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Abstract

We consider the problem of signal estimation (denoising) from a statistical mechani-
cal perspective, using a relationship between the minimum mean square error (MMSE),
of estimating a signal, and the mutual information between this signal and its noisy
version. The paper consists of essentially two parts. In the first, we derive several
statistical–mechanical relationships between a few important quantities in this problem
area, such as the MMSE, the differential entropy, the Fisher information, the free en-
ergy, and a generalized notion of temperature. We also draw analogies and differences
between certain relations pertaining to the estimation problem and the parallel rela-
tions in thermodynamics and statistical physics. In the second part of the paper, we
provide several application examples, where we demonstrate how certain analysis tools
that are customary in statistical physics, prove useful in the analysis of the MMSE. In
most of these examples, the corresponding statistical–mechanical systems turn out to
consist of strong interactions that cause phase transitions, which in turn are reflected
as irregularities and discontinuities (similar to threshold effects) in the behavior of the
MMSE.

Index Terms: Gaussian channel, denoising, de Bruijn’s identity, MMSE estimation,
phase transitions, random energy model, spin glasses, statistical mechanics.

1 Introduction

The relationships and the interplay between Information Theory and Statistical Physics
have been recognized and exploited for several decades by now. The roots of these rela-
tionships date back to the celebrated papers by Jaynes from the late fifties of the previous
century [15, 16], but their aspects and scope have been vastly expanded and deepened
ever since. Much of the research activity in this interdisciplinary problem area revolves
around the identification of ‘mappings’ between problems in Information Theory and cer-
tain many–particle systems in Statistical Physics, which are analogous at least as far as
their mathematical formalisms go. One important example is the paralellism and analogy
between random code ensembles in Information Theory and certain models of disordered
magnetic materials, known as spin glasses. This analogy was first identified by Sourlas (see,
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e.g., [27,28]) and has been further studied in the last two decades to a great extent. Beyond
the fact that these paralellisms and analogies are academically interesting in their own right,
they also prove useful and beneficial. Their utility stems from the fact that physical insights,
as well as statistical mechanical tools and analysis techniques can be harnessed in order to
advance the knowledge and the understanding with regard to the information–theoretic
problem under discussion.

In this context, our work takes place at the meeting point of Information Theory,
Statistical Physics, and yet another area – Estimation Theory, where the bridge between
information–theoretic and the estimation–theoretic ingredients of the topic under discus-
sion is established by an identity [12, Theorem 2], equivalent to the de Bruijn identity
(cf. e.g., [3, Theorem 17.7.2]), which relates the minimum mean square error (MMSE), of
estimating a signal in additive white Gaussian noise (AWGN), to the mutual information
between this signal and its noisy version. We henceforth refer to this relation as the I–

MMSE relation. It should be pointed out that the present work is not the first to deal
with the interplay between the I–MMSE relation and statistical mechanics. In an earlier
paper by Shental and Kanter [26], the main theme was an attempt to provide an alternative
proof of the I–MMSE relation, which is rooted in thermodynamics and statistical physics.
However, to this end, the authors of [26] had to generalize the theory of thermodynamics.

Our study is greatly triggered by [26] (in its earlier versions), but it takes a substantially
different route. Rather than proving the I–MMSE relation, we simply use it in conjunction
with analysis techniques used in statistical physics. The basic idea that is underlying
our work is that when the channel input signal is rather complicated (but yet, not too
complicated), which is the case in certain applications, the mutual information with its
noisy version can be evaluated using statistical–mechanical analysis techniques, and then
related to the MMSE using the I–MMSE relation. This combination proves rather powerful,
because it enables one to distinguish between situations where irregular (i.e., non–smooth
or even discontinuous) behavior of the mean square error (as a function of the signal–to–
noise ratio) is due to artifacts of a certain ad–hoc signal estimator, and situations where
these irregularities are inherent in the model, in the sense that they are apparent even in
optimum estimation. In the latter situations, these irregularities (or threshold effects) are
intimately related to phase transitions in the parallel statistical–mechanical systems.

These motivations set the stage for our study of the relationships between the MMSE
and statistical mechanics, first of all, in the general level, and then in certain concrete
applications. Accordingly, the paper consists of two main parts. In the first, which is a
general theoretical study, we derive several statistical–mechanical relationships between a
few important quantities such as the MMSE, the differential entropy, the Fisher information,
the free energy, and a generalized notion of temperature. We also draw analogies and
differences between certain relations pertaining to the estimation problem and the parallel
relations in thermodynamics and statistical physics. In the second part of the paper, we
provide several application examples, where we demonstrate how certain analysis tools that
are customary in statistical physics (in conjunction with large deviations theory) prove
useful in the analysis of the MMSE. In light of the motivations described in the previous
paragraph, in most of these examples, the corresponding statistical–mechanical systems
turn out to consist of strong interactions that cause phase transitions, which in turn are
reflected as irregularities and discontinuities in the behavior of the MMSE.

The remaining part of this paper is organized as follows: In Section 2, we establish a
few notation conventions and we formalize the setting under discussion. In Section 3, we
provide the basic background in statistical physics that will be used in the sequel. Section
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4 is devoted to the general theoretical study, and finally, Section 5 includes application
examples, where the MMSE will be analyzed using statistical–mechanical tools.

2 Notation Conventions, Formalization and Preliminaries

2.1 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters,
like X and Y , their sample values will be denoted by the respective lower case letters, and
their alphabets will be denoted by the respective calligraphic letters. A similar convention
will apply to random vectors and their sample values, which will be denoted with the
same symbols in the boldface font. Thus, for example, X will denote a random n-vector
(X1, . . . ,Xn), and x = (x1, ..., xn) is a specific vector value in X n, the n-th Cartesian power
of X .

Sources and channels will be denoted generically by the letters P andQ. The expectation
operator will be denoted by E{·}. When the underlying probability measure is indexed by
a parameter, say, β, then it will used as a subscript of P , p and E, unless there is no
ambiguity.

For two positive sequences {an} and {bn}, the notation an
·
= bn means that an and bn

are asymptotically of the same exponential order, that is, limn→∞
1
n ln

an
bn

= 0. Similarly,

an
·
≤ bn means that lim supn→∞

1
n ln

an
bn

≤ 0, etc. Information theoretic quantities like
entropies and mutual informations will be denoted following the usual conventions of the
Information Theory literature.

2.2 Formalization and Preliminaries

We consider the simplest variant of the signal estimation problem setting studied in [12],
with a few slight modifications in notation. Let (X,Y ) be a pair of random vectors in IRn,
related by the Gaussian channel

Y = X +N , (1)

where N is a random vector (noise), whose components are i.i.d., zero–mean, Gaussian ran-
dom variables (RV’s) whose variance is 1/β, where β is a given positive constant designating
the signal–to–noise ratio (SNR), or the inverse temperature in statistical–mechanical point
of view (cf. Section 3). It is assumed that X and N are independent. Upon receiving Y ,
one is interested in inferring about the (desired) random vector X. As is well known, the
best estimator of X given the observation vector Y , in the mean square error (MSE) sense,
i.e., the MMSE estimator, is the conditional mean X̂ = E(X|Y ) and the corresponding
MMSE, E‖X̂ −X‖2 will denoted by mmse(X |Y ). Theorem 2 in [12], which provides the
I–MMSE relation, relates the MMSE to the mutual information I(X ;Y ) (defined using the
natural base logarithm) according to

dI(X ;Y )

dβ
=

mmse(X |Y )

2
. (2)

For example, if n = 1 and X ∼ N (0, 1), then I(X;Y ) = 1
2 ln(1 + β), which leads to

mmse(X|Y ) = 1/(1 + β), in agreement with elementary results. The relationship has
been used in [24] to compute the mutual information achieved by low-density parity-check
(LDPC) codes over Gaussian channels through evaluation of the marginal estimation error.
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A very important function, which will be pivotal to our derivation of both E(X|Y ) and
mmse(X|Y ), as well as to the mutual information I(X;Y ), is the posterior distribution.
Denoting the probability mass function of x by Q(x) and the channel induced by (1) by
P (y|x), then

P (x|y) = Q(x)P (y|x)
∑

x′ Q(x′)P (y|x′)

=
Q(x) exp[−β · ‖y − x‖2/2]

Z(β|y) , (3)

where we defined

Z(β|y) △
=
∑

x

Q(x) exp[−β · ‖y − x‖2/2] = (2π/β)n/2Pβ(y) (4)

where Pβ(y) is the channel output density. Here we have assumed that x is discrete, as
otherwise Q should be replaced by the probability density function (pdf) and the summation
over {x′} should be replaced by an integral. The function Z(β|y) is very similar to the
so-called partition function, which is well known to play a very central role in statistical
mechanics, and will also play a central role in our analysis. In the next section, we then
give some necessary background in statistical mechanics that will be essential to our study.

