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A Vector Generalization of Costa’s Entropy-Power
Inequality with Applications
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Abstract

This paper considers an entropy-power inequality (EPI) oét&€ and presents a natural vector generalization
with a real positive semidefinite matrix parameter. This megguality is proved using a perturbation approach via a
fundamental relationship between the derivative of muufakrmation and the minimum mean-square error (MMSE)
estimate in linear vector Gaussian channels. As an apiglicas new extremal entropy inequality is derived from
the generalized Costa EPI and then used to establish thecgezapacity regions of the degraded vector Gaussian

broadcast channel with layered confidential messages.
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. INTRODUCTION

In information theory, the entropy-power inequality (EBf)Shannon [1] and Stam [2] has played key roles in the
solution of several canonical network communication peaid. Celebrated examples include Bergmans’s solution
[3] to the Gaussian broadcast channel problem, Leung-Yaen@g and Hellman's solution [4] to the Gaussian
wire-tap channel problem, Ozarow’s solution [5] to the Gaas two-description problem, Oohama’s solution [6]
to the quadratic Gaussian CEO problem, and more recentipngéeien, Steinberg and Shamai’s solution [7] to the

multiple-input multiple-output Gaussian broadcast cleqmoblem.
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Let X andZ be two independent randomvectors with densities ilR", whereR denotes the set of real numbers.

The classical EPI of Shannon [1] and Stam [2] can be written as
exp [Eh(x + Z)} > exp Fh(X)] + exp Fh(Z)} )
n n n

where h(X) denotes the differential entropy &. The equality holds if and only iX andZ are Gaussian and
with proportional covariance matrices.

In network information theory, most applications focus twe special case of](1) where one of the random
vectors is fixed to be Gaussian. In this setting, the clasEP& of Shannon and Stam can be further strengthened
as shown by Costa [8]. L&L be a Gaussian randomvector with a positive definite covariance matrix, anddet

be a real scalar such thate [0, 1]. Costa’s EPI [8] can be written as

exp

2HOC+vaz)| > (1= a)esp | 2] +aesp | 20(x + 2)] @)

n
for any randomn-vector X independent ofZ. The equality holds if and only iX is also Gaussian and with a
covariance matrix proportional to that @fs.

Though not as widely known as the classical EPI of ShannorSamah, Costa’s EPI has found useful applications
in deriving capacity bounds for the Gaussian interferer@noel [9] and the multiantenna flat-fading channel [10].
The original proof of Costa’s EPI provided in [8] was basedrather detailed calculations. Simplified proofs
based on a Fisher information inequality [11] and a fundaalerelationship between the derivative of mutual
information and minimum mean-square error (MMSE) in lin€aussian channels [12] can be found in [13] and
[14], respectively.

Note that Costa’s EPL12) provides a strong relationshipragithe differential entropies of three random vectors:
X, X+ /aZ andX + Z. To apply, the increments & + \/aZ andX + Z over X need to be Gaussian and have
proportional covariance matrices. For some applications in networkrinégion theory (as we will see shortly), the
proportionality requirement may turn out to be overly rniestre. A main contribution of this paper is to prove a
natural generalization of Costa’s EP] (2) by replacing #e scalan with a positive semidefinitenatrix parameter.
The result is summarized in the following theorem.

Theorem 1 (Generalized Costa’s EPDet Z be a Gaussian randomvector with a positive definite covariance
matrix N, and letA be ann x n real symmetric matrix such that< A < I. Here,I denotes the: x n identity
matrix, and “<” denotes “less or equal to” in the positive semidefinite iphrbrdering between real symmetric

matrices. Then,

exp Eh(X + A§Z)} > |T— Al exp Eh(X)] +A[F exp [2 hX + Z)} @3)

n



for any randomn-vector X independent o#Z. The equality holds ifZ is Gaussian and with a covariance matrix
B such thatB — AB andB + A:NA? are proportional.

Note that whenA = «I, the generalized Costa EPI (3) reduces to the original GeBta2). On the other hand,
when A is not a scaled identity, the covariance matrices of incremef X + A37Z andX + Z over X do not
need to be proportional. As we will see, the ability to copéhve generalmatrix parameter makes the generalized
Costa EPI more flexible and powerful than the original Cogtd. E

A different but related generalization of Costa’s EPl wassidered by Payard and Palomar [15], where they
examined the concavity of the entropy-povegip [%h(AéX + Z)} with respect to the matrix parametdr. This
line of research was motivated by the observation that tiggnat Costa EPI[(R) is equivalent to the concavity of
the entropy poweexp [%h(\/EX + Z)] with respect to the scalar parameterUnlike the scalar case, Payar6 and
Palomar [15] showed that the entropy-povegp [%h(AéX + Z)] is in generalnot concave with respect to the
matrix parameteA. However, the concavity does hold whdnis restricted to baliagonal[15].

In information theory, a main application of the EPI is toiderextremal entropy inequalities, which can then be
used to solve network communication problems. In their afq, Liu and Viswanath derived an extremal entropy
inequality based on the classical EPI of Shannon [1] and §2Jmand used it to establish the private message
capacity region of the vector Gaussian broadcast chanaghgi Marton outer bound [17, Theorem 5]. In this paper,
we will derive a new extremal entropy inequality based ongheeralized Costa EPI and use it to characterize the
secrecy capacity regions of the degraded vector Gaussimutast channel with layered confidential messages.

The rest of the paper is organized as follows. In Seétionél swmmarize the main results of the paper, including a
new extremal entropy inequality and its applications ondbgraded vector Gaussian broadcast channel with layered
confidential messages. In Sectiod I, we prove the germ@dlCosta EPI, following a perturbation approach via a
fundamental relationship between the derivative of mutufarmation and MMSE estimate in linear vector Gaussian
channels [18, Theorem 2]. In Section| IV, we derive the neweswél entropy inequality from the generalized Costa
EPI. The coding theorems for the degraded vector Gauss@adbast channel with layered confidential messages

are proved in SectionlV and Sectibnl VI. Finally, in Secfiod] We conclude the paper with some remarks.

Il. SUMMARY OF MAIN RESULTS

The following notation will be used throughout the paper.ahdom vector is denoted with an upper-case letter
(e.g.,X), its realization is denoted with the corresponding lowase letter (e.gx), and its probability density
function is denoted witlp(x) = px (x). We useE[X] to denote the expectation &. Thus, the covariance matrix

of X is given by

Cov(X) = E [(X —EX))(X — E[X])T].



