by Alice
and target qubit held by Bob. For a review of this topic, see
[7], [23] and references therein. The question of unitary gate ca-
pacity arises when studying our ability to communicate or gen-
erate entanglement using naturally occurring physical interac-
tions; moreover, studying unitary gate capacity has often led to
new ideas that are useful for other topics in quantum informa-
tion theory[22].

In some ways unitary gates are like classical bidirectional
channels or noisy quantum channels, but they are both more
complex than one-way channels because of their intrinsic
bidirectionality, and simpler than noisy channels because they
involve no interactions with the environment. For example, any
nonlocal unitary gate has nonzero capacities to send classical
messages in either direction and to create entanglement [3], [7].
By contrast, bidirectional classical channels exist that have no
capacity in either direction, but can be useful for nonlocal tasks
like reducing communication complexity [15]. Even determin-
istic classical bidirectional channels, like the classical CNOT,
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can have capacities that are nonzero only in one direction.
Another feature of unitary gates is that, unlike noisy quantum
channels, knowing the classical capacity (as a function of the
amount of entanglement assistance) of a unitary gate also deter-
mines its quantum capacity (again parameterized by the amount
of entanglement assistance). Moreover, allowing free classical
communication does not improve the entanglement capacity;
on the other hand, the quantum capacity appears to no longer
be simply equal to the entanglement generating capacity. In
short, the usual questions (like additivity) about noisy channel
capacities are replaced by an intriguingly different, yet perhaps
related, set of questions about unitary gate capacities.

In this paper, we will investigate the questions of symmetry,
both time-reversal and exchange of Alice and Bob, that arise
in connection with unitary gate capacities. We will demonstrate
the following.

• A general rule for relating capacity regions of a gate
to those of its inverse (Section II). Along the way, we
recast the main result of [25] as a sort of structure theorem
for communication protocols based on unitary gates, which
leads us to propose a new way to view the capacity region
of unitary gates.

• A gate that exhibits nearly the strongest possible separa-
tion between forward and backward capacities, even when
free entanglement is allowed for back communication
(Section III).

• A gate with a nearly maximal separation between its ability
to create and to destroy entanglement. This gate also ex-
hibits a near-maximal improvement in communication ca-
pacity when assisted by entanglement (Section IV). (A
variant of the former result was independently proved for
a different gate in [38].)

• A quantum communication resource, “coherent erasure,”
that can be thought of as the time reversal of coherent clas-
sical communication (Section V).

• A more restricted type of resource inequality, which we
call a “clean resource inequality” (described in more detail
below).

• Alternate proofs for the two main unitary gate capacity
theorems that are currently known (the Appendix ). The
proofs are simpler and establish slightly stronger versions
of the capacity theorems; we also include them because
they make this paper a self-contained summary of almost
every result to date on asymptotic unitary gate capacities.

As we will see, a number of speculative claims about unitary
gate capacities remain to be fully resolved, and more interest-
ingly, we are only beginning to pose our questions about them
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in the right way. We conclude in Section VI with some ideas
about future research.

The remainder of this section reviews notation and some
background results. Following [19], [23], we state our coding
theorems in the language of asymptotic resource inequalities.
The basic asymptotic resources are (one use of a noise-
less classical channel from Alice to Bob, also known as (a.k.a.)
a cbit), (the state , a.k.a. an
ebit), and (one use of a noiseless quantum channel,
a.k.a. a qubit). Protocols transforming these resources into
one another (e.g., teleportation) are expressed as asymptotic
resource inequalities such as . We
will also make use of coherent bits, or cobits, which are denoted

and correspond to the isometry .
Coherent bits were introduced in [22] which proved that

(though only as an asymptotic
relation; see [21] for a single-shot version). Since we are inter-
ested in two-way communication, define , , and

to be cbits, qubits, and cobits, respectively, sent from
Bob to Alice. These definitions are summarized in Section VII.

For a unitary gate , let denote the corresponding asymp-
totic resource; we can use it to state resource inequalities such
as . Define to be the three-dimen-
sional capacity region of to send cbits forward, send cbits
backwards, and generate entanglement:

(1)

For example, if we define to exchange a qubit of Alice’s
with a qubit of Bob’s, then , since one
use of can be used to send one bit forward and another bit
backwards at the same time. When take on negative
values, we move the corresponding resources to the left-hand
side of the resource inequality, e.g., for entanglement-as-
sisted communication. Continuing with the example,
we could use superdense coding to consume 2 ebits and send
2 cbits in either direction: thus, .
We can define capacities in terms of as extremal
points of the region: the entanglement capacity

, the forward classical capacity
, the back-

wards capacity ,
the simultaneous capacity

, and entanglement-assisted ver-
sions ,

and
.

In [3], [7], it was shown that one of these capacities is nonzero
if and only if all of them are nonzero. Various quantitative
relations among these capacities were also shown, but they will
be subsumed in what follows.

We can analogously define the capacity region of achievable
rates of entanglement generation and coherent communication
in both directions. In [25], this region was shown to coincide
with for the quadrant, and to be trivially
related for other quadrants. Here we will present this result in a
slightly stronger form. If and are

two pure1 asymptotic resources such that , then we say

that this resource inequality is clean (denoted ) if
can be mapped to using a protocol that discards only

qubits, which (up to error ) are all in the state , where
as .2 We will also call protocols “semi-

clean” when, at the end of the protocol, they discard arbitrary
-qubit states which depend only on and not on any other

inputs or outputs of the protocol. In most cases of interest, semi-
clean protocols are also clean.

