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We develop a theory for finding quantum error correction (QEC) procedures which are optimized for given
noise channels. Our theory accounts for uncertainties in the noise channel, against which our QEC procedures
are robust. We demonstrate via numerical examples that our optimized QEC procedures always achieve a higher
channel fidelity than the standard error correction method,which is agnostic about the specifics of the channel.
This demonstrates the importance of channel characterization before QEC procedures are applied. Our main
novel finding is that in the setting of a known noise channel the recovery ancillas are redundant for optimized
quantum error correction. We show this using a general rank minimization heuristic and supporting numerical
calculations. Therefore, one can further improve the fidelity by utilizing all the available ancillas in the encoding
block.

PACS numbers:

I. INTRODUCTION

Quantum error correction is often considered the backbone
of quantum information processing, since it converts what is
essentially an analog information processor, subject to a con-
tinuum of errors, into a digital one, whose errors are dis-
cretized. The theory of quantum error correction was devel-
oped in analogy to classical coding for noisy channels [1–6].
These initial efforts focused on finding conditions and proce-
dures for perfect recovery of quantum states passing through
noisy channels. Recently, several authors considered error
correction design as an optimization problem, with fidelityas
the optimization target [7–10]. In this work we further de-
velop the theory of optimal quantum error correction. As in
[7–10], we consider the scenario where one has knowledge
of the noise channel, and find correspondingly optimal codes.
That is, we assume that one has already performed a channel
identification procedure, e.g., via quantum process tomogra-
phy [11]. We show how, armed with a knowledge of the chan-
nel, one can design highly robust error correction procedures,
whose fidelity is always at least as good as that of the “agnos-
tic” codes of standard error correction [1–6].

More specifically, we present an indirect approach to fi-
delity maximization based on minimizing the error between
the actual channel and the desired channel. This approach,
like the previously developed approach to direct fidelity opti-
mization, leads naturally to bi-convex optimization problems,
namely, two semidefinite programs (SDPs) [12] which can be
iterated between the recovery and encoding. For a given en-
coding the problem is convex in the recovery. For a given
recovery, the problem is convex in the encoding. An impor-
tant advantage of this approach is that noisy channels, which
do not satisfy the standard assumptions for perfect correction

[1–6], can be optimized for the best possible encoding and
recovery.

The conventional fidelity optimization targets are the en-
coding and recovery operators. An important way in which
the present work differs from previous studies is in the fact
that we further add the distribution of the ancillas in the en-
coding and recovery to the optimization problem. This way,
we utilize all possible degrees of freedom for optimization.
As a consequence, we find a rather surprising result: in the
optimized error correction procedure the fidelity is indifferent
to the existence of the recovery ancillas. This result paves
the way toward a more efficient utilization of the ancillas.
Namely, we can use all the available ancilla qubits in the en-
coding to increase the fidelity.

Standard error correction schemes, as well as those pro-
duced by the aforementioned optimization methods which are
tuned to specific errors, are often not robust to even small
changes in the error channel. These errors can be mitigated
by fault-tolerant methods which rely on several levels of code
concatenation [13]. However, our method naturally enjoys
a desirable robustness against error variations. We show a
means to incorporate specific models of error channel uncer-
tainty, resulting in highly robust error correction. Neverthe-
less, concatenated fault tolerant quantum error correction still
enjoys a certain important advantage over the procedures we
derive in this work, namely, it is robust also against imperfec-
tions in the encoding and recovery procedures, while here, as
is the case for standard quantum error correction formulations,
we assume these to be perfectly executed.

Since the number of optimization variables scales exponen-
tially with the number of qubits used in the encoding and re-
covery operations, the computational effort required to solve
any of the semidefinite program optimization (SDP) problems
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is similarly burdened. In order to reduce this effort we pro-
pose an approach based on optimization via the constrained
least squares method. This alternative approach for solving
the indirect optimization problem does not utilize semidefi-
nite programming, and is significantly faster in our numerical
simulations. Surprisingly, this method returns the exact same
result as the SDP approach.

The organization of the paper is as follows. In Section II,
we explain the problem formulation including the standard
error correction model and state the direct and indirect op-
timization problems to be addressed. The indirect approach
is explored in Section III. In Section IV, we investigate the
optimal distribution of the ancillas between the recovery and
encoding. Examples of the methods presented are given in
Section V. Appendices A-E provide proofs and supporting
material.

II. PROBLEM FORMULATION

A. Standard error correction model

Subject to the assumption that the initial system-bath state
is classically correlated [14], the dynamics of an open quan-
tum system can be represented in an elegant form known as
the Krausoperator sum representation(OSR). In this repre-
sentation, the noiseE is described in terms of a completely-
positive (CP) map:ρ → ∑

iAiρA
†
i [6]. Hereρ is the initial

system density matrix and the operatorsAi, known as Kraus
operators, or operation elements, satisfy the normalization re-
lation

∑

iA
†
iAi = I (identity). The standard error correction

procedure involves CP encoding (C), error (E), and recovery

(R) maps (or channels):ρS
C→ ρC

E→ σC

R→ ρ̂S, as shown
pictorially in the block diagram of Figure 1.

PSfrag replacements

ρS
ρC σC

ρ̂SC E R

FIG. 1: Standard representation of error correction.

