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Lossy Source Compression Using Low-Density
Generator Matrix Codes: Analysis and Algorithms

Martin J. Wainwright, Elitza Maneva, and Emin Martinian

Abstract—We study the use of low-density generator matrix
(LDGM) codes for lossy compression of the Bernoulli symmetric
source. First, we establish rigorous upper bounds on the average
distortion achieved by check-regular ensemble of LDGM codes
under optimal minimum distance source encoding. These bounds
establish that the average distortion using such bounded degree
families rapidly approaches the Shannon limit as the degrees are
increased. Second, we propose a family of message-passing algo-
rithms, ranging from the standard belief propagation algorithm
at one extreme to a variant of survey propagation algorithm at the
other. When combined with a decimation subroutine and applied
to LDGM codes with suitably irregular degree distributions, we
show that such a message-passing/decimation algorithm yields
distortion very close to the Shannon rate-distortion bound for the
binary symmetric source.

Index Terms—Lossy source coding, graphical codes, low-den-
sity generator matrix (LDGM) codes, satisfiability prob-
lems, MAX-XORSAT, message-passing, belief propagation,
sum-product, survey propagation.

I. INTRODUCTION

LARGE class of codes, including turbo codes [3] and

low-density parity check (LDPC) codes [17], are most
naturally represented as factor graphs [44], [23]. When the de-
grees are bounded independently of blocklength, these graphs
are known to be “locally treelike”, meaning that the length of
the typical cycle scales logarithmically in the blocklength [42].
This structure makes such codes ideally suited to approximate
decoding using algorithms and relaxations known to be exact
on trees, such as the sum-sinproduct algorithm [23], [25], or
tree-based linear programming relaxations [13]. Indeed, the past
decade has witnessed a flurry of research, and current under-
standing of such graphical codes and message-passing algo-
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rithms for channel coding is now relatively mature [42], [26],
[41], [5]. A related line of research [18], [43] has shown that
good channel codes, such LDPC codes and turbo codes, can be
leveraged for problems of lossless compression, including the
Slepian-Wolf problem. In contrast, for problems of lossy source
coding, there remain a variety of open questions and issues as-
sociated with the use of sparse graph codes and associated mes-
sage-passing algorithms.

The idea of using linear codes for lossy compression of
discrete sources is a classical one. The dissertation work of
Goblick [19] shows that the rate-distortion bound for binary
sources under Hamming distortion can be achieved using linear
codes. Viterbi and Omura [45] derive bounds on the distor-
tion achievable using trellis codes, applicable to memoryless
sources and bounded distortion measures, and show that the
obtained distortion approaches the Shannon limit as the trellis
constraint length increases. This trellis-based approach was
extended by forming the duals of trellis-coded modulation
schemes, yielding the approach of trellis-coded quantization
[28]. The advantage of all these trellis constructions is that
exact encoding and decoding can be performed using the
max-product or Viterbi algorithm [25], with complexity that
grows linearly in the trellis length but exponentially in the
constraint length. However, saturating rate-distortion bounds
requires increasing the trellis constraint length [45], which
incurs exponential complexity (even for the max-product or
sum-product message-passing algorithms). Other work [33]
shows that it is possible to approach the binary rate-distortion
bound using LDPC-like codes, albeit with degrees that grow
logarithmically with the blocklength.

The focus of this paper is the use of low-density generator
matrix (LDGM) codes for lossy compression problems. As
the dual of an LDPC code, any LDGM code shares a similar
representation in terms of a sparse factor graph, making it
amenable to efficient message-passing algorithms. There is
now an on-going line of work on the use of LDGM codes for
lossy data compression. Martinian and Yedidia [32] studied
the binary erasure quantization, a special compression problem
dual to binary erasure channel coding, and showed that LDGM
codes combined with modified message-passing can saturate
the associated rate-distortion bound. In other work, various re-
searchers [6], [7], [39], [38] have used heuristic techniques from
statistical physics, including the cavity and replica methods,
to provide non-rigorous analyses of LDGM rate-distortion
performance for the binary symmetric source. In the special
case of zero-distortion, these calculations have been made
rigorous by several independent groups [10], [35], [8], [12].
Other researchers have proposed message-passing schemes,
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including modified forms of belief propagation [38] and vari-
ants of survey propagation [6], [7], for performing lossy data
compression using either linear codes or non-linear variants.

This paper makes two distinct but complementary contribu-
tions to the current understanding of LDGM codes for lossy
compression. The first contribution is of a theoretical nature:
we provide a rigorous analysis of the effective rate-distortion
performance of random ensembles of LDGM codes for the
Bernoulli symmetric source. These analytical results estab-
lish that LDGM rate-distortion performance under optimal
encoding rapidly approaches the Shannon limit as the degrees
are increased, and thus validate the use of these codes for lossy
compression. Although the current paper focuses purely on the
symmetric Bernoulli source, our techniques—namely, analysis
over random ensembles using moment methods—have broader
applicability to lossy compression of more general discrete and
continuous sources. Our second contribution is of a practical
nature: we develop a family of message-passing algorithms
for computationally efficient source encoding, including both
a form of survey propagation [36], [34] at one extreme and
standard belief propagation [40], [23] at the other extreme. As
with application of survey propagation to solving satisfiability
problems, we combine these message-passing updates with a
sequence of decimation steps, in which subsets of variables
are set and the problem is reduced. By using LDGM codes
with suitably designed degree distributions, we obtain prac-
tical results extremely close to the Shannon rate-distortion
function for the symmetric Bernoulli source; to the best of our
knowledge, these results are the best reported thus far in the
literature. Since portions of this research were first published
in conference form [46], [29], other work has followed up and
extended some of our results. Martinian and Wainwright [30],
[31], [47] have studied the use of compound constructions, in
which an LDGM code is concatenated with an LDPC code,
for both lossy compression and binning. Gupta and Verdu [21]
have used similar analysis techniques (moment methods) to
study the performance of a novel non-linear scheme for lossy
compression. Using the algorithms proposed here, Fridrich
and Filler [16] have achieved state-of-the-art results in binary
steganography; subsequent work by Filler [14] has studied the
effects of algorithmic parameters on the rate-distortion perfor-
mance, and used density-evolution-based methods to compare
LDGM degree distributions. Whereas this paper provides
achievability results for lossy compression via LDGM codes,
other researchers have derived lower bounds on the distortion
performance of LDGM codes. These inachievability results
include lower bounds by Dimakis et al. [11], [48] for random
ensembles, and by Kudekar and Urbanke [24] for specific
codes.

The remainder of this paper is organized as follows. Section II
contains background material on lossy source coding and low-
density generator matrix codes. In Section III, we state and then
prove our theoretical results on the effective rate-distortion per-
formance of the class of LDGM codes. In Section IV, we de-
scribe a class of message-passing algorithms for performing
source encoding, and illustrate their practical rate-distortion per-
formance. We conclude the paper with a discussion and future
directions in Section V.
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II. BACKGROUND

In this section, we provide relevant background material on
the problem of lossy source coding, and low-density generator
matrix codes.

A. Lossy Coding of Bernoulli Sources

In this paper, we consider the problem of compressing the
symmetric Bernoulli source, in which the source sequence S =
(S1,-..,Sn) consists of independent and identically distributed
(i.i.d.) fair coin tosses (i.e., each S; is Bernoulli with parameter
%). Effective coding techniques for solving this binary compres-
sion problem, though a very special case, serve as a building
block for tackling compression of more complex sources. The
problem of lossy compression is to represent each source se-
quence S € {0,1}" by some codeword in a code C of size
much smaller than the total number of strings—that is, with
|C| < 2™. More concretely, one can achieve a given compres-
sion rate £ = ™ by mapping each n-bit source sequence to
a binary string z € {0,1}™. This stored sequence z then de-
fines a reconstructed source sequence S (z), where the source
decoding map z — S(z) depends on the nature of the code con-
struction. (For instance, when using low-density generator ma-
trix codes as in the sequel, this source decoding map is simply
matrix multiplication). The quality of the reconstruction is mea-
sured in terms of some distortion metric d : {0,1} x {0,1} —
R;. The natural metric for the symmetric Bernoulli source is
Hamming distortion, meaning that the distortion is given by
d(S(z),S) = Y1, |Si — Si(2)|. The optimal source encoder
seeks to minimize this distortion, and so searches the code-
book to find the minimum distance encoding—namely, 2 :=
arg min, d(S(z), S). Classical rate-distortion theory [9] speci-
fies the optimal trade-offs between the compression rate R and
the best achievable average distortion D = E[d(S, S)], where
the expectation is taken over the random source sequences S.
For the symmetric Bernoulli source with Hamming distortion,
it is well known [9] that the rate-distortion function is given by

1_H<D)7

R(D) = {07 if D € [0,0.5)

otherwise.

ey

Here H : [0, 1] — Ry is the binary entropy function, defined as

H(t) := —tlog(t) — (1 —t)log(1l —t) 2)
forall ¢t € (0,1), and H(0) = H(1) = 0 by continuous exten-
sion. See Fig. 1(a) for a plot of the rate-distortion function (1).