Given any jointly distributed random vecto(X,Y), the MMSE estimate oX from the observatiorY is the
conditional meark[X|Y]. The MMSE (matrix) is given by:

Cov(X|Y) = E [(X — E[X|Y])(X - E[X|Y])T

A. A New Extremal Entropy Inequality

The following extremal entropy inequality is a consequeofcthe generalized Costa EPI.
Theorem 2:Let Z;, k = 0,..., K, be a total of K + 1 Gaussian random-vectors with positive definite
covariance matriceNy, respectively. Assume th&; < ... < Ng. If there exists am x n positive semidefinite

matrix B* such that
K
> uk(B*+ Np) T+ My = (B* + No) ™' + M, 4)
k=1

for somen x n positive semidefinite matricelsl;, My andS with

B*M; =0 (5)
and (S—-B")M;y;=0 (6)
and real scalarg;, > 0 with S5 1, =1, then
K K 1
3" ueh(X + Zy|U) — h(X + Zo|U) < Z%log|B*+Nk|—§log|B*+No| @)
k=1 k=1

for any (X, U) independent ofZ, . .. , Z) such thatE[XXT] < S.
Note that [(4)£(6) are precisely the Karush-Kuhn-Tucker {Kkconditions (see [7, Appendix IV] and [19,
Section 5.2]) for the optimization program:
max [ZK: Kk log |B + Nj| — llog |B + Np|
0=B=S | £ 2 2

Therefore,[(7) implies that a jointlgaussian(U, X) such that for eacl/ = u, X has thesamecovariance matrix

is an optimal solution to the optimization program:

h(X + Z|U X + Zo|lU
(Ig%é{[z#k + Z|U) — h(X + Zo|U)

where the maximization is over all/, X) independent of Zo, . .., Zx) such thatE[XXT] < S. Note that when

K =1, this is a special case of [16, Theorem 8] with= 1.
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Fig. 1. Degraded vector Gaussian broadcast channel withrddyconfidential messages

B. Applications on the Degraded Vector Gaussian Broadcdmstn@el with Layered Confidential Messages

Consider the following vector Gaussian broadcast chanitbl three receivers:

where{Z;[t]}:, k = 1,2,3, are independent and identically distributed additivetmeGaussian noise processes
with zero means and positive definite covariance matri¥gs respectively. The channel inpdiX|t]}; is subject

to a matrix constraint:

LS XX < 5 ©)
t=1

whereS is a positive semidefinite matrix, andis the block length. We assume that the noise covarianceaasitr
are ordered as

N; < N3 < Nj3, (10)

i.e., the received signdYs|t] is (stochastically) degraded with respectYa|t], which is further degraded with
respect toY [¢].

We consider two different communication scenarios, botth iivo independent messaglg and Wa. In the
first scenario (see Fidl 1-(a)), messdde is intended for receiver 1 but needs to be kept secret froraivers
2 and 3, and messagd#®, is intended for receivers 1 and 2 but needs to be kept coniddldram receiver 3.
In the second scenario (see Higl. 1-(b)), mesdages intended for receivers 1 but needs to be kept secret from
receiver receiver 3, and messade is intended for receivers 1 but needs to be kept secret framiver 3. The

confidentiality of the messages at the unintended receisereasured using the normalized information-theoretic



criteria [20], [21]:
—I(W1;Yy) —0, —I(W1;Y5)—0, and —I(Ws;Y5)—0 (11)
n n n
for the first scenario and
1 1
EI(Wl;Ygf) — 0, and EI(WQ;YQ) —0 (12)

for the second scenario. Here, the limits are taken as thekbengthn — oo. The goal is to characterize the
entire secrecy rate regiafy = {(R1, Rs)} that can be achieved by any coding scheme.
To characterize the secrecy capacity regions, we will fosisider the discrete memoryless version of the problem

with transition probabilityp(yi, y2, y3|z) and degradedness order
X—=Y =Y, = Ys (13)

We have the following single-letter characterizationsh# secrecy capacity regions.

Theorem 3:The secrecy capacity region of the discrete memorylessdbest channep(yi, y2, ys|x) with
confidential messaged’; (intended for receiver 1 but needs to be kept secret fromiverxse2 and 3) andVs
(intended for receivers 1 and 2 but needs to be kept secmet fegeiver 3) under the degradedness order (13) is

given by the set of nonnegative rate pairg;, R2) such that

Ry < I(X;Yq|U) = I(X;Ya|U)

and Ry < I(U;Ys) — I(U;Y3) (14)
for some jointly distributed U, X) satisfying the Markov relation

U— X — (Y7,Y2,Y3).
Theorem 4 ([22, Theorem 2])The secrecy capacity region of the discrete memorylessibesdchannel(yy, y2, y3|z)
with confidential messagé¥; (intended for receiver 1 but needs to be kept secret fronmvercd) andil; (intended
for receivers 1 and 2 but needs to be kept secret from rec8jvander the degradedness order] (13) is given by

the set of nonnegative rate paitB;, R2) such that

Ry < I(X;1|U) = I(X;Y3|U)

and Ry < I(U;Y2) — I(U; Y3) (15)



for some jointly distributed U, X) satisfying the Markov relation

U— X — (Y1,Ys,Y3).

A proof of Theoreni 4 can be found in [22]. Theoréin 3 can be ptdwea similar fashion; for completeness, a
proof is included in AppendiX I. For the vector Gaussian bicgest channe[{8) under the degradedness order (10),
the single-letter expressioris {14) afd](15) can be furtheluated using the extremal entropy inequality (7). The
results are summarized in the following theorems.

Theorem 5:The secrecy capacity region of the vector Gaussian broadoasnel[(8) with confidential messages
W1 (intended for receiver 1 but needs to be kept secret fromvexse2 and 3) andV;, (intended for receivers 1
and 2 but needs to be kept secret from receiver 3) and degresedrder (10) under the matrix constraiit (9) is

given by the set of nonnegative secrecy rate p@ls, R2) such that

1 B+1N; 1 B+ Ny
< —1 — =
B < 20g‘ N, 20 ' Ny
1 S + Ny 1 S + N3
and Ry < =1 - = 16
2= 3 Og‘BjLN2 2 'B+N3 (16)

for some0 < B < S.

Theorem 6:The secrecy capacity region of the vector Gaussian broadaasnel[(B) with confidential messages
W1 (intended for receiver 1 but needs to be kept secret fromveic8) andiV, (intended for receivers 1 and 2
but needs to be kept secret from receiver 3) and degradedndss{10) under the matrix constraini (9) is given

by the set of nonnegative secrecy rate péifs, Rs) such that

1 B+1N; 1 B + Nj
< 21 -
= 20g‘ N; 20 ' N3
1 S+ Ny 1 S+ N3
and Ry < =1 - = 17
2= 3 Og‘BjuN2 2 'B+N3 (17

for some0 < B < S.

I1l. PROOF OFTHEOREM[]]

In this section, we prove the generalized Costa EPI (3) asdsia Theorenill. We first examine the equality

condition. Note that wheiX is Gaussian, the generalized Costa EPI (3) becomes thexnraguality:

B+ A3NA3|+ > [B — AB|~ + |AB + AN|~.

Suppose thaB — AB andB + A:NA* are proportional, i.e., there exists a real scalauch that

B + A:NA: = ¢(B — AB).