HereρS is thenS × nS system state,ρC is thenC × nC en-
coded state,σC is thenC × nC perturbed encoded state, and
ρ̂S is thenS × nS recovered system state. Using the OSR:

ρ̂S =
∑

r,e,c

(RrEeCc)ρS(RrEeCc)
†. (1)

The encoding{Cc}mC

c=1 and recovery{Rr}mR

r=1 operation el-
ements are rectangular matrices, respectivelynC × nS and
nS × nC , since they map between the system Hilbert space
of dimensionnS and the system/ancillas Hilbert space, the
codespace, of dimensionnC . The error operation elements
{Ee}mE

e=1 are square(nC × nC) matrices, and represent the
effects of noise on the codespace. The number of elements,
mC ,mE ,mR depend on the manner of implementation and
basis representation [6]. More specifically, any OSR can be

equivalently expressed, and consequently physically imple-
mented, as a unitary with ancilla states [6,§8.23]. An example
of this representation of the standard error correction model of
Figure 1 is shown in the block diagram of Figure 2.

bath
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FIG. 2: System-ancilla-bath representation of standard encoding-
error-recovery model of error correction.

In this case the encoding operationC is implemented by
a unitary operatorUC acting on the (tensor) product of the
system state,ρS, and the encoding ancillas’ state,|0CA〉, pro-
ducing the encoded stateρC = UC(|0CA〉〈0CA| ⊗ ρS)U

†
C .

(The tensor ordering is arbitrary, but once established must
remain fixed for consistency). If the encoding ancillas’ state
has dimensionnCA, then the resulting codespace has dimen-
sionnC = nSnCA. If, as is customary, we take|0CA〉 as the
nCA-column vector with a one in the first element and zeros
elsewhere (i.e., it is a tensor product oflog2 nCA encoding
ancillas, each in the state|0〉 = (1, 0)t), then the OSR forC
has thesingle(mC = 1) nC × nS matrix elementC whose
columns are the firstnS columns ofUC , thus forming a set of
orthonormalcodewords, i.e.,

UC = [C · · · ] , C is nC × nS (2)

For the errors,E , the ancillas’ states are not implemented
by design, but rather, engendered by interaction with thebath,
a term used to generically describe the physical environment.
The error operation is thus equivalent to the unitaryUE oper-
ating on the tensor product ofρC, the encoded state, andρB,
the bath state. The number of bath states may be very large,
in principal infinite dimensional. However, it is always possi-
ble to representE with a finite number of OSR elements with
mE ≤ nC

2 [6, Thm.8.3].
Finally, the recovery operationR can be implemented via

the unitaryUR operating on the (tensor) product of the per-
turbed encoded state,σC, and the (additional) recovery ancil-
las’ state|0RA〉. If |0RA〉 is annRA-column vector with a
one in the first element and zeros elsewhere, then the OSR
{Rr}mR

r=1 for R hasmR = nCAnRA elements which consist
of the firstnC columns ofUR, i.e.,

UR = [R · · · ] , R =







R1

...
Rm

R






, Rr is nS × nC (3)

The model represented in Figures 1 and 2 assumes that the
encoding and recovery operations can be implemented much
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TABLE I: Definitions of some frequently used symbols.

Symbol Definition

nS dimension of the system space

nCA dimension of the encoding ancillas space

nC dimension of the (system + encoding ancillas) space,i.e., nC = nS × nCA

nRA dimension of the recovery ancillas space

mE number of operation elements for error map

mR number of operation elements for recovery map

faster than relevant time-scales associated with the bath.For a
detailed discussion of the validity of such a Markovian model
see [18]. Nevertheless, we will assume the model of Figures
1 and 2 for the remainder of this work, as complications asso-

ciated with the bath being “on” during encoding and recovery
are likely to be dealt with via fault tolerance methods [19],
which require a base level of encoding of the type we find
here.

Table I provides definitions of some frequently used symbols.

B. Performance measures

Assume that we are given the OSR elements of the error
channelE . This could be obtained, for example, from the out-
put of a quantum process tomography experiment [11]. The
error correction objective considered here is to design theen-
codingC and the recoveryR so that, for a given error opera-
tion E , the mapρS → ρ̂S is as close as possible to a desired
nS × nS unitary logic gateLS. Common measures of per-
formance between two quantum channels are typically based
on fidelity or distance[6], [20], [21], [22]. Here we will use
thechannel fidelity[7] between the error correction operation
REC and the desired operationLS:

f =
1

n2
s

∑

r,e,c

|Tr L†
SRrEeCc|2. (4)

where0 ≤ f ≤ 1 and from [5], [6, Thm.8.2],f = 1 if and
only if there are constantsδrec such that,

RrEeCc = δrecLS ,
∑

r,e,c

|δrec|2 = 1. (5)

This suggests theindirect measure of fidelity, the “distance-
like” error (using the Frobenius norm,‖X‖2F = Tr X†X),

d =
∑

r,e,c ‖RrEeCc − δrecLS‖2F
=
∑

c ‖RE(IE ⊗ Cc)−∆c ⊗ LS‖2F
(6)

where

∆c ≡ [δrec], dim∆c = mR ×mE , (7)

andE is thenC × nCmE rectangular “error matrix,”

E = [E1 · · · Em
E
], (8)

R is themRnS × nC matrix obtained by stacking themR

matricesRr as in (3), andIE is themE×mE identity. Hence,
we have

∑

c Tr ∆†
c∆c =

∑

r,e,c |δrec|2 = 1, andR†R =
∑

r R†
rRr = IC .