B. Low-Density Generator Matrix (LDGM) Codes

m

A binary linear code C of rate & =  corresponds to
an m-dimensional linear subspace of the Boolean hypercube
{0,1}", and can be represented by a generator matrix, say
G € {0,1}™*™. In this generator representation, each code-
word © € C belongs to the range space of GG, and so can
be written in the form z = Gz, for a suitable sequence of
information bits z € {0,1}". Here all arithmetic (addition and
multiplication) is performed in modulo two. Presuming that
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Fig. 1. (a) Plot of rate-distortion function R(D) = 1 — H(D) for the symmetric Bernoulli source. (b) Factor graph representation of low-density generator
matrix (LDGM) code. In the top row, a series of n checks (represented by square nodes) are each connected to a source bit (represented by a gray circular node).
The checks also connect to a set of 1 information bits (represented by white circles) in the bottom row. The illustrated code has n = 12 and m = 9 for design

rate R = 0.75, and regular check degree 7. = 3 and bit degree v, = 4.

G is full rank, the code C then consists of 2" possible n-bit
strings, and so has rate R = %

The structure of a given generator matrix G can be captured
by its factor graph [23], which is a bipartite graph in which cir-
cular nodes represent code bits z; (or rows of GG), and square
nodes represent the information bits (or columns of ). For
instance, Fig. 1(b) shows a binary linear code of blocklength
n = 12 and m = 9 information bits, represented in factor graph
form by its generator matrix G € {0, 1}12%9, with an overall
rate of R = 3/4. The degrees of the check and variable nodes in
the factor graph are v. = 3 and =, = 4, respectively, so that the
associated generator matrix G has three “1”’s in each row, and
four “1”s in each column. When the generator matrix is sparse
in this sense, we refer to the resulting code as a low-density gen-
erator matrix code (or LDGM code for short).

In this paper, we focus on a commonly studied random en-
semble of LDGM codes [10], [35], [8], [12] known as the check-
regular ensemble with degree +y., and denoted by LDGM(~.).
A random code in this ensemble is formed by having each check
j € {1,...,m} choose independently a subset of 7. distinct in-
formation bits to which it then connects with edges. Note that
this procedure results in a graph in which every check has degree
exactly 7., and the variable degrees have a random (asymptoti-
cally Poisson) distribution.

III. UPPER BOUNDS ON LDGM RATE-DISTORTION

In this section, we analyze the rate-distortion performance
of random ensembles of LDGM codes under optimal encoding,
more specifically obtaining upper bounds on the rate-distortion
performance of the check-regular ensemble of LDGM codes.
Alternatively phrased, this result can be viewed as an upper
bound on the average ground state energy of the “p-spin” model
in statistical physics [35], or in computer science terminology
as an upper bound on the average value of a random MAX-
XORSAT problem.

To state the problem more precisely, for any fixed code C,
the optimal source encoder outputs the codeword that minimizes

the Hamming distortion to the (random) source sequence S, a
quantity referred to as the minimum distance (MD) codeword

(€)

X := argmin ||z — S||1.
zeC

The optimal encoder thereby achieves the (rescaled) Hamming
distortion

_ 1 -

dn(S,C) := EHX —S||1- “
Of interest is the rescaled average distortion E[d,, (S, C)], where
the average is taken over the symmetric Bernoulli source se-

quence S.

A. Statement and Some Consequences

Our main result provides an upper bound on the minimal rate
R required to achieve average distortion D using a code drawn
from the check-regular LDGM ensemble. In order to state this
result, we require a few definitions. For each ¢ € (0, %] and
D € [0, 3), define the function F(¢; D) via

inf H(u) — H(D log[(1 — t) exp(A) + ¢

+(1 —u)log[(1 —t) + texp(A)] — AD}. (5)
In Appendix E, we prove that there always exists a unique so-
lution to the saddle-point problem defining F’, so that this func-
tion is well-defined. In practice, this saddle-point problem can
be solved by a variety of standard optimization methods [4];
in the work reported here, we have exploited the fact that for
any fixed u, the minimization in A can be carried out exactly in
closed form (see Appendix E for details).

With these definitions, we have the following result on the
effective-rate distortion function of the check-regular ensemble
of LDGM codes.
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Fig. 2. (a) Upper bounds on the effective rate-distortion function of LDGM codes with fixed check degree .. Each curve shows the rate-distortion trade-off for a
different choice of the degree .. All pairs (R, D) above the plotted curve are guaranteed to be achievable. (b) Dependence of the upper bound on the check degree
v, for distortion D = 0.11, corresponding to a (Shannon) rate R = 0.5. Note how the required rate rapidly approaches the Shannon limit as the degree increases.

Theorem I: Define the function §*(v;y.) == 3 [1 — (1 —
2v)7e]. Then for any pair (R, D) satisfying the inequality

1— H(D)+ F(8*(w;v.), D)
1— H(w)

(6)

there exists an integer NV such that for all blocklengths n > N,
we have 2EcEs[d,(S,C)] < D.

Although the theorem statement is in terms of a doubly-aver-
aged distortion (over both the source sequence S and the random
code ensemble), we can also conclude that there exists a fixed
code C of suitably large blocklength n from the LDGM (v,)
ensemble with distortion LE[d,(S,C)] < D. Fig. 2(a) pro-
vides an illustration: each curve in the plot corresponds to a
different choice of degree ~., and traces the boundary of the re-
gion of achievable (R, D) pairs guaranteed by Theorem 1. All
(R, D) pairs above this curve are guaranteed to be achievable
using a fixed LDGM code with the specified check degree. Of
course, no code can achieve (R, D) pairs below the Shannon
curve R(D) = 1— H (D) also plotted in the figure. Note how the
effective rate-distortion functions of the LDGM () ensemble
approach the Shannon bound as the check degree ~. increases.
Fig. 2(b) provides a more explicit illustration of the convergence
to the Shannon bound: for a target distortion D =~ 0.11, it il-
lustrates how the required rate approaches the Shannon bound
R(0.11) =~ 0.5 as a function of the LDGM check degree. Note
that any difference is no longer visible on the plot for check de-
gree 7. > 10.

A special case of Theorem 1 is for D = 0, in which case
the rate-distortion problem reduces to the XORSAT problem
studied in theoretical computer science, namely the problem of
determining whether a given set of n parity checks (i.e., XOR
constraints) over a set of m variables has a solution, known as
being satisfiable. For the check-regular constructions that we
have defined, the XORSAT threshold a*(.) corresponds to
the maximum fraction n/m for which a randomly constructed
XORSAT problem is satisfiable with high probability.

In this case, we recover as a corollary a known lower bound on
the XORSAT threshold, previously established using a different
analysis by Creignou et al. [10].

Corollary 1: The XORSAT threshold o*(v.) is lower
bounded as

a*(e) 2 1/{

where 6*(wj;v.) was defined in Theorem 1.

max
we[o, %]

1 4 log[1 — 6" (w; )]
= H(w) } M

In subsequent work, several researchers [35], [8], [12] deter-
mined the XORSAT threshold exactly, thereby showing that the
bound (7), though not tight for small degrees (e.g., 7. = 3),
becomes extremely accurate for larger degrees. The bound (6)
from Theorem 1, applicable to the full range of distortions D €
[0, %], also exhibits a similar phenomenon. Indeed, as illustrated
in Fig. 2(b), Theorem 1 provides a rigorous guarantee that the
compression rate required to achieve D* =~ (.11 rapidly ap-
proaches the Shannon lower bound of R = 0.50 as the check
degrees are increased. This rapid convergence is consistent with
non-rigorous analysis based on the replica method [6].

B. Proof of Theorem 1

Having stated and discussed Theorem 1, we begin with a
high-level overview of its proof. The rate-distortion statement
in this theorem concerns the expected value of the random vari-
able

d,(S,C): L, S 8

n(8,€) = — min|lz — S, ®)

corresponding to the (renormalized) minimum Hamming

distance from a random source sequence S € {0,1}" to the

nearest codeword in the code C. In informal terms, Theorem 1

states that for pairs (R, D) satisfying inequality (6), we have
Es,cldn(S,C)] < D for sufficiently large n.

