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Joint Base-Calling of Two DNA Sequences With
Factor Graphs

Xiaomeng Shi, Student Member, IEEE, Desmond S. Lun, Member, IEEE, Muriel Médard, Fellow, IEEE,
Ralf Kotter, Fellow, IEEE, James C. Meldrim, and Andrew J. Barry

Abstract—Automated estimation of DNA base-sequences is an
important step in genomics and in many other emerging fields in
biological and medical sciences. Current automated sequencers
process single strands only. To improve the utility of existing
technologies, we propose to mix two independent strands prior to
electrophoresis, and base-call jointly by applying the sum-product
algorithm on factor graphs. We first present a statistical model
for DNA sequencing data and examine the model parameters. A
practical heuristic is then proposed to estimate the peaks, which
are then separated into two source sequences (Major/Minor) by
passing messages on a factor graph. Simulation results show that
joint base-calling can provide less accurate but valid results for
the minor. The algorithm presented provides a basis for future
investigation of joint sequencing techniques.

Index Terms—Base-calling, DNA modeling, DNA sequencing,
factor graphs, sum-product algorithm.

I. INTRODUCTION

HE chain termination method developed by Sanger et al.
T in 1977 [1] for collecting DNA sequencing data was the
most widely used sequencing technology until recently. One
step of the sequencing process is base-calling, where nucleotide-
order of a short DNA fragment is determined from data collected
through chemical experiments. We propose to jointly base-call
two superposed data traces by applying the sum-product al-
gorithm on factor graphs, a method commonly used for itera-
tive decoding in digital communication systems. Our goal is to
improve the utility of existing Sanger technologies by mixing
two DNA strands together during chemical processing, thus re-
ducing the overall use of reagents and improving the use of se-
quencing equipment.
As we are addressing a problem in molecular biology with
techniques from communication and information theory, in
Section I-A we will describe in detail the process of Sanger
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sequencing, associated terminologies, and related work on
base-calling. Readers who are not familiar with these terms
may find it helpful to read this part first to gain some under-
standing of the sequencing problem.

To see why joint base-calling would be beneficial in more
quantitative terms, consider the typical run time for shot-gun
sequencing on an automated Sanger sequencer from Applied
Biosystems (ABI, [2]). Each run often takes more than 30 min-
utes to complete, and identifies approximately 400 to 600 bases
[3]. High throughput sequencing platforms can often read up
to 1000 base pairs per run. However, given that genomes easily
contain millions of bases and that repetitions are needed to
achieve high accuracy in subsequent assembly, a large number
of machine days is required to sequence a single genome. In
addition, the fixed cost of the machine and variable cost of the
reagents sum to thousands of dollars per machine day. Mixing
two DNA segments before electrophoresis and base-calling the
superposed traces therefore offer the option of increasing the
throughput of the overall process while maintaining cost.

In recent years, the conventional Sanger sequencing method
has been rapidly supplanted by next-generation systems.
Nonetheless, improvements in Sanger techniques are still of
interest, for it is unlikely that Sanger sequencers can be entirely
replaced by next-generation systems. The newly developed
and commercialized next-generation parallel cyclic-array tech-
nologies include pyrosequencing, sequencing with reversible
terminators, and sequencing by ligation [4]-[6]. By eliminating
chain termination and DNA amplification through bacterial
cloning, these techniques can achieve dramatically larger
throughputs. In addition, sequence immobilization on arrays
reduces the overall usage of reagents, giving rise to further
cost reductions. Nonetheless, Sanger technology remains the
lead in terms of read-length and accuracy [5], [7]. Typical read
lengths for next-generation platforms are 10—40 base pairs,
while Sanger sequencing can achieve lengths that are one-order
of magnitude longer. The crucial importance of read length
can be seen in the sequencing of highly repetitive genomes
without known reference sequences [8]. If a repetitive region is
longer than the read length, it is almost impossible to assemble
accurately since overlaps are critical for bridging gaps among
sequenced fragments. Sanger is therefore sometimes the only
feasible sequencing method. On the one hand, the competi-
tive environment for commercial sequencer development has
accelerated research for data analysis methods and stimulated
new applications in genome studies for next-generation tech-
nologies; on the other hand, these still have large potential
for improvement. Another reason why the study of Sanger
sequencing is still of interest is that currently there is a large
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installed base of Sanger sequencers [9]. Given the large costs
associated with transition to new technologies and new infra-
structures, Sanger sequencers will remain in use in combination
with next-generation technologies in the immediate future.

In the remainder of this section, we describe the general prin-
ciples underlying the Sanger sequencing process, and examine
some previous work on base-calling. We also discuss charac-
teristics of the sequencing data that need to be taken into con-
sideration during joint base-calling of two mixed sequences. In
Section II, a statistical data model is given and the model pa-
rameters discussed in detail. In Section III, we first examine the
joint base-calling problem with the complete statistical model
represented graphically on a factor graph (FG). With this setup,
the maximum a posteriori probability (MAP) estimation of the
types of individual bases is very computationally expensive. In-
stead, we propose a two-stage model. By viewing the data as
similar to pulse amplitude modulated signals in a communica-
tion channel, we first try to find the spike train underlying the
mixed sequence data using nonlinear minimum mean square
estimation. Next we assign the spikes to the two source se-
quences, which are termed major and minor, respectively, de-
pending on their relative average amplitudes. Results are pre-
sented in Section IV, in which we also discuss other issues
that need to be considered to improve the general performance
of this algorithm. Section V concludes this paper with discus-
sions on possible future work. Data used for analysis are pro-
vided courtesy of James Meldrim from the DNA Sequencing
Operations Group at the Broad Institute of Massachusetts In-
stitute of Technology and Harvard University. The commercial
sequencers employed are from Applied Biosystems, Inc. (ABI)