3 Physics Background

Consider a physical system with n particles, which can be in a variety of microscopic
states (‘microstates’), defined by combinations of physical quantities associated with these
particles, e.g., positions, momenta, angular momenta, spins, etc., of all n particles. For each
such microstate of the system, which we shall designate by a vector x = (x1, . . . , xn), there
is an associated energy, given by a Hamiltonian (energy function), E(x). For example, if
xi = (pi, ri), where pi is the momentum vector of particle number i and ri is its position

vector, then classically, E(x) =∑N
i=1

[

‖pi‖
2

2m +mgzi

]

, where m is the mass of each particle,

zi is its height – one of the coordinates of ri, and g is the gravitation constant.
One of the most fundamental results in statistical physics (based on the law of en-

ergy conservation and the basic postulate that all microstates of the same energy level
are equiprobable) is that when the system is in thermal equilibrium with its environment,
the probability of finding the system in a microstate x is given by the Boltzmann–Gibbs

distribution

P (x) =
e−βE(x)

Z(β)
(5)

where β = 1/(kT ), k being Boltmann’s constant and T being temperature, and Z(β) is the
normalization constant, called the partition function, which is given by

Z(β) =
∑

x

e−βE(x),

assuming discrete states. In case of continuous state space, the partition function is defined
as

Z(β) =

∫

dx e−βE(x),
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and P (x) is understood as a pdf. The role of the partition function is by far deeper than just
being a normalization factor, as it is actually the key quantity from which many macroscopic
physical quantities can be derived, for example, the free energy1 is F (β) = − 1

β lnZ(β), the

average internal energy is given by Ē
△
= E{E(X)} = −(d/dβ) lnZ(β) with X ∼ P (x), the

heat capacity is obtained from the second derivative, etc. One of the ways to obtain eq.
(5), is as the maximum entropy distribution under an average energy constraint (owing to
the second law of thermodynamics), where β plays the role of a Lagrange multiplier that
controls the average energy.

An important special case, which is very relevant both in physics and in the study
of AWGN channel considered here, is the case where the Hamiltonian E(x) is additive
and quadratic (or “harmonic” in the physics terminology), i.e., E(x) =

∑n
i=1

1
2κx

2
i , for

some constant κ > 0, or even more generally, E(x) =
∑n

i=1
1
2κix

2
i , which means that the

components {xi} are Gaussian and independent. A classical result in this case, known as
the equipartition theorem of energy, which is very easy to show, asserts that each particle
(or, more precisely, each degree of freedom) contributes an average energy of E{1

2κiX
2
i } =

1/(2β) = kT/2 independently of κ (or κi).
Returning to the case of a general Hamiltonian, it is instructive to relate the Shannon

entropy, pertaining to the Boltzmann–Gibbs distribution, to the quantities we have seen
thus far. Specifically, the Shannon entropy S(β) = −E{lnP (X)} associated with P (x) =
e−βE(x)/Z(β), is given by

S(β) = E ln

[

Z(β)

e−βE(x)

]

= lnZ(β) + β · Ē,

where, as mentioned above,

Ē = −d lnZ(β)

dβ
(6)

is the average internal energy. This suggests the differential equation

ψ̇(β) − ψ(β)

β
=
S(β)

β
, (7)

where ψ(β) = − lnZ(β) and ψ̇ means the derivative of ψ. Equivalently, eq. (7) can be
rewritten as:

β
d

dβ

[

ψ(β)

β

]

=
S(β)

β
, (8)

whose solution is easily found to be

ψ(β) = βE0 − β

∫ ∞

β

dβ̂S(β̂)

β̂2
, (9)

where E0 = minx E(x) is the ground–state energy, here obtained as a constant of integration
by examining the limit of β → ∞. Thus, we see that the log–partition function at a given
temperature can be expressed as a heat integral of the entropy, namely, as an integral of
a function that consists of the entropy at all lower temperatures. This is different from

1The free energy means the maximum work that the system can carry out in any process of fixed
temperature. The maximum is obtained when the process is reversible (slow, quasi–static changes in the
system).
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the other relations we mentioned thus far, which were all ‘pointwise’ in the temperature
domain, in the sense that all quantities were pertaining to the same temperature. Taking
the derivative of ψ(β) according to eq. (9), we obtain the average internal energy:

Ē = ψ̇(β) = E0 −
∫ ∞

β

dβ̂S(β̂)

β̂2
+
S(β)

β
, (10)

where the first two terms form the free energy.2

As a final remark, we should note that although the expression Z(β|y) of eq. (4) is similar
to that of Z(β) defined in this section (for a quadratic Hamiltonian), there is nevertheless
a small difference: The exponentials in (4) are weighted by probabilities {Q(x)}, which are
independent of β. However, as explained in [17, p. 3713], this is not an essential difference
because these weights can be interpreted as degeneracy of states, that is, as multiple states
(whose number is proportional to Q(x)) of the same energy.

4 Theoretical Derivations

Consider the Gaussian channel (1) and the corresponding posterior (3). Denoting by Eβ

the expectation operator w.r.t. joint pdf of (X ,Y ) induced by β, we have:

I(X;Y ) = Eβ

{

ln
exp[−β · ‖Y −X‖2/2]

Z(β|Y )

}

= −β
2
Eβ

{

‖Y −X‖2
}

−Eβ {lnZ(β|Y )}

= −n
2
−Eβ {lnZ(β|Y )} (11)

where we use the fact that Eβ

{

‖Y −X‖2
}

= Eβ

{

‖N‖2
}

= n/β. Taking derivatives
w.r.t. β, and using the I–MMSE relation, we then have:

mmse(X |Y )

2
=
∂I(X ;Y )

∂β
= − ∂

∂β
Eβ{lnZ(β|Y )}. (12)

and so, we obtain a very simple relation between the MMSE and the partition function of
the posterior:

mmse(X |Y ) = −2
∂

∂β
Eβ{lnZ(β|Y )} (13)

By calculating the derivative of the right-hand side (r.h.s.) more explicitly, one further
obtains the following:

− ∂

∂β
Eβ lnZ(β|Y ) = − ∂

∂β

∫

IRn
dy · Pβ(y) lnZ(β|y)

= −
∫

IRn
dy · Pβ(y)

∂ lnZ(β|y)
∂β

−
∫

IRn
dy · ∂Pβ(y)

∂β
· lnZ(β|y). (14)

2By changing the integration variable from β to T , this is identified with the relation F = E0−
R T

0
SdT ′,

which together with F = Ē− ST , complies with the relation Ē = E0 +
R S

0
TdS′ = E0 +

R Q

0
dQ′, accounting

for the simple fact that in the absence of any external work applied to the system, the internal energy is
simply the heat accumulated as temperature is raised from 0 to T .
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Now, the first term at the right–most side of (14) can easily be computed by using the fact
that lnZ(β|y) is a log–moment generating function of the energy (as is customarily done
in statistical mechanics, cf. eq. (6)), which implies that it is given by Eβ{‖Y − X‖2} =
n/(2β) = nkT/2, just like in the energy equipartition theorem for quadratic Hamiltonians.
As for the second term, we have

∫

IRn
dy · ∂Pβ(y)

∂β
· lnZ(β|y)

=

∫

IRn
dy · Pβ(y) ·

∂ lnPβ(y)

∂β
· lnZ(β|y)

=

∫

IRn
dy ·

(

2π

β

)−n/2
∑

x

Q(x)

[

n

2β
− 1

2
‖y − x‖2

]

· exp{−β‖y − x‖2/2} lnZ(β|y)

= −1

2
Cov{‖Y −X‖2, lnZ(β|Y )}. (15)

The MMSE is then given by

mmse(X|Y ) = −2
∂

∂β
Eβ{lnZ(β|Y )} =

n

β
+Cov{‖Y −X‖2, lnZ(β|Y )}, (16)

which can then be viewed as a variant of the energy equipartition theorem with a correction
term that stems from the fact the pdf of Y depends on β.

Another look, from an estimation–theoretic point of view, at this expression reveals the
following: The first term, n/β = E‖Y −X‖2, is the amount of noise in the raw data Y ,
without any processing. The second term, which is always negative, designates then the
noise suppression level due to MMSE estimation relative to the raw data. The intuition
behind the covariance term is that when the ‘correct’ x (the one that actually feeds the
Gaussian channel) dominates the partition function then lnZ(β|Y ) ≈ −β‖Y − X‖2/2,
and so, there is a very strong negative correlation between ‖Y − X‖2 and lnZ(β|Y ). In
particular,

Cov{‖Y −X‖2,−β‖Y −X‖2/2} = −n
β
, (17)

which exactly cancels the above–mentioned first term, n/β, and so, the overall MMSE
essentially vanishes. When the correct x is not dominant, this correlation is weaker. Also,
note that since

E‖Y −X‖2 = mmse(X|Y ) +E‖Y −E(X |Y )‖2, (18)

then this implies that

E‖Y −E(X|Y )‖2 = −Cov{‖Y −X‖2, lnZ(β|Y )}. (19)

It is now interesting to relate the noise suppression level

∆
△
= E‖Y −E(X|Y )‖2 = −Cov{‖Y −X‖2, lnZ(β|Y )}

to the Fisher information matrix and then to a new generalized notion of temperature due to
Narayanan and Srinivasa [21] via the de Bruijn identity. According to de Bruijn’s identity,
if W is a vector of i.i.d. standard normal components, independent of X, then

d

dt
h(X +

√
tW ) =

1

2
tr{J(X +

√
tW )}

7



where h(Y ) is differential entropy and J(Y ) is the Fisher information matrix associated
with Y w.r.t. a translation parameter, namely,

tr{J(Y )} =

n
∑

i=1

E







[

∂ lnPβ(y)

∂yi

∣

∣

∣

∣

y=Y

]2






=

n
∑

i=1

∫

IRn

dy

Pβ(y)

[

∂Pβ(y)

∂yi

]2

.

