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Summary

It is not obvious what fraction of all the potential information residing in the molecules and 

structures of living systems is significant or meaningful to the system. Sets of random sequences 

or identically repeated sequences, for example, would be expected to contribute little or no useful 

information to a cell. This issue of quantitation of information is important since the ebb and flow 

of biologically significant information is essential to our quantitative understanding of biological 

function and evolution. Motivated specifically by these problems of biological information, we 

propose here a class of measures to quantify the contextual nature of the information in sets of 

objects, based on Kolmogorov's intrinsic complexity. Such measures discount both random and 

redundant information and are inherent in that they do not require a defined state space to quantify 

the information. The maximization of this new measure, which can be formulated in terms of the 

universal information distance, appears to have several useful and interesting properties, some of 

which we illustrate with examples.

Introduction

A living system is distinguished from most of its non-living counterparts by its storage and 

transmission of information. It is this biological information that is the key to biological 

function. It is also at the heart of the conceptual basis of systems biology. Bio-information 

resides in digital sequences in molecules like DNA and RNA, 3-dimensional structures, 

chemical modifications, chemical activities, both of small molecules and enzymes, and in 

other components and properties of biological systems, but depends critically on how each 

unit interacts with, and is related to, other components of the system. Biological information 

is therefore inherently context-dependent which raises significant issues concerning its 

quantitative measure and representation. An important issue for the effective theoretical 

treatment of biological systems is: how can context-dependent information be usefully 

represented and measured? This is important both to the understanding of the storage and 

flow of information that occurs in the functioning of biological systems and in evolution.
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There have been several attempts to address this problem for biological complexity. Gell-

Mann has stated one part of the question clearly and suggested an approach to answering it 

[1, 2]. Standish has also suggested that context-dependence is a critical problem for the 

understanding of complexity in general and has discussed algorithmic complexity and the 

invocation of context in terms of universal Turing machines as an approach to its solution 

[3]. Adami and Cerf have formulated a solution to their particular formulation of the 

problem for macromolecular sequences by defining an imaginary ensemble of sequences 

and appending to that the context for interpretation as an explicit set of constraints as to 

which positions are conserved and which are “random” [4]. There have also been attempts to 

grapple with the issue of structural complexity, related to the problem defined here: most 

notably the idea of “thermodynamic depth” of Loyd and Pagels [5], and the idea of “causal 

states” of Crutchfield and Shalizi [6]. We take a different approach here, which is to deal 

directly with the complexity of sets of bit-strings. This provides a general approach to 

context dependence, which should be applicable to many problems that depend on the 

complexity of a system, and provide computational tools applicable to real biological 

problems. We find that the direct approaches provided by the powerful concepts of intrinsic 

complexity pioneered by Kolmogorov [7], Chaitin [8], and Solomonoff [9, 10], and extended 

by Li, Vitanyi, Gacs and others [11-14] can be applied to this problem in a particularly 

simple way. Furthermore, the construct of an information manifold derived from the 

demonstration of a well-defined metric, an “information distance” [11, 13], lends itself well 

to a class of set-based information measures, including mutual information, and illuminates 

its meaning.

Multiple types of information can be represented by bit-strings. Shannon information [15], 

devised to deal with communications channels, is defined in terms of the ensemble of all 

possible messages or bit strings (a state space), a fundamentally probabilistic definition 

which is related to physical entropy. Kolmogorov-Chaitin-Solomonoff (KCS) information 

(we use the terms “information” and “complexity” interchangeably here), on the other hand, 

is intrinsic to the object. It is based fundamentally on the difficulty of describing the object – 

the more difficult it is to describe by a computational process, the more information is 

present [16]. In the KCS conception the definition of the information in a bit string is the 

length of the shortest computer program (on a universal Turing machine) whose output is 

this bit string. This definition, often called “Algorithmic Information Content” (AIC), while 

elegant, and conceptually powerful, is not computable. It has become clear, however, that 

compression algorithms can be used to estimate the KCS information in a bit string in 

several ways [11, 17] - the maximum possible compression gives the best estimate for the 

KCS information of a bit string, which can be estimated by a suitable compression algorithm 

(like the lossless Lempel-Ziv or Kieffer-Yang algorithms.) This idea, which is a practical 

implementation of the abstract idea of “Computable Information Content” (CIC), enables 

the practical use of KCS complexity. This alternative to probabilistic, statistical approaches 

allows consideration of information absent any knowledge of the ensemble of all 

possibilities from which the object is drawn, knowledge which is often impractical and 

presents a number of difficulties in biology. It is problematic when considering sequences of 

macromolecules in that the state space is usually defined by a construct of questionable 

significance, like “the ensemble of all possible sequences” or “all possible functional mutant 
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forms of a protein sequence” [4]. This powerful idea of the “intrinsic complexity” of a 

string, in contrast to a probability-based measure, is the hallmark of the Kolmogorov or KCS 

complexity. Whenever the sample space and probabilities are well defined, useful 

calculations can be done using Shannon information, but this is often not the case in biology. 