A. Background on Sanger Sequencing

This section is tutorial in nature, with the aim to introduce
some necessary background and terminologies to readers with
no direct experience in genome sequencing, and to explain why
sequencing is not an easy task. Since this paper is addressed
to both the biological and the communications community, the
descriptions here are quite extended. What might seem basic
to one community may be completely unknown to the other,
and readers who are familiar with the sequencing process can
safely skip to Section I-B in which we briefly discuss past work
on base-calling, and introduce the notion of base-calling two
sequences simultaneously.

In this paper, we focus on the technology typical to ABI
sequencers: paired-end whole-genome shotgun sequencing
based on cycle sequencing and dye-termination capillary
electrophoresis. The term whole-genome shotgun refers to the
random division of an entire genome before fragments are se-
quenced individually; cycle sequencing is a signal amplification
process similar to the better known PCR; the dye-termination
method was developed by Frederick Sanger in 1977 [1] and
has been the fundamental basis for DNA sequencing ever
since. In this section, we limit ourselves to a description of
only the general principles underlying signal amplification
and dye-termination based electrophoresis. The intention is to
establish terminology and notations. For more details on the
working chemistry and instrumentation of the ABI sequencers,

see the ABI Automated DNA Sequencing Chemistry Guide [3]
or other application manuals available on the ABI website [2].
For further descriptions of the Sanger sequencing chemistry,
see [10]-[12]. For other sequencing technologies, [13] and
[14] give comprehensive reviews of some recent developments,
while [15]-[18], and [19], refer to several emerging techniques
including pyrosequencing and polony sequencing.

A DNA molecule has the structure of a double helix, where
each strand is a chain composed of four types of monomers,
identified by their constituting nitrogenous bases. The four
base-types are Adenine (A4), Cytosine (C'), Guanine (G), and
Thymine (7'). Genetic information is borne by the ordering
of these bases. With an ultimate objective of determining the
order of these bases, Sanger sequencing refers to a procedure
encompassing five stages: DNA amplification, size separation
and fluorescent detection of molecules through electrophoresis,
data preprocessing to remove noise and condition the signal,
determining base-orders through base-calling, and reassembly
of the base-called segments.

1) DNA Amplification: before a piece of DNA can be
studied, it first needs to be amplified (i.e., replicated) to reach
a significant concentration. One widely used technique for this
purpose in molecular biology is polymerase chain reaction
(PCR). During replication, free nucleotides in a buffer solution
group and extend according to the order of bases in a template
sequence. Elongation of a segment terminates when a special
monomer, a dideoxynucleotide, is incorporated. The mixture
resulting from such amplification processes contains partially
extended DNA fragments of different lengths. The terminating
dideoxynucleotides are also coupled with fluorescent dyes, one
color per base type. These serve as labels during the detection
phase. Once amplified, the partially extended DNA strands
can be separated by length and each ending base identified
fluorescently; thus giving the order of bases along the segment
of interest. This is the objective of electrophoresis.

2) Dye-Termination Electrophoresis: in electrophoresis,
electrically charged molecules travel across a medium under
the influence of an electric field. DNA molecules have a net
negative charge. DNA fragments travel at an average velocity
inversely proportional to their charges, equivalent to the number
of bases they contain. Optical detection is performed at the
end of the medium by exciting the fluorescent dyes on the
terminator with a laser. A detector periodically records the
fluorescence intensity at the end of the medium to give an
electropherogram, displaying the ending bases as peaks with
different retention times, where the amplitude of the peaks
corresponds to fluorescence intensity. The randomness in-
volved in the replication mechanism results in concentration
variations among the molecules, leading to random amplitudes
for the observed peaks. The raw data stream is in the form of a
four-component intensity vector. Assuming K points are sam-
pled uniformly in time, a trace in the resulting chromatogram
can be written as y[t], 1 < t < K, where ¢ is an integer and for
any T, y[r] is a length 4 vector.

3) Data Preprocessing: Due to random motion of the seg-
ments as they pass the detection region, the collected data are
successive pulses corresponding to the spread of DNA frag-
ment concentrations around their nominal positions. Ideally the
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Sample preprocessed DNA trace data.
(A,C,G,T) are represented by different line styles. A typical run gives
a trace containing approximately 600 to 800 bases, corresponding to 7000 to
10000 sample points. Peaks are much less resolved towards the end of a trace.
When two sequences are mixed prior to electrophoresis, the resulting trace is
a superposition of the corresponding individual traces. (a) Single Sequence!,
(b) Two Sequences?.

