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Abstract

Information theory has been used as an organizing principle in neuroscience for several decades. 

Estimates of the mutual information (MI) between signals acquired in neurophysiological 

experiments are believed to yield insights into the structure of the underlying information 

processing architectures. With the pervasive availability of recordings from many neurons, several 

information and redundancy measures have been proposed in the recent literature. A typical 

scenario is that only a small number of stimuli can be tested, while ample response data may be 

available for each of the tested stimuli. The resulting asymmetric information estimation problem 

is considered. It is shown that the direct plug-in information estimate has a negative bias. An 

anthropic correction is introduced that has a positive bias. These two complementary estimators 

and their combinations are natural candidates for information estimation in neuroscience. Tail and 

variance bounds are given for both estimates. The proposed information estimates are applied to 

the analysis of neural discrimination and redundancy in the avian auditory system.
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I. Introduction

Information theoretic approaches play an important role in sensory neuroscience where the 

estimation of the mutual information (MI) between stimuli and responses has provided a 

model-independent measure of neural discrimination [1], [2]. In this context, MI has been 

used for three different purposes. First, in its most direct use, MI can be used to determine 

which features of the stimulus are encoded in the neural response, and thus provides an 

attractive alternative to explicitly modeling these systems. By comparing MI measures 

obtained from different sets of stimuli or even for particular stimuli, one can determine 

which stimulus features are preferentially encoded in neural responses. Many approaches of 

this type have been developed; see, e.g., [3]. For example, behaviorally relevant natural 

sounds have been shown to evoke higher information rates in comparison to matched 

synthetic sounds in both frogs [4] and birds [5]. The second application is in the 

determination of the nature of the neural code. For this purpose, the MI is compared for 

different decoders of the neural response [6]. For example, one could compare a decoder 

that just counts the number of neuronal spiking events in a time window (a rate code) to a 

decoder that takes into account the timing of those events (a temporal code). The nature of 

the neural code can also be examined for neuronal ensembles, for example to determine 

whether temporal patterns across neurons play a particular role. The third application is in 

the assessment of the efficiency of the neural representation. At the level of single neurons, 

the efficiency of the code can be determined by comparing the actual MI observed in the 

experiment to the “channel capacity” obtained by fixing the conditional distribution as 

observed in the experiment, but maximizing over the input distribution; see, e.g., [4]. The 

efficiency of the neural code can also be assessed in information maximization problems 

where the actual neural representation is compared to theoretically derived optima. For 

example, wind direction in the cricket cercal system has been shown to be best represented 

by truncated cosine tuning curves [7] and the early stages of the visual system perform a 

spatio–temporal decorrelation that has been shown to maximize neural efficiency in 

information-theoretic terms [8]. One of the most interesting new applications in the 

assessment of neural efficiency is the consideration of redundancy in the responses of a 

population of neurons [9]–[12]. On the one hand, different neurons may react similarly to 

certain stimulus features and the code can be redundant [11]. On the other hand, neurons 

could represent independent information in a synergistic fashion [10]. Finally, redundancy 

can change in a processing stream revealing the nature of the computation occurring across 

levels [12].

Although the use of information theory in neuroscience could already be considered a 

success, one of the principal factors that limit its applicability is the curse of dimensionality: 

the stimulus space being analyzed by sensory systems is very large and the neural 

representation can involve millions of neurons with neural signals that can be precise on a 

millisecond time scale. Although experimental techniques for recording neural activity are 

improving, recordings of single neurons that last more than one day are still extremely rare. 

The major problem in applying information theory to neuroscience is therefore one of data 

limitation. This issue has been addressed before with a focus on how to obtain estimates of 

MI with smaller error and bias (see, e.g., [13] for an overview) and on how to reduce the 
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dimensionality of the neural response to obtain lower bounds on the MI [6]. However, two 

issues have not been addressed explicitly or extensively in previous work: the effect of 

undersampling the stimulus space and the lack of good upper bounds for the MI. In 

particular, the calculation of redundancy in stimulus ensembles using lower bound estimates 

could lead to significant overestimation of redundancy.