Implicit in the definition of a clean protocol is the idea that
all local quantum operations are represented by isometries (per-
haps increasing the dimension) followed by discarding some
qubits. The advantage of this formulation is that apart from
the discarding step, protocols can be easily reversed. On the
other hand, requiring that resources be pure is quite a restric-
tive condition, and hopefully future work will able to fruitfully
relax it. Many common resource inequalities, such as entangle-
ment concentration/dilution, remote state preparation, channel
coding, etc., , can be shown to admit “clean” versions, but
other simple inequalities such as do not. Now de-
fine

(2)

References [23], [25] considered the similar region
in which there was no requirement that the protocols be clean.
Although is still convex, it is no longer monotone
in the sense that throwing away resources does not always yield
valid protocols; for example, while points like are in

, one can show that

This result can be proven directly using the formula for
in [7], [37], and will also follow from a more general theorem
relating to that we prove in Section II.

The main use of in this paper will be the following
strengthening of [25]’s main result.

Theorem 1 (Standard Form of Unitary Protocols): If

and , then there exists such that

In other words, there exists a series of protocols , with

(3)

1Following [19] we say that a resource is pure if it is an isometry or a pure
state.

2The idea that discarding information should be costly dates back to Szilard’s
interpretation in 1929 of Maxwell’s demon[45] (see also [4]), and in the context
of quantum Shannon theory has been discussed in [41].
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for local isometries (possibly
adding ancillas), such that for all

, we have

(4)

Here, as and means that
.

In terms of and , this means that for any
there exists such that

.
Reference [23] sketched how to extend the proof of [25] to

obtain the above theorem, but we will make use of [24] to give
a more rigorous derivation in the Appendix .

Finally, we state a single-shot expression for the tradeoff
curve between ebits and cbits sent from Alice to Bob [22],
[23]; call this tradeoff curve and define it to be

. Similarly,
define .
Before we can state our expression for , we will
need a few more definitions (following [19]). For a state

, recall the definition of the von Neumann
entropy as ,
where . Similarly, the quantum mutual in-
formation is and the con-
ditional information is defined as .
Here, and elsewhere, we omit subscripts when the underlying
state is obvious. We will denote an ensemble of pure states by

Here is a classical label, the gate acts on , and
are ancilla systems of arbitrary finite dimension. Let stand
for . In terms of these ensembles we can
define

s.t.

and (5)

where is an ensemble of bipartite pure states in con-
ditioned on a classical register . This corresponds to the set of
single-shot increases in mutual information ( ) and
average entanglement ( ) that are possible. It turns
out that these increases are also achievable asymptotically, as
expressed in the following theorem.

Theorem 2: is equal to the closure of .

The direct coding theorem was proven in [22] and the con-
verse in [23, Section 3.4.2]. In the Appendix , we will give a
new, and more self-contained, proof of the coding theorem.

II. REVERSING UNITARY COMMUNICATION PROTOCOLS

In this section, we present a general theorem for relating the
capacity region of with the capacity region of . Many of
the key ideas are illustrated by the gate , which was con-
jectured in [7] to have asymmetric communication capacities.

acts on a -dimensional space, with a param-
eter, and is defined as

Clearly, , but at first glance it appears
that cannot easily be used for communication from Bob
to Alice. Indeed, [23] proved that when starting without corre-
lation or entanglement, a single use of could not send
more than bits from Bob to Alice.

However, by consuming entanglement, can be used
to send bits from Bob to Alice. The protocol is as follows:

(1) Start with .

(2) To encode message , Bob applies
and obtains the state

(3) is applied to yield the state

(4) Alice applies and obtains .

Thus, . As a corollary,
. If we could prove that this were roughly

tight (say, that ), then we might
conclude that forward and backward capacities can be separated
by a constant factor, but that this separation vanishes when
entanglement is allowed for free. We will later demonstrate
unitary gates with much stronger separations, even between
entanglement-assisted capacities.

First, we can generalize the backward communication pro-
tocol of to obtain the following result.

Theorem 3:

Proof: The proof follows almost immediately from The-
orem 1. Suppose , so that for any

and all sufficiently large there exists a protocol of
the form of (3) that satisfies (4). We can assume without loss
of generality (WLOG) that the local isometries in (3) are in
fact unitaries, with all the ancillas being added at the beginning.
Then we take the complex conjugate of (3) to obtain

(6)

Observe that is a protocol that uses times together
with local resources. Alice and Bob have only to create the
copies of , which they can do using local isometries for

free. Then they can use times to apply . Up to error
, this maps for and

for , while consuming
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ebits (or generating ebits). By applying
the protocol outlined above for , this can be used to send

cobits from Alice to Bob and cobits from
Bob to Alice, while consuming ebits (or
generating ebits).

From the definition of entanglement capacity we now obtain
a statement claimed in the last section.

Corollary 1: For any unitary ,
.

We can also obtain a few immediate corollaries for the case
of free entanglement.

Corollary 2: For any unitary
(1)

.
(2) In particular, .
(3) If then .
(4) If then .

The only nontrivial claim here is (4). To prove it, first
note that the entanglement-assisted capacity can be achieved
with the assistance of ebits. This is because

implies
(since cobits can always be discarded cleanly) and Theorem 3
implies that . Since we have assumed ,
we have . Thus, two uses of can send

cobits: the first use generates ebits and the second use
consumes them to send cobits. (A similar result was proved
in [12].)

Note that cases (3) and (4) of Corollary 2 apply to ,
and show us why we should not expect a dramatic separation
of capacity for , or indeed any gate equal to its inverse.
However, a straightforward modification of the argument in
the next section can be used to prove [7]’s conjecture that

for large, which nearly satu-
rates the bound that we now understand
for gates satisfying .

An alternate proof of the reversal theorem can be obtained
from the resource equality .
Theorem 3 is then equivalent to the claim that

See [17] for similar examples of reversing quantum communi-
cation protocols.

