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We develop a theory for finding quantum error correction (QR®@cedures which are optimized for given
noise channels. Our theory accounts for uncertaintieseémtise channel, against which our QEC procedures
are robust. We demonstrate via numerical examples thatatimized QEC procedures always achieve a higher
channel fidelity than the standard error correction methduch is agnostic about the specifics of the channel.
This demonstrates the importance of channel charactienizbefore QEC procedures are applied. Our main
novel finding is that in the setting of a known noise channelrétovery ancillas are redundant for optimized
guantum error correction. We show this using a general rainknmzation heuristic and supporting numerical
calculations. Therefore, one can further improve the figely utilizing all the available ancillas in the encoding
block.

PACS numbers:

I. INTRODUCTION [1-6], can be optimized for the best possible encoding and
recovery.

Quantum error correction is often considered the backbone The conventional fidelity optimization targets are the en-
of quantum information processing, since it converts what i €0ding and recovery operators. An important way in which
essentially an analog information processor, subject tona ¢ the present work differs from previous studies is in the fact
tinuum of errors, into a d|g|ta| one, whose errors are dis_tha.t- we further add the d|Str|bU-t|0-n O-f the ancillas in the en
cretized. The theory of quantum error correction was develc0ding and recovery to the optimization problem. This way,
oped in analogy to classical coding for noisy channels [1-6]We utilize all possible degrees of freedom for optimization
These initial efforts focused on finding conditions and proc AS @ consequence, we find a rather surprising result: in the
dures for perfect recovery of quantum states passing througPPtimized error correction procedure the fidelity is inelréint
noisy channels. Recently, several authors considered erré the existence of the recovery ancillas. This result paves
correction design as an optimization problem, with fidesigy ~the way toward a more eff|C|er_1t utlllzatlpn of the _ancnlas.
the optimization target [7-10]. In this work we further de- Namely, we can use all the available ancilla qubits in the en-
velop the theory of optimal quantum error correction. As inc0ding to increase the fidelity.

[7-10], we consider the scenario where one has knowledge Standard error correction schemes, as well as those pro-
of the noise channel, and find correspondingly optimal codesluced by the aforementioned optimization methods which are
That is, we assume that one has already performed a chanrtahed to specific errors, are often not robust to even small
identification procedure, e.g., via quantum process toaogr changes in the error channel. These errors can be mitigated
phy [11]. We show how, armed with a knowledge of the chan-by fault-tolerant methods which rely on several levels afeo
nel, one can design highly robust error correction prooesiur concatenation [13]. However, our method naturally enjoys
whose fidelity is always at least as good as that of the “agnosa desirable robustness against error variations. We show a
tic” codes of standard error correction [1-6]. means to incorporate specific models of error channel uncer-

More specifically, we present an indirect approach to fi-tainty, resulting in highly robust error correction. Netres-
delity maximization based on minimizing the error betweenl€ss, concatenated fault tolerant quantum error cornestit
the actual channel and the desired channel. This approacBPioys a certain important advantage over the procedures we
like the previously developed approach to direct fidelityi-op derive in this work, namely, it is robust also against impe#f
mization, leads naturally to bi-convex optimization pras, ~ fions in the encoding and recovery procedures, while here, a
namely, two semidefinite programs (SDPs) [12] which can bdS the case for standard quantum error correction fornuauriati
iterated between the recovery and encoding. For a given efveé assume these to be perfectly executed.
coding the problem is convex in the recovery. For a given Since the number of optimization variables scales exponen-
recovery, the problem is convex in the encoding. An impor-tially with the number of qubits used in the encoding and re-
tant advantage of this approach is that noisy channelshwhiccovery operations, the computational effort required toeso
do not satisfy the standard assumptions for perfect coorect any of the semidefinite program optimization (SDP) problems
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is similarly burdened. In order to reduce this effort we pro-equivalently expressed, and consequently physically émpl
pose an approach based on optimization via the constrainedented, as a unitary with ancilla states{8,23]. An example
least squares method. This alternative approach for splvinof this representation of the standard error correctionehofl
the indirect optimization problem does not utilize semidefi Figure 1 is shown in the block diagram of Figure 2.

nite programming, and is significantly faster in our numairic

simulations. Surprisingly, this method returns the exaaote f’C fC

result as the SDP approach. . _ ps —sl Ly / : > | ps
The organization of the paper is as follows. In Section II, Ue L Ug L Ur

we explain the problem formulation including the standard|0c.a) —> > — > —>

error correction model and state the direct and indirect op- N |0R‘;1> —> 5

timization problems to be addressed. The indirect approach

is explored in Section Ill. In Section 1V, we investigate the

optimal distribution of the ancillas between the recoverg a

encoding. Examples of the methods presented are given in PB —>

Section V. Appendices A-E provide proofs and supporting

material. FIG. 2. System-ancilla-bath representation of standabing-

error-recovery model of error correction.