We show in Appendix A that there exists a recovery and
encoding pair,R, C, which achieves perfect error correction
(equivalentlyd = 0, f = 1), iff for c, c′ = 1, . . . ,mC

(IE ⊗ C†
c )E

†E(IE ⊗ Cc′) = ∆†
c∆c′ ⊗ IS (9)

This is a generalization to non-unitary CP encoding of the
Knill-Laflamme condition for perfect error correction with
unitary encoding [5]. In this latter case,C has only a single
nC × nS matrix elementC, C†C = IS , whosenS columns
are thecodewords. Asf andd are explicitly dependent on the
channel elements, they are convenient for optimization. Con-
sider then the following optimization problems.

Direct Fidelity Maximization
maximize f(R,C)

subject to R†R = IC , C†C = IS

(10)

Indirect Fidelity Maximization
minimize d(R,C,∆1, . . . ,∆mC

)

subject to R†R = IC , C†C = IS ,
∑

c ‖∆c‖2F = 1
(11)

HereC is thenC × nS matrix obtained in (2) . The direct ap-
proach was used in [7, 9, 10, 15–17]. As shown in Appendix
B, f andd are related as follows:

f(R,C) =
(

1− d̂(R,C)/2nS

)2

d̂(R,C) = min
{

d(R,C,∆1, . . . ,∆m
C

∣

∣ ‖∆c‖2F = 1, ∀c
}

(12)
This shows that minimizing the distance (11) is equivalent to
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maximizing fidelity (10).

C. Robust error correction

An important advantage of the method presented here is
that unlike the standard error correction model, it accounts for
uncertainty in knowledge of the channel. Such uncertainty
may exist for many reasons. For example, different runs of
a tomography experiment can yield different error channels
{Eα}ℓα=1. Or, a physical model of the error channel might
be generated by a HamiltonianH(θ) dependent upon an un-
certain set of parametersθ. In any case, not accounting for
the uncertainties typically leads to non-robust error correc-
tion, in the sense that a small change in the error model can
lead to poor performance of the error correction procedure.
One way to account for these Hamiltonian parametric uncer-
tainties is to take a sample from the set of Hamiltonians, say,
{H(θα)}ℓα=1. Tracing out themE bath states will result in a
setof error channels{Eα}ℓα=1 where each error channel has
OSR elements{Eα,k}κk=1, whereκ is the largest of the num-
ber of OSR elements in each sample. In those samples with a
smaller number we can set the corresponding OSR elements
to zero.

Two standard measures of robustness are theaverage-case
andworst-case. For the average-case, suppose that each OSR
setEα is known to occur with probabilitypα. Then define the
average error channelby the OSR,

Eavg = {√pαEα,k |α = 1, . . . , ℓ, k = 1, . . . , κ } (13)

The average error channel in this form hasκℓ OSR elements,
potentialy a very large number. However, this number is read-
ily reduced to no more thanmE = n2

C using a singular value
decompostion [6, Thm.8.3]. Associated withEavg is the aver-
age channel fidelity,

favg =
∑

α

pαfα =
1

n2
S

∑

r,e′,c

|Tr RrE
avg
e′ Cc|2 (14)

whereEavg
e′ , e′ = 1, . . . , ℓκ are the OSR elements ofEavg in

(13).
For average-case robust error correction we replacef in

(10) withfavg in (14), and using the relationship (12), replace
d in (11) with,

davg = ‖REavg(IE ⊗ C)−∆⊗ LS‖2F
Eavg = [Eavg

1 · · · Eavg
ℓκ ]

(15)

A similar formulation exists for worst-case error correction
which was considered in [10]; we do not consider it any fur-
ther here. The remainder of the paper concentrates on the
average-case objective and development of the associated op-
timization algorithms. The examples presented in Sec.V show
that this approach yields a high degree of robustness to uncer-
tainty in the optimal codes.

We now discuss methods to approximately solve (obtain lo-
cal solutions to) the indirect optimization problem (11).

III. INDIRECT FIDELITY MAXIMIZATION

We consider the encoding operatorC as a unitary operator
acting on both the encoding ancillas and the input qubit. Using
the constraints in (11), we can express the distance measure
(6) as

d(R,C,∆) = ‖RE(IE ⊗ C)−∆⊗ LS‖2F (16)

= nS + Tr E(IE ⊗ CC†)E† − 2Re TrRE(∆† ⊗ CL†
s)

where∆ is thesinglemR × mE matrix in (7) withmR =
nCAnRA (note that in this case, since there is only a single
∆c matrix, we drop the subscriptc).