III. : A GATE WITH ASYMMETRIC CAPACITIES

Guided by Theorem 3, we will construct a gate that is quite
different from its inverse. Again choosing a positive integer
as a parameter, define on by

for

for

The first line means that . Though we will
not need this fact, it turns out that . The proof,

following a similar argument for in [7] is as follows.
Since for some operators , we know
that the Schmidt rank of is . Thus

and each inequality must be an equality.
To bound the back communication of , we now claim

that can be simulated to within an accuracy of by using
and . We would

like to say that this implies

(7)

but our tools are not strong enough to actually prove this. This is
because simulating copies of to constant accuracy would
require qubits of communication, which is
superlinear in for any fixed . However, for now suppose that
(7) were true. It would imply that

(8)

a rather dramatic separation between forward and backward ca-
pacities, even when we allow free entanglement to assist the
back communication. By using techniques specialized to uni-
tary gates, we will give a proof of (8) later in this section; the
proof is inspired by (7), but of course does not rely on it.

Our simulation also means that could be thought of as al-
most equivalent, at least for large , to the resource of coherent
classical communication. This is interesting both because it is
more natural to implement cobits as a unitary gate than as an
isometry and because unitary gates, unlike isometries, are re-
versible. We will return to this second point in the next section

when we discuss . However, we cannot state this as a more
precise statement about asymptotic resources since the sequence

does not fit the definition of an asymptotic resource
given in [19].

A. A Simulation for

In this subsection, we show how can be simulated up to
error by a protocol that uses and

. A key subroutine used in the simulation is a clas-
sical communication protocol for distributed comparison. Sup-
pose , Alice holds and Bob holds , which we
interpret as integers between and . Then for any error
probability they can probabilistically determine whether

, , or using bits of communica-
tion [40]. The comparison protocol is designed for classical in-
formation, but our simulation of will run it coherently using
quantum communication.

For the simulation for , suppose Alice and Bob start with
for . Our protocol is as follows.

(1) Define the indicator variable to be if , if
, or if . Use qubits

of communication in either direction to coherently com-
pute . This leaves them (up to error ) with the state



466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

and where is the state of the ancillas produced by
the comparison subprotocol. Using a standard procedure
(compute , copy it to a new register and then uncom-
pute the first copy of along with the ancilla states
produced along the way), Alice and Bob can eliminate
the ancilla register to hold simply

again up to error .
(2) Use as follows:

• If , then Alice inputs , which maps to
the state . Since , the register
is in the state. Bob swaps and to obtain

.
• If or , then Alice inputs , which maps to

the state . Then she discards .
In either case, Bob discards register , which always
contains the state.

(3) If , then Bob maps to .
(4) Alice and Bob use an additional qubits of

communication to uncompute . This point
is slightly subtle, as the meaning of as changed: now

means that , means that , and
means that . Thus, Alice and Bob will com-

pute corresponding to these new cases,
and will each map to .
With probability , we have , so this
operation effectively erases . Then they uncompute

, along with all the ancilla produced along
the way.

The entire procedure uses
. To see that the protocol works, first observe that in

an ideal protocol where equality testing was perfectly accurate
we would obtain precisely . Thus, when we replace equality
testing with an approximate version that is accurate (in the sense
of cb-norm[34]) to within , the overall protocol has .

B. Bounding the Backwards Capacity of

We now use our simulation for to prove that
. Since the cost of our simulation depends on the de-

sired error rate, standard resource arguments are not enough to
prove this claim. Instead, let denote the result of simulating

to accuracy using the above procedure. Since is built
out of cobits and qubits, it will be an isometry rather than a uni-
tary operator. This is not a serious problem: Theorem 2 still
applies and by extending the space that acts on, we have

, where

Moreover, we can simulate exactly using
. Thus,

. Then we will conclude that
by choosing and applying the following lemma.

Lemma 1 (Continuity of One-Way Capacity): If and are
isometries with outputs in such that
then for all there exists
such that and , where

and .
Proof: By Theorem 2, for any there exists an en-

semble of bipartite pure states such that

(9)

(10)

where acts on the -dimensional systems and , while
and can have arbitrarily large dimension. Thus, we will

need to use a recently proved variant of Fannes’ inequality[2]
which bounds the change in relative entropy as a function of
the dimension of only the first system. Begin by using the chain
rule[14] to express as . Ref-
erence [2] states that if then

where . On the other hand,
, so and

Similarly

and is unchanged by applying a unitary to , so

If we now take and apply Theorem 2 again to relate
to , we obtain the proof of the lemma.

Remark: We suspect that the entire two-way communica-
tion capacity region is similarly continuous. However,
without a characterization of the two-capacity analogous to The-
orem 2, the proof technique used in Lemma 1 will not work.

IV. MORE ASYMMETRY: THE CAPACITY REGION OF

In this section, we will demonstrate nearly tight bounds for

the capacity region of , just as we did with . We will
find large separations between entanglement-assisted and -unas-
sisted capacities, as well as between entanglement-creation and
-destruction capacities.

First use Theorem 3 to show that

, or equivalently, that . Next,

we will present an approximate simulation for that uses a
nearly optimal amount of communication; i.e., barely more than

. Thus, by analogy with the nearly optimal
simulation of in (7), we will have

(11)
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Again, the first inequality is not really a resource inequality,
since it does not give us a way of having the overall error vanish

when simulating copies of using times the
resource cost. However, it will still be enough for us to give us

nearly tight bounds on the capacity region of for large.
We begin by discussing this capacity region. Choosing

and again using the Continuity Lemma, we can

show , a similar
sort of capacity separation between forward and backward

communication. However, also exhibits a dramatic gap
between entanglement-assisted and -unassisted capacity.
Since
can create no more than ebits, the Conti-

nuity Lemma implies that also must have
entanglement capacity . Finally, we use
the fact that the entanglement capacity of isometries is ad-
ditive (from [7], [37] as well as Theorem 2) to establish that

.
This implies that all unassisted capacities are small; for ex-

ample, . Thus, is almost
useless without entanglement; none of its unassisted capaci-
ties are greater than . On the other hand, its capacity
(from Bob to Alice) rises when entanglement is supplied, at
a rate of nearly one cbit per ebit. No such behavior is known
for noisy quantum channels, although there are qudit channels
with multiplicative separations between entanglement-as-
sisted and –unassisted capacities[9], [10], [32].3 We also obtain
a separation between entanglement-creating and -destroying ca-

pabilities: . (An indepen-
dently derived, and completely different, example of a gate with

is in [38].)