[l. PROBLEM FORMULATION In this case the encoding operati6nis implemented by
a unitary operatol/- acting on the (tensor) product of the
A. Standard error correction model system stateyg, and the encoding ancillas’ staté¢ 1), pro-

ducing the encoded statg. = Uc(|0ca)(0ca| @ pg)UL.

Subject to the assumption that the initial system-battestat(The tensor ordering is arbitrary, but once establishedt mus
is classically correlated [14], the dynamics of an open guanremain fixed for consistency). If the encoding ancillastesta
tum system can be represented in an elegant form known d¥s dimensiom ,, then the resulting codespace has dimen-
the Krausoperator sum representatiaf@©SR). In this repre- Sionng = ngng . If, asis customary, we takéc 4) as the
sentation, the nois& is described in terms of a completely- 7 4-column vector with a one in the first element and zeros
positive (CP) mapp — 3. AipAI [6]. Herep is the initial else_wherel(e., itis a tensor product ofog, nca encoding
system density matrix and the operaters known as Kraus ~ancillas, each in the stafe) = (1,0)"), then the OSR fo€
operators, or operation elements, satisfy the normatigag-  has thesingle(m. = 1) ny x ng matrix element’ whose
lation 3", A1 A; = I (identity). The standard error correction columns are the firstg columns of/c;, thus forming a set of
procedure involves CP encoding)( error €), and recovery ~Orthonormacodewordsi.e.,

c £ R .

(R) maps (or channelsyy = po = oo — pg, as shown Uc=[C -], Cisng x ng (2)
pictorially in the block diagram of Figure 1.

For the errorsg, the ancillas’ states are not implemented
Pc oc by design, but rather, engendered by interaction wittbtité,
Ps — C > & » R —— pg a term used to generically describe the physical environmen
The error operation is thus equivalent to the unitédgy oper-
ating on the tensor product pf., the encoded state, apg,
FIG. 1: Standard representation of error correction. the bath state. The number of bath states may be very large,
in principal infinite dimensional. However, it is always pés
ble to represent with a finite number of OSR elements with
mg < ng?[6, Thm.8.3].

Finally, the recovery operatioR can be implemented via
the unitaryUg operating on the (tensor) product of the per-
turbed encoded state., and the (additional) recovery ancil-
las’ state|0ga). If |Ora) is anng,-column vector with a
one in the first element and zeros elsewhere, then the OSR
{R,}"'% for R hasmy = no 4 np,4 €lements which consist
of the firstn, columns ofUg, i.e.,

Herepq is theng x ng system statep is then, x n- en-
coded stateg - is then, x n. perturbed encoded state, and
pg is theng x ng recovered system state. Using the OSR:

/35 = Z(RrEeCc)pS(RTEeCC)T- (1)

T,e,c

The encoding{C.}S, and recovery{ R, },% operation el-
ements are rectangular matrices, respectivelyx ng and
ng X ng, since they map between the system Hilbert space

of dimensionng and the system/ancillas Hilbert space, the R _
codespaceof dimensionnc. The error operation elements Up=[R -], R= : , Rpisng xng  (3)
{E.}"'" are squarén. x n.) matrices, and represent the R

effects of noise on the codespace. The number of elements, "

me, Mg, mp depend on the manner of implementation and The model represented in Figures 1 and 2 assumes that the
basis representation [6]. More specifically, any OSR can bencoding and recovery operations can be implemented much



TABLE I: Definitions of some frequently used symbols.

Symbol Definition
ns dimension of the system space
nca |dimension of the encoding ancillas space
nc  |dimension of the (system + encoding ancillas) spaegnc = ns X nca
nra |dimension of the recovery ancillas space
mpg |number of operation elements for error map
mp  |number of operation elements for recovery map

faster than relevant time-scales associated with the Batta  ciated with the bath being “on” during encoding and recovery
detailed discussion of the validity of such a Markovian mode are likely to be dealt with via fault tolerance methods [19],
see [18]. Nevertheless, we will assume the model of Figurewhich require a base level of encoding of the type we find
1 and 2 for the remainder of this work, as complications assohere.

Table | provides definitions of some frequently used symbols
|

B. Performance measures R is thempzng x n, matrix obtained by stacking the:
matricesR, asin (3), and g is them ; x m 5 identity. Hence,
we have}" Tr ATA, = D e |6ec|> = 1, andRTR =

Assume that we are given the OSR elements of the erroy_ RIR, = Ic.
channek. This could be obtained, for example, from the out-  \ye show in Appendix A that there exists a recovery and
put of a quantum process tomography experiment [11]. Th@ncoding pairR, ¢, which achieves perfect error correction

error correction objective considered here is to desigrethe (equivalentlyd = 0, f = 1), ifffor c,c’ = 1,...,m
codingC and the recoverR so that, for a given error opera- ’ ' ’ e
tion £, the mapps — pg is as close as possible to a desired (I ® CHE'E(Ip @ Co) = AlA, @ I (9)

ng X ng unitary logic gateLs. Common measures of per-

formance between two quantum channels are typically basethis is a generalization to non-unitary CP encoding of the
on fidelity or distance[6], [20], [21], [22]. Here we will use  Knill-Laflamme condition for perfect error correction with
thechannel fidelityf 7] between the error correction operation unitary encoding [5]. In this latter casé,has only a single