Note that since Pβ(y) and Z(β|y) differ only by a multiplicative factor of (β/2π)n/2, it is
obvious that ∂ lnPβ(y)/∂yi = ∂ lnZ(β|y)/∂yi and so, the Fisher information can also be
related directly to the free energy by

tr{J(Y )} =

n
∑

i=1

E







[

∂ lnZ(β|y)
∂yi

∣

∣

∣

∣

y=Y

]2






=
n
∑

i=1

E{[E{−β(Yi −Xi)|Y }]2}

= β2
n
∑

i=1

E{E2(Ni|Y )}, (20)

where Ni = Yi−Xi and where we have used the fact that the derivative of exp{−β‖y−x‖2}
w.r.t. yi is given by −β(yi − xi) · exp{−β‖y − x‖2}. Now, as is also shown in [12]:

I(X;X +N ) = I(X ;X +W /
√

β)

= h(X +W /
√

β)− h(W /
√

β)

= h(X +W /
√

β)− n

2
ln (2πe/β) . (21)

Thus,

mmse(X |X +N ) = 2 · ∂I(X ;X +N )

∂β

= 2 · ∂h(X ;X +W /
√
β)

∂β
+
n

β

= − 1

β2
tr{J(Y )}+ n

β
, (22)

where the factor −1/β2 in front of the Fisher information term accounts for the passage
from the variable t to the variable β = 1/t, as dt/dβ = −1/β2. Combining this with
the previously obtained relations, we see that the noise suppression level due to MMSE
estimation is given by

∆ =
tr{J(Y )}

β2
.

In [21, Theorem 3.1], a generalized definition of the inverse temperature is proposed, as
the response of the entropy to small energy perturbations, using de Bruijn’s identity. As a
consequence of that definition, the generalized inverse temperature in [21] turns out to be
proportional to the Fisher information of Y , and thus, in our setting, it is also proportional
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to β2∆.3 It should be pointed out that whenever the system undergoes a phase transition
(as is the case with most of our forthcoming examples), then ∆, and hence also the effective
temperature, may exhibit a non–smooth behavior, or even a discontinuity.

Additional relationships can be obtained in analogy to certain relations in statistical
thermodynamics that were mentioned in Section 3: Consider again the chain of equalities
(11), but this time, instead using the relation Eβ{‖Y −X‖2} = n/β, in the passage from

the second to the third line, we use the relation Eβ{‖Y −X‖2} = −Eβ{ d
dβ

lnZ(β|Y )} in

conjunction with the identity (cf. eq. (14)):

Eβ

{

d lnZ(β|Y )

dβ

}

=
dEβ{lnZ(β|Y )}

dβ
−
∫

IRn

dy
dPβ(y)

dβ
· lnZ(β|y)

=
dEβ{lnZ(β|Y )}

dβ
+

1

2
Cov{‖Y −X‖2, lnZ(β|Y )}, (23)

to obtain

Eβ{lnZ(β|Y )} − β · d

dβ
Eβ{lnZ(β|Y ) =

β

2
Cov{‖Y −X‖2, lnZ(β|Y )} − I(X ;Y ). (24)

Thus, redefining the function ψ(β) as

ψ(β) = −Eβ{lnZ(β|Y )}, (25)

we obtain the following differential equation which is very similar to (7):

ψ̇(β)− ψ(β)

β
=

Σ(β)

β
(26)

where

Σ(β) =
β

2
Cov{‖Y −X‖2, lnZ(β|Y )} − I(X;Y ). (27)

Thus, the solution to this equation is precisely the same as (9), except that S(β) is replaced
by Σ(β) and the ground–state energy E0 is redefined as

E0 = Eβ{min
x

‖Y − x‖2}.

Consequently, mmse(X |Y ) = 2ψ̇(β), where

ψ̇(β) = E0 −
∫ ∞

β

dβ̂Σ(β̂)

β̂2
+

Σ(β)

β

and one can easily identify the contributions of the free energy and the internal energy
(heat), as was done in Section 3.

To summarize, we see that the I-MMSE relation gives rise essentially similar relations as
in statistical thermodynamics except that the “effective entropy” Σ(β) includes correction
terms that account for the fact that our ensemble corresponds to a posterior distribution
P (x|y) and the fact that the distribution of Y depends on β.

3 As is shown in [21], the generalized inverse temperature coincides with the ordinary inverse temperature
when Y is purely Gaussian with variance proportional to 1/β, i.e., the ordinary Boltzmann distribution with
a quadratic Hamiltonian. In our setting, on the other hand, Y is given by a mixture of Gaussians whose
weights are independent of β. To avoid confusion, it is important to emphasize that the original parameter
β, in our setting, pertains to the Boltzmann form of the distribution of X given Y = y according to the pos-
terior P (x|y), whereas the current discussion concerns the temperature associated with the (unconditional)
ensemble of Y = X +N .
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5 Examples

In this section, we provide a few examples where we show how the asymptotic MMSE
can be calculated by using the I–MMSE relation in conjunction with statistical–mechanical
techniques for evaluating the mutual information, or the partition function pertaining to
the posterior distribution.

After the first example, of a Gaussian i.i.d. channel input, which is elementary, we turn to
explore three examples where the channel input is a randomly selected codebook vector from
a certain ensemble of codebooks that comply with a power constraint 1

nE{‖X‖2} ≤ Px.
There could be various motivations for MMSE estimation when the desired signal is a
codeword: One example is that of a user that, in addition to its desired signal, receives
also a relatively strong interfering signal, which carries digital information (a codeword)
intended to other users, and which comes from a codebook whose rate exceeds the capacity
of this crosstalk channel between the interferer and our user, so that the user cannot fully
decode this interference. Nonetheless, our user would like to estimate it as accurately as
possible in order to subtract it and thereby perform interference cancellation.

In the first example of a code ensemble (Subsection 5.2), we deal with a simple ensemble
of block codes, and we demonstrate that the MMSE exhibits a phase transition at the value
of β for which the channel capacity C(β) = 1

2 ln(1 + βPx) agrees with the coding rate
R. The second ensemble (Subsection 5.3) consists of an hierarchical structure which is
suitable for the Gaussian broadcast channel. Here, we will observe two phase transitions,
one corresponding to the weak user and one – to the strong user. The third ensemble
(Subsection 5.4) is also hierarchical, but in a different way: here the hierarchy corresponds
to that of a tree structured code that works in two (or more) segments. In this case,
there could be either one phase transition or two, depending on the coding rates at the
two segments (see also [19]). Our last example is not related to coding applications, and
it is based on a very simple model of sparse signals which is motivated by compressed
sensing applications. Here we show that phase transitions can be present when the signal
components are strongly correlated.

The statistical–mechanical considerations in this section provide unique insight into the
coding and estimation problems, in particular by examining the typical behavior of the
geometry of the free energy. This is in fact related to the notion of joint typicality for
proving coding theorems, but more concrete geometry is seen due to the special structures
of the code ensembles. In some of the ensuing examples, the mutual information can also
be obtained through existing channel capacity results from information theory. In the last
example pertaining to sparse signals (Subsection 5.5), however, we are not aware of any
alternative to the calculation using statistical mechanical techniques.

5.1 Gaussian I.I.D. Input

Our first example is very simple: Here, the components of X are zero–mean, i.i.d., Gaussian
RV’s with variance Px. In this case, we readily obtain

Z(β|y) = exp{−‖y‖2/[2(Px + 1/β)]}
(1 + βPx)n/2

,

thus

lnZ(β|y) = −n
2
ln(1 + βPx)−

‖y‖2
2(Px + 1/β)

.
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Clearly,

Eβ lnZ(β|Y ) = −n
2
ln(1 + βPx)−

n

2

and its negative derivative is nPx/[2(1 + βPx)], which is indeed half of the MMSE. Here,
we have:

∆ =
n

β
− nPx

1 + βPx
=

n

β(1 + βPx)

and

tr{J(Y )} = nE

[

Y

Px + 1/β

]2

=
nβ

1 + βPx

and so, the relation tr{J(Y )} = β2∆ is easily verified. Thus, the generalized temperature
here is β/(1 + βPx), which is the reciprocal of the variance of the Gaussian output.

5.2 Random Codebook on a Sphere Surface

Let X assume a uniform distribution over a codebook C = {x1, . . . ,xM}, M = enR, where
each codeword xi is drawn independently under the uniform distribution over the surface of
the n–dimensional sphere, which is centered at the origin, and whose radius is

√
nPx. The

code is capacity achieving (the input becomes essentially i.i.d. Gaussian as n→ ∞). In the
following we show that the MMSE vanishes if the code rate R is below channel capacity,
but is no different than that of i.i.d. Gaussian input (without code structure) if R exceeds
the capacity. We note that such a phase transition has been shown for good binary codes
in general in [25] using the I-MMSE relationship.