A. Optimal Recovery

Since only the last term in (16) depends on the recovery
matrixR, minimizingd(R,C,∆) with respect toR is equiv-
alent to maximizing the last term. In Appendix A, we show
that this maximization results in

max
R†R=IC

Re TrRE(∆† ⊗ CL†
s) = Tr

√

E(Γ⊗ CC†)E†,

(17)
where themE ×mE matrixΓ is defined as,

Γ = ∆†∆, (18)

and the associatednCnRA × nC optimal recovery matrix is,

R = [v1 ... vnC
][u1 ... unC

]† (19)

wherevi, ui, i = 1, . . . , nC are, respectively, the right and
left singular vectors in the singular value decomposition of the
nC ×nCnRA matrixE(∆†⊗CL†

S), with the singular values,
as usual, in descending order. Thus, to obtain the optimal
recovery, we need first to findΓ which maximizes (17) – this
is equivalent to minimizingd overR. Following this we need
to determine∆ satisfying (18).

To find Γ, observe thatΓ ≥ 0 by definition (18), and the
constraint‖∆‖F = 1 from (11) is equivalent toTr Γ = 1.
Hence, optimal recovery can be obtained by first solving for
Γ from,

maximize Tr
√

E(Γ⊗ CC†)E†

subject to Γ ≥ 0, Tr Γ = 1
(20)

In Appendix D it is shown that the optimalΓ is the solution of
an equivalent SDP.

The next step is to use (18) to obtain∆ from Γ. The fol-
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lowing choice adheres to the given dimensions:
(

nCA ≤ mE

nRAnCA = mE

)

⇒
{

∆ =
√
Γ

R is tall (nSmE × nC )
(

nCA > mE

nRA = 1

)

⇒











∆ =

[ √
Γ

0n
CA

−m
E
×m

E

]

R is unitary (nC × nC )
(21)

Clearly the choice of∆ is not unique. In fact, the result does
not change if∆ is multiplied by a unitary,i.e.,∆ → U∆. This
is exactly the unitary freedom in choosing the OSR elements
[6]. Interestingly, however, from many numerical calculations
we observe that the following holds:

{

rank(Γ) = nCA if nCA ≤ mE

rank(Γ) = mE if nCA > mE .
(22)

Since themE ×mE matrixΓ is Hermitian(= ∆†∆), and∆
is mR × mE with mR = nCAnRA, it follows that if (22) is
true then,

nRA = 1. (23)

If, in the optimized error correction,the dimension of the re-
covery ancillas space is one, then the optimal recovery matrix
R is always a unitary – recovery ancillas are redundant in
maximizing the fidelity.Note that we started with a generic
nRA parameter, and the properties of the optimal solution led
us to the above conclusion. Although we do not have a rig-
orous proof that the recovery ancillas are redundant, a com-
pelling heuristic argument is offered in Section IV along with
supporting numerical results.

B. Optimal Encoding

For a givenR and∆, the optimal encodingC can be found
by solving (11) forC, that is,

minimize d(R,C,∆) = ‖RE(IE ⊗ C)−∆⊗ LS‖2F
subject to C†C = IS

(24)
As shown in Appendix E, the optimal encodingC is given by,

C = UV † (25)

where(U, V ) are obtained from the SVD,

C̄ =
∑

r,e

δre(RrEe)
†LS = USV †

with U an nC × nS matrix with orthonormal columns,i.e.,
U †U = IS , V annS × nS unitary, andS a diagonal matrix
of thenS singular values. The matrix̄C is theunconstrained
(least-squares) solution to (24),i.e., minC d.

The left-hand column of Table II, labeled Algorithm-1,
summarizes the preceding method for recovery and encoding
optimization. For optimal recovery alone, solve (20) forΓ,
then determine∆ via (21), and finallyR from (19). For op-
timal encoding alone, solve (24) forC. To find a combined
optimal encoding and recovery repeat steps 1 and 2 in Table II
until d stops decreasing. (By virtue of (12), fidelity increases
in every step). Since in each step the distance measure,d, can
only decrease, never increase, the converged solution to the
combined optimization is only guaranteed to be a local opti-
mal solution to (11).

C. Alternative iterative algorithm for recovery optimizat ion

An alternative to the above optimal recovery procedure
(Step 1 in Algorithm-1of Table II) is to iterate between solving
(11)directlyby minimizing over∆ and then using (19) to find
R. Specifically, for a givenR andC, Step 2a in Algorithm-
2of Table II requires solving the following constrained least-
squares problem for∆:

minimize d(R,C,∆) = ‖RE(IE ⊗ C)−∆⊗ LS‖2F
subject to ‖∆‖F = 1

(26)
As shown in Appendix B, the solution is,

∆ = ∆̄/‖∆̄‖F
(

∆̄
)

re
= Tr(RrEeCL†

S)/nS,
(27)

where ∆̄ is the unconstrained (least squares) solution to
min∆ d. This solution is then used in (19) to findR (Step 1b),
then back to (27) (Step 1a), and so on untild stops decreasing
(Step 1c).