REC and the desired operatidnk: ne x ng matrix element, CTC = I, whoseng columns
1 are thecodewordsAs f andd are explicitly dependent on the
f== Z |Tr LTSRTEECCIZ. (4) channel elements, they are convenient for optimizatiom-Co
[ sider then the following optimization problems.
where0 < f < 1 and from [5], [6, Thm.8.2]f = 1 if and Direct Fidelity Maximization
only if there are constants.. such that, maximize f(R,C) (10)
b tp— T —
RrEeCc _ (ST‘ECLSa Z |§rec|2 —1. (5) sub.]ect to R"R IC, cc¢ IS
This suggests thimdirect measure of fidelity, the “distance- Indirect Fidelity Maximization
like” error (using the Frobenius normMiX || = Tr XTX), minimize d(R,C,Aq,...,Ap)
subject to RTR=1Ic, CTC =15, > A% =1
d = Zr,e,c HRTE@CC _6T€CLSH% 6 (11
= S ||RE(Ig ® C.) — A ® Lg||2 6) HereC is then. x ng matrix obtained in (2) . The direct ap-
¢ F proach was used in [7, 9, 10, 15-17]. As shown in Appendix
where B, f andd are related as follows:
. N 2
A = [Oree)y dimA.=mp X my, @) f(R,C) = (1 —d(R, C')/Qns)
andE is then. x nomp, rectangular “error matrix,” d(R,C) = min{d(R,C,A1,..., A, [[A]E =1, Ve }
(12)

E=[E - En_], (8)  This shows that minimizing the distance (11) is equivalent t



maximizing fidelity (10). lll.  INDIRECT FIDELITY MAXIMIZATION

C. Robust error correction We consider the encoding operatbas a unitary operator
acting on both the encoding ancillas and the input qubitngJsi
e constraints in (11), we can express the distance measure

An important advantage of the method presented here i 5) as

that unlike the standard error correction model, it acce ot
uncertainty in knowledge of the channel. Su_ch uncertainty d(R,C,A) = ||RE(Iy © C) — A ® Lg% (16)
may exist for many reasons. For example, different runs of

a tomography experiment can yield different error channels = ns + T E(Ig © CCT)E' — 2Re TRE(A" @ CLY)
{&€,}¢ _,. Or, a physical model of the error channel might
be generated by a Hamiltonidi(#) dependent upon an un-
certain set of parametefs In any case, not accounting for
the uncertainties typically leads to non-robust error eotr
tion, in the sense that a small change in the error model can

lead to poor performance of the error correction procedure.

One way to account for these Hamiltonian parametric uncer-

tainties is to take a sample from the set of Hamiltonians, say

{H(0,)},_,. Tracing out then bath states will result in a

setof error channeld&, },_, where each error channel has

OSR element$E, 1 }5_,, wherex is the largest of the num- A. Optimal Recovery
ber of OSR elements in each sample. In those samples with a

smaller number we can set the corresponding OSR elements

to zero. Since only the last term in (16) depends on the recovery
Two standard measures of robustness aretleeage-case matrix R, minimizingd(R, C, A) with respect taR is equiv-

andworst-case For the average-case, suppose that each OSRlent to maximizing the last term. In Appendix A, we show
seté&,, is known to occur with probability,,. Then define the  that this maximization results in

average error channddy the OSR,

f Ty = Rt
EYE _ [ piEanla =1, 0k=1,... .k} (13  pwx RETREMAT®CL)=Tr\/BIeCCE,

where A is thesinglemg x mg matrix in (7) withmg =
ncanga (note that in this case, since there is only a single
A. matrix, we drop the subscrip}.

a7)
The average error channel in this form hd@SOSR elements, where theng x mg matrixI' is defined as,
potentialy a very large number. However, this number istead
ily reduced to no more tham ,, = n2 using a singular value I'=ATA, (18)
decompostion [6, Thm.8.3]. Associated wiih's is the aver- ) ) o
age channel fidelity, and the associatet-nra x nc optimal recovery matrix is,
R=[v1 ... Ung][t1 .. tng]t (19)

=Y pafa = o 3 T RESECS (14)
@ Srel e wherev;, u;, 1 = 1,...,n¢ are, respectively, the right and

left singular vectors in the singular value decompositibine

ne X nenpa Matrix E(AT® CLTS), with the singular values,

as usual, in descending order. Thus, to obtain the optimal

recovery, we need first to find which maximizes (17) — this

is equivalent to minimizing over R. Following this we need

to determineA satisfying (18).

whereEZ®, ¢’ = 1,...,(x are the OSR elements 6f"¢ in
(13).