Here, for a given y, we have:

Z(β|y) =
∑

x∈C

e−nR exp[−β‖y − x‖2/2]

= e−nR exp[−β‖y − x0‖2/2] +
∑

x∈C\{x0}

e−nR exp[−β‖y − x‖2/2]

△
= Zc(β|y) + Ze(β|y) (28)

where, without loss of generality, we assume x0 to be the transmitted codeword. Now,
since ‖y−x0‖2 is typically around n/β, Zc(β|y) would typically be about e−nRe−β·n/(2β) =
e−n(R+1/2). As for Ze(β|y), we have:

Ze(β|y) ·
= e−nR

∫

IR
dǫN(ǫ)e−βnǫ,

where N(ǫ) is the number of codewords {x} in C−{x0} for which ‖y−x‖2/2 ≈ nǫ, namely,
between nǫ and n(ǫ+dǫ). Now, given y, N(ǫ) =

∑M
i=1 1{xi : ‖y−xi‖2/2 ≈ nǫ} is the sum

of M i.i.d. Bernoulli RV’s and so, its expectation is

N(ǫ) =
M
∑

i=1

Pr{‖y −Xi‖2/2 ≈ nǫ} = enRPr{‖y −X1‖2/2 ≈ nǫ}. (29)

Denoting Py = 1
n

∑n
i=1 y

2
i (typically, Py is about Px + 1/β), the event ‖y − x‖2/2 ≈ nǫ is

equivalent to the event 〈x,y〉 ≈ [(Px + Py)/2 − ǫ]n or equivalently,

ρ(x,y)
△
=

〈x,y〉
n
√

PxPy
≈

1
2 (Px + Py)− ǫ
√

PxPy

△
=
Pa − ǫ

Pg

11



where have defined Pa = (Px + Py)/2 and Pg =
√

PxPy (the arithmetic and the geometric
means between Px and Py, respectively). The probability that a randomly chosen vector X
on the sphere would have an empirical correlation coefficient ρ with a given vector y (that
is, X falls within a cone of half angle arccos(ρ) around y) is exponentially exp[n2 ln(1−ρ2)].
For convenience, let us define

Γ(ρ) =
1

2
ln
(

1− ρ2
)

so that we can write

Pr{‖y −X1‖2/2 ≈ nǫ} ·
= exp

{

nΓ

(

Pa − ǫ

Pg

)}

.

From this point and onward, our considerations are very similar to those that have been
used in the random energy model (REM) of spin glasses in statistical mechanics [5–7], a
model of disordered magnetic materials where the energy levels pertaining to the various
configurations of the system {E(x)} are i.i.d. RV’s. These considerations have already
been applied in the analogous analysis of random code ensemble performance, where the
randomly chosen codewords give rise to random scores that play the same role as the random
energies of the REM. The reader is referred to [27], [28], [20, Chapters 5,6], and [18] for a
more detailed account of these ideas.

Applied to the random code ensemble considered here, the line of thought is as follows:
If ǫ is such that

Γ

(

Pa − ǫ

Pg

)

> −R,

then the energy level ǫ will be typically populated with an exponential number of codewords,
concentrated very strongly around its mean

N(ǫ)
·
= exp

{

n

[

R+ Γ

(

Pa − ǫ

Pg

)]}

,

otherwise (which means that N(ǫ) is exponentially small), the energy level ǫ will not be
populated by any codewords typically. This means that the populated energy levels range
between

ǫ1
△
= Pa − Pg

√

1− e−2R

and
ǫ2

△
= Pa + Pg

√

1− e−2R,

or equivalently, the populated values of ρ range between −ρ∗ and +ρ∗ where ρ∗ =
√
1− e−2R.

By large deviations and saddle–point methods [4,11], it follows that for a typical realization
of the randomly chosen code, we have

Ze(β|y) ·
= e−nR max

ǫ∈[ǫ1,ǫ2]
exp

{

n

[

R+ Γ

(

Pa − ǫ

Pg

)

− βǫ

]}

= max
ǫ∈[ǫ1,ǫ2]

exp

{

n

[

Γ

(

Pa − ǫ

Pg

)

− βǫ

]}

= exp

{

n

[

max
|ρ|≤ρ∗

{

1

2
ln(1− ρ2)− β(Pa − ρPg)

}]}

.
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The derivative of 1
2 ln(1− ρ2) + ρβPg w.r.t. ρ vanishes within [−1, 1] at:

ρ = ρβ
△
=
√

1 + θ2 − θ

where

θ
△
=

1

2βPg
.

This is the maximizer as long as
√
1 + θ2 − θ ≤ ρ∗, namely, θ > e−2R/2ρ∗, or equivalently,

β < ρ∗e
2R/Pg, which for Pg =

√

Px(Px + 1/β), is equivalent to β < βR
△
= (e2R − 1)/Px.

Thus, for the typical code we have

φe(β,R)
△
= lim

n→∞

lnZe(β|y)
n

=

{

1
2 ln(1− ρ2β)− β(Pa − ρβPg), β < βR

−R− β(Pa − ρ∗Pg), β ≥ βR .

Taking now into account Zc(β|y), it is easy to see that for β ≥ βR (which means R < C),
Zc(β|y) dominates Ze(β|y), whereas for β < βR it is the other way around. It follows then
that

φ(β,R)
△
= lim

n→∞

lnZ(β|y)
n

=

{

1
2 ln(1− ρ2β)− β(Pa − ρβPg), β < βR

−R− 1
2 , β ≥ βR .

On substituting Pa = Px + 1/(2β), Pg =
√

Px(Px + 1/β) and

ρβ =
√

1 + θ2 − θ =

√

βPx
1 + βPx

,

we then get:

ψ(β) = − lim
n→∞

lnZ(β|y)
n

=

{

1
2 ln(1 + βPx) +

1
2 , β < βR

R+ 1
2 β ≥ βR .

Note that ψ(β) is a continuous function but it is not smooth at β = βR. Now,

lim
n→∞

mmse(X |Y )

n
= 2

dψ(β)

dβ
=

{

Px

1+βPx
, β < βR

0, β ≥ βR .
(30)

which means that there is a first order phase transition4 in the MMSE: As long as β ≥ βR,
which means R < C, the MMSE essentially vanishes since the correct codeword can be
reliably decoded, whereas for R > C, the MMSE behaves as if the inputs were i.i.d. Gaussian
with variance Px (cf. Subsection 5.1).

5.3 Hierarchical Code Ensemble for the Degraded Broadcast Channel

Consider the following hierarchical code ensemble: First, randomly draw M1 = enR1 cloud–
center vectors {ui} on the

√
n–sphere. Then, for each ui, randomly draw M2 = enR2

codewords {xi,j} according to xi,j = αui +
√
1− α2 vi,j, where {vi,j} are randomly drawn

uniformly and independently on the
√
n–sphere. This means that ‖xi,j − αui‖2 = n(1 −

4By “first–order phase transition”, we mean, in this context, that the MMSE is a discontinuous function
of β.
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α2)
△
= nb. Without essential loss of generality, here and in Subsection 5.4, we take the

channel input power to be Px = 1.
Let x0,0, belonging to cloud center u0, be the input to the Gaussian channel (1). It is

easy to see that if the SNR of the Gaussian channel is high enough, the codeword xi,j can
be decoded; while at certain lower SNR only the cloud center ui can be decoded but not
vi,j. In the following we show the phase transitions of the MMSE as a function of the SNR.

We will decompose the partition function as follows:

Z(β|y) = e−nR
∑

i,j

exp(−β‖y − xi,j‖2/2)

= e−nR exp(−β‖y − x0,0‖2/2) + e−nR
∑

j≥1

exp(−β‖y − x0,j‖2/2)

+ e−nR
∑

i≥1

∑

j

exp(−β‖y − xi,j‖2/2)

△
= Zc(β|y) + Ze1(β|y) + Ze2(β|y) (31)

where once again, Zc(β|y) – the contribution of the correct codeword, is typically about
e−n(R+1/2). The other two terms Ze1(β|y) and Ze2(β|y) correspond to contributions of
incorrect codewords from the same cloud and from other clouds, respectively.

Let us consider Ze1(β|y) first. The distance ‖y − x0,j‖2 is decomposed as follows:

‖y − x0,j‖2 = ‖(y − αu0) + (αu0 − x0,j)‖2

= ‖y − αu0‖2 + ‖αu0 − x0,j‖2 + 2〈y − αu0, αu0 − x0,j〉 . (32)

Now, ‖y − αu0‖2 is typically about n/β + nb
△
= na and ‖αu0 − x0,j‖2 = nb. Thus, for

‖y−x0,j‖2/2 to be around nǫ, 〈y−αu0, αu0−x0,j〉must be around n[ǫ−(a+b)/2]
△
= n[ǫ−Pa].

Now, the question is this: Given y−αu0, what is the typical number of codewords in cloud
0 for which 〈y−αu0, αu0−x0,j〉 = n[ǫ−Pa]. Similarly as before, the answer is the following:

N(ǫ)
·
=

{

exp
{

n
[

R2 + Γ
(

ǫ−Pa

Pg

)]}

, ǫ ∈ [Pa − ρ2Pg, Pa + ρ2Pg]

0, elsewhere
(33)

where Pg
△
=

√
ab and ρ2 =

√
1− e−2R2 . Thus,

Ze1(β|y) ·
= e−nR exp

{

n

[

max
|ρ|≤ρ2

{R2 + Γ(ρ)− β(Pa − ρPg)}
]}

= e−nR1 exp

{

n

[

max
|ρ|≤ρ2

{

1

2
ln(1− ρ2) + βρPg

}

− βPa

]}

. (34)

As before, the derivative of [12 ln(1− ρ2) + ρβPg] w.r.t. ρ vanishes within [−1, 1] at:

ρ = ρβ
△
=
√

1 + θ2 − θ

where

θ
△
=

1

2βPg
.
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This is the maximizer as long as
√
1 + θ2 − θ ≤ ρ2, namely, θ > e−2R2/2ρ2, or equivalently,

β < ρ2e
2R2/Pg, which for Pg =

√

b(b+ 1/β), is equivalent to β < β(R2)
△
= (e2R2 − 1)/b.

Thus, for the typical code we have

ψe1(β)
△
= − lim

n→∞

lnZe1(β|y)
n

=

{

R1 − 1
2 ln(1− ρ2β) + β(Pa − ρβPg), β < β(R2)

R+ β(Pa − ρ2Pg), β ≥ β(R2) .