The four base-types

acquired pulses would be uniformly spaced, with equal ampli-
tudes, and resolved well enough such that the base types can
be identified directly by sampling at the peak locations. Ac-
tual experimental data, however, contains not only measure-
ment noise, but distortions inherent from the chemical reac-
tion kinetics [20]. Additional preprocessing of the raw data is
thus required before base-calling. There are four functions that
are commonly carried out. First, baseline correction removes
the slowly varying background fluorescent intensity level. This
is achieved through low-frequency noise filtering operations.
These noises are slowly drifting, and different for each base
type. Second, overlaps among the dye emission spectra leads
to correlation among the components, where the presence of a
peak in one component may result in peaks in the three others.
This crosstalk effect can be eliminated using a linear filtering
process called color correction. Third, measurement noise and
possible impurities in the reagents lead to additional random
noise in the signal. Denoising through a low-pass filter is there-
fore needed. The last but the most important preprocessing step
is electrophoretic mobility correction. The presence of the flu-
orescent labels affects the mobility of DNA molecules under
electrophoresis. This causes compression of the four discrete
data series at different rates. Mobility correction aims to scale
along the time axis, such that the peak spacings are approxi-
mately uniform, and only one of the four concentration levels is
dominant around each peak.

4) Base-Calling: Base-calling is the process of identifying
the order of DNA bases from preprocessed data, into a sequence
of the four base types (A4, C, G, T). As stated previously during
the discussion of elephophoresis, owing to random motion of the
segments as they pass the detection region, the collected data
are successive pulses corresponding to the spread of fragment
concentrations around their nominal positions. Fig. 1(a) shows
a preprocessed trace at the beginning and towards the end, with

ITrace file name: 000000000001_401_01.abl.
2Trace file name: 000016240928 _107_024.ab1.

different base types represented by different line styles. A typ-
ical run, which requires more than 30 min to complete, gives ap-
proximately 600 to 800 bases, corresponding to 7000 to 10 000
sample points. It is intuitive that the well-resolved peaks shown
in the first subplot can be called easily by tracking positions
of local maximums. However, peaks are much less resolved to-
wards the end, as illustrated by the position marked by A in the
second subplot, and such irregularities in data make base-calling
difficult. Additionally, even with mobility correction, the sto-
chastic nature of the experiment makes the peaks jitter from
uniformly spaced locations. Such timing jitter makes it difficult
to apply a dynamic programming algorithm to resolve the in-
terferences among neighboring peaks, because the inherent ran-
domness makes data association with individual peaks no longer
uniform, and thus hard to determine.

5) Paired-End Whole-Genome Shotgun Assembly: Since the
number of DNA bases that can be read in a single run does not
exceed thousands, but genomes are easily millions or billions of
bases long, automated mapping strategies are required to cover
an entire genome. Shotgun sequencing shears DNA at random
locations, performs reads, then assembles fragments on the
basis of overlaps. There are two dominant shotgun sequencing
techniques: hierarchical, and whole-genome shotgun (WGS)
sequencing. In the former, intermediate-sized pieces called con-
tigs are chemically mapped to the original genome, before each
is sequenced with the shotgun approach. In WGS sequencing,
an entire genome is read at random locations before assembly.
Automation is therefore easier to implement, although more
complex computations are required, and large-scaled misas-
sembly errors are prone to happen. The choice between these
two techniques can often be decided based on the amount of
repetitions and complexity of the genomes under study. Fur-
thermore, because overlaps determine the matching of different
pieces, but perfect base-calling results are not guaranteed,
the same location often need to be sequenced multiple times,
where the average number of reads covering a base in the re-
constructed sequence is referred to as the depth of coverage. A
full coverage often corresponds to 8- or even 12-fold repetition.

B. Related Work on Base-Calling and the Joint Base-Calling
Problem

In short, to base-call a single sequence, an automated se-
quencer needs to take into account at least three undesirable
features of the data: amplitude variation, increasing pulse widths
that deteriorate peak resolutions as in Fig. 1(a), and jitter in peak
spacings. The same issues persist when two independent se-
quences are mixed together prior to electrophoresis. In this case,
the resulting trace after preprocessing is a superposition of the
corresponding individual traces. Fig. 1(b) gives a set of sample
data. Our aim is to base-call both sequences from such super-
posed trace. Observe that the different average amplitudes and
the relative peak spacings are features that can be used to sep-
arate mixed sequences. In this example, the average amplitude
ratio between the major and minor is close to 2. Here we refer
to the sequence with a larger average amplitude as the major,
and the other as the minor. The average amplitude ratio can be
controlled by varying the relative reagent concentrations during
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replication. However, this correlation is imperfect and the av-
erage amplitude ratio can only be set to some range instead of a
specific value. Another added concern is that the peak locations
of the minor sequence do not offset constantly from that of the
major, although some regularities in peak spacing can still be
observed.

The most widely used algorithm for base-calling a single
sequence is Phred [21], which combines a set of heuristics
such as the running average peak spacing, peak areas and
concavity measures to determine the bases. Other approaches
include parametric deconvolution [22]; combining Kalman
prediction of peak locations with dynamic programming to
find the maximum likelihood sequence [23]; and performing
Markov Chain Monte Carlo methods with a complete statistical
model to estimate the peak parameters [24]. A direct extension
of these to sequencing two superposed traces is not trivial, for
the major and minor traces are not synchronized in time, nor is
separation into two sequences an easy task.