Since both matricesA andB are symmetric, this implies tha&AB is also symmetric, i.e.,

AB=B'AT =BA.
Therefore,A and B must have thesameeigenvector matrix [23] and hence

AB = A:BA:>.
It follows that
AZBA: + A:NA: =B+ A:NA: — (B — AB)
= (¢—1)(B—- AB)
i.e., AzBA: + A:NA: andB — AB are proportional. Therefore,
B+ A:NA:|" = B - AB + (A’BA3: + A3NA3)|~
=B~ AB|» + |A3BA: + A:NA:[

— |B— ABJ|" + |AB + AN|x.

This proved the desired equality condition.

We now turn to the proof of the inequality. First consider #peecial case whepA| = 0. Since
X +A3Z) — h(X) = I(A3Z; X + A3Z) > 0,
we have
2 1 2
exp [—h(X + A2Z)] > exp [—h(X)}
n n
1 2
> 1= AfFesp | 20(0%)]
n

where the last inequality follows from the assumption that A < T and henceé) < |[I — A| < 1.
Next, consider the general case whexj > 0. The proof is rather long so we divide it into several steps.

Step 1-Constructing a monotone pafio. prove the generalized Costa EPJ (3), we can equivalehtiyvsthat

exp [%h(X + Z)} < |AI"* exp Eh(X + A%Z)] - <|I|;|A|>%exp Eh(X)] . (18)



SinceX andZ are independent, we have

WX +A3Z) — h(X) = h(A":X + Z) — h(A"3X)
= h(A":X + Z) — h(A":X|Z)

=1(Z;:A":X + 7) (19)

and

MX 4+ Z) — h(X) = 1(Z; X + Z). (20)
Divide both sides of[(118) byxp [%h(X)] and use[(19) and_(20). Then, {18) can be equivalently wriign
2 _1 2 _1 1
exp {EI(Z;X + Z)} <|A|7= {exp {EI(Z;A : X + Z)] —I— A~ } . (21)
Let
F(D) := |D|%{exp FI(Z;DX—l—Z)] - |I—D—2|%}. (22)
n
With this definition, [Z1) can be equivalently written as

F(I) < F(A™%). (23)

To show the inequality[ (23), it is sufficient to construct anfly of n x n positive definite matrice$D(v)},
connectingl and A3 such thatF'(D(~)) is monotone along the path. Unlike the scalar case where thaynly
one path connecting to 1/+/a, in the matrix case there are infinitely many paths conngdiiand A3, Here,

we consider the special choice

D(y) = I+~(A™" -T)]* (24)
and show that
a—F >0, Vyelo,1]. (25)
Oy

along this particular path.

Step 2—Calculating the derivati\%g Following [14, Theorem 5], we have
I(Z;DX + Z) = I(X; DX + Z) + h(Z) — h(X) — log |D|

and

Cov(X|DX +Z) =D ' Cov(ZDX + Z)D".
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Let N := Cov(Z) and note thaD is symmetric. We have

0 0 —1
S1(ZiDX +2) = S I(X;DX + Z) - D

=N"!'DCov(X|DX 4+ Z) - D!
= (N"'Cov(ZIDX +Z) —I) D! (26)
where the second equality follows from the fundamentaliiahip between the derivative of mutual information

and MMSE estimate in linear vector Gaussian channels asdstat[18, Theorem 2].

From (26), the derivativ% can be calculated as

Z?F . 2 —_21
8—D_E|D n {exp[ (Z; DX—I—Z)] —|I-D |”}+
]D\_{gexp{ 1(Z; DX+Z)} a[(Z;aD];(JFZ) - %\I—D‘Z %(I—D_Q)_lD_g}

z%yD\%{{exp[ 1(z; DX+Z)] - ]I—D‘zy%}1+
exp [QI(Z DX + Z)] (N"!Cov(ZDX +Z) - I) — [I - D™= (D* - 1)—1}]3—1

2
=D
n

0 {exp [2 1(Z; DX + Z)} N~'Cov(Z|DX + Z) — [I - D 2= [I 4 (D* - T)7!] }D_l. (27)

The derivative%—? can be calculated as

> = % [T+~(A = 1)]‘% (A1 1)
1 __
_ED D% -1
1 _
= ED(I -D7?). (28)

By (27), (28) and the chain rule of differentiation [24, Ctexpl7.5],
OF OF 0D
Tl I
oy oD 0y

|

_ | . Tr{[exp [21(2 DX+Z)} N~!'Cov(Z|DX +Z) — [I-D

R 2 1] I-D
S+ (D’ -1 ]} : }

D= 2 .
_ Dl {exp[ I(Z; DX+Z)} N—lcov(Z|DX+Z)(I—D—2)—|I—D—2|:I}
y

n
= “Z"; {exp{ I(Z;DX + Z) } Tr {N~'Cov(Z|DX + Z)(I- D ?)} —n\I—D—Z\%}. (29)
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Step 3—Proving%§ > 0. The mutual informatior/ (Z; DX + Z) can be bounded from below as follows:

1(Z;DX + Z) > I(Z; E[Z|DX + Z))

= h(Z) — h(Z|E[Z|DX + Z])

1
— ; log(2me)"|N| ~ h(Z — E[Z|DX + ZJ|E[Z|DX + Z])
1
> 3 log(2me)"|N| — h(Z — E[Z|DX + Z])
1 1
> 3 log(2me)" |N| — 3 log(2me)" |Cov(Z|DX + Z)|
1 IN|
=21 ) 30
2 % [Cov(Z|DX + Z)| (30)

Here, the first inequality follows from the Markov relation
Z - DX +Z — E[Z|DX + Z]

and the chain rule of mutual information [25, Chapter 2.8 tsecond inequality follows from the fact that
conditioning reduces differential entropy [25, Chaptes]9and the third inequality follows from the well-known

fact that Gaussian maximizes differential entropy for aegicovariance matrix [25, Chapter 9.6]. By (30),

; 2 1
T -D7?[F exp | -=1(Z;DX +Z)| < |[N"'Cov(Z|DX + Z)(I - D7?)=
n

< %Tr {N~!'Cov(Z|DX + Z)(I- D7 %)} (31)

where the last inequality follows from the well-known inedjty of arithmetic and geometric means [26, p. 136].
Finally, substituting[(31) into[(29) establishes the fdmu%—f > 0 for all v € [0,1]. In particular, we have
F(D(1)) > F(D(0)). This proved the desired inequalify {21) and hence the gdined Costa EP[{3).

IV. PROOF OFTHEOREM[Z]

In this section, we prove the extremal entropy inequalilydd stated in Theoreld 2. We will first state a series
of corollaries of Theorerhl1, as intermediate results leqdin Theoreni 2. Based on the final corollary, we will
prove Theorenl]2 using aenhancemenargument.