There are two ways we can derive the simulation of
posited in (11). The simplest is to time-reverse our simula-
tion of . First we will need to replace the
with . Reversing this will replace

with and with . Together, this
is , plus of course the

terms.
It may be instructive to also consider a more explicit con-

struction of the simulation. Note that acts on basis states
as follows:

for

for

3Every example of such a channel has capacity much smaller than ��� �; e.g.,
the channel that maps � to� ��� � ������ �����. For concreteness, follow
[32] and choose � � ����� � ��, so� ��� � ��� � ����� � ��. Then the
single-shot Holevo–Schumacher–Westmorelend (HSW) capacity � �� � is
	�� � and the entanglement-assisted capacity� �� � is	�� �. Achieving
this entanglement-assisted rate using the protocols of [10], [32] requires ��� �
ebits per use of� , meaning that we consume many ebits to get a small enhance-
ment in classical capacity. Communication protocols which used less entangle-
ment were given in [19], [44], but here too we conjecture that 
������ ebits
are necessary to raise the capacity of � from ��� � to 
�� �, or even to

�� � for any � 	 �.

Again, Alice and Bob can determine whether , , or
to accuracy by exchanging qubits, and by

performing these calculations coherently, can uncompute this
information at the end of the protocol. As with the simu-
lation, the three cases at the end of the protocol are different
( , , and ), so it is important that they store
no more information than which case holds.

The interesting case is when and Alice and Bob would
like to map for arbitrary values of .
As we have argued above, this can be simulated by reversing

, which requires a resource
cost of . Let us now
examine this reverse procedure in more detail. For simplicity,
suppose . The procedure we would like to reverse is co-
herent superdense coding ( ), which
maps to as follows:
First Alice and Bob add a maximally entangled state .
Then Alice applies the Pauli operator to the system,
leaving the state

(12)

where . Note that the four
form an orthonormal basis, and thus we can define the uni-
tary map . Superdense
coding proceeds by Alice sending her half of to Bob,
who applies to yield the state .

Now we explain how this protocol can be reversed to

map to . Bob first applies
to and obtains . Using , Bob
sends half of to Alice, so the joint state becomes

. Since Alice has a copy of , she can
apply to her half of and transform it to

. Thus, not only has Bob’s copy of been
erased, but Alice and Bob are left sharing the state . This
means that two bits on Bob’s side can be coherently erased by
using the resource .

V. COHERENT ERASURE AND TIME REVERSAL

By now we have seen many examples of how unitary com-
munication protocols can be reversed to give new protocols. In
this section, we summarize these reversal rules and, inspired

by our observations about in the last section, introduce
the new communication resource of “coherent erasure,” which
is the time reversal of coherent classical communication.
Time-reversal symmetry was also discussed in [17], which
explained how the quantum reverse Shannon theorem[6] is the
time-reversal of the quantum Slepian–Wolf theorem (a.k.a. state
merging[33] or the mother[18], [19]), once all the protocols are
made fully coherent.

For the standard resources of and , time-re-
versal is quite simple. If we let denote the time-reverse of a
resource, then and . This
means that sending qubits in one direction is reversed by sending
qubits in the other direction, and that creating entanglement is
reversed by destroying entanglement. As we have argued above,
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so the time-reversal of
is . This resource corresponds
to the map , so we call it “coherent erasure”
and label it . Since one bit of coherent classical commu-
nication is a cobit, we (following a suggestion of Charlie Ben-
nett’s) call a co-cobit from Bob to Alice, where the first
“co” stands for “complementary” and the second “co” stands for
“coherent.” The co-cobit from Alice to Bob is denoted
and corresponds to the map .

Of course, the map is not defined for all
inputs (what if Alice and Bob do not input the same state?), but
in this section we will explain how coherent erasure nevertheless
makes sense as a communication resource. First in Section V-A
we will explain how coherent erasure can be derived from other
resources and then in Section V-B we will describe some uses
of coherent erasure.

We stress at the outset that coherent erasure is equivalent
to standard resources, and there is no need to introduce new
concepts such as “erasure capacity” and the like. However, it
may prove a useful metaphor in analyzing other communica-
tion protocols.

A. Producing Coherent Erasure

We have already seen three ways of producing coherent era-
sure, which we briefly review here.

1) Reversing Clean Protocols With : If a clean re-
source inequality involves , then in the time-reversed
version of the resource inequality is replaced with

. This was an implicit part of the ar-

gument of Theorem 3, which was based on reversing

to obtain .
2) Reversing Super-Dense Coding: This was explained in

Section IV, and is basically a special case of the last point: time-
reversing yields

(13)

3) The Gate : Just as is equivalent to cobits up

to small errors and inefficiencies, is roughly equivalent to

co-cobits. Of course is not a proper asymptotic re-
source, but it is still useful as a concrete way to imagine imple-
menting coherent erasure.