Another advantage of the KCS information is that it can be viewed as an absolute and 

objective quantification of the information in a specific string or object. Absolute 

information content of individual objects, rather than the average information to 

communicate objects produced by a random source (the key concept of Shannon information 

theory) is clearly preferable.

From what we know of biological function at the molecular level, the interactive, highly 

connected networks with systems-like behaviors suggest to us that any measures that don't 

take this kind of context into account will be less than useful in accounting for biological 

information content. Protein-protein interaction networks, metabolic networks and gene 

regulatory networks are examples of the remarkable complexity of biological networks, and 

indicative of the importance of context. It is useful to approach the context question, 

however, by considering two “paradoxes” that illuminate the problem of information in 

biology. A “random” bit string, r, has maximum KCS complexity, and therefore contains the 

most information, for a string of this length. Another way of looking at the information in a 

random string, though this is a difficult issue [12, 14], is that by definition it is 

“incompressible” and can only be represented by a string of approximately its own length, 

L(r); i.e. for a minimal description C(r), L(C(r)) ≈ L(r). The proper definition of 

“randomness” actually makes use of this notion [18]. In spite of this way of measuring 

information content, a random sequence, however, is devoid of useful information. This is a 

problem that Kolmogorov grappled with and responded by defining his structure function 
(attribution in [19].) A random sequence has essentially no biological information (e.g. a 

random protein sequence has essentially no functional use) - the cell containing this 

sequence is therefore not more complex than the one without it, and we should be counting 

its contribution to the complexity of the set of information in the cell as zero. Gibberish 

doesn't help with any biological process, to paraphrase Gell-Mann [2]. This is the first 

“paradox”.

Consider on the other hand, adding not a random sequence but one that exactly matches a 

sequence that already exists in the set. Using a context-free measure, that does not consider 

the other content of the set, this should add an amount of information equal to the existing 

sequence that it matches. The duplication of existing information in the set (e.g. like the 

exact duplication of a gene) adds less new information to the set than the original, duplicated 

bit string, however. This is the second “paradox”, though it seems a weaker one.

A good measure of information should therefore discount the addition of either random or 

preexisting information to resolve these paradox-like conflicts. Both are dependent on the 

relationship of the information to other information in the cell. Since biological function 

depends on relationships within the system, a measure of complexity, and a good definition 

of biological information, must account for relationships and context. Our approach to the 

problem of biological information, therefore, will be to construct a measure of information 

in a set of bit strings, since this is general enough to deal with most problems.
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Consider then an unordered set of N bit-strings, S = {xi, i = 1,…N}. The information in each 

of the strings individually may be described as KCS information or complexity, K(xi). Our 

biological measure of information must also reflect, however, the relationships to other 

strings in the set because there is some shared information that determines “function”. For 

example, there is some information in the structure and sequence of one protein in the 

structure and sequence of any protein that interacts with it. Taking all interactions and 

structures into account, therefore, a protein interaction network is remarkably rich in 

information. There is also information about a metabolic pathway in an enzyme that 

catalyzes a reaction in the pathway and is coupled to it by product inhibition, or affected by 

the binding of other proteins. There are many other examples of biological context that 

contain information. Our challenge is to quantify it in a useful way. The relationship 

between strings, then, is what we characterize to begin tackling the biological information 

problem.

Context-dependent Information Measures

A useful measure of information in one string, since it must include contributions from the 

other strings in the set, must be a function of the entire set. With this in mind we can 

approach the problem by defining a measure with a number of properties that we can 

specify.

1. A random string adds zero information to the set.

2. An exactly duplicated string adds little or nothing to the overall 

information in the set.

3. The measure includes the information content of the strings individually as 

well as the information contained in the relationships with other members 

of the set.

The second criterion is imprecise, but important, and one that we will return to discuss in 

more detail. The simplest and most direct measure of the information in a set might be the 

simple sum of the information in the individual bit-strings.

(1)

Clearly, this measure fails to satisfy our criteria and does not have any of the desired 

properties. We can, however, modify the definition in a simple way. The contribution of each 

string, xi, is modified by a function, Fi, that depends on the entire set, and is therefore 

inherently context-dependent:

(2)
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If Fi=1 for all i=1,….N, then Ψ reverts to Θ and there is no context dependence, but if we 

take into account the dependence of Ft on the relationships between the ith string and the 

others in the set we can construct a function that satisfies the three criteria above. Before we 

make that construction we need to introduce another useful measure. The informational 

relationship between strings has been well studied and a particularly useful measure exits, 

that of “universal information distance”. We consider this function over the pairs of 

members of the set in the next section.

Universal Information Distance and Set Information

A normalized information distance function between two strings, x and y has been defined 

by Li, Vitanyi et al. [11]. It has been shown to define a metric in that it satisfies the three 

criteria: identity, the triangle inequality, and symmetry. This normalized distance measure

(3)

takes values in [0,1]. For a set of strings the metric defines a space with a maximum distance 

of 1 between strings in all dimensions – in general a set of N strings determines an (N – 1)-

dimensional space. A non-normalized information distance, defining a metric had been 

previously proposed by Bennett et al. [13], but for reasons articulated in [11], including the 

diverse lengths of strings of potential interest, is inadequate for most strings of interest to us. 