The difference between the two algorithms is in computing the
optimal recovery (Steps 1). In Step 1 of Algorithm-1, no itera-
tions are required; the optimal recovery is achieved by solving
the SDP (20). For Step 1 of Algorithm-2, an optimal recov-
ery is the result of some number of iterations involving the
constrained least-squares problem (26). Although at present a
proof is not available, in every case we have tried the optimal

fidelity in both recovery algorithms converges to the same re-
sult. Additionaly, the total CPU-time in MATLAB to compute
the optimal recovery in Algorithm-2 (including the iterations)
is significantly less than the CPU-time for the recovery step
in Algorithm-1 using YALMIP [28] to call the solver SDPT3
[29].
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TABLE II: Iterative Algorithms for Optimal QEC

Algorithm-1 Algorithm-2

Initialize R andC

Repeat

1. Optimal recovery

(a) solve (20) forΓ
(b) Γ → ∆ via (21)
(c) ∆ → R via (19)

2. Optimal encoding

(a) solve (24) forC

Until d stops deceasing

Initialize R andC

Repeat

1. Optimal recovery – Repeat a-c

(a) solve (26) for∆
(b) ∆ → R via (19)
(c) Until d stops decreasing

2. Optimal encoding

(a) solve (24) forC

Until d stops deceasing

IV. DIMENSION OF THE RECOVERY ANCILLAS SPACE

In our formalism, the dimension of the Recovery ancillas’
space,i.e., the required number of recovery ancilla qubits, is
determined by the rank of themE ×mE matrixΓ.

A. Rank minimization of Γ

In this section, we study the rank ofΓ through a heuristic
argument by noting the similarity between our problem and
the so called “Rank Minimization Problem” (RMP) [24]:

minimize rank (X)

subject to X ∈ X
(28)

The matrixX is the optimization variable andX is a convex
set denoting the constraints.

Although several special cases of the RMP have well-
known solutions, in general the RMP is known to be computa-
tionally intractable. However, there are a number of heuristic
approaches to solving this problem. Restate (20) as follows,

minimize Tr (Γ)

subject to Γ ≥ 0, Tr
√

E(Γ⊗ CC†)E† ≥ const.
(29)

where the constant is the maximum which arose in (20). A
well known heuristic for RMP whenX is positive semidefi-
nite [25–27] is to replace the rank objective with Tr[X ] and
solve,

minimize Tr [X ]

subject to X ∈ X , X ≥ 0
(30)

By comparing (29) with (30), we can view our problem in (20)
as an RMP that minimizes the rank ofΓ. Thus, the rank of the
optimalΓ is the smallest possible consistent with not changing
the rank of our objective matrix,

√

E(Γ⊗ CC†)E†. Noting

that rank(CC†) = nS and rank(E) = nC and with a straight-
forward linear algebra analysis we find that this property holds
if

{

rank(Γ) ≥ nCA if nCA ≤ mE

rank(Γ) = mE if nCA > mE .
(31)

That is, in the first case, if rank(Γ) <

nCA, rank(
√

E(Γ⊗ CC†)E†) decreases by de-
creasing the rank ofΓ. But if rank(Γ) ≥ nCA,
rank(

√

E(Γ⊗ CC†)E†) = nC , and it does not depend
on rank(Γ). In the second case,Γ should be full rank.
Therefore the rank of the optimalΓ is

{

rank(Γopt) = nCA if nCA ≤ mE

rank(Γopt) = mE if nCA > mE ,
(32)

which agrees with (22). Note that the same argument also
applies in the average case (15) withE replaced byEavg.

B. Numerical result for randomly generated error maps

Here, we examine the result above for randomly generated
error maps. Namely, we find the rank of the optimalΓ for each
random map by applying the indirect optimization method.
The error map is modeled as shown in Fig. 2 as a unitaryUE

acting on the joint codespace-bath Hilbert space. The unitary
UE arises from a randomly selectedmEnC × mEnC time-
independent HamiltonianHE , i.e.,UE = e−itHE (we work in
units where~ = 1). The unitary evolution operator generated
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by this Hamiltonian at timet = 1 is

UE = exp(−iHE) =













E1 . . .

E2 . . .
...

EmE
. . .













(33)

That is, we pick the firstnC columns of the matrixUE . Here,
E1 . . . Em are thenC × nC OSR elements of the error opera-
tion, and from (8),E = [E1 · · · Em

E
].

Figure 3 presents the channel fidelityvs. the number of it-
erations in Algorithm1 for 100 random error maps. In this
experiment, the system is a single qubit and one qubit is used
as an encoding ancilla,i.e., nS = 2, nCA = 2. Each error
map has 4 OSR elements,i.e., mE = 4, and is generated us-
ing a16 × 16 random Hamiltonian matrix according to (33).
Therefore, the matrixΓ in (20) is4 × 4. Figure 4 shows the
histogram of the rank ofΓ vs. the number of iterations. This
histogram indicates that after20 iterations in the optimiza-
tion algorithm, the rank ofΓ is always two, which is equal to
nCA. In fact, thoseΓ that are not rank 2 after 10 iterations are
associated to the error maps with lower rate of fidelity conver-
gence.
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FIG. 3: Channel fidelityf for random error maps on two-qubit codes.

Figure 5, which shows the singular values of the sameΓ
matrices, is included for comparison of the magnitude of the
singular values. In all cases, the nonzero singular values are
of the order of10−1. The numerical precision of all the re-
sults is10−8. We repeated the experiment for more than 1000
random maps with different dimensions (only 100 are shown),
and the result holds for all of them. Namely, after sufficiently
many iterations in Algorithm1, the rank of the optimalΓ is
the same as the dimension of the encoding ancillas space, i.e.,
rank (Γopt) = nCA.
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FIG. 5: Singular values of the optimalΓ for random error maps on
two-qubit codes. For all cases tested only two of the singular values
are significantly different from zero, meaning that the rankof theΓ
matrices is2.