The idea of sequencing two or more strands together is not
entirely new. However, the emphasis has mostly been on the
modification of the underlying chemical processes. References
[25] and [26] use two fluorescently labeled primers and requires
specialized detection for each. Reference [27] proposes to se-
quence a strand from both the forward and reverse directions si-
multaneously in a single reaction. Immobilization of the forward
sequencing products allows their separation, through chemical
means, from the reverse sequencing products, each of which
can then be base-called individually. Reference [28] states two
methods for the simultaneous sequencing of multiple genes. The
first uses different primers in a single reaction to signal sev-
eral genes in a serial fashion such that data sets obtained can
be analyzed one after another. The second method alternates
between amplification and cycle sequencing to obtain both for-
ward and reverse sequencing data. Both methods require addi-
tional primer design and can acquire short segments only. Al-
though these techniques all aim to sequence multiple strands si-
multaneously, the emphasis is on the modification of the under-
lying chemistry to yield data that can be identified with existing
base-callers. In this paper, we propose to collect sequencing
data with minimal alteration of the chemical experiments, but
base-call superposed data which is often viewed as “contami-
nated” when they occur in the laboratory.

II. DATA MODEL AND PROBLEM FORMULATION

The output of the preprocessing stage is a set four intensity
vectors, each in the form of a pulse train corresponding to a dif-
ferent base type, and spanning over uniformly spaced sampling
times. Assuming K points are sampled in time, the sequencing
data to be base-called can be written as y[t],1 < ¢ < K, where
t is an integer, and for any 7, y[7] is a length 4 vector. As dis-
cussed in Section I-B, when two sequences are mixed prior to
electrophoresis, we define the sequence with a higher average
amplitude to be the major the other one with a lower average
amplitude to be the minor. Assuming there are Ny and N> peaks
in the major and minor sequences respectively, we can denote
the peak amplitudes with «;, aa; and positions with 7;, 725,
where 1 < ¢ < Nj,1 < j < Ns. The time-varying generic

pulse shapes can be represented by p;(¢),p;(t). Under the as-
sumption of simple superposition, the sampled time series is

Ny N>

y[t] = Z a1ipi(t — T1i)zy; + Z a2jpi(t — To;)xo; + e(t).
i=1 j=1

(H

Here g};,ggj takes on one of the four codewords

{0001, 0010,0100, 1000}, corresponding to four base types,
and e(t) is an additive noise. In writing the above expression,
we have assumed that mixing two sequences in one reaction
does not alter the underlying chemistry, hence the resulting data
is a trivial linear combination of individual traces. Examination
of sample data sets such as the one shown in Fig. 1(b) shows
that this assumption is empirically valid. Joint base-calling is
the process of estimating the parameters z; and z,.

To understand qualitatively the time series model in (1), peaks
in the data set displayed in Fig. 1 are located manually and the
distribution of each model parameter plotted. The experimental
data shows that for each sequence, the peak amplitudes are ap-
proximately independent and identically distributed (i.i.d.) with
a Gamma distribution, where the right tail is larger. Since am-
plitude distributions of the major and minor sequences overlap,
simple thresholding is not sufficient to distinguish these two, al-
though a larger difference in average amplitudes certainly leads
to better differentiability. One possible experimental design is to
increase the ratio between average amplitudes. It turns out that
owing to the nature of the DNA replication process employed
in Sanger sequencing, when the amount of reagent used for the
major sequence is increased, the corresponding amplitude soon
reaches a saturation value. On the other hand, while decreasing
the amount of reagent used for the minor, background noise and
other non-uniformities from the preprocessing stage soon be-
come significant. In other words, amplitude resolution between
the major and minor is limited by the underlying chemical ex-
periment. In this paper, the data sets under consideration have
their amplitude ratios set to approximately 2. To put this value
into context, in the data set shown in Fig. 1(b), the average am-
plitude for the major sequence is approximately 750, with a
spread of at least 200.

For the base type variable, we do not take into account any
gene structures that give rise to possible correlations between
neighboring bases or across the two sequences. Also depending
on the organism or the gene being sequenced, it is possible
to have more prior information on the base type distribution.
Instead, we consider them to be uniformly independently dis-
tributed among the four base types for each sequence.

As for the peak positions, empirical data shows that for each
sequence, the peak timing locations are first-order Markov, i.e.,
f(71,i41|m,:) satisfies

f(rivalmi) = far(misn — 7)) Le{1,2} (2

where fa . hasits mean equal to the slowly varying average peak
spacing, and has standard deviation of approximately 0.8 sam-
ples. The average peak spacing is approximately 7' = 12, which
increases by about half a sample value over 600 pulses. Another
way of interpreting (2) is that for each sequence, elements of the
peak time series {7;} satisfy 7; = 7,1 + T + Twi, 7 > 1, where
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Ty 18 the timing jitter. With a single sequence, such jitter can
be tracked easily with an algorithm similar to a phase-lock loop
in digital communication systems. A phase-lock loop employs
negative feedback mechanisms to track changes in the phase or
frequency of a sinusoid signal. In the case of two sequences,
cumulations of independent timing jitters in each sequence pre-
vents any synchronization of the major and minor peaks, ren-
dering joint base-calling much more difficult. This is not to say
that the locations of neighboring peaks are uncorrelated. For ex-
ample, two peaks separated 4 to 8 samples apart are very likely
to be from different sequences. Such relationships will be ex-
plored in our proposed joint base-calling algorithm later.

As discussed in [29] and [23], the additive noise ¢(t) con-
sists of measurement noise, possible contaminants from DNA
replication and electrophoresis, and residual errors from the pre-
processing stages. It has a non-stationary spectral color as de-
termined by the generic pulse shape. Nevertheless, we assume
that e(¢) is white Gaussian with zero mean and standard devia-
tion o, instead of further investigating its noise spectrum. Such
simplifications greatly reduce the complexity of the base-calling
process, while simulation results show that even such loose ap-
proximations yield acceptable accuracies during base-calling.