The following lemma, proved in Appendix A, guarantees that
the random variable d,, (S, C) is sharply concentrated around its
expected value.
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Lemma 1: Forall e > 0,
P[|dn(S,C) — E[dn(S,C)]| > €] < 2exp(—ne?).  (9)

In this statement, the expectation and probability are taken
both over the random source sequence and the random code.
As a consequence of Lemma 1, for any target distortion
D such that D = E[d,(S,C)] + € for some ¢ > 0, the
probability P[d,(S,C) < D] must decay exponentially
quickly in the blocklength n. Therefore, in order to prove that
Eld.(S,C)] < D, it suffices to show that

! log Pld

1nf
n—) oo

lim .(S,C) < D] > 0. (10)

In order to establish a lower bound of this form (10), it is
equivalent to analyze the number of codewords that achieve a
target distortion D € [0, 1). For a given LDGM code with N =
2R codewords, leti = 0, 1,2, ..., N — 1 be indices for the dif-
ferent codewords, with 2 = 0 reserved for the all-zeroes code-
word. We then set the indicator random variable Z*(D) = 1 if
if the Hamming distance || X® @ S||; is at most Dn, and define
the random variable

N-1

=2 7D

that counts the number of codewords that are distortion D-good
for a source sequence S. Note that P[T,,(S,C; D) > 0] =

Pld.(S,C) < D] so that it suffices to establish a bound on
P[T,, > 0] of the form (10).

1) Bounds via Second Moment Method: Our tool for estab-
lishing the lower bound is the second moment method, a stan-
dard tool in probabilistic combinatorics [2], [1], [12], [35] that
asserts!for any non-negative random variable 7,

(E[7,.))°
E[T.°]

T, =T,(S,C; D) (1D

PT, > 0] > (12)

In order to apply this bound, we need to compute (or bound)
the first and second moments of 7},. Beginning with the first
moment, we claim that

E[T,] < 2"R-(—=HD)] (13)

where < denotes equality up to subexponential factors. Indeed,
by linearity of expectation, we have

onR_q

> P[Z(D)=1]=2""P[2°(D) = 1]

=0

E[T,] =

where we have used symmetry of the code construction to assert
that P[Z/(D) = 1] = P[Z°(D) = 1] for all indices i. Now
the event {Z°(D) = 1} is equivalent to an i.i.d Bernoulli(})
sequence of length n having Hamming weight less than or equal
to Dn. Using standard asymptotics of binomial coefficients (see

IThe second-moment bound follows by applying the Cauchy-Schwarz in-
equality [20] to T, and the indicator function I[T, > 0] as follows:

(E[T])* = (E[TWI[T% > 0]])? < E[TW°]E[1’[T, > 0]]
=E[T,*] P[T.. > 0.
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Appendix C), we have L log P[Z°(D) = 1] = 1—H(D)=+o0(1),
as claimed.

The second step is to upper bound the second moment
E[T,,%(D)]. for which purpose the following lemma, proved in
Appendix D, is useful. Recall that we have reserved the index

7 = 0 for the all-zeros codeword.

Lemma 2: The second moment E[T;,%(D)] is upper bounded

1+ P[Z9(D)

J#0

as

E[T.(D)] =1]2%D)=1]

(14)

Based on this lemma, we see that the key quantity to con-
trol is P[Z9(D) = 1 | Z%D) = 1]—corresponding to
the probability that codeword X7 is distortion D-optimal
(Z3(D) = 1) given that the all zeros-word is distortion
D-optimal (Z°(D) = 1). It is this overlap probability that
differentiates the low-density codes of interest here from
the unstructured codebooks used in classical random coding
arguments. In the latter case, codewords are chosen indepen-
dently from some ensemble, so that the overlap probability
is simply equal to P[Z7(D) = 1]. Thus, for the simple case
of unstructured random coding, the second moment bound
actually provides the converse to Shannon’s rate-distortion
theorem for the symmetric Bernoulli source. In contrast, for a
low-density graphical code, the dependence between the events
{Z3(D) = 1} and {Z°(D) = 1} requires some analysis.

2) Analysis of Overlap Probability: We now define for each
w € [0,1] the probability

Q(w; D) := P[[| X (w) @ S[ly < Dn | ||S[ly < Dn]  (15)

where the quantity X (w) € {0, 1}™ denotes a randomly chosen
codeword, conditioned on its underlying length-m informa-
tion sequence having Hamming weight [wm]. As shown in
Appendix B (see Lemma 4), the random codeword X (w) has
i.i.d. Bernoulli elements with parameter

5 (wine) = 51~ (1 - 20)]. (16)
With these definitions, we now break the sum on the RHS of
(14) into m terms, indexed by ¢ = 1,2,..., m, where term ¢
represents the contribution of a given non-zero information se-
quence y € {0,1}™ with (Hamming) weight ¢. Doing so yields

S PIZi(D) Em: (?) Q(t/m; D)

j#0 t=1

=1|2%D)=1]=

m
where we have used the fact that there are ( ¢

sequences with ¢ ones. Using standard entropy bounds on this
binomial coefficient (see Appendix E), we have

Y PIZI(D)=1| Z°(D) =1]

70

) information

we[0,1]

g s o 110+ L s .

Consequently, we need upper bounds on the probability
Q(w; D) over the range of possible fractional weights
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Fig. 3. Plot of the upper bound (17) on the overlap probability * log @(w; D) for different choices of the degree 7., and distortion probabilities. (a) Distortion

D = 0.1100 corresponding to Shannon rate R(D) = 0.5

w € [0,1]. The following lemma, proved in Appendix E,
provides an asymptotically exact bound on this probability. It
is based on applying the Chernoff bound, and then optimizing
the exponent so as to obtain the large deviations rate function.

Lemma 3: For each w € [0, 1], we have

1
—log @(w; D) < F(8"(w;7e); D) + o(1) (17)
where for each ¢t € (0,3] and D € [0, 3), the function F' was
defined previously (5).

In general, for any fixed D € [0, 3), the function F(t; D)
has the following properties:

a) att = 0, it achieves its maximum value F'(0; D) = 0;

b) otherwise, it is strictly decreasing on the interval (0, %),

approaching its minimum value —[1 — H(D)] as t — 3.
Fig. 3 illustrates the form of the function F(6*(w;~.); D)
for two different values of distortion D, and for degrees
ve € {3,4,5}. Note that increasing the check degree . causes
F(6*(w;~.); D) to approach its minimum —[1 — H(D)] more
rapidly.

3) Computing Achievable (R, D) Pairs: We now have the
necessary ingredients to complete the proof of Theorem 1. Sub-
stituting the alternative form of E[7, %] from (14) into the second
moment lower bound (12) yields 77 := 1logP[T,,(D) > 0]
is lower bounded as

T > L log E[T,(D)]
n

—%log 1+ P[Z/(D)=1|2°D)=1]

i#0

. ~

~"
T

On one hand, we have

Clog EIT,(D)] = R~ (1~ H(D)) ~ of1)

. (b) Distortion D = 0.3160 corresponding to Shannon rate R(D) = 0.10.

On the other hand, we have

T, > - {mb (w) +1og Qws D)) o1

> — max (RH(w)+ F(6"(wi7:). D)} — o(1)
we

where the last step follows by applying the upper bound

on @ from Lemma 3, and the relation % = R. Re-

calling that liminf, ;. L1logP[T,(D) > 0] is equal to

liminf, 4o = log P[d,(S,C) < D], we conclude

mf
n—) oo

Jim 1 “10gPld,(5.€) < D] >0 (18)

for all rate-distortion pairs (R, D) satisfying the inequality
R—(1-H(D))

— max {RH(w) + F(6*(w; "),

19
we(0,1] (19)

D)} > 0.
A little bit of algebra shows that condition (19) is equivalent
to condition (6) in the statement of Theorem 1. Finally, by the
argument following Lemma 1, condition (18) implies the claim
of Theorem 1.

IV. MESSAGE-PASSING ALGORITHMS FOR LOSSY SOURCE
ENCODING

We now turn to the development of practical message-passing
algorithms for performing lossy compression using low-density
generator matrix codes. Like their LDPC counterparts, an at-
tractive feature of LDGM codes is their “locally treelike” na-
ture [41], meaning that with high probability, the neighborhood
around any node will not contain any cycles of length smaller
O(logn). Consequently, codes are naturally suited to iterative
message-passing algorithms. Given a fixed LDGM code and a
randomly chosen source sequence S, the most naive approach
would be to perform encoding by applying the sum-product al-
gorithm to a given LDGM code. Unfortunately, this approach
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typically fails: even if the updates converge, the approximate
marginals computed by sum-product typically provide little in-
formation about the optimal encoding, and the compression per-
formance is extremely poor. Moreover, in contrast to a channel
coding problem, a lossy source coding problem is typically char-
acterized by multiple optimal (or near-optimal) encodings. Ac-
cordingly, new approaches are required for solving the lossy
compression problem.