V. EXAMPLES

We now apply the methods developed above to the goal
of preserving a single qubit (nS = 2) using a qC -qubit
(nC = 2qC ) codespace. In these examples, the error chan-
nel E consists of single-qubit errors occurringindependently
on all qubits with probabilityp. We examine two cases of
bit-flip and bit-phase-flip errors.

A. 3-qubit bit-flip errors

In this example, we consider the independently occurring
bit-flip error as the noise channel, where the bit-flip operator
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FIG. 6: Channel fidelityf vs. bit-flip probability p for 3-qubit en-
coding.

is X =
2

4

0 1
1 0

3

5. We usedqC = 2 encoding ancilla qubits.

There are23 = 8 OSR error elements for 3-qubit encoding:

{Ei}8i=1 = Ai1 ⊗Ai2 ⊗Ai3 , i1, i2, i3 ∈ {1, 2}
A1 =

√

(1− p) I (no error)

A2 =
√
p X (bit− flip error)

(34)

Figure 6 showsf vs. bit-flip probability p in the range
p ≤ 0.9 for the standard 3-qubit code, optimal recovery at
eachp, average-case recovery over thep range, and no recov-
ery. For the average case, we computed an optimized encod-
ing and recovery for the single channel obtained by averaging
over the error channels corresponding top = 0, 0.1, ..., 0.9 as
defined in (15). We then applied this encoding and recovery
to each of these10 channels, thus producing the10 fidelity
values shown. Note that the optimal recovery can be achieved
equivalently by either the constrained least squares method
(Algorithm-2) or the convex optimization method (Algorithm-
1). Interestingly, the standard 3-qubit code not only pro-
vides optimal recovery for the rangep ≤ 0.5, it is optimal
for both recovery and encoding in this range. Forp > 0.5
the standard code is clearly no longer optimal. Only in this
range does the optimal recovery outperform the standard code,
a phenomenon similar to what was reported for amplitude-
damping errors in [7]. Analysis of our optimal encoding re-
covery results reveals the following simple picture. The opti-
mal code is the standard3-qubit code for the entirep range,
i.e., |0̄〉 = |000〉 and|1̄〉 = |111〉. The optimal recovery is
the standard recovery [6] in the range0 ≤ p ≤ 0.5. In the
range0.5 ≤ p ≤ 0.8 the optimal recovery is a bit-flip on all
qubits followed by the standard recovery.

Figure 7 shows channel fidelityf in two ranges:p < 0.5
and 0.5 < p ≤ 0.9. Unlike the previous case, here we
compute the optimization twice, once for each range. For
the average case, we computed an optimized encoding and
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FIG. 7: Channel fidelityf vs. bit-flip probability p for 3-qubit en-
coding in two ranges:p < 0.5 and0.5 < p ≤ 0.9.

recovery for the single channel obtained by averaging over
the error channels corresponding top = 0, 0.1, ..., 0.4. We
then applied this encoding and recovery to each of these5
channels, thus producing the5 fidelity values shown in the
range0 ≤ p ≤ 0.5. We then repeated this procedure for
p = 0.5, 0.6, ..., 0.9. For p < 0.5, the standard, optimal,
average-case, all coincide. Forp > 0.5, the optimal and
average-case codes coincide and divert again from the stan-
dard. The optimal encoding and recovery are the same as in
Figure 6,i.e., the standard3-qubit code, with standard recov-
ery in the range0 ≤ p ≤ 0.5, and bit-flips preceeding standard
recovery in the range0.5 ≤ p ≤ 0.9. We conclude from the
examples in Figures 6 and 7 that optimal encoding and recov-
ery has no advantage over standard encoding and recovery for
low bit-flip probabilities (p < 0.5), and thus increasing the
codespace would be required to improve fidelity. For large
errors (p > 0.5), optimization is more effective in that it iden-
tifies an optimal recovery. In both cases the achieved opti-
mal fidelity is independent of the number of recovery ancillas
used, hence in all examples shown in Figures 6 and 7 there are
no additional recovery ancillas required. It is striking that the
average case fidelity matches the optimal in Figure 7, but not
in Figure 6. This is entirely due to the range ofp values over
which the average is performed. The lesson is that the more
information is available about the noise channel, the more ro-
bust the encoding and recovery will be: in Figure 7 we know
that the probability is in the range[0, 0.5] or [0.5, 0.9], while
in Figure 6 we only know that it is in the range[0, 0.9]. Absent
such information, robustness may still be attainable by exper-
imenting with tuning the encoding and recovery over a range
of channels.
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B. Bit-Phase flip error

In this example, the noise channel consists of bit-phase flip
errorsY =

2

4

0 −i
i 0

3

5 occurring independently with probability

p. We do not allow for more than three to occur simultane-
ously (i.e., we consider weight-3 errors). We examine two
cases: 1. Considering a fixed number of encoding ancillas,
we compare the fidelity using different numbers of recovery
ancillas. 2. We fix the total number of available ancilla qubits,
and compare the fidelity for various distributions of encoding
and recovery ancillas.