B. Using Coherent Erasure

1) Entanglement-Assisted Communication: Theorem 3 (or
more precisely, the protocol sketched in Section II for entan-
glement-assisted back communication using ) explained
how

(14)

by giving an explicit protocol. Another way to derive this re-
source inequality is reversing coherent teleportation

to obtain

Substituting then gives the desired
result.

Interestingly, coherent erasure is capable of no communica-
tion on its own, but can convert one ebit into one cobit. This is a
sharper version of the separation we observed between the en-

tanglement-assisted and -unassisted capacities of .
2) State Merging and Partial Quantum Communication:

First note that (13) and (14) can be combined to obtain the
equality

(15)

This last point means that , so the
task of sending a qubit can be split into the tasks of sending one
cobit and coherently erasing one bit. There is a direct protocol
which performs this. Suppose Alice would like to send the state

to Bob. If she applies then they will obtain
the entangled state . Finally, applying

will erase Alice’s state and leave Bob with .
Of course this also works for coherent superpositions of mes-

sages. If Alice would like to send her half of
to Bob then she can first apply to obtain

and then will again erase Alice’s state to leave
.

The general problem here is state merging[33], in which
Alice gives Bob her piece of a tripartite state , perhaps
generating or consuming entanglement in the process. Ref-
erence [17] argued that cobits are the canonical example of
feedback channels, which are isometries that map from to

. Likewise, we claim that coherent erasure is the canonical
example of state merging.

To justify this interpretation, we will now show how to
generalize the decomposition
to a decomposition of perfect quantum communication from

into an isometry from followed by merging
into . The isometry from can be simulated

by using the quantum reverse
Shannon theorem[6], [17], where the coherent information

is defined as

The cost represents the difficulty of creating
the desired correlations between Bob and the reference system,
while the cost is necessary because back communi-
cation would allow Bob to distill that much entanglement with
Alice while preserving his correlations with . Then the tripar-
tite state can be mapped (using state merging) to one where Bob
holds Alice’s part using . Here the
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erasure cost measures the amount of correlation with the refer-
ence system that Alice has and needs to give up, while
is the amount of entanglement that is recovered by the procedure
once Bob has the entire purification of Alice’s state. Indeed, this
version of state merging amounts to a coherent version of entan-
glement distillation ( )
in which is replaced with and as a result
Bob holds the purification of the environment at the end of the
protocol. Finally, the total resource cost

is simply equal
to , the cost of sending the reference system di-
rectly to Bob.

3) Rule I: Coherently Decoupled Input Cbits: Suppose
is a resource inequality in which the classical

message sent is nearly independent of all residual quantum sys-
tems, including the environment. In this case, we say that the
input cbits are coherent decoupled and “Rule I” of [18], [19],
[23] proves that they can be replaced by .
Equivalently, we can replace them by . Thus, co-
herent erasure can be used whenever we need to send a classical
message whose contents can be guaranteed to be almost com-
pletely independent of the remaining quantum systems.

The simplest example of a coherently decoupled input is of
course teleportation, which quickly leads us to the familiar re-
source inequality . A slightly more
nontrivial example is remote state preparation[8], in which
ebits and cbits
are used for Alice to prepare an arbitrary -dimensional state
in Bob’s lab (i.e., “remote qubits”). Since the input cbits
are coherently decoupled, they can be replaced by

. Asymptotically, this means that one coherent bit is
at least as strong as one remote qubit, which is an interesting
statement because cobits and remote qubits both lie somewhere
in between cbits and qubits, and there does not appear to be any
trivial protocol relating the two. Another way to interpret remote
state preparation is that yield one remote qubit;
this, by contrast, can be implemented by a relatively straightfor-
ward single-shot protocol. Suppose the state that Alice wishes to
prepare for Bob is . A particularly easy case
is when for all . Then Alice could locally map

to and then

use to leave Bob with the state .
In general, will not always be equal to , and blithely

applying the above method for a general state will only achieve
a fidelity of . Moreover, even a randomly
chosen state will usually have close to when is large
(as can be seen using and the central limit
theorem). This means that multiplying by a fixed random
unitary will not be sufficient to obtain high fidelity. Instead, we
will use a small sequence of unitaries , along with
a -dimensional ancilla register that controls which unitary is
applied. To decode, Bob will need this ancilla register, which
we will require extra qubits of communication from Alice
to Bob. Fortunately, we will see that the error shrinks rapidly
with for a variety of choices of .

The procedure for Alice to remotely prepare in Bob’s lab
is as follows. Let

where in the last expression we have introduced states for
each . Assume for now that is close to
one. Then, starting with the shared state , Alice can create

If she then applies co-cobits to and sends to Bob
using qubits then Bob will have a fidelity- approxi-
mation to , from which he can obtain .

We can summarize the correctness of the protocol as follows.

Theorem 4: There exists a subspace with
such that the remote state prepara-

tion protocol above can prepare any state in Bob’s lab
using and with fidelity

.
This translates into remotely preparing a state of

qubits, which is similar to
the performance of [8].

Proof: To analyze the protocol, we first seek to
lower-bound , where is uniformly randomly chosen.
We will choose to be for
and where addition is . We could also choose the
to be (approximately) mutually unbiased bases (meaning that

is (approximately) equal to ), but we omit
the analysis here. To evaluate the expected fidelity, we use
linearity of expectation

(16)

Using the fact that the distribution of is rotationally in-
variant, we find that

where is a rank- projector (assuming that ).
To estimate this last term, we will use the inequality

which holds for any random
variable [11]. Next, we calculate and
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Putting this together we find that

The remaining steps are quite similar to the arguments in [1],
[29]. We will argue that not only is close to its expectation for
most values of , but in fact if we choose a random subspace

of dimension then with nonzero
probability every vector will have
. Observe that the Lipschitz constant of (defined to be

) is constant. In fact, it is . Then Levy’s
Lemma[35] states that

(17)

for any . Now consider a random -dimensional subspace
. According to [29, Lemma III.6], we can choose a mesh of

points such that any point in is within
(in trace distance) of some point in the mesh. Applying the

union bound and the triangle inequality to (17), we find that
there exists a subspace such that for
all .