Corollary 1: Let Z be a Gaussian randomvector with a positive definite covariance matrix, and 4etoe an
n X n positive real symmetric matrix such that< A < I. Then

exp %h(X +ARZIU)| > 1= AJF exp [%h(X|U)} A% exp [%h(X 4 Z|U)} (32)

for any (X, U) independent ofZ.
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Corollary 2: Let Z1, Z> andZ3 be Gaussian random-vectors with positive definite covariance matridss,

N, andN3, respectively. Assume th&f; < N3. If there exists am x n positive semidefinite matriB* such that
(B* + Ny 4+ pu(B* +N3) L= (14 p)(B* +Ny)~! (33)
for some real scalgt > 0, then

h(X + Z1|U) + ph(X + Z3|U) — (1 + p)h(X + Zo|U)

1 . . 1+ )
< log[B” +Ny| + & 10g|B —|—N3|—T’ulog|B + Ny (34)

for any (X, U) independent ofZ,,Z,, Zs).
Corollary 3: LetZ,, k=0,..., K, be a collection ofK +1 Gaussian random-vectors with respective positive
definite covariance matricdS;. Assume thailN; < ... < Ng. If there exists am x n positive semidefinite matrix
B* such that
K
> m(B*+Ny) ' = (B +Ng) ! (35)
k=1

for someyy, > 0 with ¢, 1, = 1, then

K K

1
D (X + Zi|U) = h(X + Zo|U) < Z%log|B*+Nk|—§log|B*—l—No| (36)
k=1 k=1

for any (X, U) independent ofZy, ..., Zk).

A proof of Corollaried L[ 2 anfl] 3 can be found in Appendicé8llland V] respectively. We are now ready to
prove Theoreni]2. Note that the special case Wifh = My = 0 was proved in Corollar{/|3. To extend the result
of Corollary[3 to nonzerdM; andM,, we will consider an enhancement argument, which was fitstdouced by
Weingarten, Steinberg and Shamai in [7].

Let N; andN, ben x n real symmetric matrices such that:

,ul(B* + 1(11)—1 = Nl(B* + Nl)_l + M; (37)

and (B*+Ng) ' = (B*+Ng)~' + M. (38)
As shown in [7, Lemma 11 and 12@1 andN, satisfy the following properties:

0<Ny= (N7 +pu7'M) ' 2Ny, (39)

N; < Np < Ny, (40)
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B*+ N B*+ N
N :‘ 5 (41)
N1 Ny
and
S+ N S+ N
+ 0 :‘ +N2 ) 42)
B* + Ny B* + Ny

Let Z, andZ; be two Gaussiam-vectors with covariance matric@$, and N, respectively. Note from{(39) that

N; < N; <N, < ... < Ng. Moreover, substitutd (37) and{38) infd (4) and we have
1 (B* 4+ Nyp)~ +Zuk "+ Ng) ! = (B* 4+ Np)~ . (43)

Thus, by Corollary B

K
pih(X + Z1|U)+ 3~ ueh(X + ZiU) — h(X + Zo|U)
k=2

1\3|’;

K
1 ~
L(B* + Ny)~ g%log\B*JrNk\ ~ 5 log |B” + Ny| (44)

for any (X, U) independent ofZg, Z1, Zo, . .., Zx).
On the other hand, note frorh _(39) thy, < N;. We have

I(X; X + Z4|U) < I(X; X + Z4|U)
for any (X, U) independent ofZ;, Z,). Thus,
WX + Zy1|U) — h(X + Z,|U) > h(Zy) — h(Z1)

1
T2

N,

—1
og N,

1. |B*+N;
= §log

> 0 45
B* + N; ( )

where the last equality follows fronl (41).
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Also note from [(40) thaﬂ% < Ny. Let Z, be a Gaussiam-vector with covariance matritN, — NO and

independent of Zy, X, U). We have

WX + Zo|U) — h(X + Zo|U) = h(X + Zo + Zo|U) — h(X + Zo|U)
= [(Zo;X—i- 20 + ZO’U)
> I(Zo;X—l- Z(] + Zo)

1 Cov(X) + Ny
2 Cov(X) + Ny
S + Ny
— 2 S + Ng

1 B*+ Ny
2 B* + NO

(46)

(47)

for any (X,U) independent of(Z,Z,) such thatE[XXT] < S. Here, the first inequality follows from the
independence of, and U; the second inequality follows from the worst noise res@f,[Lemma I1.2]; the
third inequality follows from the fact thalN, < N and Cov(X) < E[XXT] < S; and the last inequality follows

from (42).
Finally, put together (44)[(45) and (47) and we may obtain

K
> h(X + Zi|U) = h(X + Zo|U)
k=1

K
= [mh(X+2Z1|U) + > (X + Z|U) — h(X + Zo|U)
L k=2

i [h(x Y Z4|U) — (X + zl\U)} - [h(x 4 Zo|U) — h(X + ZO‘U)}

K
* Kk * 1 * ~
< B N — B Nl — =1 B N
< ( +N1)~ ;20g| + N[ — 5 log [B” + N
m, B N,| 1B 4N,
gB*-i—l\I 2 B*+ﬁ0

K
1
_ Z%logm* + Ny — 5 log[B* + Nyl
k=1

for any (X, U) independent ofZg, Z1, ..., Zx) such thatE[XXT] < S. This completes the proof of Theordm 2.

V. PROOF OFTHEOREM[G

In this section, we prove Theordm 5. Note that the achieitaluf the secrecy rate regiob ({16) can be obtained
from the secrecy rate regioh (14) by lettiig and V be two independent Gaussian vectors with zero means and
covariance matriceS — B andB, respectively and&X = U + V. We therefore concentrate on the converse part of

the theorem.
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To show that[(16) is indeed the secrecy capacity region ofvédwor Gaussian broadcast channél (8), we will
consider proof by contradiction. Assume th&, R9) is an achievable secrecy rate pair that bessidethe secrecy

rate region[(16). Note thaN; < N,. From [28, Theorem 1], we can bouri¥ by

S+ Ny
Ny

1
R? < 3 log = R,

1 ‘S—I—N2

_ 21
2 %N,

Note that whenRg = 0, R7*** is achievable by letting@ = S in (14). Thus, we may assume th&g > 0 and

write R{ = R} + 6 for somed > 0 where R} is given by

1 1 B+N;| 1 1 B + Ny
BYO2% TN 2 %1 TN,
subjectto: 0 <B =<S

1 S+ Ny 1 S+ N3

-1 — =1 > RS.