1. 5-qubit bit-phase flip error

In this example, the bit-phase flip errors occur indepen-
dently on the input qubit and 4 ancillas. There are 26 error
OSR elements: 1 for no error, 5 for a single error, 10 for dou-
ble errors, and 10 for triple errors. Thus the matrixΓ in (20) is
26 × 26 and the rank ofΓopt is equal tonCA = 16, meaning
that the optimal distribution of ancillas is having all fourin the
encoding block and none in the recovery block.

Figure 8 showsf vs. bit-phase flip error probabilityp for
the optimal encoding/recovery in the case of zero, one and
two recovery ancillas. The result shows that all cases yield
the same fidelity. Therefore, the fidelity of the system is inde-
pendent of the number of recovery ancillas.

2. bit-phase flip errors with a fixed number of ancillas

In this example, we consider six ancilla qubits that can be
used either in the encoding block or in the recovery block.
We compare the fidelity for the following distributions: four
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FIG. 9: Channel fidelityf vs.bit-phase flip probabilityp with a fixed
total of 6 ancillas, and optimal encoding and recovery.

encoding ancillas and two recovery ancillas, five encoding an-
cillas and one recovery ancilla, and six encoding ancillas with
no recovery ancilla. Figure 9 shows that the channel fidelity
increases significantly by using the ancillas in the encoding
instead of the recovery. Thus the most efficient use of ancillas
is achieved when they are all used for encoding.

VI. CONCLUSION

We have presented an optimization approach to quantum
error correction that yields codes which achieve robust per-
formance, when tuned to a specific noise channel. An impor-
tant aspect of developing optimal codes which are tuned to
a class of errors, or are robust over a range of errors, is that
the optimized performance levels may be sufficient for the in-
tended purposes.Hence, no further increases in codespace
dimension may be necessary.This cannot be known without
performing the optimization.

We also showed that the fidelity of such a system is inde-
pendent of the number of the recovery ancillas. This is en-
tirely due to the structure of the error correction optimization
problem, for which we found that a unitary recovery operator
maximizes the fidelity of the system. However, the fidelity
increases significantly by increasing the dimension of the en-
coding ancillas space. Therefore, in the optimal quantum er-
ror correction scheme, one should use all the available ancilla
qubits in the encoding block.

Although not further developed here, the resulting codes,
unlike standard codes, have support over all basis states. Some
of the recovery structure is revealed via the indirect approach.
This in turn leads to a method for approximating optimal re-
covery involving only a singular value decomposition, making
it potentially useful in evaluating very large blocks of encod-
ing to see if further performance improvement is possible.

We stress that there is an important difference between the
standard error correction schemes [1–6] and the approach pre-
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sented here. While in the standard case only the class of errors
should be known, in our method the exact form of the noise
map is required for optimization. In general, the noise map
can be identified using quantum process tomography [11]. In
most cases this extra knowledge is equivalent to identifying
the probability of the error, which can also be found using our
method. In order to identify the probability in a particularer-
ror model, one should calibrate the fidelity of the system using
a fixed pair of recovery and encoding operators. Once the re-
lation between the fidelity associated to this pair and the error
probability is known, a measurement of the fidelity yields the
probability.

It thus appears that the effectiveness of optimization is de-
pendent upon thestructure of the error operation, a result
seemingly heralded by Feynman [30]:

“In a machine such as this there are very many other
problems due to imperfections. . . . there may be small
terms in the Hamiltonian besides the ones we’ve writ-
ten. . . . At least some of these problems can be reme-
died in the usual way by techniques such as error cor-
recting codes . . . But until we find a specific imple-

mentation for this computer, I do not know how to pro-
ceed to analyze these effects. However, it appears that
they would be very important in practice. This com-
puter seems to be very delicate and these imperfections
may produce considerable havoc.”

Determining the “specific implementation” is currently an
on-going research effort. Analyzing the “effects” however
will undoubtedly be accomplished by a combination of phys-
ical modeling and/or system identification (e.g., process to-
mography and parameter estimation). This leads to an intrigu-
ing prospect: to integrate the results found here within a com-
plete “black-box” error correction scheme, that takes quantum
state or process tomography as input and iterates until it finds
an optimal error correcting encoding and recovery.
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APPENDIX A: PROOF OF EQUATIONS (9), (17), (19)

ThenC×nCnRA matrixW = E(∆†⊗C) has a maximum
rank ofnC . Hence a singular value decomposition is of the
formW = USV †, S = [S0 0], with S0 annC ×nC diagonal
matrix containing thenC singular values. IfV is partitioned
asV = [V1 V2] with V1 beingnRAnC ×nC then the objective
function in (17) becomes,

Re Tr RW = Re Tr S0X, X = V †
1 RU (A1)
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Since‖X‖ ≤ 1, thenRe Tr S0X ≤ Tr S0. Equality occurs
if and only if X = IC , or equivalently,R = V1U

†, which
is precisely the result in (19). This also establishes that the
optimal objective function isTr S0 which, by definition, is
equal toTr

√
WW †, thus

max
R†R=IC

ReTr RW = Tr

√
WW † (A2)

which establishes (17).
Condition (9) follows directly from (5) by multiplying both

sides by their respective conjugate (with indicesc and c′)
which also eliminatesR becauseR†R = IC . This imme-
diately establishes that (9) is anecessary conditionfor (5). To
provesufficiency, first expand (6) to get,

d =
∑

cTr (IE ⊗ C†
c )E

†E(IE ⊗ Cc)

+Tr Γc ⊗ IS − 2ReTr RE(∆†
c ⊗ CcL

†
S)

Γc = ∆†
c∆c

(A3)

From (A2), we get,

minR†R=IC d =
∑

c[Tr (IE ⊗ C†
c )E

†E(IE ⊗ Cc)

+Tr Γc ⊗ IS ]− 2Tr
√
WW †

W =
∑

c E(∆†
c ⊗ CcL

†
S)

(A4)
Using (9) we get,Tr

√
WW † =

∑

c E(IE⊗CcC
†
c )E

†. This,
together with repeated uses of (9) shows thatminR†R=IC d =
0. Sinced is a norm, and is zero, then so is its argument,
which by definition establishes (5) and thus shows sufficiency
of (9).