The last important characteristic of the electrophoresis data is
the generic pulse shape p(¢). The model described by (1) con-
tributes approximation errors for the generic pulse shape to the
additive noise term. Nelson [29] has proposed to model p(t) as
the distribution function of the sum of two independent random
variables, one Gaussian with distribution A'(u, o2), and one ex-
ponential with parameter A. The result is an exponentially medi-
ated Gaussian curve, which has tails heavier on the right than on
the left. We selected 100 pulses manually from a single sequence
to fit this model in MATLAB, 25 from each base type. Each pa-
rameter was represented as a function of the peak location b, also
manually identified. Generic pulses can then be generated using
the fitted model at different peak positions. Although this ap-
proach gives very good estimates of p(t) if the parameters have
been determined, owing to variations of data quality across dif-
ferent data sets and the impracticality of manually estimating
the parameters for each sequence to be base-called, we need
to resort to simpler heuristics rather than using this complete
model. Davies et al. [23] proposed a simpler unit-width pulse
shape with a central Gaussian part and uneven exponential tails.
The pulse width is set to be linear in time. Since this model is
also fitted from observed data and the automated sequencers
they have employed are different from our ABI machines, we
decided not to use a similar model.

Instead, we propose a heuristic procedure to obtain generic
pulse shapes for each two-sequence data set. One observation
from the single sequence sample data set is that although the
average pulse width increases with time, the increments are al-
ways very small, hence the average pulse width can be viewed
as being constant locally. Also, smaller pulse widths lead to less
interference across neighboring bases at the beginning of a trace.
Given a two-sequence data set, we first divide it into windows
of 500 samples. Note the number 500 is arbitrary and can be
changed if needed. To reduce edge effects, the overlap between
neighboring windows is set to be 250 samples. Within each
window, we collect pulses of shape which can be deemed typ-

\
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Fig. 2. Factor Graph for maximum a posteriori probability (MAP) estima-
tion of individual bases. Circles represent the peak parameter variables given
in (1); squares represent conditional probability distributions. Variables on the
top row are associated with the major, and those on the bottom row are associ-
ated with the minor. The shortened variable notation with both superscripts and
subscripts represents pairs or triplets of variables: a}? = (11, a12), 212 =
(211, 12), 717 = (711, T12).

ical regarding curvature, cumulative area, relative amplitudes,
and size of the tails on both size, to be referred to as good pulses.
These are then normalized to unit peak amplitude and averaged.
As expected, the full widths at half maximum (FWHM) of the
average good pulse in each window displays an increasing trend
along the data trace. Towards the end of the trace, the number of
good pulses becomes small since all have very large tails in com-
parison to those at the front. To avoid this problem, we take the
average good pulse with the smallest FWHM as the unit generic
pulse p(¢). For the Ith window, the corresponding generic pulse
p,(t) is p(t) scaled by the factors found before. The resulting set
of generic pulses are very close fits to observed peaks.

III. DEVELOPMENT OF JOINT BASE-CALLING ALGORITHM FOR
TwO SEQUENCES

A. Maximum a Posteriori Base Estimation

According to the data model given by (1), the dependencies
between the peak parameters can be represented by a factor
graph (FG), as shown in Fig. 2.

Together with Bayesian Networks and Markov Random
Fields, factor graphs are graphical models that describe the
dependencies among components of complicated functions. A
factor graph is an undirected, bipartite graph, in which vertices
can be divided into two disjoint sets, where no vertices from
the same set are connected. Two types of vertices exist in a
factor graph: one type for random variables, and the other
for factors, or functions of a subset of the variables. An edge
connects a variable node z to a factor node f, if and only if x
is an argument of the function f( - ). The importance of a factor
graph is that under the cycle-free condition, its structure gives
not only how a global function factors into local ones, but also
a method for computing associated marginal functions for each
individual variable node. This method, called the Sum-Product
Algorithm [30], exploits the locality properties of the factor
graph by passing messages along the edges. In the case where
cycles exist, convergence of the Sum-Product Algorithm has
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Fig. 3. Block diagram for the two-stage base-calling algorithm. The deconvolution process is followed by source sequence identification through message passing.

The sequencing data can be used to estimate the generic pulse shape as well.

not been proven, although it is still routinely used in such cases
with plausible results.

In Fig. 2, circles represent the peak parameter variables,
while squares represent probability distributions. y; denotes
all data points associated with the ¢th peak. This dependency
structure, together with conditionals obtained from training
data, allows the Sum-Product Algorithm to be applied for MAP
estimation of individual bases. One simplification we have
made in composing this graph is to assume that near uniform
alignment between the major and minor exists; hence interfer-
ence is caused only by adjacent peaks in both sequences. In
reality, this assumption is not true, nor is alignment information
known a priori. A consequence is that there will be many more
edges in the graph, but only a few will carry significant infor-
mation. The strength of the links can only be determined after
at least one iteration of the algorithm. Equivalently, we could
view the need for more edges as a difficulty of data association.
Clearly this approach for joint base-calling is computationally
impractical, albeit theoretically optimal.