Thus, coherent erasure is an alternate, and arguably more di-
rect, way to think about remote state preparation. It is perhaps
interesting that our protocol is nontrivially different from the
comparably efficient protocol that could be obtained from ap-
plying “Rule I” of [18], [19], [23] to [8]. While Rule I guaran-
tees that in general co-cobits can be used in place of coherently
decoupled input bits, the proof is indirect and involves catalysis.
It would be interesting to know whether there is a more direct
and natural use of coherent erasure, such as the one we showed
for remote state preparation, in any protocol with coherently de-
coupled input cbits.

VI. CONCLUSION

The results of this paper help resolve many questions sur-
rounding unitary gate capacities. We now understand that, while
all the capacities of any nonlocal gate are nonzero, there can be
asymptotically large separations between these capacities. The
main separation left unproven by this paper is finding a gate
with . An early version of this paper pro-
posed the gate on which exchanges and ,
while leaving the other states unchanged:

. Since requires cbits
to simulate, even using unlimited EPR pairs (as we will prove
later in this section), the simulation techniques in this paper
will need to be modified. Since the first version of this paper
appeared, [26] established the conjectured separation (showing
that ) by using
non-maximally entangled states for the simulation.

Another limitation of our work is that the separations we have
found are between and ; on the other hand, [38]
has proven that if then as

TABLE I
DEFINITIONS OF COMMUNICATION RESOURCES

well. It would be interesting to see which capacity separations
are possible for gates with between and .

Of course, separating communication capacities is mostly in-
tended as a step towards better understanding quantum commu-
nication using unitary gates as well as other resources. For ex-
ample, it has led us to the resource of coherent erasure, which
hopefully will turn out to be a useful concept the way coherent
classical communication has.

Entanglement destruction is another resource in quantum
information theory that seems to be worth exploring. Once
we restrict protocols to be clean, destroying entanglement is
a nonlocal task. Equivalently, creating coherent superposi-
tions of states with varying amount of entanglement requires
communication, even if the two parties are allowed unlimited
numbers of maximally entangled states[30]. This task comes
up in entanglement dilution[27], [30], in its generalization,
remote preparation of known entangled states (though this is
not explicitly acknowledged in [8]), and in the quantum reverse
Shannon theorem[6], which may be thought of as a further
generalization of remote state preparation. In each case, the
resource of “entanglement spread”—meaning the ability to
generate superpositions of states with varying amounts of en-
tanglement—appears to be necessary. Entanglement spread can
be generated (using, e.g., remote state preparation) by sending
cbits in either direction, or even without any communication at
all, if Alice and Bob can make catalytic use of an embezzling
state[28]. It appears that a unitary gate has “spread capacity”
equal to ; for example, a simple application of
[30] can prove that
implies that , a result previously
proved only for two-qubit gates, using very different arguments
[12]. Of course, without a precise definition of entanglement
spread it will be difficult to formalize these arguments. Refer-
ence [30] is a promising first step towards defining spread as a
resource, though the unusual scaling of embezzling states and
of the cost of entanglement dilution suggest that the indepen-
dent and identically distributed (i.i.d.) resource model of [19],
[23] might not fit well.

VII. NOTATION

In this section, we collect some of the notation used in the
rest of the paper.

Cobits were introduced in [22] and co-cbits were introduced
in Section V. Note that co-cobits are only defined when Alice
and Bob’s joint state is constrained to lie in the subspace
spanned by and .
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TABLE II
EXCHANGE AND TIME-REVERSAL SYMMETRIES

TABLE III
TRANSFORMATIONS BETWEEN STANDARD RESOURCES

To understand the relations between the resources in Table I,
we describe the effects of exchanging Alice and Bob and of run-
ning a protocol backwards. These are listed in the “exchange”
and “reverse” columns of the of Table II. For example,
means sending a qubit from Alice to Bob, so either exchanging
Alice and Bob or reversing time transforms to

. However, given a cobit from Alice to Bob, exchange and
time-reversal do not act the same way: exchanging Alice and
Bob yields a cobit from Bob to Alice while time-reversal yields
a co-cobit from Bob to Alice.

In the first line of Table II, we can consider to be the
action of creating an ebit. Thus, the time-reversal of cor-
responds to destroying an ebit, which, if done coherently, is a
nontrivial resource. In the last line, denotes the unitary oper-
ator that exchanges Alice and Bob’s systems. The time-reversal
relations for cobits and co-cobits are explained in Section V.

Next, we summarize some of the basic transformations of the
resources in Table III that are possible. We have indicated where

the protocols can be done cleanly by using or instead
of or .

Now define to be a bipartite unitary gate. We have defined
various capacity regions in Section I, which are summarized in
Table IV.

Finally, we will explain how the results of the paper relate
to the terms in Table IV. First, some of the theorems relate as
follows:

• Theorem 1 shows that the capacity regions and
are nearly equivalent, other than the fact that

entanglement can be thrown away in non-clean protocols.
As a corollary, Theorem 1 also relates to the
same way.

• Theorem 2 and Lemma 1 concern the region ,
giving a single-letter formula for it, and proving its con-
tinuity (in terms of ), respectively.

• Theorem 3 shows that can be completely de-
termined from (and vice versa, of course).

Finally, Table V summarizes the separations in capacities
proved in Sections III and IV.