In this paper, we propose a novel estimator that partially addresses these shortcomings. Let 

us first consider the problem of undersampling the stimulus space. Indeed, for many of the 

existing data sets in sensory neuroscience, there are relatively few stimuli, and relatively 

many response measurements for each stimulus. Here, unless additional assumptions are 

made, any naive information estimate is upper bounded by the logarithm of the number of 

stimuli that were presented during the experiment, and MI estimates saturate (e.g., [14] and 

[15]). We are thus confronted with a saturating lower bound. To avoid this effect, the 

number of tested stimuli must increase exponentially with the MI. In classical single-neuron 

problems, this may be less of an issue, but we anticipate that it will become much more 

limiting in the analysis of neuronal populations.

As a case in point, consider a neuron population of size M: The MI between the stimulus and 

all M neurons can increase linearly in M [namely, when each neuron describes a separate 

(independent) component of the stimulus], and hence, the number of stimuli that need to be 

used can behave like # stimuli ≈ 2MI0, that is, exponentially in the population size (where is 

I0 an appropriate constant). To deal with this issue, we present a novel estimate of the MI 

referred to as the anthropic correction. We will show that this estimator is guaranteed to 

have a nonnegative bias, and in this sense serves as an “upper bound” to the true MI. We 

also argue that together, lower and upper bounds can better characterize MI, yielding better 

estimates of MI and redundancy, in particular as the number of neurons in the considered 

population becomes large.

In Section II, we define the proposed estimator and derive its fundamental properties. 

Sections III and IV present applications of the proposed estimator to measurement data.

A. Notation

Throughout the paper, capital letters such as X will denote random variables and lower case 

letters such as x their realizations. The notation pX(x) will denote the probability mass 

function of the random variable X, taking values in a set  of cardinality | |. When no 

confusion arises, we will use the shorthand p(x). We will mostly use the standard 

terminology as in [16]; thus, for example, we will use I(X; Y) to denote the MI between the 

random variables X and Y.

II. Anthropic Correction of Information Estimates

In much of the literature, information estimates are considered for the scenario where N 

independent and identically distributed (i.i.d.) samples of a distribution p(x, y) are available. 

However, the i.i.d. assumption does not seem to be a good match for many standard data 

sets in neuroscience. Rather, it is often the case that for a relatively small set of different 

stimuli, ample response data is available. To model this scenario, in this paper, we consider 
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the following: Two random variables X and Y take values in discrete and finite sets  and 

, respectively, and are distributed according to a distribution p(x, y). We suppose there are 

K samples of X available, denoted by {x1, x2, …, xK}, and for each of these K samples, there 

are n samples of Y available, denoted by {yk, j}, for k = 1, 2, …, K and j = 1, 2, …, n. The 

task is to estimate the MI I(X; Y). Motivated by this setting, in this paper, we study 

properties and applications of the following novel estimator of MI.

Definition 1

The anthropically corrected information estimate is defined as

(1)

where

(2)

where p̂(y|x = xj) is the histogram (plug-in) estimate of the conditional distribution p(y|x = xj) 

based on the n available samples.

We will refer to the estimate  as the plug-in (or naive) estimate, and to the estimate 

 as the full anthropic correction.1

Remark 1

It is also interesting to consider more general divergence estimators, some examples being 

[18] and [19]. In particular, this would permit to apply the proposed estimator to the case 

where the random variable Y is continuous valued. However, this is outside the scope of this 

paper.

A. Basic Properties

We start by providing two useful properties of the proposed estimator, summarized in the 

following lemma.

Lemma 1—The anthropically corrected information estimate satisfies the following 

properties:

1. it is nonnegative and upper bounded as follows:

1The terminology is inspired by the anthropic principle [17] which is sometimes paraphrased as follows: When estimating the 
proportion of worlds which give rise to intelligent life one should not include ones own world in the count. The very existence of the 
observer implies that at least the observer’s world supports intelligent life. Without applying the anthropic principle, having observed 
M worlds, the lower bound on the mean rate of occurrence of intelligent life is 1/M, which might be several orders of magnitude too 
large. Applying the anthropic principle, one discounts the world that gave rise to the intelligent life conducting the survey.
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(3)

2. it is a nondecreasing function of α; more precisely

(4)

A proof of this lemma is given in Appendix I.

Remark 2—The first property illustrates the motivation for the anthropic correction: The 

plug-in information estimate (α = 0) is upper bounded by log2 K. When K is small but the 

true value of I(X; Y) is large, this upper bound introduces a significant negative bias.