2 Og‘B+N2 2 Og'BJrNg = B
Let B* be an optimal solution to the above optimization programeriB* must satisfy the following KKT
condition:

(B + N1) 7"+ pu(B* +N3) ™ + My = (1+ u)(B* + Na) ™' + My (48)
B*M; =0 (49)
and (S—B")M3=0 (50)

whereM; andM, aren x n positive semidefinite matrices, andis a honnegative real scalar such that 0 if

and only if
Lie S+ N2 | 1, 1 S+Ns | o
2 BB +Ny| 2 °|B +N3| 2
Thus,
1 B*+N;| 1 B* + Ny 1 S + Ny 1 S+ N3
0 o_ |2 — Zlog|— % “log|——— 2| - L . 51
1+ﬂR2 |:2 0g N1 2Og‘ N2 :|+:U’|:2 0g B*—I—NQ QOg‘B*+N3 +5 ( )

1As this optimization program is not convex, a set of constrajualifications (CQs) should be checked to make sure theat<#kT
conditions indeed hold. The CQs stated in Appendix IV of [@]chin a trivial manner for this program.
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On the other hand, by the converse part of Thedrém 3

RY+ uRS < [I(X;X + Z4|U) — I(X; X + Zo|U)| 4+ p[l(U; X + Zy) — I(U; X + Z3))
= [W(Z2) — M(Z1)] — p[M(X + Z3) — (X + Z2)|+

(M(X +Z1|U) + ph(X 4+ Z3|U) — (1 + p)h(X + Z|U)]

1
= —log

5 — puh(X 4+ Z3) — h(X + Zo)]+

Y2
Ny
(X + Za|U) + ph(X + Zs|U) — (1 + ) h(X + Zo|U)] (52)

for some jointly distributed U, X) independent ofZ1, Z-, Z3). Note thatN, < Nj3. Similar to [46), we may

obtain
1 S+ N3
h(X+Z3) —h(X+Z) > =1 . 53
(X +Zs) (+2)_2OgS+N2 (53)
Moreover, by letting
1 - .
M1 =T, /L3:L7 Mlz Ml ) andM2: M2
1+p 1+p 1+p 1+ p
we can rewrite the KKT condition§_(#8)—=(50) as
p1(B* + N7+ pu3(B* 4+ N3) ™t 4+ My = (B* + No) ™! + M,
B*M; =0
and (S—B")M;=0.
Thus, by Theorerhl2
h(X + Z1|U) + ph(X + Z3|U) — (14 p)h(X + Z2|U)
1
§log\B*+N1]+ log\B*—i-Ng]——l |B* + Na|. (54)
Substituting [(5B) and (54) intd_(52), we have
1 N2 1% S +N3
o o l _ _l
1+#R2 20g N1 20 ‘S—I—Ng_‘_
5 10g[B" + Ni| + 5 log [B” + Ny| — ——log [B" + Ny|
1 B* + Ny 1 B* + Ny 1 S+ Ny 1 S + N3
= |Zlog | ——2| — = log | ——2 “log |—— 2| — Zlog |———2||. 55
[2 Og‘ N, 2Og' N, }+“[2 ®IB* I N, QOg‘B*—i-Ng (®5)

Thus, we have obtained a contradiction betwéen (51) @and &5h result, all the achievable rate pairs must be
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inside the secrecy rate regidn {16). This completes thefmbthe theorem.

VI. PROOF OFTHEOREM[G

In this section, we prove Theorem 6 following similar stepstlaose used in the proof for Theorérm 5. The
achievability of the secrecy rate regidn 17) can be obthiinem the secrecy rate region (15) by lettit§ and
V be two independent Gaussian vectors with zero means andiaroea matriceS — B and B, respectively and
X = U + V. We therefore concentrate on the converse part of the threore

To show that[(1l7) is indeed the secrecy capacity region ofvédwor Gaussian broadcast chanmnél (8), we will
use proof by contradiction. Assume th@t$, R9) is an achievable secrecy rate pair that leegsidethe secrecy

rate region[(1l7). Note thaN; < N3. From [28, Theorem 1], we can bouri¥ by

1 N
R?gilog‘s+ -

1 ‘S—I—N?,

S|
2% TN,

__ pmax
: = R,

Note that whenRg = 0, R7*** is achievable by lettingd = S in (15). Thus, we may assume th&g > 0 and

write R{ = R} + 6 for somed > 0 where R] is given by

1, |B+Ni| 1, |B+Ny
max |—= - =
B 2% TN, 2 %% TN,
subjectto: 0 <B =<S
L |S+Na| 1 [S+Ns .
2% BrN,| 2% BrNg| — *

Let B* be an optimal solution to the above optimization programeriB* must satisfy the following KKT

conditions:
(B*+Np) '+ (p— 1)(B* + N3) " + M; = pu(B* + Ng) ' + M, (56)
B*M, =0 (57)
and (S—-B")M;y;=0 (58)

whereM; and M aren x n positive semidefinite matrices, andis a nonnegative real scalar such that 1H

Therefore,
Ro—llo S + Ny —lO S+ N3
27 9% B I Ny| 2 BB N,
and
1 B*—l-Nl 1 B*+N3 1 S—|—N2 1 S+N3
0 o_ |2} | - -7 Z1 - — S . 59
1+MR2 |:2 og Nl 2Og‘ N3 :|+,U'|:2 Og'B*+N2 20g B*+N3 +90 ( )

2If 4 < 1, itis easy to see thaB* = S is an optimal solution and hence contradicts the assumptianR > 0.
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On the other hand, by the converse part of Thedreém 4
R+ uRS < [I(X;X + Z4|U) — I(X; X + Z3|U)] + p[l(U; X + Zy) — I(U; X + Z3))

= [M(Z3) — W(Z1)] — p[h(X + Z3) — h(X + Z2)]+

(WX +Za|U) + (p = Dh(X + Zs|U) — ph(X + Za|U))]

1 N3 1% S+N3
< Zlog |2 — &
_20g N; QOg'S+N2+
(h(X + Z1|U) + (i — DR(X + Z3|U) — ph(X + Zo|U)] (60)

for some jointly distributedU, X) independent ofZ1, Z», Z3), where the last inequality follows from (53).

Sinceu > 1, by letting

M ~ M
p=—, p3=—"->, M;=— andM2=7

1
J J J
we can rewrite the KKT condition$_(b6)—(58) as

1 (B* + N7+ pg(B* + N3) ™' + My = (B* + Na) ' + M,

B*M; =0

and (S—B*)M;=0.
Thus, by Theorerhl2

WX + Z1|U) + ( — (X + Zs|U) — ph(X + Zo|U)

1 1-—
< log[B" + N[ + 2'ulog|B*+N3|—glog|B*—|—N2|. (61)
Substituting [(B4) into[(60), we have
1 N3 1% S+N3
° L uRS < =~ log || — £
R1+uR2_2og N, QOg‘S+N2+
1 —1
[ilog]B*—FNl]—F'uZ log\B*—i-Ng]—glog\B*—i-Ng@
1 B*"+N; 1 B* + N3 1 S+ Ny 1 S+ N3
= |Zlog ||~ Zlog |2t 2 Tlog |22 Deg | 2T N (62
[2°g‘ N, 20g‘ Ns }+’“‘[20g B+ N, 2°g‘B*+N3] (62)

Thus, we have obtained a contradiction betwéen (59) and f&2p result, all the achievable rate pairs must be

inside the secrecy rate regidn {17). This completes thefmbthe theorem.
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VIlI. CONCLUSIONS

This paper has considered an EPI of Costa and has establishatliral generalization by replacing the scalar
parameter in the original Costa EPI with a matrix one. Theegalized Costa EPI has been proven using a
perturbation approach via a fundamental relationship éetwthe derivative of mutual information and the MMSE
in linear vector Gaussian channels. This is an example of t@wconnections between information theory and
statistics can be explored to provide new mathematicaktéml information theory.