Similarly as before, it is easy to see that

Zc + Ze1
·
= exp

{

−n
[

R1 +min

{

R2,
1

2
ln(1 + bβ)

}

+
1

2

]}

.

Turning now to Ze2(β|y), we have the following consideration. Given ui, i ≥ 1, let y′ =
y − αui and vi,j = xi,j − αui. We would like to estimate how many codewords in cloud i,
Ni(ǫ), contribute ‖y − xi,j‖2/2 = ‖y′ − vi,j‖2/2 = nǫ. Similarly as before, Ni(ǫ) is given
by exactly the same formula as (33) where this time, Pa = (1− α2 + ‖y − αui‖2/n)/2 and
Pg =

√

(1− α2)‖y − αui‖2/n. Thus, we have expressed the typical number of codewords
that cloud i contributes with energy ǫ as Ni(ǫ) = exp{nF (‖y − αui‖2/n, ǫ)}, and the total
number is N(ǫ) =

∑

iNi(ǫ). Now letM(δ) be the number of {ui} for which ‖y−αui‖2/n =
δ. Then,

N(ǫ)
·
=
∑

δ

M(δ)enF (δ,ǫ).

Now,

M(δ) =

{

exp
{

n
[

R1 + Γ
(

δ/2−P ′
a

P ′
g

)]}

, δ ∈ [δ1, δ2] ,

0, elsewhere

where P ′
a = (1+1/β+α2)/2, P ′

g = α
√

1 + 1/β, δ1 = 2(P ′
a−P ′

g

√
1− e−2R1)

△
= 2(P ′

a− ρ1P ′
g)

and δ2 = 2(P ′
a + P ′

gρ1). Thus,

N(ǫ)
·
= exp

{

n max
δ1≤δ≤δ2

[

R1 + Γ

(

P ′
a − δ

P ′
g

)

+ F (δ, ǫ)

]}

.

Putting it all together, we get:

ψe2(β)
△
= − lim

n→∞

lnZe2(β|y)
n

= − max
|r1|≤ρ1

max
|r2|≤ρ2(r1)

{

1

2
ln(1− r21) +

1

2
ln(1− r22)−

β

[

1− α2

2
+ P ′

a − r1P
′
g − r2

√

2(1 − α2)(P ′
a − r1P ′

g)

]}

,

(35)

where ρ1 =
√
1− e−2R1 , ρ2(r1) =

√

1− e−2R/(1− r21), P
′
a = (1 + 1/β + α2)/2, and P ′

g =

α
√

1 + 1/β. The above expression does not seem to lend itself to closed form analysis in
an easy manner. Numerical results (cf. Fig. 1) show a reasonable match (within the order
of magnitude of 1× 10−5) between values of limn→∞ I(X ;Y )/n obtained numerically from
the asymptotic exponent of Eβ lnZ(β|Y ) and those that are obtained from the expected
behavior in this case:

lim
n→∞

I(X ;Y )

n
=











1
2 ln(1 + β), β < β1

R1 +
1
2 ln(1 + βb), β1 ≤ β < β2

R = R1 +R2, β ≥ β2
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Figure 1: Graph of limn→∞ I(X;Y )/n = −Eβ{lnZ(β|Y )}/n − 1/2 as a function of β for
R1 = 0.1, R2 = 0.6206, and α = 0.7129, which result in β1 = 0.5545 and β2 = 5.001. As
can be seen quite clearly, there are phase transitions at these values of β.

where

β1
△
=

e2R1 − 1

1− be2R1

, β2
△
=
e2R2 − 1

1− b
,

and it is assumed that the parameters of the model (R1, R2 and α) are chosen such that
β1 < β2. Accordingly, the MMSE undergoes two phase transitions, where it behaves as
if the input was: (i) Gaussian i.i.d. with unit variance for β < β1 (where no information
can be decoded), (ii) Gaussian input of a smaller variance (corresponding to the cloud),
in the intermediate range (where the cloud center is decodable, but the refined message is
not), and (iii) the MMSE altogether vanishes for β > β2, where both messages are reliably
decodable.

The hierarchical code ensemble takes the superposition code structure which achieves
the capacity region of the Gaussian broadcast channel. Consider two receivers, referred to
as receiver 1 and receiver 2, with β1 and β2 respectively. Receiver 1 can decode the cloud
center, whereas receiver 2 can decode the entire codeword. In other words, suppose the
hierarchical code ensemble with rate pair (R1, R2) and parameter α is sent to two receivers
with fixed SNR of γ1 and γ2 respectively. Then the minimum decoding error probability
vanishes as long as (R1, R2, α) are such that

R1 <
1

2
log

(

1 +
α2γ1

1 + (1− α2)γ1

)

, (36)

R2 <
1

2
log
(

1 + α2γ2
)

. (37)
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In particular, all boundary points of the capacity region can be achieved by varying the
power distribution coefficient α. This capacity region result also leads to the fact that if
only the cloud center is decodable, then the MMSE for the codeword vi,j is no different
to that if the elements of vi,j were i.i.d. standard Gaussian. Knowledge of the codebook
structure of {vi,j} does not reduce the MMSE because otherwise the code cannot achieve
the capacity region of the Gaussian broadcast channel.

5.4 Hierarchical Tree–Structured Code

Consider next an hierarchical code with the following structure: The block of length n
is partitioned into two segments, the first is of length n1 = λ1n (λ1 ∈ (0, 1)) and the
second is of length n2 = λ2n (λ2 = 1 − λ1). We randomly draw M1 = en1R1 first–segment
codewords {xi} on the surface of the

√
n1–sphere, and then, for each xi, we randomly draw

M2 = en2R2 second–segment codewords {x′
i,j} on the surface of the

√
n2–sphere. The total

message of length nR = n1R1 + n2R2 (thus R = λ1R1 + λ2R2) is encoded in two parts:
The first–segment codeword depends only on the first n1R1 bits of the message whereas the
second–segment codeword depends on the entire message.

Let (x0,x0,0) be the transmitted codeword, and let y and y′ be the corresponding
segments of the channel output vector (y,y′). The partition function is as follows:

Z(β|y) = e−nR exp{−β[‖y − x0‖2 + ‖y′ − x0,0‖2]/2}
+ e−nR exp{−β[‖y − x0‖2/2}

∑

j

exp{−β‖y′ − x0,j‖2]/2}

+ e−nR
∑

i≥1

∑

j

exp{−β[‖y − xi‖2/2} exp{−β‖y′ − xi,j‖2]/2}

△
= Zc + Ze1 + Ze2. (38)

Now, as before, Zc
·
= e−n(R+1/2). As for Ze1, it can also be treated as in Subsection 5.2: The

first factor contributes e−nR · e−nλ1/2. The second factor is e−nλ2[min{R2,C(β)}+1/2], where
C(β) = 1

2 ln(1 + β). Thus,

Ze1(β|y) + Zc
·
= exp

{

−n
[

λ1R1 + λ2min{R2, C(β)}+ 1

2

]}

.

Consider next the term Ze2. Let r1 = 〈x,y〉/(n1Pg) and r2 = 〈x′,y′〉/(n2Pg) where Pg
is as in Subsection 5.2. Of course, 〈(x,x′), (y,y′)〉/(nPg) = λ1r1 + λ2r2. What is the
typical number of codewords (xi,x

′
i,j) of Ze2 whose correlation with (y,y′) is exactly r?

The answer is

lim
n→∞

lnN(r)

n
= max

|r1|≤ρ(R1)

{

λ1R1 + λ1Γ(r1) + λ2R2 + λ2Γ

(

r − λ1r1
λ2

)}

,

where ρ(x) =
√
1− e−2x. This expression behaves differently depending on whether R1 >

R2 or R1 < R2. In the first case, it behaves exactly as in the ordinary ensemble, that is:

lim
n→∞

lnN(r)

n
=

{

R+ 1
2 ln(1− r2), |r| ≤ ρ(R)

0, |r| > ρ(R) .
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and then, of course, Ze2 is as before:

Ze2 + Zc
·
= exp{−n[min{R,C(β)} + 1/2]}.

When R1 < R2, however, we have two phase transitions:

lim
n→∞

lnN(r)

n
=















R+ Γ(r), |r| ≤ ρ(R1)

λ2

[

R2 + Γ
(

r−λ1ρ(R1)
λ2

)]

, ρ(R1) ≤ |r| ≤ λ1ρ(R1) + λ2ρ(R2)

0, |r| > λ1ρ(R1) + λ2ρ(R2) .

In this case, we get:

lim
n→∞

ln(Ze2 + Zc)

n
=











−C(β)− 1
2 , β ≤ β(R1)

−λ1R1 − λ2C(β)− 1
2 , β(R1) < β ≤ β(R2)

−R− 1
2 , β > β(R2)

where β(R) is the solution β to the equation C(β) ≡ 1
2 ln(1 + β) = R. To summarize, we

have the following: Zc
·
= e−n(R+1/2), Ze1 + Zc

·
= exp{−n[λ1R1 + λ2 min{R2, C(β)} + 1/2]}

and

Ze2 + Zc
·
=

{

exp{−n[min{R,C(β)} + 1/2]}, R1 > R2

exp{−n[λ1min{R1, C(β)}+ λ2 min{R2, C(β)} + 1/2]}, R1 ≤ R2 .