In this section, we describe message-passing algorithms for
lossy compression using LDGM codes. Our approach is inspired
by the success of the survey propagation algorithm [36], [34] for
solving random k-SAT problems. Indeed, performing source en-
coding using an LDGM code is equivalent to solving a related
type of satisfiability problem, known as the MAX-XORSAT
problem. Like survey propagation, our approach involves two
phases: 1) message-passing steps in which approximate mar-
ginal distributions are computed, and 2) decimation steps in
which subsets of variables are set to their preferred values. The
factor graph is then reduced by removing the set bits, and the
sequence of message-passing and decimation is repeated. As in
the work of Maneva et al. [27], we actually describe a family of
algorithms: it includes decimation based on belief propagation
at one extreme (BP-based decimation), and decimation based on
a variant of survey propagation at the other extreme (SP-based
decimation). This full range of algorithms can be obtained by
varying the parameters in a single family of Markov random
fields used to encode a set of generalized codewords.

More specifically, in the following sections, we begin by
defining a family of Markov random fields over generalized
codewords. The purpose of introducing such generalized code-
words is to distinguish between “forced” variables—variables
with a strong preference for some {0,1} value in the bulk
of near-optimal encodings—and free variables—those which
don’t exhibit any strong preferences. We then show that by
suitably augmenting the state space, our Markov random fields
can be captured by a factorization on the same factor graph
as the original graph. Finally, we show that despite the state
augmentation, the ordinary sum-product or belief propagation
algorithm, as applied to our MRFs, can be efficiently imple-
mented by passing only five numbers along each edge.

A. Markov Random Field Over Generalized Codewords

We begin by defining a family of Markov random fields over
generalized codewords of any LDGM code, whose purpose is to
represent partially assigned clusters of {0, 1}-variables. Gener-
alized codewords are members of the space {0, 1, *}"*™, where
the interpretation of z; = * is that the associated bit ¢ is free.
Conversely, any bit for which z; € {0, 1} is forced. One possible
view of a generalized codeword, as with the survey propagation
and k-SAT problems, is as an index for a cluster of ordinary
codewords.

1) Free and Forced Variables: For each check a, define its
information bit neighborhood

N(a):={i€{l,...,m} | (i,a) € E}. (20)
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0 1 *

Fig. 4. Illustration of a generalized codeword for a simple LDGM. Informa-
tion bits ¢ and j are both forced; for each, the forcing checks are a and b. The
remaining checks and bits are all free.

Similarly, for any bit index i, we use N (%) to denote the set of its
check neighbors. We then define two mutually exclusive states
for a check:
i) we say that check a is forcing whenever none of its
bit neighbors are free, and the local {0, 1}-codeword
(Ta; 2N(a)) € {0, 114N (@) satisfies parity check a;
ii) on the other hand, check a is free whenever z, = *, and
moreover z; = * for at least one 7 € N(a).
We shall interchangeably say that source bit x, is free (or
forced) whenever the associated check a is free (or forcing).
With this set-up, our space of generalized codewords is defined
as follows.

Definition 1 (Generalized Codeword): A vector (z,z) €
{0,1,%}"*t™ is a valid generalized codeword when the fol-
lowing conditions hold:

i) all checks a are either forcing or free, and

ii) if some information bit z; is forced (i.e., z; € {0,1}),
then at at least two check neighbors ¢ € N (i) must be
forcing it.

We use GC(G) to denote the set of all generalized codewords
defined by the generator matrix G.

For a generator matrix in which every information bit has
degree two or greater, it follows from the definition that any
ordinary codeword—or more precisely, any binary sequence
(z,2) € {0,1}"*™ such that z = Gz—is also a generalized
codeword. In addition, there are generalized codewords that in-
clude *’s in some positions, and hence do not correspond to or-
dinary codewords. One such (nontrivial) generalized codeword
is illustrated in Fig. 4.

2) Family of Probability Distributions: We now define a
family of probability distributions over generalized codewords.
For any generalized codeword (z, z) € {0,1,«}"*™, define

N;011($) =i e {l,...,n}|x; =}
NPy = |{i e {1,...,m} |z = *}|

2y
(22)

corresponding to the number of *-variables in the source and in-
formation bits, respectively. We associate nonnegative weights
Wsou and w;ngo With the x-variables in the source and informa-
tion bits respectively. Finally, let # > 0 be a parameter for pe-
nalizing disagreements between the source bits  and the given
(fixed) source sequence s. With these definitions, we consider
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the family of probability distributions over generalized code-

words of the form

Ninfo(z)
P(ﬂ?, %3 Wsous Winfo, /6) X Wingo

NEeu (1_)

X Wsou ~20dn (s,2)

(23)

where dg (s,z) = >« [s; @ x;] is the Hamming distance be-
tween the source sequence s and the reconstructed sequence .

The family is parameterized by the triplet (Wsou, Winfo, 3) Of
nonnegative reals, and variations of these parameters yield a
range of possible distributions. For instance, in the special case
Wsou = Winfo = 0, then any generalized codeword with a free
variable * receives weight 0, so that the distribution (23) assigns
positive mass only to ordinary codewords. For 3 large, any dis-
crepancies between the reconstructed sequence x and the ob-
served source sequence s incur strong penalty; conversely, as
[ — 0 these discrepancies are penalized less heavily.

3) Markov Representation: We now describe how the family
of probability distributions (23) can be represented as a Markov
random field (MRF) defined on the same factor graph. An im-
portant initial observation is that the validity of a generalized
codeword z € {0,1,*}" for a particular check ¢ cannot be
determined by looking only at variables in the extended check
neighborhood

N*(c):={x.}U{xi,i € N(c)}.

X exp

(24)

Rather, the validity of a generalized codeword with respect to
check ¢ depends also on all bit neighbors of checks that are
incident to bits in N(c), or more formally on bits with indices
in the set

U {7€{1,...m}|j € N(b) forsome b € N(i)}. (25)
1€N(a)
As a particular illustration, consider the trivial LDGM code
consisting of a single information bit connected to four checks
(and corresponding source bits). From Definition 1, it can be
seen that other than ordinary {0, 1} codewords, the only gen-
eralized codeword is the all-x configuration. Thus, any com-
patibility function at a for membership in the set of general-
ized codewords would assign zero mass to any other {0, 1, *}
configuration. Now suppose that this simple LDGM were em-
bedded within a larger LDGM code; an instance of this em-
bedding is provided by the information bit labeled 7 and corre-
sponding checks {a, b, d, f} in Fig. 4. With respect to the gen-
eralized codeword in this figure, we see that the local configu-
ration (2;, Tq, v, a, ) = (0,1,1, %, %) is valid, in sharp con-
trast to our considerations of the trivial LDGM code in isola-
tion. Hence, the constraints enforced by a given check change
depending on the larger context in which it is embedded.
Consequently, we need to keep track of the implications of
variables in the extended set (25). Accordingly, as in the work
of Maneva et al. [27] for SAT problems, for each information
bit index ¢ € {1,...,m}, we introduce a new variable P;, so
that the 2-vector (z;, P;) is associated with each bit. To define
P, first let P(i) = P(N(7)) denote the power set of all of the
clause neighbors N (%) of biti. (I.e., P(3) is the set of all subsets
of N (i), and has 2!V (*)| elements in total.) The variable P; takes
on subsets of N (i), and we decompose it as P, = PP U P},
where at any time at most one of P} and P} are non-empty. The
variable P; has the following decomposition andinterpretation:
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a) if P? = P! = (), then no checks are forcing bit z;;
b) if P, = Pi1 # (), then certain checks are forcing z; to be
one (so that necessarily z; = 1);
c) similarly, if P; = P? # {), then certain checks are forcing
x; to be zero (so that necessarily z; = 0).
By construction, this definition excludes the case that bit ¢ is
forced both by some subset of checks to be zero, and some other
subset to be one (i.e., we cannot have both P? and P} non-empty
at the same time). Thus, the total number of permissible states
associated with the random variable P; is 21V®| 4 2IN@] _
1 = 2INGI+L _ 1, where the subtraction of one is to avoid
double-counting the empty set (case (a)).

4) Compatibility Functions: We now specify a set of compat-
ibility functions to capture the Markov random field over gen-
eralized codewords.

a) Variable Compatibilities: For each information bit
index ¢, the associated compatibility function takes the form:
Yi(zi, Pi; Winfo)

1, ifzi=1 and |P|=1|P!>2
1, ifz=0 and |Pj|=|P°|>2  (26)
Winfo s if Z; = * and PL' = @

On the other hand, for each source bit index a, the associated
compatibility function ¢, (Z4; Wsou, B, S4) takes the form:

exp(f), ifz, =5,
exp(—p), ifz, # sa 27
Wsous if z, = *.

b) Check Compatibilities: For a given check a, the associ-
ated compatibility function 1/<"*¥ is constructed to ensure that
the local configuration (x N(a) zq) satisfies the local constraints
to be a generalized codeword. In particular, we require the fol-
lowing.

a) The configuration {z,} U zn(,) is valid for check a,
meaning that (i) either it includes no *’s, in which case
the pure {0, 1} configuration must be a local codeword;
or (ii) the associated source bit is free (i.e., z, = *), and
z; = * for at least one i € N (a).

b) For each index i € N(a), the following condition holds:
1) either a € P; and a forces z;, or 2) there holds a ¢ P;
and a does not force z;.