As an application, a new extremal entropy inequality haslirived from the generalized Costa EPI and then
used to characterize the secrecy capacity regions of thedied vector Gaussian broadcast channel problem with
layered confidential messages. We expect that the geretdlipsta EPI will also play important roles in solving

some other Gaussian network communication problems.

APPENDIX |

PROOF OFTHEOREM[3
A. Achievability

We first show that the secrecy rate regibnl (14) is achievédakowing the idea of superposition coding for the
degraded broadcast channel [3], we introduce an auxiliadelbook which can be distinguished by both receiver
1 and receiver 2. The codebook is generated using randonmbifi20], [21].

Fix p(u) andp(x|u) and let

Ry = I(X; Ya|U) — (63a)

and Ry, =1(U;Y3) — e (63b)
for somee; > 0. Let
Ly = 2"Rk, Jp = 2”R;¥‘ and T, =LipJ, k=1,2.

Without loss of generalityL;, L) and.J, are assumed to be integers.
Codebook generationGeneratel’, independent codewords® of lengthn according to[ ;" , p(u;) and label

them as

u”(wg,jg), wy € {1,...,L2}, j2 € {1, .. .,Jg}.

For each codeword” (ws, j2), generatel; independent codewords® according to[ [ ; p(x;|u;) and label them
as

xn(wbjl»w%j?) = xn(w17j17un(w27j2))> W € {17 s 7Lk} and Jk € {17 . >Jl€}



20

Encoding: To send a message pdiw;,ws), the transmitter randomly chooses a péir, j2) and sends the
corresponding codeword™ (w1, j1, w2, j2) through the channel.

Decoding: Receiver 2 determines the unigug such that

(u™ (w2, j2), y5) € A™ (prry,)

whereAE") (pv.y,) denotes the set of jointly typical sequene#sandysy with respect top(u, y2). If there are none

such or more than one such, an error is declared. Receivarks for the uniqugw;, w2) such that

(u™ (w3, j2), 2™ (w1, j1, w2, j2), Y1) € A (py xv,)

whereAE”) (pu,x,v,) denotes the set of jointly typical sequeneész™ andy}” with respect tg(u, , y1). Otherwise,
an error is declared.

Error probability analysis: By the symmetry of the codebook generation, the probalslitpr does not depend
on which codeword was sent. Hence, without loss of gengralie may assume that the transmitter sends the

message paifw;,wy) = (1,1) associated with the codeword(1,1,1,1) and define the corresponding event
K1 = {«"(1,1,1,1) was senj.

First consider the decoding at receiver 2, for which we wilbw that receiver 2 is able to decod&(ws, j2)

with small probability of error ifRy + R, < I(U;Y2). To prove this, define the event

Ea (w2, jo) = {(U"(w27j2)ay3) € Agn)(pU,Yz)}-

Then, the probability of error at receiver 2 can be boundethfabove as

Pé,’;><Pr{ﬂ85<1,j2>fc1}+ > Prig(wz, 2|}

J2 wa#1, g2

<Pr{&(L DK} + > Pr{&(ws, j2)[K1}

wa#l, Jo

where

&5(1, 7o) = { (u"(1,12), 48) £ A" (puys) }

For large enough and R, + R, < I(U;Y>), the joint asymptotic equipartition property (AEP) [25, apiter 14.2]
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implies
P < e 4 Tyl (UY)~d
= e+ 2n(R2+R/2) 2—n[[(U;Y2)—e]

< 2e. (64)
Next, we will show that receiver 1 can successfully decodi b and ™ if

R+ Ry < I(X;11|0)

and Ro + Ry < I(U; Ys). (65)
Define the events

Era(wr, j1, wa, j2) := {(Un(wz,jz)alﬂn(wl,jl,w2,j2),y?) € Agn)(pU,X,Yl)}-

and E1(wz, j2) = {(U”(wzdz),y?) € Agn)(pU,Yl)}

where AE") (puy,) denotes the set of jointly typical sequenc€s and yi with respect top(u,y:1). Then, the

probability of error

P <Pr{EsL DK+ Y Pr{&i(wa,p)[Kit + > Pri€i(wr, i1, 1)[K1}
wa#l, g2 w1 #1,j1,

where

&) = { (" (1,1),07) ¢ AP (o) } -
By the AEP [25, Chapter 14.2],

Pr{&f(1,1)[K1} <,
Pr{& (wa, j2) K1} < 27"HWUYD=d 1 for g £ 1,

and Pr{gl,l(w17j17 1, 1)’]C1} < 2_n[I(X;Y1|U)_E], for wy # 1.

Since the channel is degraded, we hdy¥;Y;) > I(U;Y>). Hence, ifn is large enough and the conditidn [65)

holds, the probability of error at receiver 1 can be boundethfabove as

P(fi) < €+ To2 - "HUY)=d | o=nll(X:Yi|U)—¢]

€,

< €+2n(R2+R’2)2—n[I(U;Y2)—e] _|_2n(R1+R’1)2—n[I(X;Y1\U)—e}

< 3e. (66)
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Together, [(64) and_(66) illustrate that messages w-) can be decoded at receiver 1 with a total probability of
error that goes t® as long as the rate paiiR;, R») satisfies[(14).

Equivocation calculation:To show that[(Il1) holds, we consider the following lower bdwm the equivocation:

HWh|Yy") > H(Wh|Yy', U™)
= H(W,Y5'|U") — H(Y3'|U"™)
= H(X", Y5 |U") = H(X"|W, Yy, U") — H(Y3'|U™)
= H(X"|U") + H(Yy'| X", U") = H(X"|W1, Y5, U") — H(Y3'|U")

=H(X"|U") — HX"|Wy,Yy", U™) — [(X™; Y5 |U™) (67)

where the second equality is due to the fact #atis independent of everything else givéft'.
According to the codebook generation, for a givéh = v, X" hasT; possible values with equal probabilities.

Hence,

H(X"|U") =n(Ry + R))

=n[R + I(X;Y2|U) — €] (68)

where [€8) follows from the definition aR] in (633).

Next, we show that for any givem, > 0, H(X"|W1,Ys",U™) < ney for large enoughn. To calculate
H(X™Wi,Yy",U™), consider the following hypothetical scenario. B, = w;, and assume that the transmitter
sends a codeword"(wl,jl,u"(wg,jg)), j1 € {1,...,J1}. Assume that receiver 2 knows the sequebte=
u"(we, j2). Given indexW; = wy, receiver 2 decodes the codewart(wy, ji,u™) (i.e., looks for the indexj;)
based on the received sequengelet \(w;) denote the average probability of error of decoding thexngeat
receiver 2. By the AEP [25, Chapter 14.2], we hayev;) < e for sufficiently largen. By Fano’s inequality [25,
Chapter 2.11],

—

1 logy J
EH(Xnywl — w17Y2n’Un) S ~ 4 )\('wl)M

—3

< — +€R)

3

= €9.



Consequently,

L,
1 1
—H(X"|Wh, Y3, U") = — > Pr(Wy = w)H(X"|Wy = wy, Y3, U™)

’Ll)1:1

< €9.