For average-case robust error correction we replace
(10) with f2v& in (14), and using the relationship (12), replace
d in (11) with,

d*® = |RE™¢(Ip ® C) — A® Ls||% (15) To find T, observe thai” > 0 by definition (18), and the
Eve = [EYY® ... E)'® constraint|| Al = 1 from (11) is equivalent talx I' = 1.
Hence, optimal recovery can be obtained by first solving for
A similar formulation exists for worst-case error correati T from,
which was considered in [10]; we do not consider it any fur-
ther here. The remainder of the paper concentrates on the maximize Tr/E(I' @ CCT)Ef
average-case objective and development of the associpted o subject to T >0, TrT = 1 (20)
timization algorithms. The examples presented in Sec.Wsho -
that this approach yields a high degree of robustness ta-uncen Appendix D it is shown that the optimalis the solution of
tainty in the optimal codes. an equivalent SDP.
We now discuss methods to approximately solve (obtain lo-
cal solutions to) the indirect optimization problem (11). The next step is to use (18) to obtalnfrom I". The fol-



lowing choice adheres to the given dimensions: where(U, V') are obtained from the SVD,
nea < my L JA=VT C=> br(RE) Ls =USV!
NpAlca = Mp Ristall (ngmpy x ng) e
VT with U ann. x ng matrix with orthonormal columns,e.,

U'U = Is, V anng x ng unitary, andS a diagonal matrix
of theng singular values. The matrik' is theunconstrained
(1) (least-squares) solution to (24.g., ming d.

Noa > Mg - A= 0
nRA :1 nC.AmeXmE

R is unitary (v x n¢)

Clearly the choice oA\ is not unique. In fact, the result does  The left-hand column of Table I, labeled Algorithm-1,
not change ifA is multiplied by a unitaryi.e, A — UA. This  summarizes the preceding method for recovery and encoding
is exactly the unitary freedom in choosing the OSR elementsptimization. For optimal recovery alone, solve (20) fgr

[6]. Interestingly, however, from many numerical calcidas  then determine\ via (21), and finallyR from (19). For op-

we observe that the following holds: timal encoding alone, solve (24) fér. To find a combined
optimal encoding and recovery repeat steps 1 and 2 in Table Il
rankI') = nca if nca <mg 29 until d stops decreasing. (By virtue of (12), fidelity increases
rankT) = mp if nca > mp. 22)  in every step). Since in each step the distance meaguran

only decrease, never increase, the converged solutioreto th
combined optimization is only guaranteed to be a local opti-

Since then matrix T is Hermitian(= ATA), andA -
B e ( ) mal solution to (11).

iSmp X myg With mp = noanp,, it follows that if (22) is
true then,

nRAzl. (23)

If, in the optimized error correctiohe dimension of the re-  C.  Alternative iterative algorithm for recovery optimizat ion
covery ancillas space is one, then the optimal recoveryimatr

R is always a unitary — recovery ancillas are redundant in _ _

maximizing the fidelity.Note that we started with a generic _An alternative to the above optimal recovery procedure
nra parameter, and the properties of the optimal solution ledStep 1in Algorithm-1of Table Il) is to iterate between soly

us to the above conclusion. Although we do not have a rig{11)directlyby minimizing overA and then using (19) to find
orous proof that the recovery ancillas are redundant, a com?- Specifically, for a givenz andC’, Step 2a in Algorithm-
pelling heuristic argument is offered in Section IV alongtwi  20f Table Il requires solving the following constraineddea
supporting numerical results. squares problem foh:

minimize d(R,C,A) =|RE(Ip ® C) — A® Lg%

B. Optimal Encoding subject to ||Allp =1
(26)
For a givenRk andA, the optimal encoding’ can be found As shown in Appendix B, the solution is,
by solving (11) forC, that is, o
minimize d(R,C,A) = |RE(Ig ® C) — A ® Lg|% (A),, = Tr(R.E.CL})/ng,

subject to CTC = Ig B
(24) where A is the unconstrained (least squares) solution to
As shown in Appendix E, the optimal encodi@gs given by, mina d. This solution is then used in (19) to fidetl(Step 1b),
then back to (27) (Step 1a), and so on udititops decreasing
c=uvt (25)  (Step 1c).