The normalized information distance is a powerful measure of similarity in that, as Li, 

Vitanyi and colleagues have shown, it is truly universal as it discovers all computable 

similarities between strings [11]. We can use the important “additivity of complexity” 

property which was proved (in a difficult proof) by Gacs [14]: K(x, y) = K(x) + K(y ∣ x*) = 

K(y) + K(x ∣ y*) (where the equal sign means “to within an additive constant” in this 

equation, and K(x, y) is the joint Kolmogorov complexity of x and y) to rewrite eqn. 3 as

(4)

The symbol y* indicates the shortest program that generates y, which then gives us the 

additive constant relation. If we simply use the string y itself, the equality is true to within 

“logarithmic terms” [14, 20, 21]. The difference is crucial for some applications, but is not 

important in the use we make of the relation.

Since the complexity of a finite string is a finite we can order the strings in the set by 

increasing complexity, and index them such that if i >j then K(xi) ≥ K(xj). Thus, since the 

joint complexity is symmetric, we have
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(5)

The average distance between pairs of strings in the set, for example, can be calculated from 

the sum:

(the larger K is always in the denominator, and we ignore i=j since d(xi,xi)=0). Using the 

symmetry of d evident in the above expression the average can now be written as

(6)

A similar expression, the “complexity-weighted” average distance, Λs, reduces to a simple 

expression since, in a set ordered by increasing complexity, we have a very simple 

expression for the conditional complexity, K(xi ∣ xj) = d(xi,xj)K(xi), ∀i > j. Thus

(7)

The average conditional complexity over the set is thus equal to the “complexity-weighted” 

average distance. The conditional complexity of each pair of strings is the larger of the 

complexities of the two times the distance between the strings in this space.

Set Complexity

We turn now to the three criteria that must be satisfied for a function of the set, Fi(S), 
described in eqn. 2. The first criterion is satisfied if a random bit string, xi, added to the set S 
makes Fi(S) = 0. If in doing this we ensure that Fi(S) depends on the entire set then criterion 

3 is also satisfied. These two criteria can be fulfilled by expressing Fi(S) in terms of the 

universal information distance, which leads to a simple definition of set complexity. Clearly, 

if a bit string xi is random, then (for a sufficiently long string) the distance in the information 

manifold from any string is just 1, the maximal distance. Thus, criterion number 1 can be 

met in general by any expression that includes a sum over the entire set:
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(8)

(the choice of a summation is somewhat arbitrary here) where G is any positive finite 

function over sets of bit strings, dij is shorthand for d(xi,xj), and f(x) is a function of the pair-

wise universal distances, positive in (0,1), with a zero at x = 1. The zero at the maximum 

distance is key. This relationship applies to any set, S. Criterion number 2, however, is a 

somewhat loose constraint. Let's consider it first by the case of adding an identical string to a 

set that consists of all identical bit strings only. For such a set, S, then, the condition can be 

satisfied exactly if we use the summation in a similar way

(9)

where G is any finite function of the set, and g(x) has a zero at x =0. What this constraint 

means for an arbitrary set (not only the set of all identical strings) is that the increase in 

complexity of the set saturates as the number of identical bit strings increases (it does not 

continue to increase with the size of the set.) We can now define the set complexity, Ψ, in 

terms of the above functions f and g that satisfy all three criteria. We simply set G = 2/(N-1) 

for normalization, and multiply f and g to get

(10a)

and since the simplest functions that satisfy these criteria are f(d) = (1 − d) and g(d) = d, we 

can appeal to parsimony and define the correspondingly simplest expression for set 

complexity:

(10b)

where the sum over pairs is consistent with the ordering of the set. Finally, we can generalize 

this function, call it Π, to any that have zeros̃ at 0 and 1 so that it satisfies all the criteria we 

specified:
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(11)

This is a context-dependent measure of set complexity which we will consider in this paper 

only in its simplest form: eqn 10b. In addition to this form there are other simple ones such 

as dij ln dij, or (l − dij) ln(l − dij).

Relationship to Mutual Information

The idea of mutual information is a central concept in understanding the sharing of 

information between two objects, in our case bit strings. Mutual information quantifies the 

information in string y about string x, and is symmetric. These properties can be defined in 

both algorithmic (individual) and probabilistic terms [21], and the algorithmic concept 

represents a significant sharpening of the probabilistic notion. The mutual information, I, 
between two strings, x and y, can be defined in terms of complexity in the notation of Gacs 

et al. [21], using the additivity relation (see first section).