By the AEP [25, Chapter 14.2], for ary

I(X™ Y| U™) < nl(X;Ys|U) + nes
for sufficiently largen. Substituting [(6B),[(689) and (0) intb (67), we have

1 n

EH(WHYZ ) > Ry — (61 + e+ 63).

Similarly, we can show that
H(Wa|Ys') = H(U™) — HU"|W2,Y3") — I(U"; Y3")

where

H(U") = n[Ry + [(U; Y3) — €]
H(U"|Wa, Y < néb

and [(U™YF) < n[I(U;Y3) + 4],
whereé¢, and ¢, vanishes in the limit as — co. Hence,
%H(WQIY?)”) > Ry — (€1 + €5 + €5).
Note thatY; is degraded with respect 6,. Therefore,

HW|Ys") = HW|Yy',Y5")
= HN[Yy')

> Ry — (61 +62—|—63).

This proves the security condition {11) and hence the aabiéty part of the theorem.
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(69)

(70)
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We first bound from above the secrecy rdte. The perfect secrecy condition {11) implies that foreatt 0,

H(WA|Y3') > H(Wh) — ne

and H(W2|Y3") > H(W3) — ne.
On the other hand, Fano’s inequality [25, Chapter 2.11] iespthat for any, > 0,

H(W1]Y7") < eolog (2nR1 —1) + h(eo) :=ndy

and H(W»|Y3") < €olog (22 — 1) + h(ep) := nda.
Thus,

an = H(Wl)
< [H(WH|Y3') + ne| + [nd1 — H(W1[YT)]
< H(Wq, Wa|Yy") — H(WA YY", Wa) + n(e + 01)

§ H(W1|Yén, Wg) — H(W1|Y1n, WQ) + n(e + 51 + (52)

(71a)

(71b)

(72a)

(72b)

(73)

where the first inequality follows fron) (7lla) and (V2a), anel last inequality follows froni(72b). Lét= e¢+d;+3s.

By the chain rule of the mutual information [25, Chapter 2.5]

n(Ry — ) < I(Wy; Y"[Wa) — I(Wy; Y5 [Wa)

[T(W15 Y3 3| Wa, Y1) — T(Wis Ya i |[Wa, Yo 1)

1=1

I

[T(W; Y14 Wa, YTy, Yy — I(Wy; Ya [Wr, Y vy h)]

=1

where the last equality follows from [21, Lemma 7]. Let

Vi= (Vi Y3

(74)

(75)
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We can further bound (74) from above as
—8) <> [I(Wh, X33 Y14 Wa, Vi) — I(Wh, X33 Ya i [Wa, V7))

=) (X5 Ya [ Wh, Wa, Vi) = I(X; Yo |Wh, Wa, Vi)

[L(W1, X5 Y13 |Wa, Vi) — I(W1, Xi; Yo ;| Wa, V;)]
1

IN

(2

(X33 Y1,:|Wo, Vi) — 1(X5; Yo 3| Wa, V)] (76)

I

=1

where the second inequality follows from the Markov relatio
(Wi, Wo, Vi) = X; = Y1, — Yo,

and the last equality is due to the fact that; andY> ; are conditionally independent of everything else given

Next, we bound from above the secrecy rate By (710) and[(72b),

nRy = H(Wy)
< [H(Wa|Y3) + ne] + [nd — H(W|Y3")]
= I1(Wo; Yy") — I(Wo; Y3") + n(e+ d2)

= Zn: [T(Wo; Yol Ya'ip1) — I(Wa; 1@2|Y},Z_1)] + n(e+ d2). (77)
i=1
Let ¢ := e+ J9 and
V= (V30 Y57). (78)
Applying [21, Lemma 7] again, we may obtain

n(Ry —0') < Z (Wa; Ya il Vi) — I(Wa; Ya 4| VY )]

= Z (Wa, Vi o) — I(Wa, Vi Y3,4)] — Z [I(V/;Ya,) — I(V/;Y3,)]
=1

< Z [I(Wa, Vs Ya ) — I(Wa, V{5 Ya)] (79)

where the last inequality follows from the Markov relatidfi — Y; ; — Y>,;. Furthermore, by the definitions of

V; andV/ in (75) and [(78) respectively,

V! — (Wa, Vi) = (Yau, Y3,). (80)
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By (79) and [(8D),
n(Ry = 8') <Y [I(Wa, V/ Vs Vo) — I(Wa, Vi Vis Vo)) = D [1(Vi Ya,i Wa, V) — I(Vi; Ya,:|Wa, V)]
i=1 i=1
= [I(Wy,Vi; Yau) = I(Wa, Vis Yaa)] = > [1(Vis YoulWa, Vi) = I(Vi; Ya,:[Wa, V7)) . (81)
i=1 =1

Note thatYs ; is conditionally independent of everything else given,. Hence,

I(Vi; Y3 :|Wa, V) < I(V;; Yo, Y3, |[Wa, V/)

= I(Vi; Yo, Wa, V)') 4+ 1(Vi; Ya 4| Ya4, Wa, Vi)

= I(Vi; Yo, [W2, V). (82)
Substituting [(8R) into[(81), we have
1< ,
Ry < =% [I(Wa, Vi; Ya) = I(Wa, Vi; Ya)] + ' (83)
=1
Finally, let
Ui == (Wa, Vi). (84)

With this definition, [76) and(83) can be rewritten as
Ry < —Z (X5 Y1,4lUs) — I(Xi5 Ya|Ui)] + 6
and Ry < —Z (Us; You) — I(Us; Ya)] + 6. (85)

Following the standard single-letterization process.(esge [25, Chapter 14.3]), we have the desired converse

result.

APPENDIX Il

PROOF OFCOROLLARY

Fix U = u. By the generalized Costa ER] (3), we have

WX+ ASZIU =) > {|1— Al* exp [ hX|U = u)} + 1A exp [%h(x+ Z\U = u)} } (86)

l\3|3
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Taking expectation ovel/ on both sides of (86), we may obtain

h(X + ASZ|U) > gE {1og {\1 — Al exp [%h(X!U = u)} +|A[7 exp [%h(X +Z|U = u)} H
> glog {\1 — Al exp [%E [W(X|U = u)]} + |A[* exp EE (X +Z|U = U)]} }
- glog {\1 — Al exp [%h(X\U)] +|A|* exp [%h(X + sz)} } (87)

where the second inequality follows from Jensen’s inetylfdb, Chapter 2.6] and the convexity o (a1e™ + age™)

in (z1,x2) for ai,as > 0. Taking logarithm on both sides df (87) proves the desiredjirality [32).

APPENDIXIII

PROOF OFCOROLLARY

Note that wheru = 0, (33) implies thafN; = Ny. Thus, both sides of (34) are equal to zero and the inequality
holds trivially with an equality. For the rest of the proofewvill assume thaj, > 0. The proof is rather long so
we divide it into several steps.