B. Two-Stage Base-Calling Formulation

Since the MAP base estimation on an FG is very computa-
tionally expensive due to random peak timing jitters and diffi-
culties with data association, we develop a two-stage algorithm,
where timing recovery and source sequence identification are
separately carried out to give a suboptimal solution. Mathemat-
ically, let § = {zy,ay,T;,Zs,Qy,To} be the peak parameter
vector, then its MAP estimate is

6= argmax f(8) = arg max{log f(y|f)) +log f()}. ()

Assuming that the amplitude and type of each individual base
is independent of those of the others, the prior distribution of the
peak parameters can be written as log-sums

log f (8 ZZ{logf ay;) +log f(z;)} + log f(z1, 7o)

=1 1=1

On the other hand, under the assumption of additive white
Gaussian noise with zero mean and variance o2, the log likeli-
hood of the observed data is

2 9.2 Z ||y[t] Z ahp t - 7—17)xl7
Nz

— >yt
j=1

where ¢ sums terms that do not affect the maximization. Con-
sider a new parameter vector ¢ = {z, o, 7}, where z = {z; U
z,},a = {a;Ua,}, 7 = {r,Ur,}, and an indicator variable 1,
where my, € {(00), (10), (01), (11)}. my, represents whether a

log f(y|0) =

- T2j)£2j||2 +c

spike at time 7, has originated from noise, the major, the minor,
or both. Although the correspondence between 6 and {¢, m} is
not one-to-one, accurate estimates of z and m leads to identifi-
cation of the constituent sequences z; and z,. In other words,
the cost functions above are equivalent to the following:

log f (¢, m Z{logf ar|mi) +log f(z,)}
k=1
+ 10g f(r|m) + log f(m) (4)
log f(yl¢) = —5 5 ley
]\T
= > apr(t = Tz |* + c. )
k=1

In (4), it is assumed that the amplitude ;. of each individual
base is dependent on mj only and distributed independently
of its neighbors. Also, xj is assumed to be uniformly inde-
pendently distributed, also independent of the indicator vari-
able. The dependency relationship for the peak locations is more
complex, as will be explained later. In (5), the mean square error
for fitting pulse trains to the data is minimized without addi-
tional constraints. We have assumed this is independent of the
indicator variable associated with each base, although strictly
speaking, the minimization should give rise to approximately
equal numbers of peaks in z; and z,. Taking such independence
into account, we can rewrite the maximization in (3) as follows:

¢, =

arg max {arg max[log f(y|¢) +log f (¢, m)] } :
i ©)

As a further simplification, we instead consider a suboptimal
solution, derived by neglecting the effect of log f(¢,m) on the
estimate of the peak parameters such that

4

= arg max log f(yl#) @)

m).

By expressing the cost function using two components, we ob-
tain a two-stage algorithm for joint base-calling: the first stage
is to locate all peaks, and the second stage is to find the best
indicator sequence to identify the sources for each peak. Fig. 3
illustrates the two stages involved and the corresponding out-
puts.

For the first stage, (7) describes a deconvolution process
aimed at finding the minimum mean squared error estimate of
the peak parameters. Again, we compute such deconvolutions
in separate windows. Fig. 4 shows the deconvolved spike train
for the data in Fig. 1(b). Note that the hidden pulses at around
positions B and C are captured, while the minor peak to the left
at position A has been missed. This may or may not contribute

1 = arg max log f(g, ®)
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Fig. 4. Output of the MMSE deconvolution process for the data in Fig. 1(b).
Spike trains are identified in terms of amplitude, location, and base type. In this
example, the minor peak hidden at position A is not captured during deconvo-
lution, while those at around positions B and C' are correctly located.

to a deletion error in the final base-call, depending on if the
spike is counted as a single major peak or overlapped major
and minor peaks.

Another issue we have conveniently overlooked during de-
convolution is that because there is minimal prior information
on N, or N; for each window, we overestimate its value when
maximizing (7). Overfitting will always occur, but the added
spikes are either those that overlap the correct results, or noise
spikes that are very low in amplitude. For the former, we consol-
idate by combining overlapping spikes that are a distance of less
than one sample away. For the latter case, thresholding with the
running average of peak amplitudes reduces the problem signif-
icantly.

For the second stage, we want to separate the deconvolved
peaks into major and minor sequences. Assumption of inde-
pendent amplitudes and base types decouples those terms in
(4). However, since peak spacings are approximately first-order
Markov within a single sequence, once we take the union of
7, and 7,, the dependency becomes at least second order. More
specifically, the offset between the current base and the one next
to its immediate neighbor should be approximately 12 samples,
which is the average peak spacing in a single sequence. After
mixing, if the current base of interest is labeled as major and the
previous base is labeled as minor, then the offset between these
two peaks can be of any value up to the average peak spacing. As
an example, consider position B in Fig. 4. Here the major and
minor offset by approximately six samples, which is half the av-
erage peak spacing in a single sequence, but B is closer to the
pulse on its left than to the one on its right. As a starting point for
our algorithm, we approximate the higher order Markov model
of the peak spacings with a first-order one. Using ¢’ to denote
terms that do no affect the maximization results, m’,j_l to denote
{mg—1, my}, and assuming neighboring indicator variables are
independent, we have

N
log f(¢,m) ~ ¢ + > log f(éx|mx) + log f(r1)
Nk:1 N
+Zlogf (Flfe—1,mi_1) + ZIng(mk)'
k=2 k=1
Let
Ry = f(ag|m) )

T, - {f('fk)f(mk), =1 10

f %k|%k717m]/§—1)f(mk)7 k>1

Ty T> T3 Ty Ts Ts T

Fig. 5. First-order factor graph for separating two sequences. Expressions as-
sociated with the functional nodes are given in (9).