The difference between the two algorithms is in computireg th fidelity in both recovery algorithms converges to the same re
optimal recovery (Steps 1). In Step 1 of Algorithm-1, noater sult. Additionaly, the total CPU-time in MATLAB to compute
tions are required; the optimal recovery is achieved byisglv  the optimal recovery in Algorithm-2 (including the iteratis)

the SDP (20). For Step 1 of Algorithm-2, an optimal recov-is significantly less than the CPU-time for the recovery step
ery is the result of some number of iterations involving thein Algorithm-1 using YALMIP [28] to call the solver SDPT3
constrained least-squares problem (26). Although at ptese [29].

proof is not available, in every case we have tried the ogtima



TABLE II: Iterative Algorithms for Optimal QEC

Algorithm-1 Algorithm-2
Initialize R andC Initialize R andC
Repeat Repeat
1. Optimal recovery 1. Optimal recovery — Repeat a-c
(a) solve (20) forl® (a) solve (26) forA
(b) ' — Avia (21) (b) A — Rvia(19)
(c) A — Rvia(19) (c) Until d stops decreasing
2. Optimal encoding 2. Optimal encoding
(a) solve (24) foiC (a) solve (24) foiC
Until d stops deceasing Until d stops deceasing
IV. DIMENSION OF THE RECOVERY ANCILLAS SPACE that rankKCCT) = ng and rankE) = nc and with a straight-

forward linear algebra analysis we find that this propertgfo
In our formalism, the dimension of the Recovery ancillas’ if

spacej.e, the required number of recovery ancilla qubits, is ,
determined by the rank of the ; x m matrixT. rankl') > noa if nea <mpg 31)
rankT') = mg if nca > mg.
A. Rank minimization of I' That is, in the first case, if rafk) <

nca, rank/E(Il' ® CCT)ET) decreases by de-
In this section, we study the rank &fthrough a heuristic creasing the rank ofl.  But if rankI) > ncga,
argument by noting the similarity between our problem andank\/E(I' ® CCT)Et) = ne, and it does not depend
the so called “Rank Minimization Problem” (RMP) [24]: on rankKT'). In the second casd, should be full rank.
Therefore the rank of the optimalis
minimize rank (X) (28)
subject to X € X {rank(l“opt) =nca If nca <mg

. (32)
rankTope) = me if nca > mg,

The matrixX is the optimization variable and is a convex

set denoting the constrain.ts. which agrees with (22). Note that the same argument also
Although _seve_ral special cases c_)f the RMP have We"'applies in the average case (15) wittreplaced byEave.

known solutions, in general the RMP is known to be computa-

tionally intractable. However, there are a number of héiaris

approaches to solving this problem. Restate (20) as follows

minimize Tr (T) (29)
subject to T' > 0, Tr/E(I’® CCt)ET > const.
where the constant is the maximum which arose in (20). A
well known heuristic for RMP whelX is positive semidefi- B.  Numerical result for randomly generated error maps
nite [25-27] is to replace the rank objective with [I¥] and
solve,
Here, we examine the result above for randomly generated
(30) error maps. Namely, we find the rank of the optifidibr each
subjectto X e X, X >0 random map by applying the indirect optimization method.
The error map is modeled as shown in Fig. 2 as a unitgyy
By comparing (29) with (30), we can view our problemin (20) acting on the joint codespace-bath Hilbert space. The ynita
as an RMP that minimizes the ranklof Thus, the rank of the  /; arises from a randomly selectedznc x menc time-
optimall is the smallest possible consistent with not changingndependent Hamiltoniaf , i.e., Ur = e~ "= (we work in

the rank of our objective matrix,/E(I' ® CCT)ET. Noting  units whereh = 1). The unitary evolution operator generated

minimize Tr [X]



by this Hamiltonian at time = 1 is
100

I o itérations
FE ... 90 [ ]10iterations
I 20 iterations
Ey ... 8oL |
UE = exp(—iHE) = . (33) 7ok ]
Eny .. s % )
:;; 50 1
That is, we pick the first columns of the matriX/z. Here, g Lol |
E; ... E,, arethenc x nc OSR elements of the error opera-
tion, and from (8)F = [Ey --- Ep, ]. sor 1
20 B
Figure 3 presents the channel fidehty. the number of it- ol |
erations in Algorithml for 100 random error maps. In this
experiment, the system is a single qubit and one qubit is use ° —
as an encoding ancillage., ns = 2, nca = 2. Each error rank of I

map has 4 OSR elements., mg = 4, and is generated us-
ing al6 x 16 random Hamiltonian matrix according to (33).
Therefore, the matriX in (20) is4 x 4. Figure 4 shows the FIG. 4: Rank of the optimal’ for random error maps on two-qubit
histogram of the rank df vs. the number of iterations. This codes.
histogram indicates that aft@0 iterations in the optimiza-

tion algorithm, the rank of' is always two, which is equal to

nca. Infact, thosd” that are not rank 2 after 10 iterations are
associated to the error maps with lower rate of fidelity conve
gence.
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08 |

magnitude of singular values of T

S— - ) singular Value index

FIG. 5: Singular values of the optim&l for random error maps on
two-qubit codes. For all cases tested only two of the singudhles
0551 . are significantly different from zero, meaning that the rahkheT"
matrices i2.