Clearly, if R1 ≤ R2 then Ze2 + Zc dominates Ze1 + Zc. If R1 > R2, we note that

min{λ1R1 + λ2min{R2, C(β)},min{R,C(β)}} ≡ min{R,C(β)}.
Thus,

Z
·
=

{

exp{−n[min{R,C(β)}+ 1/2]}, R1 > R2

exp{−n[λ1 min{R1, C(β)} + λ2 min{R2, C(β)}+ 1/2]}, R1 ≤ R2 .

The MMSE then is as in (30) in Subsection 5.2 when R1 > R2, and given by

mmse(X|Y ) =











1
1+β , β ≤ β(R1)
λ2
1+β , β(R1) < β ≤ β(R2)

0, β > β(R2)

(39)

when R1 < R2. This dichotomy between these two types of behavior have their roots in
the behavior of the GREM, a generalized version of the random energy model, where the
random energy levels of the various system configurations are correlated (rather than being
i.i.d.) in an hierarchical structure [8–10]. The GREM turns out to have an intimate analogy
with the tree–structured code ensemble considered here. The reader is referred to [19] for
a more elaborate discussion on this topic.

The preceding result on the MMSE is consistent with the analysis based solely on in-
formation theoretic considerations. In case R1 < R2, the first segment code is decodable as
long as R1 < (1/2) log(1 + β), whereas the second segment code is decodable if also R2 <
(1/2) log(1 + β). Hence the MMSE is given by (39). In case R1 > R2, the second-segment
code is decodable if and only if the first-segment is also decodable, i.e., the two codes can
be decoded jointly. This requires R2 < (1/2) log(1+β), λ1R1 < λ1 log(1+β)+λ2 log(1+β)
and R = λ1R1 + λ2R2 < log(1 + β). The last inequality dominates, hence the MMSE is
given by (30).
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5.5 Estimation of Sparse Signals

Let the components of X be given by Xi = SiUi, i = 1, 2, . . . , n, where Si ∈ {0, 1} and
{Ui} are N (0, σ2) i.i.d. and independent of {Xi}. As before Y = X + N , where the
components of N are i.i.d. Gaussian N (0, 1/β). One motivation of this simple model is in
compressed sensing applications, where the signal X (possibly, in some transform domain)
is assumed to possess a limited fraction of non–zero components, here designated by the
non–zero components of S = (S1, S2, . . . , Sn). The signal X is considered sparse if the
relative fraction of 1’s in S is small. We will assume that S, whose realization is not
revealed to the estimator, is governed by a given probability distribution P (s). We first
derive an expression of the partition function for a general P (s) and then particularize our
study to a certain form of P (s). First, we have the following:

P (x) =
∑

s

P (s)P (x|s)

=
∑

s

P (s)
∏

i: si=0

δ(xi)
∏

i: si=1

[

(2πσ2)−1/2 exp{−x2i /(2σ2)}
]

=
∑

s

P (s)

n
∏

i=1

[

(2πsiσ
2)−1/2 exp{−x2i /(2siσ2)}

]

(40)

where a zero–variance Gaussian distribution is understood to be equivalent to the Dirac
delta–function. Thus,

Z(β|y) =
∫

IRn
dxP (x) exp{−β‖y − x‖2/2}

=
∑

s

P (s)

n
∏

i=1

[
∫ ∞

−∞
dxi(2πsiσ

2)−1/2 exp{−x2i /(2siσ2)} · exp{−β(yi − xi)
2/2}

]

=
∑

s

P (s)
n
∏

i=1

[

(1 + qsi)
−1/2 exp

{

− βy2i
2(1 + qsi)

}]

=
∑

s

P (s)

n
∏

i=1

exp

{

−1

2

[

βy2i
1 + qsi

+ ln(1 + qsi)

]}

(41)

where we have used the notation5 q = βσ2. Transforming s to “spins” µ = (µ1, . . . , µn) by
the relation µi = 1− 2si ∈ {−1,+1}, we get:

βy2i
1 + qsi

+ ln(1 + qsi) =
(1 + q/2)βy2i

1 + q
+

1

2
ln(1 + q)− 2µihi

where

hi = − β2σ2y2i
4
(

1 + βσ2
) +

1

4
ln
(

1 + βσ2
)

. (42)

On substituting back into the partition function we get:

Z(β|y) = (1 + q)−n/4 · exp
{

−β(1 + q/2)

2(1 + q)
‖y‖2

}

·
∑

µ

P (µ) exp

{

n
∑

i=1

µihi

}

. (43)

5The quantity q is proportional to the SNR.

19



Thus hi is given the statistical–mechanical interpretation of the random ‘local’ magnetic
field felt by the i–th spin.

Eq. (43) holds for a general distribution P (s) or equivalently, P (µ). To further develop
this expression, we must make some assumptions on one of these distributions. At this point,
we have the freedom to examine certain models of P (µ), and by viewing the expression
∑

µ P (µ) exp{
∑

i µihi} as the partition function of a certain spin system with a non–
uniform, random field {Hi} (whose realization is {hi}), we can borrow techniques from
statistical physics to analyze its behavior. Evidently, for every spin glass model that exhibits
phase transitions, it is conceivable that there will be analogous phase transitions in the
corresponding signal estimation problem.

Assuming certain symmetry properties among the various components of s, it would
be plausible to postulate that all {s} with the same number of 1’s are equally likely, or
equivalently, all spin configurations {µ} with the same magnetization

m(µ) =
1

n

n
∑

i=1

µi

have the same probability. This means that P (µ) depends on µ only via m(µ). Consider
then the form

P (µ) = Cn exp{nf(m(µ))},
where f(m) is an arbitrary function and Cn is a normalization constant. Further, let us
assume that f is twice differentiable with finite first derivative on [−1, 1]. Clearly,

Cn =

(

∑

µ

exp{n f(m(µ))}
)−1

·
= exp

{

−nmax
m

{H2((1 +m)/2) + f(m)}
}

= exp {−n (H2((1 +ma)/2) + f(ma))} (44)

whereH2(·) denotes the binary entropy function andma is the maximizer ofH2((1+m)/2)+
f(m). In other words, ma is the a–priori magnetization, namely the magnetization that
dominates P (µ). Of course, when f(m) is linear in m, the components of µ are i.i.d. Note
that if f is monotonically increasing in m, then P (µ) has a sharp peak at m = 1, which
corresponds to a vanishing fraction of sites with si = 1, i.e., a sparse signal. Our derivation,
however, will take place for general f .

5.5.1 General Solution

On substituting the above expression of P (µ) into that of Z(β|y), our main concern is then
how to deal with the expression

Ẑ(β|h) △
=
∑

µ

P (µ)e
P

i µihi = Cn
∑

µ

exp

{

n

[

f(m(µ)) +
1

n

∑

i

µihi

]}

. (45)

We investigate the typical behavior of the partition function, or more precisely, calculate
the following quantity:

1

n
logE

{

Ẑ(β|H)
}

=
1

n
log



CnE







∑

µ

exp

{

n

[

f(m(µ)) +
1

n

∑

i

µiHi

]}









 (46)
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where H consists of i.i.d. random variables with arbitrary distribution p(H).
Using large deviations theory, as n → ∞, the dominant value of m in (46), henceforth

denoted as m∗ is shown to satisfy

m∗ = E{tanh(f ′(m∗) +H)} (47)

and

E{tanh2(f ′(m∗) +H)} > 1− 1

f ′′(m∗)
. (48)

The detailed analysis is relegated to Appendix 5.5.3. Clearly, m∗ is the dominant magneti-
zation a–posteriori, i.e., the one that dominates the posterior of m(µ) given (a typical) y.
It is also shown in Appendix 5.5.3 that

lim
n→∞

1

n
logE

{

Ẑ(β|H)
}

= lim
n→∞

1

n
logCn − ψ(m∗) (49)

where
ψ(m∗)

△
= f ′(m∗)m∗ − f(m∗)−E

{

log
[

2 cosh(f ′(m∗) +H)
]}

(50)

and the normalized exponent of Cn is given by (44). Thus the asymptotic normalized
mutual information is expressed as

lim
n→∞

I(X ;Y )

n
= −1

2
+

1

4
ln(1 + q) +

β(1 + q/2)E{Y 2}
2(1 + q)

− lim
n→∞

lnCn
n

+ ψ(m∗). (51)

For the sparse signal model described by (40), H is defined by (42) with yi replaced by Y
and the expectation over Y is w.r.t. a mixture of two Gaussians: N (0, 1/β) with weight
(1 +ma)/2, and N (0, σ2 + 1/β) with weight (1−ma)/2.

The solution to

E{tanh2(f ′(m) +H)} = 1− 1

f ′′(m)
(52)

is known as a critical point, beyond which the solution to (47) ceases to be a local maximum
and it becomes a local minimum. The dominant m∗ must jump elsewhere. Also, as we vary
one of the other parameters of the model, it might happen that the global maximum jumps
from one local maximum to another.