Fig. 6. Second-order factor graph for separating two sequences. Expressions
associated with the functional nodes are as given in (11), defined similarly as in
the first-order model through (9).

the distribution of m parameterized by (2) can be represented
graphically using an FG as in Fig. 5. This is the trellis graph
of a hidden Markov model, where the Sum-Product Algorithm
[30] can be applied. The cycle-free property of this FG ensures
convergence of the algorithm. We can also write a second-order
approximation for the log-likelihood of the peak timing loca-
tions

log f(#|m) = log f (#1) + log f (m?)

]\T
+ > log {f (#elFf=a,mE_s) fma)}. (A1)

k=3

The alternative factor graphs is shown in Fig. 6.

IV. SIMULATION RESULTS AND DISCUSSIONS

We applied the algorithm stated in Section III-B to eight
data sets, results are shown for two of those in Table I. The
simulation results for different datasets varied significantly
depending on the ratio of average amplitudes between the
major and the minor. To control the ratio of average amplitudes
between the major and minor peaks, the sequencing primer
responsible for initiating the replication process was added at
limited concentration for the minor relative to the major. To
target an average amplitude ratio of approximately 2, the rela-
tive concentration of major and minor primers was set to 20 to
1. Even so, the achieved amplitude ratio can greatly exceed 2 or
be much smaller, close to 1. In the first case, the minor became
less distinguishable; in the second case, neither sequence could
be called reliably, especially in parts where bases from the two
sequences are approximately aligned. The two data sets used
to generate Table I were those that displayed good amplitude
ratio characteristics. The sensitivity of our algorithm to large
amplitude ratio variation was not quantified at the current
exploratory stage, but needs to be studied in detail in the future.
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The first dataset used for simulation was the one shown in
Fig. 1(b). There were a total of 7000 sampling points, corre-
sponding to about 580 bases starting from sample index 1401 to
8400. The front section was removed because the peak spacing
in this part of the read are not uniform due to artifacts in mo-
bility correction. Data collected after sample 8400 was not used
because interferences among neighboring pulses compounded
with the larger pulse widths make it more difficult to distin-
guish the two sequences. The second data set also contained
7000 sample points, although the starting position was adjusted
according to the quality of the trace.

For Ry, in both the first and second-order models, we as-
sumed the conditional distribution of «;, was Gaussian, param-
eterized by my, instead of a Gamma distribution with uneven
tails. More specifically, the mean amplitudes were assumed to
be 25, 750, 350, and 1100, respectively for noise, major, minor
and both sequences, while the standard deviations were assumed
to be 10,200, 100, and 224. For the prior distribution of my,
it was observed from the deconvolution results that only a few
were labeled as noise. We, therefore, assigned a uniform value
of 0.33 for the other three cases.

Unlike in our previous work [31], where the posterior dis-
tribution of mj was approximated by a histogram of values
obtained manually from the first data set, the likelihood of 7y,
was approximated with a more explicit model. In the first-order
case, f(x|fk_1,mF_,) was computed from the following
distributions depending on the values of my_1 and my. First,
if either of two neighboring peaks are labeled as noise, i.e.,
mg—1 = 00 or mg = 00, it provides no information regarding
its neighbor. We therefore assume 74_; and 75 to be indepen-
dent, and f(74|7%_1, mF_,) to take on a uniformly distributed
value of 1/12. Next, if two peaks are labeled as (major, minor),
or (minor, major), we assume f (75 |7r—1, m’,j_l) is computed
from a Gaussian distribution with mean 6, half the average
peak spacing, and standard deviation 3, which is larger than
0.8 for the single sequence case. An increased spread in peak
location is expected when two sequences are superimposed, for
relative positions are random in the inherent absence of syn-
chronization. Finally, for all other values of mﬁfl, we assume
f(#%|?k_1,mk_,) is computed from a Gaussian distribution
with mean 12, and standard deviation 3.

In the second-order case, f (7% |%,f:21 , m’,g_z) can be computed
similarly, starting from the cases where one of my_o, mg_1, my
is 00. For example, if mi_o = 00, or the (k — 2)th peak is
noise, it provides no information regarding its neighbors. Conse-
quently, f(73|7F_5, mF_,) becomes f(7x|7x_1,m}_,), which
is described in the previous paragraph. If none of the three peaks
under consideration is noise, f(7|7 3, mF ,) can be com-
puted from either a Gaussian of mean 12 or 6 depending on the
specific value of m¥_,,.

To evaluate the joint base-calling error rate, the sequencing
result was compared with reference sets using the cross_match
program [21]. The dynamic programming based Smith-Wa-
terman algorithm was employed to find the longest lengths of
consecutive bases which gave the best local alignment. Given
a set of penalties for different error types including mismatch,
insertion, and deletion, it finds the best run of matched bases
to achieve the smallest cost. Results are listed in Table I. Av-