(12)

(the second equality is again within an additive constant, and the symmetry has this 

character as well) Since the distance between x and y, if K(x)>K(y), can be written as 

 we can express the mutual information (to within the accuracy pointed out 

in [14, 21]) in terms of this distance, which gives us

(13)

where the same ordering constraints apply. A definition of set complexity using mutual 

information, of course, contains context information, and so it is useful to make such a 

definition by constructing such a function F. In fact, this is what is represented in eqn. 8 with 

f = (1-d). Thus,

(14)

(Again the sum over pairs assumes that K(xi) is the larger of the complexities of the two 

strings of each pair.) This mutual information sum, Φ, actually resolves one of our 
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“paradoxes”. It discounts random sequences entirely, but the identical sequence problem 

remains unsolved. The mutual information measure, when expressed in the metric space, is 

close to our constraint-based measure Ψ, (having a zero at d=1), but it is insufficient to 

resolve the second “paradox” since there is no zero at d=0. Nonetheless, the relation 

between Φ and Ψ is illustrative of a large class of set information measures defined entirely 

in terms of pair-wise distances in an information manifold. This represents a large class of 

measures, as shown in eqn. 10a. To illustrate explicitly the first few of these “statistics” 

(indicating the normalization factor by ).

(15)

This set of measures, focused on the properties of the metric function, F, is clearly 

representative of a much larger set of interesting set functions illustrated in eqn. 11. All but 

the first of these functions give a context dependent measure. The last one is the simplest 

possible function with zeros at 0 and 1, and represents our chosen measure function. In 

general, these information measures differ by the weightings given to the distribution of 

relative string complexities in the set. A simple relationship between these functions is 

evident from eqn. 15: Φ(S) = Θ(S) − Λ(S). There is another that is less obvious that we now 

consider in the next section.

“Mean field” Approximation and Fluctuations in the Information Manifold

Since we can express our information measure in terms of information distances we can 

usefully examine the relationship between the above measures and the variations in a set of 

strings in the same metric terms. We can relate Ψ to d using the relations in eqn 15.

(16)

Then with a term that represents the complexity-weighted distance variance of the set, we 

have.
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(17)

The above expression for Ψ looks intriguingly like a “mean field” term plus a fluctuation 

term. The “mean field term” is essentially a reflection of the form of the distance-function in 

Eq. 10b. The fluctuation term, Δ2, measures the degree of deviation of the complexity 

distribution of the set, and any deviation reduces the overall set complexity. We can make 

this more precise. The mean-field-like approximation (Ψmf, the mean-field approximation to 

Ψ) simply sets Δ to zero. Then we have the complexity-weighted distance average or the 

average conditional complexity, Λ as the key variable: Ψmf ∝ Λ(1 − Λ). We can describe the 

mean-field in terms of this statistic. Further, if the bit strings were uniformly spaced at 

distance d, then Δ2 and Ψ would simplify (carefully accounting for the numbers in the pairs 

sum):

(18)

but since Λuniform = dΘ, a very simple expression (also obvious from Eq. 10b) emerges:

(19)

If we make the further simplifying assumption that the uniform distance and the total of the 

complexities can be varied separately, then it is clear that the maximum of Ψ occurs when d 
= ½.

Computational estimation and application of set-based information

The set complexity based on inherent KCS complexity of strings has many advantages, as 

discussed, but the definition of set complexity (eqn. 12) is inherently incomputable. Thus we 

need to introduce a computational approximation for this quantity. Data compression has 

been used to make this kind of approximation (see [22] for a comparison of several 

approaches). It has been shown that the universal information distance can be approximated 

using the Normalized Compression Distance (NCD) and this is comparable to a different 

approximation, Universal Compression Distance (UCD). We will use NCD here
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(20)

where C(x) is the compressed size of string x and xy is a concatenation of strings x and y 
[17]. This approximation is based on the estimation of Kolmogorov complexity using a real 

compression algorithm, and makes use of the additivity property (see eqn. 4). By replacing 

the KCS complexity K(x) by a computational approximation C(x), the set complexity can be 

defined simply as

(21)

The compressed size C(x) of a string x is an upper-bound for the Kolmogorov complexity 

K(x).

Even though the NCD can be applied to approximate the universal information distance with 

remarkable success, one issue is that the range of NCD may be smaller than [0,1]. In some 

cases, the estimate of NCD can even take on values larger than one [17]. As our measure of 

set complexity is based on the assumption that the distance between two identical strings as 

well as between two random strings approaches zero, problems in the estimation of set 

complexity can arise, since the errors in the NCD accumulate in the sum of distances in 

Equation (21). We can address this problem by introducing scaling factors for the computed 

NCD values, and normalizing the obtained distances to the [0,1]-interval. These scaling 

factors can be obtained by computing the minimum and maximum observable distance for a 

given set of data. The minimum distance is obtained by computing the distance between two 

identical strings; that is, for each string in a set, compute the distance to itself and select the 

one that has the smallest value. The maximum distance is obtained by comparing random 

strings; that is, for a set of strings, permute the strings and find the maximum distance 

among all permuted strings within the set.

In order to study the behavior of the estimated set complexity, Ψ̂, we considered a set of 25 

random, but identical, binary strings of length L = 1000 and used the familiar gzip 
compression algorithm to estimate the Kolmogorov complexity (this is based on the Lempel-

Ziv algorithm). We introduce noise by randomly perturbing one bit at a time in each string. 