With the singleton and factor compatibilities as above, we

now define a probability distribution over the random vector

{(zi, Prie {1,....m}} J{(zasa e {1,...,n}}.

For any subset A, we introduce the notation Py := {P; | ¢ €
A}. We then define a Markov random field (MRF) on the orig-
inal factor graph in the following way:

ﬁ((z7 P7$; wsouvwinfovﬂv 8)

o H%‘(Zu Pi; Wino)

i=1

n
X H Ya(Ta; B, Wsou, Sa)
a=1

X H ql)ZheCk(ZN(a)v PN(a)7 xa)~

a=1

(28)
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T, =0 T, =1
[PP\{a}] > 1 [PP\{a}| > 1 [P \{a}| > 1 [PP\{a}| > 1
N NS
ZiZO ZjZO ZZ':l ZjZO
(@) (b)
Tg = * Tq = *
P, = [P\ {a}| >2 P=0 =0

1'2':0

Zj:* Zi =%

(©

(d)

zj=1 Zi = % zZj =%

(e

Fig. 5. Illustration of different settings for (2 n(a), x, ) for it to be a valid part of a generalized codeword. (a) Check a is forcing (z, = 0), so that each of z; and
z; must have at least one other forcing check in their neighborhood (| P?\{a}| > 1). (b) Analogous set-up with check « forcing with 2, = 1. (c) Check a is free
(o, = x). At least one of z; or z; must be free. Since z; = 0, it must be forced by at least two checks other than a (i.e., |[P?\{a}| > 2). (d) Similar set-up to
(c), in which z; = = is now free, and z; = 1 must be forced by at least two checks other than a (i.e., |P';\{a}| > 2). (¢) Check a is free, and both bits z; and

z; are also free. We must have P; = P; = 0.

Recall that N(a) denotes the set of neighbors of check a in
the factor graph. Moreover, the quantities (z, P, =) are random
variables, whereas the triplet (wsou, Winfo, ) € R> and the fixed
source sequence s € {0,1}" parameterize the model.

Proposition 1: When marginalized down to the (z, ) vari-
ables, the marginal P(z,x; wsou, Winfo, 3, s) of the Markov
random field (28) agrees with the weighted distribution (23).

Proof: The proof entails some book-keeping to keep
track of various terms. Let us fix some configuration (z,z) €
{0,1, 3™+ The product []"_; ¥5***(2x(a), PN(a), Ta) Of
check compatibility functions ensures that the string (z,x) is
locally consistent with respect to the checks. More specifically,
for each check a, there are two possibilities.

i) If z, # *, then we must have P, = {a}, a ¢ Pn(a),
and no * symbols in zx(q), and with (24, 2y (4)) a valid
local codeword. In this case, the variable compatibility
function v, contributes a factor of exp(—/03) if z, # Sa,
and a factor of exp(8) if z, = s,.

ii) If z, = *, then the check compatibility enforces the con-
straint P = (), and the variable compatibility v, con-
tributes a factor of wsoy.

Summarizing the contributions to the probability distribution
from the source compatibilities 1), and check compatibilities
heheck we see that they contribute a total weight of

H wsﬂ.[;:l:*] x H exp(—Bsa ® za])
a=1 a=1

X H exp(B[1 — 24 ® sa])

N2 ()

X Whoh —2Bdy (s,x) )

X exp

Finally, the product of information bit compatibilities v; en-
sures that any information bits from the configuration (z, )

with z;; € {0, 1} is forced by at least two checks. (If not, the con-
figuration is assigned a weight of zero). In the case that z; = %,
the probability distribution picks up a weight wjyg,. Overall, we
recover the weighting specified in (23).

B. Family of Belief Propagation Algorithms

One consequence of Proposition 1 is that the marginal dis-
tributions over information bits x; of the weighted distribution
(23) are equivalent to marginals of the Markov random field
(28), defined on the same factor graph as the original LDGM
code. When the LDGM degrees are bounded, such factor graphs
are well-known [41] to be “locally treelike”, so that it is rea-
sonable to seek approximations to the marginal distributions
P; = {P:(0),P;(1),P;(x)} in this extended MRF using the
usual sum-product message-passing updates. In this section, we
describe how these message-passing updates can nonetheless be
performed efficiently, despite some obstacles that are initially
present.

In our extended Markov random field, the random variable at
each information variable node ¢ is of the form (z;, P;), and be-
longs to the Cartesian product {0, 1, %} x [P(i) x {0,1}]. (To
clarify the additional {0, 1}, the variable P; = P? U P} corre-
sponds to a particular subset of P (i), but we also need to specify
whether P; = P? or P, = P}.) Since the cardinality of P()
can be large (i.e., exponential in the number of check neighbors
of a given bit), it might appear difficult to implement the mes-
sage-passing in an efficient manner. Fortunately, it turns out to
be necessary to keep track of only five numbers—regardless of
the number of check neighbors—in order to characterize a mes-
sage on any given edge (whether from check to bit or from bit
to check). These five cases are illustrated in Fig. 5, and defined
more formally as follows.
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M?, e wof TI bglieage) - TT e} (29)
beN(i)\{a} beN(i)\{a}
MY q/;i(l){ T [l +mie] - I M (29b)
beN(i)\{a} beN(i)\{a}
M, o~ w@f TI bgliempe]- TT M- > MY, I mm) @0
beN(i)\{a} beN(i)\{a} ceN(i)\{a} beN(i)\{a,c}
i, = e T betoeage] - T wmz- Y md, I mm) @9
beN(i)\{a} be N (i)\{a} ceN(i)\{a} beN(i)\{a,c}
My, — o ] M, (29)
beN (i)\{a}
Fig. 6. Messages from bits to checks.
1
0f of 1f 0f 1f
M~ < 5[ I gl +aml)+ ] (Mj—m_Mj—m)} (30a)
FEN (a)\{3} JEN(a)\{s}
1
1f of 1f 0f 1f
ML, — 5[ I o5, +m7)- 1] (Mj%—Mj%)} (30b)
FEN(a)\{i} JEN(a)\{i}
M. — I M, +mf, 40— [ M2+ M, (30c)
JEN (a)\ {4} JEN(a)\{i}
- Y M, JI 0 M.+ M (30d)
keN(a)\{i} JEN (a)\{i,k}
M, = M. (30¢)
i I g+, e - [ M2, + M), (30f)
JEN(a)\{i} JEN(a)\{i}

Fig. 7. Messages from checks to bits.

i) (z; = 0,a € P?): In this case, check a is forcing z; to be
equal to zero, so that we say that z; is a forced zero with
respect to a. We use the notation M/, 19 _f,a and Mgi ; for the
corresponding bit-to-check and check-to-bit messages. In
Fig. 5(a), both z; and z; are forced zeros with respect to
a.
(2s = 1,a € P}'): Similarly in this case, check a is
forcing z; to be equal to one, so that we say that z; is
a forced one with respect to a, and denote the corre-
sponding messages with Milia and M (11 in For instance,
in Fig. 5(b), z; is a forced one with respect to a.
(zi = 0,0 # P? C F(i)\{a}): Some subset of checks
not including a is forcing z; = 0, in which case we say
that z; is a weak zero with respect to check a. In this
case, the messages are denoted by M, and M?% .. In
Fig. 5(c), z; is a weak zero with respect to a.
(221,00 # P} C F(i)\{a}): Similarly, some subset of
checks not including a forces z; = 1, in which case
we say that z; is a weak one with respect to check a,
and use the corresponding messages M, and M!¥ .
In Fig. 5(d), z; is a weak one with respect to a.
(zi = %, P} = P? = {)): No checks force bit z;; as-
sociated messages are denoted by M, and M . In
Fig. 5(e), both z; and z; are free, and not forced by any
check.
With these definitions, it is straightforward (but requiring some

calculation) to derive the BP message-passing updates as ap-

iif)

plied to the generalized MRF, as shown in Figs. 6 and 7. In
these equations, we think of applying the bit-to-check updates
to both information bits (for j € {1,...,m}), and source bits
(for a € {1,...,n}). In both cases, we simply specify the bit
by a generic index . When ¢ indexes a source bit (say a), the
message updates are trivial, since the source bit simply relays
the information in its compatibility function v, to its associated
check. The quantities v;(1) and 1;(0) are shorthand for values
of the full compatibility function (1/),; for information bits, and
1), for source bits). Finally, the parameter w*; is equal to winfo
for an information bit, and ws,,, for a source bit. See Appendix F
for a detailed derivation of these message-passing updates.