Step 1-Generalized eigenvalue decompositia.start by applying generalized eigenvalue decomposjéah
to the positive define matricd8* + IN; andB* + N». There exists amvertible generalized eigenvector mat

such that

VI(B* +N;)V =A,; (88)

and VT(B*4+ NV =A, (89)

where A; and A, are positive definiteliagonal matrices. Let
Az := VT (B* + N3V (90)

be ann x n positive definite matrix. By[(33),

AT 4 At = (14 p)ASh (91)
Thus, A3 is also diagonal. Moreover, sin@®¢; < N3,

A; — Az =VT(N; — N3)V <0.

and hence

A1 < As. (92)
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Step 2—Choosing matrix parametdr. Let A; = Az + €I for somee > 0, and letA, be ann x n matrix such

that
AT pAT = (1 A

Clearly, A, is diagonal. Moreover, by (92)

A1 < As.
Note thaty > 0 so by [93) and[(94)

AL < Ay < As.

Comparing [[911) and (93) and using the fact thhat< A3, we have

Ay < As.
Now let

Y, =V (X+Z)
Y, = V(X + Zs)

and  Ys:= V(X +Zs)
whereZ, and 23 are Gaussiam-vectors with covariance matrices

Ny, =V TA, VI - B*
-V TA, VI —B*
= (B* 4+ N,) — B

=Ny
and

N; =V TA; V! _B*
=V (A3 +I)V! - B*
= (B*+N3+evV 'V - B*

=N3+eV TV

(93)

(94)

(95)

(96)
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respectively and are independendof The covariance matrices 8y, k = 1,2, 3, can be calculated a8 [Cov(X)—
B*]V + A;, VT[Cov(X) — B*]V + Ay and VT[Cov(X) — B*]V + A3, respectively. ThusY, and Y3 can be

equivalently written as

Y;s=Y | +7Z

and  Y,=Y;+A:Z
whereZ is a Gaussiam-vector with covariance matrid; — A; = 0 and is independent oY, and
A = (AQ — Al)(Ag — Al)_l. (97)

Clearly, A is diagonal. Moreover, by (95) < A < 1.
Step 3—Applying generalized Costa’s EBY the generalized Costa EFI (3),

BOYalU) 2 S1og {[1- Al e | 2000110)] + 1 e | 20cvai0)] }.
Thus,

WY 1|U) + ph(Y3|U) = (14 p)h(Y2|U)

< HYa ) + (Yal0) - 5 o {1 Al exp | 20wl + a1 exp | 2cvalon| | e

Now we consider the function

f(b,c)zb%—,uc—%log [|I—

n exp <2b> + |A n eXp <2C>} .

Note that
1—(1+p) IT— Al exp(2b/n)
VF(b,c) = I — A|~ exp(2b/n) + |A]* exp(2¢/n)
| |A| exp(2¢/n)
p— (L4 p) T ;
[T — Al~ exp(2b/n) + |[A|= exp(2¢/n)
and
2(1 Al+|I- A+ % 42 1 1
sz(b,c):— ( :lu) | |1| | eXp[( bl—|— C)/TL] i jo
[]I — Al|vexp(2b/n) + |A|x exp(20/n)] 1 1

So f(b, c) is concave in(b, c). By settingV f(b, c¢) = 0, the global maximum is achieved when

o I—A[\*"
C—b—l—Elog[,u( Al >]




and the maximum is given by

pn I-A
2 o [’“‘( A

3=

log [(1+ )T — Aﬁ] :

]_ (1+p)n
2

Hence,

h(Y1[U)+ph(Y3|]U) — (1 + p)h(Y2|U)

un I—A| "
< By
=2 Og["< A

Step 4—Calculatindog |A| andlog |I — A|. Note that[(98) can be rewritten as

(14 pn

2

AT = AZY) = (14 p) (AT — AT

which gives

Ay — Ay
As — Ay

As
A;

B <1ﬁu>n

Similarly, we have

(A" =AY =1+ p)(A - Agh

and hence
As — A, _< 1 ) As
Ag — A -\l + @ Al '
According to the definition ofA in (©7),
Ay — A
log|A| = log | =2—=1
As — Ay
"IA
= log <L> —
1+p As
and
Az — A
log |I— A| =log |=2——2
Az — Ay
o <;> As
— 8\ +u) |[Ay

S o2 P [(1 L)l — Al
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(99)

(100)

(101)

(102)

(103)

where [10R) and_(103) follow (100) and (101), respectivBlybstituting [(102) and_(103) intd_(99), we have

1+

WY 1U) + ih(Y310) — (14 ) h(Ya|U) < :

log | Aq] + & log |As| -

N —

" log |As|.

(104)
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Step 5-Letting | 0. Note thatAs = A3z + el — Az andN3 = N3 + eV TV~ — Nj in the limit ase | 0.

Moreover, by [[9B) we havA, — A, and hence

Ny =V A,V —B*
SV TA, VI - B*
= (B* + Ny) — B*

= No.
Letting € | 0 on both sides of (104), we have

h(VT(X + Np)|U) + ph(VT(X + N3)|[U)—(1 + p)h(VT (X + No)|U)

log | A] + 5 log [Ag| — —Flog[As].  (105)

+
<!
2

Using the fact that

h(VTI(X 4+ N)|U) = h(X + Ny |U) + log |V]|
and

log |Ax| = log [VT(B* + N)V|

= log |B* + Ni| + 2log |V]|
for k = 1,2, 3, the desired inequality (34) can be obtained from [105)s Tumpletes the proof of the corollary.

APPENDIX IV

PROOF OFCOROLLARY [3
Here, we prove Corollarly]3 using mathematical inductionté\ithat whenk = 1, (38) implies thatN; = N.
Thus, the inequality(36) holds trivially with equality fany (U, X) independent ofZ, Z,).
Assume that the inequality_(B6) holds féf = Q — 1. Let N be ann x n symmetric matrix such that

Q-1
(B*+N)™ =" i (B* + Ny ™! (106)
k=1
where
/’L;i) Mk‘ ) j - 17 . 7Q
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By the assumptiolN; < ... < Ng_;, we have from[(106)
N; <N =< Ng_. (107)

Let Z be a Gaussian random+vector with covariance matri®N and independent ofU, X). By the induction

assumption and_(106),

Q-1 Q-1

1
3" Wh(X + ZiU) — h(X + ZJU) < %log\B—kal—glog]B—l—N]. (108)
k=1 k=1

On the other hand, substitufe (106) intal(35) and we have
(B+N)"'+ u(B+Ng) ™' = (1+ pp)(B +Ng) ™.
Note from [107) thaiN < Ng_; < Ng. Thus, by Corollary 2

WX+ ZIU) + pigh(X + Zg|U) — (1 + ) h(X + Zo|U)
/

1 L+ g
< Slog[B+N| + %ng\BjLNQ\ - 2“‘? log [B + No. (109)

Putting together (108) an@ (109), we have

Q

i 1
S (X + Zi|U) — h(X + ZolU) < 3 % log | B + N,| - 5 log B + No|.
j=1 j=1

This proved the induction step and hence the corollary.
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