The set complexity for different amounts of noise is shown in Figure 1. It can be seen that as 

the noise is introduced, the set complexity increases until the amount of noise exceeds a 

certain value. As the individual strings start to loose common structure, the set complexity 

begins to decrease as the set becomes more and more random. Due to the approximation 

issues discussed above, the set information does not go to zero for either the identical or 

randomized sets. There are two sources of error in the compression approximation: 1. the 

estimates of randomness are inherently poorer the shorter the length of the strings – 

specifically the distance between finite bit strings never goes to 1 and the accumulated error 

can be substantial; and 2. the computational issues mentioned above (see [17,22]).
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We can actually study the errors in our approximation by computing set complexity under 

conditions whose outcome we know a priori. An experiment of this kind can be defined as 

follows. Start from a set of all identical strings. As discussed earlier, the set complexity for 

this set should be zero. Then, replace one string at a time by a completely random string. As 

a random string does not contribute to the complexity since it should be distant from all 

others (d ≈ 1), the set information should remain zero. This can be repeated for all strings in 

a set, leading to a set of random strings whose set information should also equal zero. Thus, 

with this process we can move from a set of identical strings to a set of random strings, 

generating a series of sets that should all have set information of zero if our approximation 

were exact. The result of the computational approximation of this process is shown in Figure 

2. It can be seen that, in practice, the estimated complexity of a set of random strings is 

larger than the complexity of a set of identical strings. This is not unexpected, as for finite, 

randomized strings, and with the gzip approximation, the residual mutual information 

estimate is clearly not zero. Overall the estimate of Ψ has a difference of about 1.8-fold at 

the extreme ends of these test sets. This enables us to estimate the computational error in the 

estimated informational distances. Each “random” string has a calculated distance from the 

others of about 0.92 on average. We can then refine our calculations take this average error 

into account, and use the randomized strings to adjust the estimates of distance in our 

computational estimation. The deviation in Figure 2 was so used to adjust the process shown 

in Figure 1, resulting in the normalized set complexity estimate shown in Figure 3. With this 

adjustment there is no significant difference in complexity between a set of identical strings 

and a set of random strings.

Criticality in the Dynamics of Boolean Networks

As another application of our set complexity measure, we decided to examine the amount of 

information contained in the state dynamics of a model class of complex systems that can 

exhibit ordered, chaotic, and critical dynamics. For simplicity we consider random Boolean 

networks (RBNs), which have been extensively studied as highly simplified models of gene 

regulatory networks [23, 24] and other complex systems phenomena [25].

In a Boolean network, each node is a binary-valued variable the value of which (0 or 1) is 

determined by a Boolean function that takes inputs from some subset of nodes, possibly 

including the node itself. In the simplest formulation, all nodes are updated synchronously, 

thereby generating trajectories of states, where a state of the system at a particular time is an 

n-length binary vector containing the values of each of the n nodes in the network. Boolean 

network models for several biological gene regulatory circuits have been constructed and 

shown to reproduce experimentally observed results [26-29].

In an RBN, each of the n nodes receives input from k nodes (determined by the random 

structure of the network) that determine its value at the next time step via a randomly chosen 

Boolean function assigned to that node. The output of each such function is chosen to be 1 

with probability p, which is known as the bias [30]. Thus, the parameters k and p can be 

used to define ensembles of RBNs. In the limit of large n, RBNs exhibit a phase transition 

between a dynamically ordered and a chaotic regime. In the ordered regime, a perturbation 

to one node propagates on average to less than one other node during one time step, so that 
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small transient perturbations to the nodes die out over time. In the chaotic regime, such 

perturbations increase exponentially over time, since a perturbation propagates on average to 

more than one node during one time step [25]. Networks that operate at the boundary 

between the ordered and the chaotic regimes have been of particular interest as models of 

gene regulatory networks, as they exhibit complex dynamics combined with stability under 

perturbations [24, 31-33].

For network ensembles parameterized by k and p, an order parameter called the average 

sensitivity [34], given by s = 2kp(1 − p), determines the critical phase transition in RBNs by 

specifying the average number of nodes that are affected by a perturbation to a random node. 

Thus, the ordered regime corresponds to s < 1, the chaotic regime to s > 1, and the boundary 

at s = 1 defines the point of the phase transition. The average sensitivity corresponds to the 

well-known probabilistic phase transition curve derived by Derrida [35]. It is also easily 

computable for a particular network given its set of Boolean update functions. The logarithm 

of the average sensitivity can be interpreted as the Lyapunov exponent [36]. Thus, by tuning 

k and p, networks can be made to undergo a phase transition.

Networks that operate close to the critical regime can exhibit the most complex dynamics, as 

compared to ordered or chaotic networks. Indeed, ordered networks give rise to simple state 

trajectories, meaning that the states in a trajectory are very similar, periodic, or quasi-

periodic and often identical due to the “freezing” of a large proportion of nodes in the 

network. Chaotic networks, on the other hand, tend to generate “noisy” state trajectories that 

in time become indistinguishable from random collections of states when the parameters are 

deep in the chaotic regime. In both these regimes, the set complexity of a randomly chosen 

state trajectory might be expected to be small, since it should contain a set of nearly identical 

or nearly random states.