1) Computation of Pseudomarginals: We are now equipped
with update rules for the sum-product algorithm, as applied to
the extended Markov random field (28), for computing approx-
imations to the marginal distributions over the information bits.
Assuming that the message updates converge, the sum-product
pseudomarginals (i.e., approximations to the true marginal dis-
tributions) are calculated as follows:

pi0) o< () T [ Mo+ magy]
a€N (i)
= IT Mz - > m2 I mpe,
a€EN (i) beEN (i) a€N (i)\{b}
(31a)
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pi) o) $ T [MoZi+ M)
a€N(i)
- I wemi- > Ml [T ek
a€N(i) bEN (i) a€N(i)\{b}
(31b)
pi(x) cw®s [ M 3lo)

a€N (i)
See Appendix G for a derivation of the form of these pseudo-
marginals. The overall triplet is normalized to sum to one.

2) Decimation Procedure: As with the survey propagation
algorithm applied to satisfiability problems [36], [27], we use
the pseudomarginals computed by sum-product as an engine to
drive a sequence of decimation steps. More specifically, we use
a form of hard decimation in which a fraction of information
bits are set to their preferred binary values after each round of
message-passing, according to the following procedure:

1) Run the message-passing algorithm until convergence (up
to a pre-specified tolerance), and compute the pseudo-
marginals according to (31).

2) Set a subset of information bits based on their biases. B; :=
|:(1) = 12;(0)]. In particular, we rank order the biases by
their absolute value, and set a fraction « of the information
bits to their preferred value

= 1, ifB; >0
%=1 0,

if B; <0.
3) Simplify the resulting code as follows:

a) remove all hard-set information bits z; from the graph,
and remove all checks not connected to information
bits;

b) while there exists any check b with less than two infor-
mation bit neighbors, do the following recursively: for
check b connected to information bit z;, set z; = sy,
and remove check b and bit 7 from the graph.

4) Return to step 1) until all information bits have been set.

C. Experimental Results

In this section, we report the results of various experiments
that we have conducted. We have applied a C-based imple-
mentation of our message-passing and decimation algorithm
to LDGM codes with blocklengths ranging from n = 256 to
n = 100000 source bits. In all experiments reported here, we
generated LDGM codes by forming the duals of “good” LDPC
codes. (This choice, though heuristic, is not unreasonable given
the rigorous connection between channel decoding over the
binary erasure channel using LDPC codes, and source encoding
in the binary erasure quantization problem using LDGM codes
[32].) We found empirical performance to be best using LDGM
codes with irregular degree distributions, such as the degree
distributions that emerge from optimization based on density
evolution [41], optimized for the binary symmetric channel.
In contrast, for regular LDGM codes (e.g., a rate R = 0.5
code with constant check degree 3 and bit degree 6), the mes-
sage-passing algorithm fails to build up appreciable biases until
a large number of bits have been set to their preferred values.
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As noted by a reviewer, a specific important question is to gain
a deeper understanding of the degree distributions to which the
message-passing and decimation approach are well-suited. In
our experiments, we found empirically that a certain fraction
of degree two checks were necessary for the message-passing
steps to build up appreciable biases. (If decimation decisions
are made on the basis of weak biases, then they are likely to
be unreliable and lead to poor source encoding.) Intuitively,
as with belief propagation over the erasure channel, having a
reasonable fraction of degree two checks ensures that deci-
mation successively produces checks with degree one, which
will be highly biased. We note that the LDGM codes that we
used, as the duals of good LDPC codes, do indeed have a
significant fraction of degree two checks. Currently, we do not
have a good understanding of the minimum fraction required
for the problem of lossy source coding, in contrast to the case
of channel coding.

We have described a family of message-passing/decimation
algorithms, parameterized by the pair (wsou, Winfo), Which
range from BP-based decimation (wson = Winto = 0), to
various forms of message-passing on generalized codewords
(Wsou, Winfo > 0). Here we report some representative results
with wgo, = exp(0.10) and wi,g, = exp(0.05), which in our
experiments yielded stable message-passing and good source
encoding performance. We also parameterized the decimation
procedure using two additional parameters: in each decimation
round, we set all bits with biases above a threshold ¢, up to a
maximum percentage of p € [0, 1] bits. In practice, we observed
that our algorithm required a constant number of decimation
rounds to terminate; since each round of message-passing re-
quires O(n) operations, the algorithm runs in O(n) time. In the
implementation given here, the algorithm requires about two
minutes for a problem with blocklength n = 10 000; however,
our implementation is inefficient, and could be substantially
accelerated. In practice, for any fixed blocklength n, the param-
eters ¢t and p can have a substantial effect on running time, and
we explore the resulting trade-offs with distortion performance
below. We refer the interested reader to follow-up work by
Filler and Fridrich [14], [15], which includes a thorough set of
experimental results for a wide range of parameter settings and
decimation schemes.

In Fig. 8(a), we plot the empirical rate-distortion performance
of codes with blocklengths n = 10 000, over a range of rates.
As the rate varied, we varied the parameter S—controlling the
degree of fidelity to the source sequence—from 3 = 1.45 for
rate R = 0.90 down to 8 = 0.65 for rate R = 0.30. Intu-
itively, one expects such a monotonic relationship between (3
and R, since codes of higher rate should be able to match a
higher number of the source bits (lower distortion).2 In each
round of each trial, we set all information bits with biases above
the threshold ¢ = 0.70, up to a maximum percentage p = 0.05
of the total number of bits. Each diamond plotted in the figure
represents (for a fixed rate) the average distortion over 15 trials.
Note that the performance is already very close to the Shannon

2Note, however, that we do not have any formal justification for setting 3.
We note that work by Ciliberti ef al. [6], [7] has suggested that 3 should be
chosen based a Legendre transformation linking “complexity” to rate; we refer
the reader to these papers for more details.
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Rate-distortion performance
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Fig. 8. Plot of rate versus distortion, comparing the Shannon limit (solid line) and empirical performance using LDGM codes with blocklength » = 10 000. Each

diamond is the average distortion over 15 trials.

Distortion versus blocklength (rate R = 0.5)
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Fig. 9. (a) Plot of distortion versus blocklength n, for fixed rate R = 0.5, with blocklengths ranging from n = 256 to n = 60 000. Performance is mediocre for
blocklengths less than » = 1000. At blocklength n = 10 000, the achieved distortion D is roughly 0.115 and decreases more slowly towards the Shannon limit
as blocklength is further increased. (b) Plots of distortion versus the aggressiveness of the decimation procedure, as controlled by the cut-off parameter ¢ on the

required bias for a bit to be set.

rate-distortion bound (lower curve), even for intermediate block
length n = 10 000.

In the next set of experiments, we explored how (for a fixed
rate) the distortion performance varies as we changed code pa-
rameters such as the blocklength n, and algorithmic parame-
ters. In Fig. 9(a), we fix the rate R = 0.50, and plot the distor-
tion over blocklengths ranging from n = 256 to n = 60 000,
using the same algorithmic parameters as before. The distortion
decreases to its minimum of d ~ 0.1128 for n = 60 000, in
comparison to the ultimate Shannon limit d* = 0.11. As noted
above, the aggressiveness of the decimation procedure can be
controlled by the threshold ¢ on the minimum bias required be-
fore setting bits. Fig. 9(b) shows plots of the distortion versus

the threshold ¢, with lower values of ¢ corresponding to a more
aggressive decimation procedure. These plots correspond to a
fixed code of rate R = 0.50 and blocklength n = 1600; in each
round of decimation, we set all bits with biases above ¢, up to a
maximum percentage of p = 0.20 of bits. The obtained distor-
tion decreases monotonically as ¢ is increased corresponding to
a more conservative procedure; beyond the threshold ¢ =~ 0.70,
there appear to be limited gains to being even more conservative
in decimation. There is about a five-fold increase in computa-
tion time in moving from ¢ = 0.45 to t = 0.70.