. . . . . . . . .
2 4 6 8 10 12 14 16 18 20
number of iterations

V. EXAMPLES
FIG. 3: Channel fidelityf for random error maps on two-qubit codes.

We now apply the methods developed above to the goal
of preserving a single qubitag = 2) using agc-qubit
(n = 29¢) codespace. In these examples, the error chan-

Figure 5, which shows the singular values of the sdme nel £ consists of single-qubit errors occurrimgependentl
matrices, is included for comparison of the magnitude of the gie-q P y

: . on all qubits with probabilityp. We examine two cases of
singular values. In all cases, the nonzero singular valtees 8 itflio and bit-ohase-flip errors
of the order ofl0~!. The numerical precision of all the re- -Hip =P 'P '
sults is10~8. We repeated the experiment for more than 1000
random maps with different dimensions (only 100 are shown), S
and the result holds for all of them. Namely, after suffidignt A.  3-qubit bit-flip errors
many iterations in Algorithm, the rank of the optimal’ is
the same as the dimension of the encoding ancillas space, i.e In this example, we consider the independently occurring
rank (I'ppt) = nea. bit-flip error as the noise channel, where the bit-flip opmrat
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FIG. 6: Channel fidelityf vs. bit-flip probability p for 3-qubit en-  FIG. 7: Channel fidelityf vs. bit-flip probability p for 3-qubit en-
coding. coding in two rangesp < 0.5 and0.5 < p < 0.9.

is X :[2 (1)] We usedqc = 2 encoding ancilla qubits.

There ar@? = 8 OSR error elements for 3-qubit encoding:

{Ei}le = Ail ® Aiz Y Aiav 11,142,103 € {172}
Ay (1 =p) I (noerror) (34)
Ay = /pX (bit —flip error) recovery for the single channgl obtained by averaging over
the error channels correspondingzto= 0,0.1,...,0.4. We
_ o - _ then applied this encoding and recovery to each of tlese
Figure 6 showsf vs. bit-flip probability p in the range  channels, thus producing tiefidelity values shown in the
p < 0.9 for the standard 3-qubit code, optimal recovery alrange0 < p < 0.5. We then repeated this procedure for
eachp, average-case recovery over fneange, and norecov- ,, — 0.5 0.6,....,0.9. Forp < 0.5, the standard, optimal,
ery. For the average case, we computed an optimized encoglyerage-case, all coincide. Fpr> 0.5, the optimal and
ing and recovery for the single channel obtained by avetaginayerage-case codes coincide and divert again from the stan-
over the error channels correspondingte 0,0.1,..,0.98s  dard. The optimal encoding and recovery are the same as in
defined in (15). We then applied this encoding and recovery:igure 6i.e., the standard-qubit code, with standard recov-
to each of these0 channels, thus producing the fidelity eryintherang® < p < 0.5, and bit-flips preceeding standard
values shown. Note that the optimal recovery can be achieve,@Covery in the rang@.5 < p < 0.9. We conclude from the
equivalently by either the constrained least squares rdethcexamples in Figures 6 and 7 that optimal encoding and recov-
(Algorithm-2) or the convex optimization method (Algotiith  ery has no advantage over standard encoding and recovery for
1). Interestingly, the standard 3-qubit code not only pro-ow bit-flip probabilities ¢ < 0.5), and thus increasing the
vides optimal recovery for the range < 0.5, it is optimal  ¢odespace would be required to improve fidelity. For large
for bothrecovery and encoding in this range. for> 0.5 errors p > 0.5), optimization is more effective in that it iden-
the standard code is clearly no longer optimal. Only in thistifies an optimal recovery. In both cases the achieved opti-
range does the optimal recovery outperform the standarel codmg| fidelity is independent of the number of recovery ansilla
a phenomenon similar to what was reported for amplitudeysed, hence in all examples shown in Figures 6 and 7 there are
damping errors in [7]. Analysis of our optimal encoding re- ng additional recovery ancillas required. It is strikingtthe
covery results reveals the following simple picture. Thé-0p ayerage case fidelity matches the optimal in Figure 7, but not
mal code is the standasdqubit code for the entirg range,  jn Figure 6. This is entirely due to the rangeyofalues over
e, |0) = |000) and|1) = [111). The optimal recoveryis \yhich the average is performed. The lesson is that the more
the standard recovery [6] in the ran@e< p < 0.5. Inthe  jnformation is available about the noise channel, the more r
range0.5 < p < 0.8 the optimal recovery is a bit-flip on all  pyst the encoding and recovery will be: in Figure 7 we know
qubits followed by the standard recovery. that the probability is in the range, 0.5] or [0.5, 0.9], while
Figure 7 shows channel fidelity in two ranges:p < 0.5 in Figure 6 we only know that it is in the ranfe 0.9]. Absent
and0.5 < p < 0.9. Unlike the previous case, here we such information, robustness may still be attainable byeexp
compute the optimization twice, once for each range. Foimenting with tuning the encoding and recovery over a range
the average case, we computed an optimized encoding amd channels.
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FIG. 8: Channel fidelityf vs. bit-phase flip probability for 3 qubit FIG. 9: Channel fidelity vs.bit-phase flip probability with a fixed
code and 0, 1, or 2 recovery ancillas, with optimal encoding a total of 6 ancillas, and optimal encoding and recovery.
recovery.

encoding ancillas and two recovery ancillas, five encoding a
B. Bit-Phase flip error cillas and one recovery ancilla, and six encoding ancilldls w
no recovery ancilla. Figure 9 shows that the channel fidelity
H‘lcreases significantly by using the ancillas in the enapdin
instead of the recovery. Thus the most efficient use of aill
is achieved when they are all used for encoding.