5.5.2 Special Case with Quadratic Exponent

In the case where f is quadratic6 in m, i.e.,

f(m) = am+ bm2/2. (53)

This is similar though not identical to the random–field Curie-Weiss model (RFCW model)
of spin systems7 (cf. e.g., [2] and references therein). Eq. (47) becomes

m = E{tanh(bm+ a+H)},
6A quadratic model can be thought of as consisting of the first few terms of the Taylor expansion of a

smooth function f .
7There is a certain difference in the sense that in the RFCW {Hi} are i.i.d., whereas here each Hi depends

on the corresponding µi because the variance of yi depends on whether µi = −1 or µi = +1. Also as a
result, {Hi} here are not i.i.d. because they depend on each other via the dependence between {µi}. These
differences are not crucial, however.
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similarly as in the mean field model with a random field [2]. Eq. (52) for the critical point
satisfies

E{tanh2(bm+ a+H)} = 1− (1/b). (54)

To demonstrate that the global maximum might jump from one local maximum to
another, consider the quadratic case and assume that β and σ2 are so small that the
fluctuations in H can be neglected. Equation (47) can then be approximated by

m = tanh(bm+ a),

which is actually the same the equation of the magnetization as in the Curie–Weiss model
(a.k.a. the mean field model or the infinite–range model) of spin arrays (cf. e.g., [22, Sect.
4.2], [1, Chap. 3], [14, Sect. 4.5.1]), which is actually a special case of the above with Hi ≡ 0
for all i. For a = 0 and b > 1, this equation has two symmetric non–zero solutions ±m0,
which both dominate the partition function. If a 6= 0 but small, then the symmetry is
broken, and there is only one dominant solution which is about m0 sgn(a). To approximate
m0 for the case where |a| is small and b is only slightly larger than 1, one can use the Taylor
expansion of the function tanh(·) (as is customarily done in the theory of the infinite range
Ising model; see e.g., [22, p. 188, eqs. (4.21a), (4.21b)]) and get

m ≈ bm+ a− (bm+ a)3

3
.

Neglecting the contribution of a, we get a simple quadratic equation whose solutions are
±m0 with m0 =

1
b

√

3(1− 1/b). Thus, for small values of |a| and b− 1,

m∗ ≈ m0 · sgn(a),

and so, m∗ jumps between +m0 and −m0 as a crosses the origin. Similarly, for a = 0, m∗

jumps from zero to +m0 or −m0 as b passes the value b = 1 while increasing.
By (51), the asymptotic normalized mutual information of this model is given by

lim
n→∞

I(X;Y )

n
= −1

2
+

1

4
ln(1 + q) +

β(1 + q/2)

2(1 + q)

[

1 +ma

2
· 1
β
+

1−ma

2

(

σ2 +
1

β

)]

+H2

(

1 +ma

2

)

+ f(ma) + ψ(m∗)

= −1

2
+

1

4
ln(1 + q) +

1 + q/2

2(1 + q)

(

1 +
1−ma

2
· q
)

+H2

(

1 +ma

2

)

+ ama +
bm2

a

2
−E{ln[2 cosh(bm∗ + a+H)]} + b(m∗)2

2
. (55)

In this special case of quadratic exponent, the Hubbard-Stratonovich transformation can be
used to obtain an alternative, more straightforward derivation of the mutual information
result (55). The details are provided in Appendix 5.5.3.

The MMSE is equal to twice the derivative of (55) w.r.t. β. Note that the dominant
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value m∗ is dependent on β. In Appendix 5.5.3, we carry out the calculation and obtain

lim
n→∞

mmse(X |Y )

n

=
σ2q

2(1 + q)2
+

(1−ma)σ
2

2

[

1− q(1 + q/2)

(1 + q)2

]

+
1 +ma

2

[

Cov0{Y 2, ln[2 cosh(bm∗ + a+H)]} +E0{H ′ tanh(bm∗ + a+H)}
]

+
1−ma

2

[

1

(1 + q)2
· Cov1{Y 2, ln[2 cosh(bm∗ + a+H)]}+E1{H ′ tanh(bm∗ + a+H)}

]

(56)

where H ′ is defined by

H ′ = − σ2

2(1 + q)
+

q(q + 2)

2(1 + q)2
· Y 2 (57)

which is in fact the derivative of (42) w.r.t. β. To ease understanding of the MMSE, we
evaluate its value in two extreme cases in Appendix 5.5.3.

5.5.3 Discussion

Returning now to the general expression of the MMSE, it is reasonable to expect that at the
critical points, where m∗ jumps from one solution of eq. (47) to another as the parameters
of the model vary, the MMSE may also undergo an abrupt change, and so the MMSE may
be discontinuous (w.r.t. these parameters) at these points. A related abrupt change takes
place also in the response of the MMSE estimator itself at the critical points: Note that
m∗ is the dominant magnetization a–posteriori. Thus, as m∗ jumps, say, from m∗ = m1

to m∗ = m2, the conditional mean estimator, which is a weighted average of {x}, transfers
most of the weight from a set of x–vectors whose binary support vectors {s} correspond
to magnetization m1, into another set of x–vectors supported by {s} with magnetization
m2. It is not surprising then that this abrupt change in the response of the estimator is
accompanied by a corresponding sudden drop in the MMSE.

It is instructive to compare the type of the phase transition in our example to those of
the ordinary Curie–Weiss model. In the Curie-Weiss model, we have:

• A first order phase transition w.r.t. the magnetic field (below the critical temperature),
i.e., the first derivative of the free energy w.r.t. the magnetic field (which is exactly
the magnetization) is discontinuous (at the point of zero field).

• A second order phase transition w.r.t. temperature, i.e., the first derivative of the free
energy w.r.t. temperature (which is related to the internal energy) is continuous, but
the second derivative (which is related to the specific heat) is not.

Here, on the other hand, in physics terms, what we observe is a first order phase transition
w.r.t. temperature. The reason for this discrepancy is that in our model, the dependency
of the free energy on temperature is introduced via the variables {hi} that play the role of
magnetic fields.

In case of quadratic exponent (53), b = 0 corresponds to the special case of i.i.d. {Si}.
In this case, our problem is analogous to a system of non-interacting particles, where of
course, no phase transitions can exist. Therefore, what we learn from statistical physics
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here is that phase transitions in the MMSE estimator cannot be a property of the sparsity
alone (because sparsity may be present also for the i.i.d. case with P{Si = 1} small), but
rather a property of strong dependency between {Si}, whether it comes with sparsity or
not.
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Appendix A – Estimation of Sparse Signals: The Dominant

Magnetization

For the time being let us assume that Hi, i = 1, . . . , n take on values from a discrete set
{h1, . . . , hK}, where of the n variables, qkn of them taking the value of hk. The sum in (46)
can be rewritten as

∑

µ

exp

{

nf(m(µ)) +
K
∑

k=1

hk

qkn
∑

i=1

µki

}

(58)

where we relabel µi as µki with i = 1, . . . , qkn for each k. The expectation on the r.h.s. of
(46) can be viewed as an integral

2n
∫ 1

−1
· · ·
∫ 1

−1
exp

{

nf(m) +

K
∑

k=1

hk(qkn)mk

}

N( dm1, · · · , dmK) (59)

whereN is a probability measure proportional to the number of sequences µ with 1
qkn

∑qkn
i=1 µki ≈

mk. Here m =
∑K

k=1 qkmk. For µ uniformly randomly chosen from ±1 sequences, the prob-
ability measure satisfies large deviations property, the rate function (or entropy) of which
is obtained as (using the Legendre-Fenchel transform)8

I(m1, . . . ,mK) =
K
∑

k=1

qk

(

log 2−H2

(

1 +mk

2

))

. (61)

Not surprisingly, the rate function achieves its maximum at mk = 0, k = 1, . . . ,K, where
the number of ±1’s in each subsequence µki, i = 1, . . . , qkn is balanced. Due to large
deviations property, the integral (59) is dominated by unique values of mk, k = 1, . . . ,K.

8By Cramér’s theorem [11, Theorem II.4.1], the probability measure of the empirical mean 1

n
Xi of i.i.d.

random variables Xi satisfy, as n→ ∞, the large deviations property with some rate function I(m). The rate
of the probability measure is given by the Legendre-Fenchel transform of the cumulant generating function
(logarithm of the moment generating function) [4,11]:

I(m) = sup
η

h

ηm− logE
n

eηX
oi

. (60)

It is straightforward to generalize to the product measure of the means of subgroups of i.i.d. random variables.
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Specifically, we use Varadhan’s Theorem [4,11] to obtain9

1

n
log

∫

· · ·
∫

exp

{

nf(m) +

K
∑

k=1

hk(qkn)mk

}

N( dm1, . . . , dmk)

→ sup
m1,...,mK∈[−1,1]

{

f(m) +

K
∑

k=1

hkqkmk − I(m1, . . . ,mK)

}

= 2−n · sup
m1,...,mK∈[−1,1]

ψ(m1, . . . ,mK) (63)

where we use (61) and define

ψ(m1, . . . ,mK)
△
= f

(

K
∑

k=1

qkmk

)

+

K
∑

k=1

hkqkmk +

K
∑

k=1

qkH2

(

1 +mk

2

)

. (64)

The maximum of ψ is achieved by an internal point in (−1, 1)K . This is because H2 is
concave with infinite derivative at the boundary mk = ±1, whereas the derivative of f is
finite by assumption. Because the function ψ is twice differentiable, at its maximum, the
gradient of ψ w.r.t. every mk should be equal to 0, whereas the Hessian of ψ should be
negative definite. It can be shown by taking derivative of ψ w.r.t. mk that zero gradient is
achieved by setting

mk = tanh

(

f ′

(

K
∑

l=1

qlml

)

+ hk

)

(65)

for all k, so that

m =

K
∑

k=1

qk tanh
(

f ′(m) + hk
)

. (66)

The Hessian of ψ is determined by noting that

∂2ψ

∂mk∂ml
= qkqlf

′′(m)− qk
δk,l

1−m2
k

(67)

where δk,l is equal to 1 if k = l and equal to 0 otherwise. The Hessian is negative definite
if and only if

(

K
∑

k=1

qkxk

)2

f ′′(m) ≤
K
∑

k=1

qk
x2k

1−m2
k

(68)

for all xk ∈ IR, k = 1, . . . ,K, which is equivalent to

f ′′(m) ≤ min
x1,...,xK

∑K
k=1 qkx

2
k/(1−m2

k)
(

∑K
k=1 qkxk

)2 . (69)

9The Varadhan’s Theorem basically states that, if the sequence of probability measures Nn on IR satisfies
large deviations property with rate function I(m), and that F is continuous and upper bounded on IR, then

lim
n→∞

1

n
log

Z

IR

exp{F (m)}Nn( dm) = sup
m

{F (m)− I(m)} . (62)

The result can also be generalized to multiple dimensions.
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Using Lagrange multiplier, the minimum on the r.h.s. of (69) is obtained as 1−∑K
k=1 qkm

2
k.