Last, we compare the results obtained by message-passing
and decimation with LDGM codes to the results of trellis-coded
quantization [28], where the lossy source encoding problem can
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Distortion versus trellis memory
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Fig. 10. Plots of distortion D versus the constraint length (memory) in trellis-
coded quantization. Trellis codes were taken from the paper [28]; for each given
constraint length, we performed 10 trials with a block length n. = 10 000.

be solved using the Viterbi algorithm on the associated trellis
code. In this case, improved distortion performance is obtained
by increasing the constraint length or memory of the trellis code,
as opposed to the blocklength for LDGM codes; note that the
computational complexity of the Viterbi algorithm scales ex-
ponentially in the trellis memory. Fig. 10 shows results for the
trellis-coded quantization (TCQ) method, using rate R = 0.50
trellis codes taken from the paper [28]; the plots show the ob-
tained distortion, averaged over 10 trials with blocklength n =
100 000, for a sequence of constraint lengths (¢ = 2,3,...,8).
The obtained distortion decreases monotonically until it appears
to saturate at constraint length £ = 7, where D =~ 0.125. This
performance is similar to that obtained in Fig. 9 for LDGM
codes with blocklengths n = 1600, and the empirical running
time of the TCQ method (in our current implementations) is
faster. However, we were unable to find trellis codes that achieve
distortion substantially below D =~ 0.12 for rate R = 0.50
codes, as do our LDGM codes with blocklength n = 10 000
in Fig. 8. One might be able to do so with more refined searches
for trellis parameters, or by increasing the constraint length;
however, we note that increasing the constraint length incurs an
exponential penalty in running time, so that constraint lengths
much beyond ¢ = 8 are not feasible.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have studied the use of low-density gener-
ator matrix (LDGM) codes for lossy source encoding. On the
theoretical side, we established rigorous upper bounds on the
distortion performance of these codes under optimal minimum
distance encoding. This analysis establishes that the rate-distor-
tion tradeoff achievable by these codes rapidly approaches the
Shannon limit as the check degrees are increased. On the prac-
tical side, we proposed a family of message-passing algorithms,
ranging from ordinary belief propagation over codewords to
a variant of survey propagation. Such message-passing algo-
rithms can be combined with decimation steps in order to per-
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form effective yet practical source encoding, as we illustrated
via empirical simulations.

Our work suggests a number of open questions for future re-
search. First, although the current paper has only analyzed the
performance of the check-regular ensemble of LDGM codes, it
should be possible to extend our moment analysis technique to
more general ensembles of codes. Second, it remains to gain the-
oretical understanding of the message-passing/decimation algo-
rithms proposed in this paper and other work [36], [27], [6],
[7]. Analysis of message-passing combined with decimation ap-
pears challenging, since the act of decimation introduces statis-
tical dependencies that invalidate the standard assumptions un-
derlying standard methods like density evolution. Accordingly,
an important research direction is to explore alternative methods
for analyzing algorithms that involve some form of decimation.
Third, although the current paper focused only on the Bernoulli
symmetric source, it should be possible to apply similar con-
structions and techniques for lossy source encoding of other dis-
crete and continuous sources.

APPENDIX |

A. Proof of Lemma 1

Our proof exploits the standard vertex-exposure martingale
[37] in order to establish that the random variable d,, (S, C) is
sharply concentrated around its expectation. Consider a fixed
sequential labelling {1,...,n} of LDGM checks, with checks
7 associated with source bit .S;. We reveal the check and asso-
ciated source bit in a sequential manner for each: = 1,...,n,

and so define a sequence of random variables {Ug, Uy, ..., U, }
via Uy := E[d,(S,C)], and

Ui :=E[dn(5,C) | S1,..., 8], (32)

Note that we have U,, = d,(S,C) by construction. More-
over, this sequence satisfies the following bounded difference
property: adding any source bit .S; and the associated check in
moving from U;_; to U; can lead to a (renormalized) change in
the minimum distortion of at most ¢; = 1/n. Consequently, by
applying Azuma’s inequality [2], we have, for any ¢ > 0

1=1,...,n.

P[|dn(S,C) — E[dn(S,C)]| > €] < exp(—ne?).  (33)

B. Basic Property of LDGM Codes

For a given weight w € (0,1), suppose that we enforce
that the information sequence y € {0,1}™ has exactly [wm]
ones. Conditioned on this event, we can then consider the set
of all codewords X (w) € {0,1}", where we randomize over
low-density generator matrices GG chosen as in step (a) above.
Note for any fixed code, X (w) is simply some codeword, but
becomes a random variable when we imagine choosing the gen-
erator matrix GG randomly. The following lemma characterizes
this distribution as a function of the weight w and the LDGM
top degree 7.:

Lemma 4: Given a binary vector y € {0,1}™ with a frac-
tion w of ones, the distribution of the random LDGM codeword
X (w) induced by y is an i.i.d. Bernoulli sequence with param-
eter 6*(w;ve) = 3 [1 — (1 — 2w)].
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Proof: Given a fixed sequence y € {0, 1} with a fraction

w ones, the random codeword bit X;(w) at bit ¢ is formed by

connecting . edges to the set of information bits.3 Each edge

acts as an i.i.d. Bernoulli variable with parameter w, so that we
can write

Xiw)y=VieVad...

oV, (34)

where each V, ~ Ber(w) is independent and identically dis-
tributed. A straightforward calculation using z-transforms (see
[17]) or Fourier transforms over GF(2) yields that X;(w) is
Bernoulli with parameter 6*(w; .) as defined.

C. Bounds on Binomial Coefficients

The following bounds on binomial coefficients are standard
(see [9, Ch. 12]); for any positive integer n and all integers k
log(n+1) 1

such that 1 < k < n, we have
k k
mn mn mn k n

where H(+) is the binary entropy function (see (2)).

D. Proof of Lemma 2

First, by the definition of T,.(D), we have
N—-1N—

D) =Y. Y Z(0)70)
=1 7=0
[T+ > Y PIZY(D) =1, Z/(D) = 1.
i=0 j#i

To simplify the second term on the RHS, we first note that for

any i.i.d Bernoulli(3) sequence S € {0,1}" and any code-

word X7, the binary sequence S’ := S @ X7 is also i.i.d.

Bernoulh( ). Consequently, for each pair ¢ # j, the probability
= [P’[Z‘(D) =1, Z3(D) = 1] takes the form

p=P[IX’® S| < Dn, | X? ® S|l < Dn]
= P[|X?® §'|l; < Dn,|IX7 & §'||s < Dn]
=P[||X'® X7 @ S||1 < Dn,||S|l1 < Dn].
Note that for each j # i, the vector X @ X7 is a non-zero
codeword. For each fixed ¢, summing over j # ¢ can be recast

as summing over all non-zero codewords, so that the sum s =
>z PIZ2°(D) = 1, Z7(D) = 1] takes the form

i

=Y > PlIX'® X7 @ S|l < Dn,||S|lx < Dn]
i=0 j#i

N—
= Z > P[|X* @ S|l < Dn, ||S|l1 < Dn]
i=0 k#0

"R CPIIX* @ S|l < D, |||l < Dn

k#0
=2""P[2°(D) =1]> P[Z"(D) =1 | 2°(D) = 1]
k#£0

3In principle, our procedure allows two different edges to choose the same
information bit, but the probability of such double-edges is asymptotically neg-
ligible.
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= E[T.] ) P[Z*(D) =1 | Z2°(D)]

k#0
thus establishing the claim.

E. Proof of Lemma 3

We reformulate the probability Q(w, D) as follows. Recall
that @ involves conditioning the source sequence S on the event
IS]l1 < Dn. Accordingly, we define a discrete variable T' with

distribution
n
t

. =2 (")

representing the (random) number of “1”s in the source se-
quence S. Let U; and V; denote Bernoulli random variables with
parameters 1 — 6*(w; 7..) and 6*(w; ..) respectively. With this
set-up, conditioned on codeword j having a fraction wn ones,
the quantity Q(w, D) is equivalent to the probability that the
random variable

—_— {Zz Ui+ 5

fort =0,1,...,Dn

T >1

if7'=0 (36)

Yia Vi

is less than Dn. To bound this probability, we use a Chernoff
bound in the form

1 log P[W < Dn] < inf (llog My () — /\D> (37)
n A0\ N

where My (A) = E[exp(AW)] is the moment generating func-
tion. Taking conditional expectations and using independence,
we have

Dn
M (3) = 3 _PIT = My (L] My ()]~
t=0
Here the cumulant generating functions have the form
logMy (A) = log[(1 — §)e* + 6], and (38a)
log My (A) = log[(1 — 6) + 6e*] (38b)

where we have used (and will continue to use) § as a shorthand
for 6*(w;e).

Of interest to us is the exponential behavior of this expression
in n. Using the standard entropy approximations to the binomial
coefficient (see Appendix C), we have the bound My (A) <
f(n) ZtD:% g(t), where f(n) is a polynomial function, and

4(#) = exp [n {H (%) ~ H(D)
+%logMU()\) + <1 _ _> logMV()\)}] . (39)

Further analyzing this sum, the quantity X log ZtD: " g(t) is
upper bounded by

1 | 1 D
U e logg(t) + 20 | Tox(nD)
n 0<t<Dn n n
1
= 5 ozx, ogg(t) +o(1).
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The quantity 73 := £ maxo<¢<pn log g(t) is upper bounded by
7 (L) - D)+ LiogMu(n)
0<1<Dn n n 8V

<1 — —> IOg M‘/(A)}
and hence by the problem

max {H( ) — H(D) + ulogMy(\) +

s (1 - u) logMy (A)}.