B. Bias Properties for Fixed K

The proposed estimator is interesting for finite K. In particular, while the “plug-in” estimate 

(α = 0) has a negative bias, we will now show that in an appropriate sense, the proposed 

(full) anthropic correction (α = 1) has a positive bias.

To make this precise, we will assume that K i.i.d. samples from the distribution p(x) are 

given, denoted by {x1, x2, …, xK}. For each sample xk, we obtain n i.i.d. samples yk, j, for j = 

1, 2, …, n, drawn according to p(y|xk). Letting n → ∞, we obtain exact estimates of the 

conditional distributions for each sample xk, which obviously still does not give an exact 

estimate of the MI I(X; Y) since there are only K samples of the random variable X. In order 

to state the main result of this section, let us now define the quantity

(5)

Note that this is the limit of  as n → ∞. With this, we have the following theorem.

Theorem 1—For any integer K > 0, we have that

(6)

i.e., asymptotically in n, the plug-in information estimate has a negative bias, and the (full) 

anthropic correction has a positive bias.

A proof of this theorem is given in Appendix II.

This theorem suggests that practically interesting estimators can be obtained by selecting the 

anthropic parameter α appropriately: by the intermediate value theorem, for each 

distribution p(x, y) and every positive integer K, there exists a value of α for which  is 

unbiased. Universally good choices of α (as a function of K and perhaps some coarse 
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information about p(x, y), such as the first few moments of this distribution) are therefore of 

interest, though outside of the scope of this paper.

The theorem also suggests estimators of the form

(7)

again because the intermediate value theorem establishes that there exists a value of β for 

which Î(K)(β) is unbiased. By analogy, it is of interest to derive universally good choices of 

the parameter β, based on coarse information about p(x, y).

Remark 3—We note that no universally unbiased estimate of the MI exists for finite K, 

even when n → ∞. For a very simple proof of this fact, see [13].

Remark 4—The bias of entropy, divergence, and information estimators in the 

neuroscience context has been discussed widely in the literature, including [13], [6] and 

[20]–[23]. Many bias correction techniques were proposed. The most popular may be the 

“jackknife”; see, e.g., [24].

Remark 5—It is simple to show that for the setup considered, with i.i.d. samples, the bias 

of the estimator  is infinite as long as n is finite. This is because for finite n, there is a 

nonzero probability that there is a value of y for which for some k, we have p̂(y|xk) > 0 but 

for all ℓ ≠ k, we have p̂(y|xℓ) = 0, making  infinite. To show that this does not negate 

the usefulness of the proposed anthropic correction, we provide a tail bound in the next 

section.

Remark 6—Note that for the plug-in estimator, it is not true that  for 

finite n. To see this, consider a model where p(x, y) = p(x)p(y) and thus, I(X; Y) = 0. 

However, with positive probability, , which implies that .

C. Tail and Variance Properties for Fixed K—In this section, we continue with the 

modeling assumptions introduced in Section II-B. For a fixed number K of samples of the 

random variable X,, it is straightforward to see that as n tends to infinity,  tends to . 

A more interesting question concerns the characterization of this convergence, and in this 

section, we provide two results. First, we study the tail behavior, then the variance. While 

tighter tail bounds can likely be established, perhaps along the lines of the analysis in [25], 

our main interest lies in the fact that our bound also applies to the case of the full anthropic 

correction (α = 1).

To express our bounds, we introduce the following notation:

(8)

Then, we have the following tail bound.
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Theorem 2: Assume p(y|x) > 0, for all y and x. For any 0 < ε < 1/2 and any 0 ≤ α ≤ 1 for 

which Dmax,α < ∞, we have

(9)

where C1 is a constant independent of n and ε.

The proof of this theorem is given in Appendix III.

For the variance, we obtain the following.

Theorem 3: Assume p(y|x) > 0, for all y and x. For any 0 ≤ α < 1 for which Dmax,α < ∞, we 

have

(10)

where C2 is a constant independent of n.

The proof of this theorem is given in Appendix III.

Remark 7: Note that for α = 1, no variance bound can be given because for any finite n, 

there is a strictly nonzero probability that .