Further, by (65), the condition (69) reduces to

f ′′(m) ≤ 1

1−∑K
k=1 qk tanh

2(f ′(m) + hk)
. (70)

In other words, a solution of (65) is a local maximum of ψ if and only if it also satisfies
(70). In multiple such solutions exist, the global supremum is identified by comparing the
corresponding values of ψ.

In the limit n → ∞, the requirement that Hi take discrete values is not necessary (the
continuous distribution can be regarded as the limit of a degenerate discrete one). Using
(66) and (70), the dominant magnetization m∗ satisfy (47) and (48) for general distribution
of H. This can be made precise by formulating a variational problem.

We also note an alternative technique for evaluating the free energy (46) using Fourier
transform and saddle point method, which is standard in statistical mechanics (often with-
out rigorous justification). Usage of this technique in information theory can be found in
e.g., [23].

Appendix B – Estimation of Sparse Signals: An Alternative

Derivation of (55)

In case of quadratic exponent (53), the partition function (45) can be written using the
Hubbard–Stratonovich transformation as

∑

µ

P (µ)e
P

i µihi = Cn
∑

µ

exp

{

a
∑

i

µi +
∑

i

µihi +
b

2n

(

∑

i

µi

)2
}

= Cn

√

nb

2π

∫ ∞

−∞
dm exp

{

−nbm
2

2

}

∑

µ

exp

{

a
∑

i

µi +
∑

i

µihi + bm
∑

i

µi

}

= Cn

√

nb

2π

∫ ∞

−∞
dm exp

{

−nbm
2

2

} n
∏

i=1

[2 cosh (a+ bm+ hi)]

= Cn

√

nb

2π

∫ ∞

−∞
dm exp

{

n

[

− bm2

2
+

1

n

n
∑

i=1

ln[2 cosh(a+ bm+ hi)]

]

}

.

(71)

Thus, we have − ln Ẑ ≈ nminm ψ(m) − lnCn, where ψ is defined by (50), whose minimum
is attained at m∗ = m∗(β), one of the solutions to the equation m = E{tanh(bm+ a+H},
as before.10 The mutual information is then obtained as (55).

Appendix C – Estimation of Sparse Signals: The MMSE

The MMSE is equal to twice the derivative of (55) w.r.t. β. We will denote hereafter Hi as
given by (42) with yi replaced by Yi and H = (H1, . . . ,Hn). Let us present the asymptotic
MMSE per sample, limn→∞mmse(X|Y )/n, as A+B, where A is the double derivative of

10The function ψ(m) is (within a factor of the inverse temperature) identified with the Landau free energy
function for this problem [22, p. 186, eq. (4.15a)], [14, Sect. 4.6].
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the first three terms, and B is the contribution of the other terms. The easy part is the
former:

A =
σ2q

2(1 + q)2
+

(1−ma)σ
2

2

[

1− q(1 + q/2)

(1 + q)2

]

.

As for B, we have the following consideration: The first three terms depend only on ma,
which in turn is independent of β, therefore their derivatives w.r.t. β all vanish. For the
last two terms, pertaining to ψ(m∗), it proves useful to return to the original expression of
the Gaussian integral (71), i.e.,

B = − 2

n

∂

∂β
E{ln Ẑ(β|H)}

= − 2

n

∂

∂β
E

{

ln

∫ ∞

−∞

dν√
2π

exp

{

n

[

−(ν − a)2

2b
+

1

n

n
∑

i=1

ln[2 cosh(ν + hi)]

]}}

= − 2

n

∂

∂β

∫

IRn

dyPβ(y) ln

∫ ∞

−∞
dm exp

{

n

[

−bm
2

2
+

1

n

n
∑

i=1

ln[2 cosh(bm+ a+ hi)]

]}

= − 2

n

∫

IRn
dy
∂Pβ(y)

∂β
ln

∫ ∞

−∞
dm exp

{

n

[

−bm
2

2
+

1

n

n
∑

i=1

ln[2 cosh(bm+ a+ hi)]

]}

− 2

n

∫

IRn

dyPβ(y)
∂

∂β
ln

∫ ∞

−∞
dm exp

{

n

[

−bm
2

2
+

1

n

n
∑

i=1

ln[2 cosh(bm+ a+ hi)]

]}

△
= B1 +B2. (72)

Now, Pβ(y) is the mixture of Gaussians weighted by {P (µ)}}, where the dominant µ–
configurations are those with (1 +ma)/2 (+1)’s and (1 −ma)/2 (−1)’s. Each such config-
uration contributes the same quantity to B1 and B2, because for every given such µ, the
random variables {Yi} (and hence also {Hi}) are all independent, a fraction (1 +ma)/2 of
them are N (0, 1/β) and the remaining fraction of (1−ma)/2 are N (0, σ2+1/β). Thus, it is

sufficient to confine attention to one such sequence, call it µ∗, whose first n1
△
= n(1−ma)/2

components are all −1 and last n− n1 = n(1 +ma)/2 components are all +1. Thus,

B1 ≈ − 2

n

∫

IRn

dy
∂Pβ(y|µ∗)

∂β
ln

∫ ∞

−∞
dm exp

{

n

[

−bm
2

2
+

1

n

n
∑

i=1

ln[2 cosh(bm+ a+ hi)]

]}

≈ 1

n
Cov

{

n1
∑

i=1

Y 2
i +

1

(1 + q)2

n
∑

i=n1+1

Y 2
i ,

n
∑

i=1

ln[2 cosh(bm∗ + a+Hi)]

}

=
1 +ma

2
· Cov0{Y 2, ln[2 cosh(bm∗ + a+H)]}

+
1−ma

2
· 1

(1 + q)2
· Cov1{Y 2, ln[2 cosh(bm∗ + a+H)]}. (73)
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where Covs{·, ·} denotes covariance with respect to N (0, σ2s + 1/β), s = 0, 1. Finally, for
B2, we have:

B2 = − 2

n

∫

IRn
dyPβ(y)

∂

∂β
ln

∫ ∞

−∞
dm exp

{

n

[

−bm
2

2
+

1

n

n
∑

i=1

ln[2 cosh(bm+ a+ hi)]

]}

=
1

n

∫

IRn

dyPβ(y) ·
∫∞
−∞ dm [

∑

i h
′
i tanh(bm+ a+ hi)] e

−nψ(m)

∫∞
−∞ dme−nψ(m)

≈ E

{

1

n

n
∑

i=1

H ′
i tanh(bm

∗ + a+Hi)

}

≈ 1 +ma

2
·E0{H ′ tanh(bm∗ + a+H)}+ 1−ma

2
·E1{H ′ tanh(bm∗ + a+H)}, (74)

where Es denotes expectation w.r.t. N (0, σ2s+1/β), s = 0, 1, and H ′ is given by (57), and
correspondingly, h′i and H ′

i are given by the same formula with Y replaced by yi and Y ′
i

respectively. Collecting all terms, A, B1, and B2, we have (56).

Appendix D – Estimation of Sparse Signals: Two Extreme

Cases

Two extreme cases, where it is relatively easy to examine the resulting expression are as
follows:

• When b ≫ 1 and a ≪ −1, we have ma ≈ −1 and m∗ ≈ −1 (which means that most
si = 1), and so we can approximate

ln[2 cosh(bm∗ + a+H)] ≈ ln[2 cosh(−b+ a+H)] ≈ b− a−H

and tanh(bm∗ + a+H) ≈ −1, and we get

lim
n→∞

MMSE(X |Y )

n
≈ σ2

1 + q
,

the classical Wiener expression, as expected.11

• When b≫ 1 and a≫ 1, we have ma ≈ 1 and m∗ ≈ 1 (which means that most si = 0),
and then ln[2 cosh(bm∗ + a+H)] ≈ b+ a+H and tanh(bm∗ + a+H) ≈ 1, so we get

lim
n→∞

MMSE(X|Y )

n
≈ 1−ma

2
· σ2,

which means the conditional–mean estimator simply outputs essentially the all–zero
sequence without attempting to detect (explicitly or implicitly) which of the few signal
components are active. The intuition behind this behavior is that when there are so
few active components of the clean signal, then even if there are nevertheless a few
observations {yi} with large absolute values (and hence could have been suspected

11Here, by limn→∞ MMSE(X |Y )/n ≈ F (a, b, β, σ2), for a generic function F , we mean that
lima→−∞ limb→∞ limn→∞ nF (a, b, β, σ2)/MMSE(X |Y ) = 1. A similar comment applies to item number
2 below.
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to stem from places where si = 1), it is still more plausible for the estimator to
“assume” that they simply belong to the tail of N (0, 1/β) (with si = 0) rather than
to N (0, σ2 + 1/β) with si = 1. This because the prior for si = 1 is so small that it
becomes comparable to the tail probability of N (0, 1/β).12
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