APPENDIX B: RELATION BETWEEN FIDELITY f AND
DISTANCE d

The problem is,

minimize d =
∑

c ‖RE(IE ⊗ Cc)−∆c ⊗ LS‖2F
subject to

∑

c ‖∆c‖2F = 1
(B1)

Form the Lagrangian,

L = d+ λ(
∑

c

Tr ∆†
c∆c − 1) (B2)

with λ the Lagrange multiplier. Then,∇δrecL = 0

when (nS + λ)δrec = Tr RrEeCcL
†
S. To enforce the

constraint
∑

c ‖∆c‖2F = 1 requires that(nS + λ)2 =
∑

r,e,c |Tr RrEeCcL
†
S|2. Hence,

∆c = ∆̄c/
√

∑

c ‖∆̄c‖2F
δ̄rec = Tr(RrEeCcL

†
S)/nS

(B3)

Observe that
∑

c ‖∆̄c‖2F = f . This together with
∑

r R
†
rRr = IC ,

∑

cC
†
cCc = IS gives the optimal distance

as given implicitly by (12). Note also that with no constraint,

λ = 0, the∆̄c are the optimal least-squares (unconstrained)
solution.

APPENDIX C: UNITARY FREEDOM IN EQUATION (17)

In (17),Γ = ∆†∆ remains unchanged if∆ is multiplied by
a unitary. This unitary freedom is exactly the unitary freedom
in describing the error map OSR. To see this, recall again from
[6, Thm.8.2] that two error maps with OSR elementsE =
[E1 . . . Em

E
] andF = [F1 . . . Fm

E
] are equivalent if and only

if Ei =
∑

j WijFj where themE ×mE matrixW is unitary.
Equivalently from (A3),E = F (W ⊗ IC). Substituting this
for E into the left hand side of (17) gives,

Re Tr RE(∆† ⊗CL†
S) = Re Tr RF ((∆′)† ⊗CL†

S) (C1)

with ∆′ = ∆W †. Hence,∆′†∆′ = W∆†∆W † = Γ, which
establishes the claim.

APPENDIX D: SOLVING EQUATION (20) VIA AN SDP

Problem (20) is of the form,

maximize Tr

√

F (Γ)

subject to Γ ≥ 0, Tr Γ = 1
(D1)

whereF (Γ) is linear inΓ. Consider the relaxed problem,

maximize Tr Y

subject to F (Γ)− Y 2 ≥ 0, Γ ≥ 0, Tr Γ = 1
(D2)

This is an SDP inΓ andY with Lagrangian,

L(Γ, Y, P, Z) = −Tr Y −Tr P (F (Γ)− Y 2)

−Tr ZΓ + λ(Tr Γ− 1)
(D3)

The dual function is,

g(P, λ, Z) = infΓ,Y L(Γ, Y, P, Z)

=

{

infY Tr(PY 2 − Y )− λ, Z = λI −A(P )

−∞ otherwise

(D4)
with A(P ) = ∂

∂ΓTr PF (Γ), which is not dependent onΓ
becauseF (Γ) is linear inΓ. Performing the indicatedinfY
givesY = (1/2)P−1 andg = −(λ + (1/4)Tr P−1). The
dual optimization associated with (D2) is to maximizeg, or
equivalently, minimize its negative,i.e.,

minimize λ+ 1
4
Tr P−1

subject to P > 0, λI −A(P ) ≥ 0
(D5)

This is an SDP in the dual variablesP, λ. For this prob-
lem strong dualityholds [12]. Consequently, at optimality
of (D2) and (D5) the complementary slackness condition is
Popt(F (Γopt) − Y 2

opt) = 0. SincePopt > 0, we have
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Yopt =
√

F (Γopt). This establishes that solving the SDP
(D2) is equivalent to solving the original problem (D1).

APPENDIX E: SOLVING FOR C IN EQUATION (24)

The problem is,

minimize d =
∑

c ‖RE(IE ⊗ C)−∆⊗ LS‖2F
subject to C†C = IS

(E1)

Form the Lagrangian,

L = d+Tr P (C†C − IS) (E2)

with P the Lagrange multiplier. Then,∇CL = 0 when
C = C̄(IS + P )−1 with C̄ as defined in (24). To enforce
the constraintC†C = IS requires that(IS + P )2 = C̄†C̄.
Hence,C = C̄(C̄†C̄)−1/2. The actual computation ofC is
done using the SVD (25)-(26). Note that with no constraint,
P = 0, and C̄ is the optimal least-squares (unconstrained)
solution.