In this example, the noise channel consists of bit-phase fli
errorsY = (I) 6' occurring independently with probability

p. We do not allow for more than three to occur simultane-

ously (.e., we consider weighs- errors). We examine two

cases: 1. Considering a fixed number of encoding ancillas, VI. CONCLUSION

we compare the fidelity using different numbers of recovery

ancillas. 2. We fix the '-:Otal number of aVa”able ancilla qs'b| We have presented an optimization approach to quantum

and compare the fidelity for various distributions of encdi  error correction that yields codes which achieve robust per

and recovery ancillas. formance, when tuned to a specific noise channel. An impor-
tant aspect of developing optimal codes which are tuned to
a class of errors, or are robust over a range of errors, is that

1. 5-qubit bit-phase flip error the optimized performance levels may be sufficient for the in
tended purposesHence, no further increases in codespace
In this example, the bit-phase flip errors occur independimension may be necessaihis cannot be known without

dently on the input qubit and 4 ancillas. There are 26 erroP€rforming the optimization. .

OSR elements: 1 for no error, 5 for a single error, 10 for dou- W€ @lso showed that the fidelity of such a system is inde-

ble errors, and 10 for triple errors. Thus the mattii (20) is pendent of the number of the recovery anC|.IIas. T.h|_s., is en-

26 x 26 and the rank of'o is equal tonc.4 = 16, meaning tirely due to the_structure of the error correction optintiaa

that the optimal distribution of ancillas is having all fanithe ~ Problem, for which we found that a unitary recovery operator

encoding block and none in the recovery block. maximizes _the. fldellty of 'Fhe system. Hoyvever,_ the fidelity

Figure 8 shows' vs. bit-phase flip error probability for increases §|gn|f|cantly by increasing the dlm_enS|on of the e
the optimal encoding/recovery in the case of zero, one an oding ancillas space. Therefore, in the optimal quantum er

two recovery ancillas. The result shows that all cases yiel(ﬁor correction scheme, one should use all the availabldlanci

- o i+ qubits in the encoding block.
:;heenfjir:teo??r?gtzﬁ;hbeefg?rrz’gg\?efrlszlggiﬁ;he system iseind Although not further developed here, the resulting codes,

unlike standard codes, have support over all basis statese S
of the recovery structure is revealed via the indirect appino
_ ) _ _ ) This in turn leads to a method for approximating optimal re-
2. bit-phase flip errors with a fixed number of ancillas covery involving only a singular value decomposition, nmaki
it potentially useful in evaluating very large blocks of ede
In this example, we consider six ancilla qubits that can beng to see if further performance improvement is possible.
used either in the encoding block or in the recovery block. We stress that there is an important difference between the
We compare the fidelity for the following distributions: fou standard error correction schemes [1-6] and the approaeh pr
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sented here. While in the standard case only the class aberro mentation for this computer, | do not know how to pro-
should be known, in our method the exact form of the noise ceed to analyze these effects. However, it appears that
map is required for optimization. In general, the noise map they would be very important in practice. This com-
can be identified using quantum process tomography [11]. In puter seems to be very delicate and these imperfections
most cases this extra knowledge is equivalent to identifyin may produce considerable havoc.”

the probability of the error, which can also be found using ou
method. In order to identify the probability in a particuéar
ror model, one should calibrate the fidelity of the systemgisi
a fixed pair of recovery and encoding operators. Once the r
lation between the fidelity associated to this pair and therer
probability is known, a measurement of the fidelity yields th
probability.

It thus appears that the effectiveness of optimization is de
pendent upon thastructure of the error operation, a result
seemingly heralded by Feynman [30]:

Determining the “specific implementation” is currently an
on-going research effort. Analyzing the “effects” however
will undoubtedly be accomplished by a combination of phys-
Scal modeling and/or system identificatioa.g, process to-
mography and parameter estimation). This leads to an intrig
ing prospect: to integrate the results found here withinra-co
plete “black-box” error correction scheme, that takes duian
state or process tomography as input and iterates untitis fin
an optimal error correcting encoding and recovery.

“In a machine such as this there are very many other
problems due to imperfections. ... there may be small
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Since|| X || < 1, thenRe Tr SpX < Tr Sy. Equality occurs
if and only if X = I, or equivalently,R = V,UT, which
is precisely the result in (19). This also establishes that t
optimal objective function is[r Sy which, by definition, is
equal toTrvIWW T, thus

max ReTr RW = TervW W1

(A2)
RiR=Ic

which establishes (17).