D. Convergence Properties as K → ∞—Continuing again in the framework of the 

modeling assumptions introduced in Section II-B, we end the discussion by stating that as K 

→ ∞, the proposed estimator  tends to the true information I(X; Y) almost surely, 

irrespective of the value of α. To see this, it suffices to observe that pk,α(y)] = p(y), for all y 

∈ , where the expectation is over the i.i.d. selection of K samples from p(x). Since 

moreover, pk,α(y) is a sum of i.i.d. random variables, it follows that it converges almost 

surely to p(y) for all y ∈ . A more precise characterization is beyond the interest of this 

study, which concerns the case of small K, where the proposed estimator appears to be most 

useful.

E. Numerical Illustration—We provide a simple numerical illustration to give a sense of 

the anthropic correction: let S be uniformly distributed over {0, 1, 2, …, M − 1}, and R be 

given by R = S + Z, where addition is modulo M, and Z is distributed according to

(11)

and

(12)
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K i.i.d. samples from the distribution of S were taken. Fig. 1 shows  for α = 0 (labeled 

“direct estimate”) and for α = 1 [labeled “(full) anthropic correction”] for various values of 

K, with n = 104. Each point in the plot corresponds to 50 independent trial runs. The solid 

lines are the means and the dotted lines the standard deviations over these experiments. The 

figure illustrates the somewhat symmetric behavior, in terms of positive and negative biases, 

of the anthropic correction and the naive estimate, respectively.

III. Application I: Information Estimation

A. Stimulus-Response Information Estimation

As a first application of the proposed novel estimator, we consider the basic problem of 

estimating the MI between the stimulus and the response of a single neuron. This is a 

classical problem and has been extensively studied in the literature, as discussed in Section 

I.

Specifically, we consider data from recordings in the songbird analog of auditory cortex, a 

forebrain area called field L. Neural responses in field L were obtained from urethane 

anesthetized male zebra finches in response to the playback of a representative set of 20 

different adult zebra finch songs. Each song lasted approximately 2 s. Ten trials of neural 

responses were obtained for each song. These trials are called spike trains because they 

consist of individual spiking events (action potentials). Experimental details and examples 

of raw data traces can be found in [5]. In this paper, we are reporting the results from 66 

neurons recorded in 12 birds.

Obviously, for our experiments, the true MI is not known. Instead, we will consider as the 

“ground truth” and baseline for comparisons the MI corresponding to an inhomogeneous 

gamma model of the observed spiking activity. The gamma information involves modeling 

the neuronal responses as inhomogeneous gamma processes [5]. For this modeling, the time-

varying mean firing rate is first obtained by convolving the spikes obtained from all trials 

with a variable-width kernel. The spike trains are then time rescaled to obtain a constant 

firing rate process. The interspike interval distribution of the rescaled spike trains was then 

analyzed to obtain the gamma order of the neurons. No closed-form expression for the 

information of such a model is known, and therefore, the model was used to generate many 

additional spike trains which were used to determine MI using the “direct method” as 

proposed in [26]. This approach has been validated in previous work in the Theunissen lab 

by comparing the MI obtained from the gamma model to that obtained directly from spike 

trains for a few cases in which we had obtained a large number of trials [5].

B. Preprocessing of the Data

In order to apply the nonparametric estimators considered in this paper, we preprocessed the 

data first according to the following procedure: We convolved the observed spike trains with 

a decaying exponential of width τ = 5 ms; see [5] for more details. From the resulting 

smoothed responses, separately for each stimulus (i.e., each song), a template was formed 

based on nine out of the ten available responses. For the remaining response, convolved by 

the same decaying exponential, we then calculated the L2 distances [also sometimes referred 
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to as “van Rossum (VR) distance” in the neuroscience literature] to each of the templates, 

i.e., the distance to the correct template and the distances to the 19 incorrect templates. We 

repeated this procedure by using each possible subset of nine out of the ten responses to 

obtain the template, and the resulting histogram of distances is shown in Fig. 2. Below, the 

VR distances are used in two different ways to estimate the stimulus-response information.

C. “Confusion Information”

If the VR distances (as illustrated in Fig. 2) are used to “decode” the stimulus based on the 

observed response, we obtain a profile of correct and incorrect decoding and can use this to 

estimate information. More precisely, if the true stimulus is denoted by S and the decoded 

stimulus by Ŝ we estimate the MI I(S; Ŝ). Since there are only 20 different stimuli, it is 

immediately clear that this MI and any naive estimate thereof cannot exceed log2(20) ≈ 4.32 

bits. Fig. 3 compares the estimate  to the information value calculated from the Gamma 

model, as described briefly in Section III-A. Each data point in the figure corresponds to one 

of the 66 neurons that were studied. The saturation effect is clearly visible.