Combining this upper bound on X log My (A) with the Chernoff
bound (37) yields that

1 P[W < Dn] < inf G(u, A6 40
ogP[ n] ;gOMQg%] (u, A;6) +0(1)  (40)
where the function G takes the form
H(u) — H(D) + ulogMy(A) + (1 — u) logMy (X)) — AD.

Finally, we establish that the solution (u*, A*) to the min-max
saddle point problem (40) is unique, and specified by uv* = D
and \* as in Lemma 3. First of all, observe that for any § €
(0,1), the function G is continuous, strictly concave in u and
strictly convex in A. (The strict concavity follows since H (u) is
strictly concave with the remaining terms linear; the strict con-
vexity follows since cumulant generating functions are strictly
convex.) Therefore, for any fixed A < 0, the maximum over
u € [0,D] is always achieved. On the other hand, for any
D >0,ue[0,D]and § € (0, 3), we have G(u; \;t) — +00
as A — —o0, so that the 1nﬁmum is either achieved at some
A* < 0,or at A* = 0. Thus far, using standard saddle point
theory [22], we have established the existence and uniqueness
of the saddle point solution (u*, A*).

To verify the fixed point conditions, we compute partial
derivatives in order to find the saddle point. First, considering
u, we compute

%
ou

1-
(u, A5 6) = log —— + log My (A) — log My-(A)

L log[(1 — 6)e* + 6]
- log[(l —8) + de?].
Solving the g—f (u, A; 6) = 0 yields the condition

, exp(A) 1

~ 1+exp()) (1=8)+ 1+ exp()\)5

log

(41)

which is always non-negative. If in addition ' < D, then it is
optimal; otherwise, the optimum is achieved at u = D.

Turning now to the minimization over A, we compute the par-
tial derivative to find

oG (1 —8)exp(A)
xS = e Oy 6
PR L L) Y

(1 —=106)+ dexp(A)
Setting this partial derivative to zero yields a quadratic equation
in exp(\) with coefficients

a=68(1-6)(1-D) (42a)
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b=u(l—06)*+ (1 —u)s?
c=—D6§(1—0).

— D[8* +

(1 —6)%]. (42b)

(42¢)

Since we need exp(A) > 0 for all A, we must take the unique
positive root of this quadratic equation.

FE. Detailed Derivation of Message Updates

1) Updating Messages From Bit to Check: We first the de-
tailed form of the message updates from bit to check.
a) Force-Zero Message: Suppose that bit ¢ want to send
a a force zero message. Since we necessarily have z; = 0 if a
is forcing i, there should be a pre-factor ;(0) corresponding
to the weight assigned to z; = 0. Second, the messages from
all other checks b € N(i),b # a should be either force zero
or weak zero messages, with at least one force zero message
coming from a check in N(i)\{a}, and we should sum over
all possible partitions into the two message types. Using the
binomial formula, this reasoning leads to

I1

beN(i)\{a}

M

b—1

M7

1—a

= 1i(0) + M }

b—1

- H Mb—>7

beN(i)\{a}
b) Force-One Message: Completely analogous reasoning
yields

(43)

z—)a - 1/17( )

II

beN(i)\{a}

|:Mb—>z + Mb—>7:|

- H Mb—>7
beN(i)\{a}

c) Weak-Zero Message: Now consider the case of 4
sending a a weak zero message. In this case, the only way
for z; = 0 is for z; to be forced by 2 checks b € N(i)\{a}.
(Recall that by definition ¢ can send a weak message only if a
is not forcing ¢.) Thus, we need to exclude the case of all one
messages from neighbors b € N (i)\{a}. These considerations

lead to the following sum:
ME, =wi0) > [[MY
SCN(i)\{a},|S[>2b€S

(44)

1—a b—)L

beSe

Using the binomial formula, we can write

MLOLDG, = qﬁl(o) H M}?i; Mb—)Li|
bEN(i)\{a}
- H Mb—>1 Z M?iq H Mb—>L
bEN (i)\{a} ceN(@)\{a} beN (i)\{a,c)

(45)

d) Weak-One Message: The equation for a weak one is
entirely analogous:

le

e = 1i(0)

I1

beN(i)\{a}

[Ml?iz + Mb—>7:|
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MY .

c—1

_ H ]\/[b_>Z _

beN(i)\{a}

>

ce€N(i)\{a}

H Mb—)z
beN(i)\{a,c}
(46)

e) All x Message: Finally, for bit < to send a *-message, it
must receive all * messages from its other bit neighbors:

beN(i)\{a}

* R
ML—»a =W

(47)

2) Updating Messages From Checks to Bits: For each check
a, let C(a) be the associated set of local codewords

C(a) = {ZN(a)

a) Strong-0/1 Messages: Check a will send bit ¢ a force
zero message only for configurations that are valid local code-
words with z; = 0, which yields

€ {0, 1}N@I| check a satisfied}.  (48)

M

a—1i

] (1—2;) I:Mjliﬂ} (z5)

>, I

{z€C(a)| =0} jEN ()\ {3}

0

Jj—a

(49)
Similar reasoning yields the update for the force one message:
M, iz is updated to
(1=z5) (z5)
of 1f
S (]t ]

{z€C(a)|z:=1} jeN(a)\{i}
(50)

As in the ordinary sum-product algorithm for LDPC codes,
these summations can be simplified considerably via the use
of the fast Fourier transform over GF(2). Given a function f:
{0,1} — C, recall that its Fourier transform f = F(f) is a
function f : {0,1} — C is given by

_JFO)+f(1) ify=0
#0 = {0 H) 2
Moreover, we have the inverse relationship F’ -1 ( f ) = f, where
ifxr=20

ifrz=1

N N

L [ M)+ FL
(1)) {[f<0> i),

Let us index the set N (a)\{i} by elements {1,...,d} and de-
fine f;(x;) = [M]Of,a](1 i )[M]_,a]<z i) foreachj =1,...,d.
With this notation, we can write the summation defining M 2 il
as a convolution

MY = (fi* fax--- % fa) (0)
d
=7 114
=1
N i
- LI A0+ 1140
7=1 7=1
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where we have used the Fourier relation between convolution

and products. For each 7 = 1,...,d, we have
: MY+ M, ity =0
fly) = of 1f .
M~ — M~ ify=1

Thus, from (51), the strong-0 message M, 0f

a—1i

d d
1 H of 1f H of
5 (M]—nl + Mj—)g.) + (MJ—>a
=1

j=1

is updated to

M2 )| 6D

A similar equation holds for the strong-1 update

d d
1
1f _ of 1f 0f M
Ma—»i - 5 H (Mj—uz + M_]—)a) H (Mj—uz - ]—)d)
7j=1 7j=1

(52)

b) Weak-0/1 Messages: To send a weak zero message, the
check a must have at least two stars among N (a)\{7}, and the
remaining variables can send either weak one or weak zero mes-
sages, which yields

>, M.

SCN(a)\{i}.|s|>2 j€S

MO’LU _

a—i

[T [, +a27,] .
JES®

Using the binomial formula, we find that M2 is equal to
I .+ M, + Mg,
JEN (a)\{i}
- H [M}ﬂa + Mjoza]
JEN(a)\{i}
- Z MZ:‘—)a H I:M]lga M_;),L—Unl] °
keN(a)\{i} JEN(a)\{i,k}

MOu)

a—1*

The weak one message update is identical M, =

c) All « Message: Finally, for check a to send a x-message,
it must receive at least one other *, and the other messages can

be weak ones or zeros, so that M_,, is equal to
1w Ow
Z H _]—>(1 H M]—>a + M_]—)(z] . (53)

SCN(a)\{i},|S|>1j€s jESe

Again using the binomial formula, we rewrite this update as

I [+ g, 4+ 0, ]
JEN@\(3)

M*

a—1i

- I [+ M52, 54

JEN(a)\{7}

G. Formulae for Pseudomarginals

Finally, we derive the equations for pseudomarginals in our
Markov random field. First, a variable z; can be equal to zero
if and only if at least two neighbors are sending it strong zero
messages, and the remaining neighbors are sending weak zero

messages. Thus, we have
pi(0) < i(0) Y [T 11
a€S a€sSe

SCN(i),|S=2

MOu)

a—1
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= 9;(0) H [M(?iL + M(?ii:|
aEN(i)

SRV R
bEN(4) a€N@@\{b}
where the second equality follows from the binomial formula.
The expression for p;(1) is entirely analogous

ZOESONED SR | RV | A

SCN(i),|S|>2  a€S a€se

- II M=

a€N(7)

(55)

=) T [MaLs+ )]
a€N (i)
a H M,®; ~ Z Mbliz H M,
a€N (i) bEN (i) a€N()\{b}

(56)

Finally, the only term contributing to y; () is when all incoming
messages are .

i (%) o w*; H M;_,.
a€N()

(57
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