TABLE I
PERFORMANCE OF JOINT (J) AND SINGLE (S) SEQUENCE BASE-CALLING
ALGORITHMS FOR TWO DATA SETS (SEPARATED INTO THE TOP AND BOTTOM
PORTION OF THE TABLE). JOINT BASE-CALLING IS PERFORMED ACCORDING
TO THE ALGORITHM GIVEN IN SECTION III-B, WHERE THE ORDER OF THE
FACTOR GRAPH USED IS GIVEN IN THE BRACKETS. THE SAME DATA IS ALSO
PROCESSED BY A SINGLE-SEQUENCE BASE-CALLER

length of best % substi- % %

single match tution deletion insertion
Major (J, 1Ist) 399 1.00 3.59 0.40
Minor (J, 1st) 262 2.77 3.84 4.26
Major (J, 2nd) 432 0.76 2.67 0.76
Minor (J, 2nd) 260 2.14 4.06 4.49
Major (S) 582 0.17 0.34 0.00
Major (J, 1st) 257 5.83 1.35 291
Minor (J, Ist) 60 4.64 0.66 7.95
Major (J, 2nd) 312 1.85 1.85 2.08
Minor (J, 2nd) 57 3.31 0.66 9.27
Major (S) 578 2.25 1.21 0.00

eraging over the two data sets, the first-order model achieves
an overall error probability of 7.5% and 12% for the two
sequences respectively, while the second-order model achieves
5% and 12%. Also given in this table is the performance of
a single sequence base caller on the same data sets. On the
averages it achieves an error probability of 2%. This base caller
was constructed similar to a phase-lock-loop, with the peak
location and corresponding base-types tracked one at a time
in the forward direction. A phase-lock-loop is an algorithm
from the communications field. It employs negative feedback
mechanisms to track changes in the phase or frequency of a
sinusoid signal.

The first observation from the sequencing result is that
mixing two sequences in electrophoresis has little effect on
the single sequence base-calling accuracy. In other words,
we could use existing techniques for calling the major, while
employing the joint base-caller for the minor. A throughput
gain is achieved with the additional minor sequences. Although
at a lesser accuracy, this information could be useful in several
ways. First, recall from Section I-AS5 that sequencing can be
performed on DNA fragments only, so subsequent assembly
by matching overlapped base-calls is required. Since perfect
base-calling results are not guaranteed, we often sequence
the same location multiple times, where the average number
of reads covering a base in the reconstructed sequence is
referred to as the the depth of coverage. A full coverage often
corresponds to approximately eight-fold repetition [32]. It may
be possible to replace some repetitions with the minor base
calls, hence increasing the depth of coverage while reducing
the overall number of reactions needed. Second, the major
and minor can be set to a known distance away such that the
presence of the minor facilitates easier sequence alignment
in the assembly process, especially for sequences containing
multiple repeated genes. For example, paired-end reads are
commonly employed to assist merging paired pairs of overlaps.
Data are produced by sequencing both ends of a template of
known length in separate reactions. The template is chosen to be
longer than the corresponding traces. Merged sections around
each end-read are then linked through the known distance. If
such paired-end reads can be performed within one reaction,
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manual handling of the samples can be reduced. A third use
of such joint sequencing results is to identify contaminants in
naturally occurring mixtures. For example, such hypothesis
testing results may be desired in forensic science where we
want to determine the presence of a second source of DNA.

The second observation from our sequencing result is that the
second-order model does increase the number of bases which
can be identified and does slightly reduce the sequencing error,
at least for the major sequence. In using factor graphs, the sum-
product algorithm always converges for a cycle-free graph. On
the other hand, as messages iterate on a cycled factor graph, as in
our second-order case, the end-results of the sum-product algo-
rithm are no longer exact marginals, but rather approximations
that may or may not be accurate. Intuitively speaking, locality
of a graph is better exploited when cycles in the factor graph are
larger in radius, i.e., messages passed in one part of the graph
does not affect those in other parts immediately. When edges
are less sparse and very small cycles exist, on the other hand,
we can only hope for the best, as the sum-product algorithm has
not been verified to give a good approximation. Our setup leads
to very small cycles indeed, but empirically reasonable results
are obtained.

Although performance of the joint base-calling algorithm is
not comparable to that of single sequence base callers, it does
have the potential to do better. First, single sequencing results
on the major may be used as prior information for initializating
the factor graph in Figs. 5 and 6. Second, examination of the
sequencing results shows that many deletion and insertion er-
rors occur not during the second stage of the algorithm, but are
caused by the deconvolution process. Such errors not only are
problematic on their own, but also weaken the time dependence
among neighboring peaks. One possible compensation is to it-
erate between the deconvolution and source sequence separa-
tion stages, where valid peak locations from stage two are set
as the initial states for the deconvolution process in stage one,
with missed peaks inserted heuristically based on spacing uni-
formity. The amount of overfit for the total number IV of peaks
can also be controlled.

V. CONCLUSION

In this paper, we explored the possibility of base-calling two
superposed sequences jointly. Specifically, a two-stage algo-
rithm was developed, where spikes corresponding to different
bases are identified through deconvolution first, then assigned
to the two source sequences by message passing on a factor
graph. The factor graph localizes the statistical dependencies of
the overall observed data on the amplitudes, locations, and types
of the spikes. Simulation results show that combined with single
sequence base-calling, this algorithm enables the sequencing of
an additional segment. For the two datasets which we analyzed
in detail in this paper, simulations show that using a first-order
factor graph achieves an average error probability of 7.5% and
12% for the major and minor sequences respectively, while the
second-order model achieves 5% and 12%. A single-sequence
base-caller on the same data achieves an average error proba-
bility of 2%. Although not at the same accuracy, these results
are promising. Several venues for further exploration emerge:

sensitivity of the algorithm to variations in average amplitude ra-
tios can be quantified to determine the validity of the base-calls;
matching the quality of the major joint calls to that of the major
single calls should lead to improvement in that of the minor joint
calls; additional iterations between deconvolution and source
sequence identification may lead to improved performance.
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