Fig. 4 illustrates the potential of the anthropically corrected estimator  as compared to 

the naive estimator  for increasing values of K, for a single neuron. As suggested by the 

properties that were theoretically derived in this paper, we see that  is an upper bound, 

and  a lower bound, to the “true” information. Recall that in this comparison, the 

information calculated from the Gamma model is considered the true information.

D. “Z-Information”: Fitting the Distributions With Gaussians

A practically interesting variation on the estimators presented here is to first fit simple 

distributions to the observed p(y|xk) and pk,α(y). Clearly, an obvious candidate is the 

Gaussian distribution. This is suggested in Fig. 2. In particular, the suggestion is to fit, 

separately for each k, a Gaussian distribution to the distribution p(y|xk), with mean μk and 

variance  and another Gaussian distribution to the distribution pk,α(y), with mean μ̃
k,α and 

variance . For one particular xk, these two Gaussian distributions are sketched in Fig. 2.

Then, the (modified) anthropically corrected estimator can be expressed as

(13)

but it should be pointed out that this version no longer satisfies the basic properties derived 

in Section II. In particular, it is clear that as K → ∞, this estimator does not converge to the 

true information in general. Nevertheless, practically, this estimator should be expected to be 

interesting due to its inherent simplicity.

Fig. 5 compares the estimators  and  for all 66 neurons. It should be observed 

that , while no longer bounded by log2(20) bits, nevertheless does not significantly 
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exceed this bound, showing that the Gaussian assumption is reasonable in this example. 

Note also that the anthropic correction is again not subject to this saturation effect.

If the anthropic estimate is a better estimate of the MI, we postulate that it should be closer 

to the gamma information than the naive estimate. Comparing Figs. 3 and 6, it is clear that 

this is indeed the case. Note however also that for the vast majority of the neurons, the 

anthropic correction is still below the gamma information. This is due to the inherent 

suboptimality of the decoding approach in terms of VR distance considered here. If a better 

decoding approach, or the full probability distribution, was used, then the anthropic 

correction would match or exceed the gamma information.

IV. Application II: Redundancy Estimation

A. Measures of Neural Population Redundancy

Another context in which information measures have been advocated is the redundancy of 

neuronal ensembles. Several such measures have been proposed in the literature. Here, we 

will consider the following:

(14)

This measure has appeared in various forms in the literature, including in [27], [28], and [6]. 

Several properties of this measure can be established, such as the fact that r′ ≤ 1, but also 

that r′ can be negative (and even unboundedly so) for a code that would be referred to as 

“synergistic” in the neuroscience literature; see, e.g., [9].

B. Experimental Results

We examined the use of the anthropic correction for the estimation of the redundancy in an 

ensemble of neurons. For this purpose, we calculated VR distances between ensembles of 

trial spike trains and ensemble templates. This ensemble distance was taken to be the sum of 

the individual VR distances after normalization by the average distance between templates 

for the corresponding neuron. This normalization yielded a weighted average in which 

neurons that carried more information had larger weights than neurons that carried less 

information. As in the single neuron case, these ensemble distances can be used to generate 

a confusion matrix and a measure of MI (the confusion information). Alternatively, we 

computed the estimate of the MI directly from the distribution of distances fitted with 

Gaussians, i.e., the estimator  that was defined above in (13). Again, we compare the 

direct estimate  to the (full) anthropic correction . As can be seen in Fig. 7, 

the MI for an ensemble of neurons is quite sensitive to undersampling of the stimulus space. 

The confusion information saturates to its absolute upper bound (log2(20)) for ensembles of 

five neurons or more; the fraction of correct stimulus classifications (obtained by the sum of 

the diagonal in the confusion matrix) is close to 100% in these cases. The smoothed estimate 

of the MI obtained by fitting the distribution of distances with Gaussians, which we denote 

by  (referred to as “Z MI” in the figure), also saturates. The anthropic estimate 
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 (referred to as “Z Anthro MI” in the figure), on the other hand increases almost 

linearly. Given the results for single neurons (shown in Figs. 4 and 6), we believe that this 

anthropic estimate is a much better approximation of the actual ensemble MI.