TABLE IV
CAPACITIES AND CAPACITY REGIONS OF UNITARY GATES

TABLE V
EXCHANGE AND TIME-REVERSAL SYMMETRIES

APPENDIX

NEW PROOFS OF THEOREMS 1 AND 2

In this appendix, we sketch alternate proofs for Theorems 1
and 2. Both proofs we give are slightly simpler than previous
versions and have slightly better convergence properties. More-
over, by including them, this paper can be more self-contained,
especially given that the previous statements of Theorem 1 in
[23], [25] were slightly weaker.

Proof of Theorem 1: We begin by following the approach
of [25], where this was first proved. Suppose

for some (similar arguments apply
for ). Then, if Alice and Bob copy their inputs before
sending and refrain from performing their final von Neumann
measurements, we obtain a sequence of protocols such that
for all and (with
for )

(18)

The main difference between (18) and our goal ((4)) is the pres-
ence of the ancilla with its arbitrary depends on and

rather than a string of zeroes that depends only on . Simply
discarding will in general break superpositions be-
tween different values of and . Also the ancilla is not guar-
anteed to fit in qubits.

Reference [25] made a series of modifications in order to ob-
tain a clean protocol. In fact, [25] obtained a slightly weaker
result than (4), in which Alice and Bob are left with an an-
cilla which depends only on and (it can be shown)
can be stored in qubits. We call protocols of this form
“semi-clean,” but when working with unitary gates this implies
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the protocol can be made clean at an asymptotically negligible
additional cost. This is due to [24], which proved that any non-
local gate can exactly generate any other fixed gate, such as
SWAP, with a constant number of applications interspersed with
local unitaries. Thus, applications of can exactly map

to .
We now review the steps of [25] in obtaining a semi-clean

protocol before we describe our alternate approach. First they
used entanglement as a sort of coherent one-time-pad, so that
the ancillas would become correlated with the one-time-pad and
not the message. Then a classical error-correcting code was ap-
plied to reduce the errors, and finally entanglement concentra-
tion[5] was used on the error-free blocks to recover the entan-
glement used for the one-time-pad. We use an approach that is
only slightly different: first, using block coding to reduce the
error to a nearly exponentially small amount, then using a co-
herent one-time-pad to decouple the ancillas, and finally recov-
ering entanglement using an approximate form of entanglement
concentration that needs far fewer states.

We now explain these components in more detail. First, ab-
sorb all of the output into the ancilla, except for the locally
copied inputs, so that

(19)

with and with
entanglement , for an
appropriate redefinition of . This is clearly an equivalent for-
mulation, but it allows us to speak more easily about the exact
output of the protocol.

Now we will use classical bidirectional block-coding[43] to
control how quickly vanishes as a function of . By applying

times and slightly reducing the rate, it is possible to send
cbits forward and cbits backwards

with uses of and average error
as long as . This
can be simplified by choosing , so the error
probability is and we still have . Finally,

for any , choose , so if ,
then . Thus, we can WLOG assume that we have a
sequence of protocols with inefficiency and error

satisfying and (in fact,
we could choose for any that
we like).4 Now we see the reason for using the form of (19);
our block codes still satisfy (19), but not necessarily (18), since
there may be arbitrary errors in the entangled states.

Next, use a coherent one-time-pad in the same way as [25].
Alice and Bob start with ebits. Together with their
initial messages , their state is

4This step closely resembles the code construction in [25], which contains
a slightly more detailed proof. The basic tools for the proof can also be found
in [14], [43]; note that they (especially [43]) only bound the average decoding
error, rather than the maximum error (similarly in [12], which introduced the
idea of double-blocking unitary communication protocols). An average error
can easily be turned into a maximum error[20], though in our case it is not
necessary, or rather, our entire protocol can be thought of as a coherent version
of [20].

where , , and
. This can be locally mapped to

Relabelling the sum over shows that this is equivalent to

Now is applied to , obtaining

Since , we can extract
from while causing disturbance. This

yields a state within of

which can be locally mapped to

Thus, we have performed the desired coherent communication
(up to error ) and converted

ebits into , which is the fixed pure
state

The final step is to recover entanglement from . Since
, we can bound

Also, can be obtained from , so it
must have Schmidt rank . We would like to re-
peat the entire protocol times in parallel, and then apply en-
tanglement concentration to in order to recover standard
EPR pairs. This will inevitably increase our error; we get up to

from repeating the protocol, and some additional
errors from the entanglement concentration. However, as long
as our final error is then we can use the catalytic entan-
glement safely; we merely repeat the protocol times for
a total error of and an additional fractional inefficiency of

, both of which are still .
Unfortunately, the original entanglement concentration pro-

tocol of [5] will not suffice for this purpose (without using a
more elaborate procedure, as in [25]). This is because [5] re-
quires to grow faster than the Schmidt rank of ,
meaning that . Since , we
would be unable to guarantee that .



HARROW AND SHOR: TIME REVERSAL AND EXCHANGE SYMMETRIES OF UNITARY GATE CAPACITIES 473

Instead, we will use an approximate version of entanglement
concentration (due to Andreas Winter[47]) which only requires

to achieve vanishing error
and inefficiency. Since , this will complete
our proof.

It now remains only to describe Winter’s new version of en-
tanglement concentration[47]. Since this result may be more
broadly useful, we rename the variables from the proof of The-
orem 1 to more conventional notation, and state a slightly more
general result than we need above.

Theorem 5 (Due to A. Winter): Let be
bipartite states each with Schmidt rank , and with total en-
tanglement . Then for any such that

, Alice and Bob can ex-
tract ebits from with error

using no communication. Up to the
above error, their residual state has Schmidt rank .

In particular, ebits can be extracted with
error while creating a sublinear-size garbage state if

. This suffices to complete the above proof of
Theorem 1.