We examined this question by applying our NCD-based estimate of set complexity to state 

trajectories generated by ensembles of random Boolean networks operating in the ordered, 

chaotic, and critical regimes. Specifically, we have set the connectivity to be k = 3 and tuned 

the bias p in increments of 0.01 so that the average sensitivity, s, varies from s < 1 (ordered) 

to s > 1 (chaotic). For each value of s, 50 random networks (number of nodes, n = 1000) 

were each used to generate a trajectory of 20 states, after an initial “burn in” of running the 

network 100 time steps from a random initial state in order to allow the dynamics to stabilize 

(i.e., reach the attractors). We collected these 20 network states into a set S for each network 

of the ensemble and calculated Ψ̂(S) for each. Figure 4 shows the average Ψ̂(S) over the 50 

networks as a function of the average network sensitivity s (plotted a function of λ = log s, 

the Lyapunov exponent).

It is clear that networks that are operating close to the critical regime have the highest 

average set complexity of their state trajectories. In addition, the variability of the set 

complexity is also highest near the critical regime, indicating that critical (or near critical) 

networks are capable of exhibiting the most diverse dynamics. When networks are deep in 

the ordered regime (far to the left), the average set complexity of their state trajectories is 

low and the variability is small. This can be explained by the relatively simple network 

dynamics, consisting mostly of frozen node states and nodes that exhibit short periodic 
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dynamics. As networks become more chaotic, the states in the trajectories become more 

stochastic, resulting in a decrease in their set complexity. Our results clearly support the 

view that complex systems operating at or near criticality, a property that is believed to hold 

for living systems, appear to exhibit the most informationally complex dynamics. The 

measure Ψ seems very well suited to describing capturing this phenomenon near criticality.

Context-dependent Information of Networks

In the spirit of grappling with context-dependence in biological applications, we apply our 

complexity measure to networks. First, we consider only undirected graphs with unweighted 

edges, represented as an adjacency matrix such that Aij = 1 if an edge connects nodes i and j, 
and Aij = 0 if not. While there are numerous methods for representing the similarity between 

individual nodes, our objective here is to quantify the global complexity of the graph in a 

way that balances regularity with randomness as discussed above.

To use our measure, we must first define the information content, or complexity, of each 

node. Since we have not yet defined any other attributes to the nodes or edges, this must 

derive from the connectivity of each node. This is represented in the complexity of the bit 

string xi, the ith row vector of the adjacency matrix. The set of complexities is {Ki}. In the 

same way we take inter-nodal information distances, {dij}, to be dual to the mutual 

information between nodes, with dij = 1 − wij (see eqn. 15.) The complexity of the strings 

can be calculated using the KCS approach. This is a case where we can take the 

relationships we have in the algorithmic formalism and define the measures, such as mutual 

information, in the probabilistic sense. The subtle relationship between the two approaches 

is extensively discussed in references [21] and , for example. It is important to note that the 

algorithmic formalism is more fundamental, but in this case, where we have a well defined 

state space, the quantities can be calculated using the familiar Shannon entropy and mutual 

information based on row vectors in the adjacency matrix. For each node we have:

(22)

where we consider only whether two nodes are connected or not (a takes on the values 0 or 1 

− that is; the alphabet describing the connections is binary) : pi(1) is the probability of the i-
th node being connected and pi(0) = 1 − pi(1) is the probability of it being unconnected (self 

connecting loops are not allowed.) The inter-nodal information distances are defined in a 

similar way. The Shannon mutual information between two variables, a and b, is given by

(23)
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where H is the Shannon information and <H(a\b)> is the average conditional information. 

(The second line of eq. 23 indicates the dependence of these quantities on the probability 

distribution of the variables a and b.) Thus,

(24)

Here pij(a,b) is the joint probability of nodes i and j being related to a third node with value 

(a,b), so the probabilities measure the relative prevalence of pattern of connectivity; e.g. 

pij(1,1) is the probability of both being connected to another node. By taking logarithms of 

base 2 here, both Ki and dij can be normalized to the interval [0,1]. We can now apply eqn. 

11 directly to compute the complexity Ψ, of the network. It is simple to show that for this 

measure (with binary value connections) a graph and its conjugate have equal complexity.

As we found above, the maximal value of Ψ arises when all dij = d = 1/2 and is proportional 

to a uniform nodal information content K. With our normalized formulation this corresponds 

to all Ki = 1. From the “mean-field” approximation we can intuit that the maximally 

complex graph will have minimal variation in both single-node information and mutual 

information between nodes. This suggests that a somewhat uniform degree distribution 

corresponds to maximal complexity. We also can expect the degree distribution to be 

centered at N/2, since according to equation (23) nodes with equal numbers of neighbors and 

non-neighbors have maximal information content (K = 1 when p1 = 0.5). However, it is 

important to note that perfect uniformity in degree distribution will actually lead to low 

complexity due to topological redundancy. For example, the union of two complete graphs 

(KN/2 ∪ KN/2) (or almost equivalently its conjugate, the complete bipartite graph KN/2,N/2) 

generates a very low Ψ (Figure 5A). A few edge rearrangements, however, that disrupt the 

uniformity transform such graphs into highly complex networks, as shown in Figure 5B.