The effect of saturation will greatly affect the estimates of neural redundancy. In Fig. 8, we 

show the estimated redundancy using the measure r′ defined above in (14), calculated for 

the data shown in Fig. 7. The values of the redundancy obtained from the “confusion MI” 

would suggest a highly redundant neural code but the anthropic estimate shows a very 

different picture. Although the redundancy increases with the number of neurons, it does so 

slowly and, for ensembles with fewer than ten neurons, remains below 0.5. One would 

therefore conclude that sensory information is represented in a parallel fashion with 

restricted overlap in the information conveyed. These results illustrate the importance of 

lower and upper bounds in the MI calculation when it is applied to this type of problem.

V. Concluding Remarks

This paper introduces a novel information estimator called anthropic correction. Its most 

attractive application is in the asymmetric information estimation scenario where only a few 

samples are available of one of the two random variables, but for each of these samples, 

ample measurements of the other random variable are available. This is a common scenario 

for many existing data sets in neuroscience. The problem with this scenario is that a naive 

estimate is upper bounded by the logarithm of the smaller number of samples, which 

introduces a significant negative bias. To address this, we have introduced an anthropic 

correction which we proved has a nonnegative bias. Further properties of this estimator were 

established, and we illustrated that this novel estimate is very useful in sensory 

neurosciences where neuronal responses for a small number of stimuli or stimulus states are 

acquired for single neurons or ensembles of neurons. Both the estimates of the MI and of the 

redundancy in the information transmitted can be far from the actual values if a naive 

calculation is used. In those cases considering the anthropic correction could be crucial. The 

anthropic correction could also be useful for other systems with similar data limitations.
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Appendix I

Proof of Lemma 1

The lower bound in part 1) follows directly from the fact that the Kullback–Leibler 

divergence is always nonnegative. The upper bound follows directly from

(15)
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since the logarithm is monotonically increasing. Part 2) can be proved using the following 

inequality [16, Th.2.7.2, p.32]:

(16)

for 0 ≤ λ ≤ 1. For notational convenience, let us define p̂k = p̂(r|s = sk) and

(17)

which can be used to express

(18)

(19)

With this, we can express

(20)

(21)

Next, in each term inside the sum separately, we can use (16) with p1 = p2 = q1 = p̂k and q2 

= (1 − α − ε)/[K(1 − ε/K]p̂k + (1 − (1 − α)/K)/(1 − ε/K)p̂−k, and λ = ε/K. Thus, we find the 

following bound:

(22)

(23)

with

(24)

To conclude the argument, we can use the last equation to find ε as a function of α and α′ as

(25)
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which is the claimed formula.

Appendix II

Proof of Theorem 1

The lower bound in Theorem 1 follows directly from the observation that  is a MI, 

namely, for a fixed conditional distribution (channel) given by p(y|x) and an input 

distribution that consists of K randomly selected points of the true distribution p(x). We can 

write

(26)

(27)

where p(K)(x) denotes the distribution supported on K randomly chosen points of the true 

p(x), and the expectation is over this choice. Since MI is concave in the input distribution for 

fixed conditional distribution [16, Th. 2.7.4], we can conclude from Jensen’s inequality that

(28)

For the upper bound in Theorem 1, we will establish the slightly stronger result that 

 is no smaller than the true information for any value of n, not only in the limit as n 

→ ∞, as follows:

But from the log-sum inequality [16, Th. 2.7.1], we have that

(29)

(30)
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(31)

where the last equality follows because the expected value of the histogram is the true 

probability mass function, irrespective of the number of samples n, and where we have used 

the following shorthand:

(32)

Thus, we have

(33)

Now, let us consider the first term in the outermost sum, i.e., for k = 1, namely

(34)

(35)

where the last step is a trivial manipulation. Now, we can lower bound the second sum using 

the log-sum inequality [16, Th. 2.7.1], as follows:
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(36)

Thus, we find

(37)

(38)

Proceeding by analogy, we find the same bound for k = 2, 3, …, K, establishing the claim.

Appendix III

Definition 2

For a fixed collection of K samples from X, denoted by {x1, x2, …, xK}, let yn denote the 

length-n sequence of vectors yi = (y1, j, y2, j, …, yK, j)T. Define the set

(39)

where p̂(y|xk) is the histogram estimate based on .