Proof of Theorem 5: First we describe the protocol, then
analyze its correctness. Alice and Bob begin by using local uni-
taries to rotate the Schmidt basis of each into a standard
basis. This leaves them with the state

where are the Schmidt coefficients of (pos-
sibly not all nonzero).

Next they each project onto the subspace where the Schmidt
coefficients are in the range ; that is spanned
by for those values of sat-
isfying . We will later argue that this
projection almost always succeeds, and thus causes very little
disturbance.

Now they divide the interval
into bins with geometrically spaced boundaries, for

a parameter we will pick later. That is, for , bin
is the interval

Still without using any communication, Alice and Bob each per-
form a projective measurement onto the different bins. By this
we mean that the measurement operators are projectors onto
subspaces spanned by strings whose Schmidt co-
efficients fall entirely into one of the above intervals. We claim
that (a) that with high probability they will find a bin that con-
tains many eigenstates, and (b) the resulting state will have high
fidelity with a maximally entangled state. It remains only to
quantify the various errors and inefficiencies we have encoun-
tered along the way.

Start with the last step. The probability that the bin measure-
ment yields a bin with (for a parameter we will
set later) is . Each Schmidt coefficient that we have kept
is , and thus any bin with weight must
contain eigenvalues. Choosing ,
we obtain a state that approximates

EPR pairs. To assess the fidelity of this approximation,
note that all of the Schmidt coefficients of the projected and
rescaled state are in a band between and

, for some normalization factor . Thus, this
state has fidelity with a maximally entangled state.
Now choose , so that both the failure probability
and the error are .

All that remains for the error analysis is to assess the damage
from projecting onto the Schmidt coefficients in the interval

. The key tool here is the Chernoff bound[13], which
states that if are independent (not necessarily in-
dependent) random variables satisfying then

satisfies

(20)

We would like to apply this with defined by
, so that is likely to be close to .

Unfortunately, can be arbitrarily close to zero, and thus
can be arbitrarily large, so we cannot immediately

establish any upper bound on .5 To do so, we will discard the
Schmidt coefficients that are smaller than , which automat-
ically means that . This causes damage for
each , or overall. Combining with (20), we find

the total error is . Finally, we set
to obtain an overall error of , which
dominates the error from the first part.

Now we explain how the protocol can be made semi-clean.
The “which bin” measurement should instead be performed co-
herently, with the entanglement extraction proceeding condi-
tioned on the quantum register storing the superposition of mea-
surement outcomes. Since the different outcomes remain locally
orthogonal, the overall Schmidt rank is equal to the sum over
of the rank of the state conditioned on obtaining bin . After
the initial projection onto the typical subspace succeeds, each
Schmidt coefficient is , and so each bin has

. Since we are extracting ebits
from each bin, the rank of the residual state, conditioned on ,
should be . Once we sum over bins,
we have an overall Schmidt rank of .

Proof of Coding Theorem for Theorem 2: Suppose there
exists an ensemble
such that

(21)

The idea is to use HSW coding[31], [42] for . For a
string , let . The
HSW theorem states that for and for sufficiently
large, choosing random
codewords according to the
distribution will result in a code with
average error .

5The Chebyshev bound would avoid these difficulties, but at the cost of losing
the exponential bounds on error probability. Nevertheless, for small values of �,
it may be preferable. Here we can use the fact that ������ � � ��� � to find
that � ��� � �� � ���	� � 
������ ��� . Other than the revised error
bound, the rest of the proof would be the same.
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On the other hand, the operator Chernoff bound[46] states
that a collection of random
codewords will have average state on Bob’s side
quite close to their expectation

(22)

Choose an arbitrary purification . Also let ,
so

Our strategy for the rest of the proof is for Alice and Bob to start
with a state where Bob’s part always looks like , but Alice
can reliably send one of different messages by performing a
local unitary and then applying to the joint state.

With this in mind, we now rephrase the random codes de-
scribed above. Draw from the distribution ,
and let be the probability of error when Bob attempts to
decode . The HSW theorem states that with high
probability the average error is low, i.e.,

(23)

On the other hand, the operator Chernoff bound states that with
high probability

(24)

for all (the reason to demand error will later be ap-
parent). Using the union bound (see, e.g., the proof of Theorem
1 of [16] for detailed calculations), one can show that in fact
with high probability both (23) and (24) hold simultaneously,
and in particular that there exists a set of for which this
is true. Fix this set for the rest of the proof.

For each , let and define the set of good
codewords to be . By Markov’s inequality,

.6 The communication protocol proceeds as follows:
(1) Alice and Bob start with the state .
(2) To send the message , Alice will perform a local

unitary operation so that the overall state is within of

This is possible because of (24), Uhlmann’s the-
orem[36], and the fact that two mixed states with
trace distance have purifications with
trace distance [19, Lemma 2.2].

(3) Apply so that the two parties share a state
within of

6Note that unlike in standard HSW coding, we cannot simply throw out the
worst half of all codewords, since then the �� would no longer be independent
and (24) would no longer necessarily hold.

(4) Bob decodes coherently, to obtain a state within
of

(5) Conditioned on , Alice and Bob con-
centrate ebits from

. Since the dimen-
sion of the states is fixed and can be made arbitrarily
large, the entanglement concentration technique of [5]
will suffice. Moreover, entanglement concentration
can be performed cleanly, so a sublinear amount of
additional communication will leave them with the state

, which is of course equivalent
to ebits.

Alice and Bob have used times and sent
cobits. They started with the state , which

can be prepared with entanglement dilution using
ebits and cbits[39], and end with

ebits, for a net change of

as desired.

Note that unlike the proof of Theorem 1 (or indeed the proof
in [22] of the present result), no double-blocking is necessary
here, except perhaps to deal with the sublinear communication
used for entanglement dilution and to erase the ancilla states left
by entanglement concentration.
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