Thus, for undirected, unweighted, Erdos-Renyi random graphs we find that maximal 

complexity arises from nearly bimodular or near-bipartite graphs. These graphs appear to 

balance the requirement of maximal complexity for each single node with the requirement of 

uniform mutual information between all node pairs. This suggests that modular graph 

architecture adds information content, although it remains to determine how this finding 

translates to other classes of graphs (directed, weighted, scale-free, multiple edge types, 

etc.). Since biological networks appear to be rather modular, this is an interesting 

correlation. Since the countervailing requirements of maximum complexity for each node 

and high, uniform mutual information are balanced when we attempt to maximize Ψ, and 

since these two requirements are reminiscent of observed properties of biological networks, 

we expect that Ψ, or a closely related function, has strong biological meaning for networks. 

If we imposed other constraints on the network (e.g. functional constraints, specific motifs, a 

specific growth and evolution process) and maximize Ψ with those constraints, Ψ may take 

on a clear meaning. While this is an important issue to explore it is beyond the scope of the 

present paper.
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If we consider more realistic networks where different characters of the edges are important 

(different edge types, or “alphabets”), we will increase the descriptive alphabet of the edges 

beyond binary, identifying distinct types of node interactions. For equations 22 and 24 the 

sums will now extend over the full alphabet describing those edge types. We have used such 

an extended alphabet in our analysis of genetic interactions for which there are many 

possible types of interactions that can be usefully distinguished. In that case the problem of 

classification of interaction types corresponds to an optimization of Ψ by alphabet reduction 

(Carter, Galitski and Galas, in preparation).

It is worth noting that the problem of maximizing Ψ by reducing the alphabet size for 

networks, as just described, is an example of a very general problem – that of balancing the 

simplicity of the descriptors of relationships with the complexity being described (not unlike 

the problems for which the “information bottleneck method” was devised [37].)

Discussion

In this paper we have used the intrinsic information concepts of Kolmorgorov-Chaitin-

Solomonoff complexity to construct a simple measure for set-based information that 

provides a theoretical foundation for dealing with context-dependent biological information. 

Over the past 50 years or so the theoretical foundations have been well laid for defining the 

absolute information content of an individual object, and the underpinnings of the ideas of 

randomness and of probability theory that began much earlier. This is clearly the best way, 

in our view, to approach difficult information problems, like those we encounter in 

biological systems. We can avoid the difficulties of defining ensembles and probability 

distributions over sample spaces that are problematic to define, as is required for a Shannon-

based approach, and we can bring to bear the gains in rigor and conceptual approach to 

information and complexity of the KCS insights. If the sample space and probability is 

naturally well defined, as in our network example, on the other hand, the context-dependent 

measure is amenable to Shannon-type calculation (see [20] for an excellent review of the 

relationships).

While it is often stated that biology is an information science [38-40], we are still far from 

having the tools to provide a general theoretical basis for dealing with it as such. It is 

difficult to overestimate the importance of dealing rigorously with context-dependence in 

biology. While it is often acknowledged as important it is often difficult and ungainly to deal 

with. Since the processes of natural selection are well known to be powerful sculptors of 

context dependence in biological systems, selecting complementary alleles of genes in a 

genome, for example, with ruthless efficiency, we expect a natural selection to be a 

prodigious generator of context dependence. We do find, in fact, that the context-based 

measure is particularly useful in deciphering gene interaction data (Carter, Galitski and 

Galas, in preparation.) Gene interactions, while of fundamental importance in biology, are 

only one example where context is expected to be highly significant.

It is important to note that context dependence, driven by natural selection, leads to a 

dynamic phenomenon long studied in biology, of which the allele interaction effect is but 

one example. The phenomenon of “symmetry breaking”, which characterizes the loss of 

Galas et al. Page 16

IEEE Trans Inf Theory. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some symmetry or simplicity, the acquisition of new distinctions, is not fully understood or 

appreciated in complex systems. It is, however, widespread in biology – for example see [41, 

42]. In order to deal with symmetry breaking generally and effectively we need to have a 

global formalism, and since it is the information that dominates our view, a global formalism 

for context-dependent information is just what's needed. We propose that the theory 

presented here is a beginning of the development of a class of tools for analyzing this aspect 

of biology. An important problem for future study then is that of describing an interactive 

dynamics for a biological process in the information manifold in terms of the complexities 

and distances. This holds the prospect for a deep understanding of the origins and evolution 

of biological broken symmetry in terms of biological information.