This is sometimes referred to as robust typicality; see, e.g., [29]. Merely for notational 

convenience, we also define

(40)

(41)

Note that with this definition

(42)
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Lemma 2

If Yn are sampled i.i.d. from the distribution , then with pmin(y|xk) = miny 

p(y|xk)

(43)

Proof

This proof is standard up to the fact that Y is a vector and we enforce (robust) typicality in 

each component

(44)

(45)

where the last step is the union bound. To complete the proof, we use the Chebyshev 

inequality to upper bound each term in the sum, separately for each value of y ∈ , like in 

e.g., [30, Th. 1.2.12].

Lemma 3

For any , any k = 1, 2, …, L, any 0 ≤ α ≤ 1, and any 0 < ε < 1/2, we have

(46)

Proof

Since we assume , we know that |p̂(y|xk) − p(y|xk)| ≤ εp(y|xk). Note that this implies 

that |p̂k,α(y) − pk,α(y)| ≤ εpk,α(y). Maximizing  over all p̂(y|xk) that satisfy this condition, 

we find the following upper bound:

(47)

By analogy, minimizing  over all p̂(y|xk) that satisfy this condition, we find the 

following lower bound:
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(48)

Clearly, . Finally, noting that for 0 < ε < 

1/2, we have , we obtain the claimed bound.

Proof of Theorem 2

We begin by considering

(49)

However, the event can only occur if for at least one of the k, we have 

. Thus, by the union bound

(50)

To conclude the argument, we can now use Lemma 3 and the fact that Dmax,α ≥ k,α

(51)

where the last inequality follows from Lemma 2.

Lemma 4

For any k = 1, 2, …, L, and any 0 ≤ α < 1

(52)

Proof

We use a standard truncation argument

Gastpar et al. Page 17

IEEE Trans Inf Theory. Author manuscript; available in PMC 2016 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(53)

Clearly, from Lemma 3, we have

(54)

Moreover, from Lemma 2

(55)

Thus

(56)

where we have used the fact that α < 1 to obtain a bound ; see Lemma 1. 

Finally, selecting  gives the desired result.

Proof of Theorem 3

The theorem follows directly from Lemma 4 by noting that

(57)

which completes the proof.
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Fig. 1. 
Discrete example with M = 50, ε = 0.05, and N = 11. This figure shows the situation where 

for each tested stimulus, the response distribution was estimated from 104 samples.
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Fig. 2. 
Histogram of the (shifted) L2 (VR) distances to the correct (self) and to the incorrect (other) 

templates, along with a simple Gaussian fit. The origin was artificially set to the mean of the 

distances to the incorrect templates.
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Fig. 3. 
“Confusion information” versus the gamma information. The confusion information 

underestimates the MI and is bounded by log2(20) ≈ 4.32 bits, shown as a dotted line.
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Fig. 4. 
MI as a function of the number of stimuli obtained from the naive estimate (red) and from 

the anthropic correction. The dotted line shows the saturation bound of the naive estimate 

log2(K). The dashed line is the gamma information for this neuron. This example 

corresponds to one of the best neurons both in terms of gamma information and in terms of 

the goodness of fit of the decoding algorithm; note that the naive estimate is very close to its 

theoretical (saturation) upper bound.
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Fig. 5. 
Z-dist anthropic estimate versus the Z-dist naive estimate of the MI. The dotted lines show 

log2(20) ≈ 4.32 bits. The Z-dist information is approximately bounded by this value 

whereas the anthropic correction is not.
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Fig. 6. 
Anthropic estimate of the MI after decoding the spike trains versus the gamma information.
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Fig. 7. 
MI for neuronal ensembles of two to ten neurons. The information is estimated from the 

confusion matrix (confusion MI), the distribution of distances modeled with Gaussians (Z 

MI) and with the anthropic correction for this estimate (Z anthro MI). The error bars show 

one standard error obtained by randomly sampling neurons from our data set.
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Fig. 8. 
Redundancy in information transmitted as a function of the number of neurons. The three 

curves for the redundancy are obtained from three estimates of the MI as explained in Fig. 7. 

The error bars show one standard error obtained by randomly sampling neurons from our 

data set.

Gastpar et al. Page 29

IEEE Trans Inf Theory. Author manuscript; available in PMC 2016 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