Condition (9) follows directly from (5) by multiplying both
sides by their respective conjugate (with indieesnd ¢’)
which also eliminates® becauseR'R = I-. This imme-
diately establishes that (9) is@cessary conditiofor (5). To
provesufficiencyfirst expand (6) to get,

d =Y,.Tr(Ig®CHE'E(Ig ® C.)
+Tr . ® Is — 2ReTr RE(Al © C.LL)  (A3)
I. = AlA,

From (A2), we get,

S Tr (Ig @ CHE'E(Ig @ C.)
+Tr . ® Ig] — 2TevWWH
> B(Al® C.L)

mianR:IC d

w

(A4)

Using (9) we getTevWW T =3 E(Ip®C.Cl)E". This,
together with repeated uses of (9) shows thatzip_; . d =

0. Sinced is a norm, and is zero, then so is its argument,
which by definition establishes (5) and thus shows suffigienc

of (9).

APPENDIX B: RELATION BETWEEN FIDELITY  f AND
DISTANCE d

The problem is,

minimize d=)"_ |RE(Ig ® C;)

- AC®LS||12—_<‘
Bl
subject to > AR =1 (B1)

Form the Lagrangian,

L=d+A) _ TrAlA,—1) (B2)

with A\ the Lagrange multiplier. ThenVs . . L = 0
when (ng + A\)dee = Tr R.E.C.LL. To enforce the

constrainty__ [|A.||% 1 requires that(ng + \)? =

— A A 2
= Be/y/Ec AR ©3)
Tr(R,E.C.Lg)/ng

Observe that)  ||Ac|2 = f. This together with
Y. RIR, = I¢, >..CIC. = Is gives the optimal distance
as given implicitly by (12). Note also that with no constitain
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A = 0, the A, are the optimal least-squares (unconstrained)
solution.

APPENDIX C: UNITARY FREEDOM IN EQUATION (17)

In (17),T = ATA remains unchanged ik is multiplied by
a unitary. This unitary freedom is exactly the unitary freed
in describing the error map OSR. To see this, recall agam fro
[6, Thm.8.2] that two error maps with OSR elemeiits=
B ... EmE] andF = [F} .. .FmE] are equivalentif and only
if £; =3 ; Wi; F; where then x my matrix W' is unitary.
Equivalently from (A3),E = F(W ® I¢). Substituting this
for E into the left hand side of (17) gives,

Re Tr RE(AT © CLL) = Re Tr RF((A)f @ CLL) (C1)
with A’ = AWT. Hence A"TA’ = WATAWT =T, which

establishes the claim.

APPENDIX D: SOLVING EQUATION (20) VIA AN SDP

Problem (20) is of the form,

maximize Try/F(T)

. (D1)
subjectto I' >0, Tr I' =1

whereF'(I") is linear inI". Consider the relaxed problem,

maximize TrY

. (D2)
subject to F(I')—Y?2>0,T>0, TrI' =1
This is an SDP if" andY with Lagrangian,
_ _ _ V2
LT,Y,P,Z) = —TrY — Tr P(F(T') — Y?) (D3)

—Tr ZT + A(Tr T — 1)

The dual function is,

g(P,\,Z) = infry L(I,Y, P, Z)
infy Tr(PY2 —Y) — \, Z =\ — A(P)
—00 otherwise
(D4)
with A(P) = &Tr PF(I), which is not dependent ofi

becauser'(T') is linear inT". Performing the indicatethfy
givesY = (1/2)P~tandg = —(\ + (1/4)Tr P~1). The
dual optimization associated with (D2) is to maximigeor
equivalently, minimize its negativee.,

min.imize A+ iTr P! (D5)
subject to P >0, A\I — A(P) >0

This is an SDP in the dual variabld3 \. For this prob-

lem strong dualityholds [12]. Consequently, at optimality

of (D2) and (D5) the complementary slackness condition is

Popt(F(Topt) — Y2,) = 0. Since P, > 0, we have

opt
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Yopt = /F(Topt). This establishes that solving the SDP with P the Lagrange multiplier. ThenycL = 0 when

(D2) is equivalent to solving the original problem (D1).

APPENDIX E: SOLVING FOR C'IN EQUATION (24)

The problem is,

minimize d =%, ||RE(Ig ® C) — A ® Lg%

) (E1)
subjectto CTC = Ig

Form the Lagrangian,

L=d+Tr P(CTC - Is) (E2)

C = C(Is + P)~! with C as defined in (24). To enforce
the constrainC’C = Is requires tha(ls + P)? = CTC.
Hence,C' = C(CTC)~'/2. The actual computation @f' is
done using the SVD (25)-(26). Note that with no constraint,
P = 0, andC is the optimal least-squares (unconstrained)
solution.