We began our construction by setting context-based constraints on an information measure 

for a set of bit strings, and we formulated two “paradoxes” for biological information which 

then guided us to find a measure that resolves them. We found that a construct, based on the 

complexity of the bit strings in a set, can be expressed in terms of distances in an 

information metric space using the elegant and useful universal information distance of Li 

and Vitanyi [11], a normalized information distance. The connection to information 

distances and the metric space of information (also called “universal similarity”) provides a 

set of new tools for formulating problems in systems biology and evolution, as it promises to 

allow us to deal quantitatively with the ebb and flow of information in biology. Since this 

information is deeply context dependent there has been no consistent and rigorous way to 

grapple with these problems. Since biological information is inherently context-dependent, 

there have been significant issues with its quantitative representation using the usual 

information measures since both probabilistic and intrinsic approaches (Shannon and 

Kolmorgorov-Chaitin-Solomonoff) are inherently context-free in and of themselves. Our 

formulation provides a solution to this problem.

Our approach leads to a general formulation allowing us to describe a very general class of 

information measures. One of these proposed measures, Ψ, appears to solve some key 

conceptual difficulties of biological information – the “paradoxes” of the uselessness of both 

random and redundant information. It is also the simplest form in the class of measures that 

will likely be useful in a variety of specific applications. Our approach is quite distinct from 

previous work, like that of Adami and Cerf [4] that requires an ensemble of biologically 

functional examples and an explicit constraint representing the “environment”. While their 

approach can work for specific sets of functional molecules, like tRNA sequences, it is not 

useful for more complex problems, particularly when the ensemble is impossible to specify. 

Nonetheless, it is clear that our theoretical construction is only a beginning. There are a 

number of remaining problems. One of these problems is the actual calculation of the KCS 

complexities. There have been a number of important advances toward the estimation of 

complexity by the use of compression algorithms, but these methods are not always practical 

because of computational intensity, and they are inherently approximations whose accuracy 

is sometimes difficult to estimate. It is clear that while the Shannon formulation is not 

particularly useful in many of the cases in which we are interested, it often does provide a 

practical approach to computation. Since it is clear that there is a direct correspondence 

between the probability-based and inherent complexity-based approaches (carefully 

reviewed by Grünwald and Vitanyi [20]) this provides a reasonable approach to practical 
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computation in some cases, as in our description of network (graph) complexity. We are 

currently exploring the use of these techniques in a wide range of applications.

Among the major remaining problems we identify is the “encoding problem.” While the 

representation of information in bit strings is a powerful and general approach, there remains 

the conceptual difficulty of encoding actual biological information in this representation 

(this is similar to the problem for macromolecular sequences that is “solved” in reference [4] 

by postulating a functional ensemble of examples. To describe, even under the simplest of 

assumptions, the information in the living cell that gives context to other pieces of 

information in the cell (all information that interacts with them) is a formidable challenge – 

this is what we call the “encoding problem.”

The application of our approach to problems of complex systems analysis outside of the 

realm of biology should be a natural extension of the problems discussed here. One general 

problem of significant interest relates to the extension of the methods of “maximum 

entropy” and the ideas of “Occam's razor” [43] using context-dependent measures on sets. 

This extension should be straightforward, but the useful setting of and interpretation of the 

constraints is an interesting challenge. The potential similarity of these ideas to notions 

about perceived similarities between objects that are close in distance in a “psychology 

space” of some kind is also not lost on us [44]. In some real sense it is the distinction 

between objects based on the overall context of the set that determines the potential 

biological usefulness of the object – the analogy with the ideas from psychology is an 

interesting one, and not a little biological. Our purpose here is to lay the foundations of the 

quantitative theory, but we do not underestimate either the importance or the difficulty of 

this encoding problem, whose solution will be necessary for applications of our methods to 

real biological problems. We are currently working to extend our treatment to include a 

generalization and to grapple with this encoding problem explicitly by analyzing several 

model systems.
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Figure 1. 
The estimated complexity of a set of 25 binary strings (L = 1000), using gzip to estimate the 

string complexity, and NCD to estimate the distance, as a function of the number of 

introduced randomized bits.
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Figure 2. 
The estimated set complexity using the method employed in figure 1 (see text) as a function 

of the number of random strings substituted for identical strings in the set.
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Figure 3. 
The set complexity of Figure 1 adjusted by the estimations of set complexity in Figure 2. As 

can be seen, the resulting set complexity of a set of identical strings is close to that of a set 

of random strings, as expected from such a measure.
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Figure 4. 
The average, estimated set complexity of random state trajectories as a function of the log of 

the average sensitivity λ, the Lyupanov exponent, generated by networks operating in the 

ordered (λ < 0), critical (λ = 0), and chaotic regimes (λ > 0). The bars show the variability 

(one standard deviation) of the estimated set complexity for 50 networks.
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Figure 5. Information content of two graphs with N = 10
Graph (A) has a low information content: ΨA = 0.2. Graph (B), the maximally informative 

undirected, unweighted graph with N = 10, on the other hand, has a much higher 

information content: ΨB = 1.9.
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