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A Vector Generalization of Costa’s Entropy-Power

Inequality with Applications

Ruoheng Liu, Tie Liu, H. Vincent Poor, and Shlomo Shamai (Shitz)

Abstract

This paper considers an entropy-power inequality (EPI) of Costa and presents a natural vector generalization

with a real positive semidefinite matrix parameter. This newinequality is proved using a perturbation approach via a

fundamental relationship between the derivative of mutualinformation and the minimum mean-square error (MMSE)

estimate in linear vector Gaussian channels. As an application, a new extremal entropy inequality is derived from

the generalized Costa EPI and then used to establish the secrecy capacity regions of the degraded vector Gaussian

broadcast channel with layered confidential messages.

Index Terms

Entropy-power inequality (EPI), extremal entropy inequality, information-theoretic security, mutual information

and minimum mean-square error (MMSE) estimate, vector Gaussian broadcast channel

I. INTRODUCTION

In information theory, the entropy-power inequality (EPI)of Shannon [1] and Stam [2] has played key roles in the

solution of several canonical network communication problems. Celebrated examples include Bergmans’s solution

[3] to the Gaussian broadcast channel problem, Leung-Yan-Cheong and Hellman’s solution [4] to the Gaussian

wire-tap channel problem, Ozarow’s solution [5] to the Gaussian two-description problem, Oohama’s solution [6]

to the quadratic Gaussian CEO problem, and more recently Weingarten, Steinberg and Shamai’s solution [7] to the

multiple-input multiple-output Gaussian broadcast channel problem.
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Let X andZ be two independent randomn-vectors with densities inRn, whereR denotes the set of real numbers.

The classical EPI of Shannon [1] and Stam [2] can be written as

exp

[
2

n
h(X+ Z)

]
≥ exp

[
2

n
h(X)

]
+ exp

[
2

n
h(Z)

]
(1)

whereh(X) denotes the differential entropy ofX. The equality holds if and only ifX andZ are Gaussian and

with proportional covariance matrices.

In network information theory, most applications focus on the special case of (1) where one of the random

vectors is fixed to be Gaussian. In this setting, the classical EPI of Shannon and Stam can be further strengthened

as shown by Costa [8]. LetZ be a Gaussian randomn-vector with a positive definite covariance matrix, and leta

be a real scalar such thata ∈ [0, 1]. Costa’s EPI [8] can be written as

exp

[
2

n
h(X+

√
aZ)

]
≥ (1− a) exp

[
2

n
h(X)

]
+ a exp

[
2

n
h(X+ Z)

]
(2)

for any randomn-vectorX independent ofZ. The equality holds if and only ifX is also Gaussian and with a

covariance matrix proportional to that ofZ’s.

Though not as widely known as the classical EPI of Shannon andStam, Costa’s EPI has found useful applications

in deriving capacity bounds for the Gaussian interference channel [9] and the multiantenna flat-fading channel [10].

The original proof of Costa’s EPI provided in [8] was based onrather detailed calculations. Simplified proofs

based on a Fisher information inequality [11] and a fundamental relationship between the derivative of mutual

information and minimum mean-square error (MMSE) in linearGaussian channels [12] can be found in [13] and

[14], respectively.

Note that Costa’s EPI (2) provides a strong relationship among the differential entropies of three random vectors:

X, X+
√
aZ andX+Z. To apply, the increments ofX+

√
aZ andX+Z overX need to be Gaussian and have

proportionalcovariance matrices. For some applications in network information theory (as we will see shortly), the

proportionality requirement may turn out to be overly restrictive. A main contribution of this paper is to prove a

natural generalization of Costa’s EPI (2) by replacing the real scalara with a positive semidefinitematrix parameter.

The result is summarized in the following theorem.

Theorem 1 (Generalized Costa’s EPI):Let Z be a Gaussian randomn-vector with a positive definite covariance

matrix N, and letA be ann× n real symmetric matrix such that0 � A � I. Here,I denotes then × n identity

matrix, and “�” denotes “less or equal to” in the positive semidefinite partial ordering between real symmetric

matrices. Then,

exp

[
2

n
h(X+A

1

2Z)

]
≥ |I−A| 1

n exp

[
2

n
h(X)

]
+ |A| 1

n exp

[
2

n
h(X+ Z)

]
(3)



3

for any randomn-vectorX independent ofZ. The equality holds ifZ is Gaussian and with a covariance matrix

B such thatB−AB andB+A
1

2NA
1

2 are proportional.

Note that whenA = aI, the generalized Costa EPI (3) reduces to the original CostaEPI (2). On the other hand,

whenA is not a scaled identity, the covariance matrices of increments of X +A
1

2Z andX + Z over X do not

need to be proportional. As we will see, the ability to cope with a generalmatrix parameter makes the generalized

Costa EPI more flexible and powerful than the original Costa EPI.

A different but related generalization of Costa’s EPI was considered by Payaró and Palomar [15], where they

examined the concavity of the entropy-powerexp
[
2
n
h(A

1

2X+ Z)
]

with respect to the matrix parameterA. This

line of research was motivated by the observation that the original Costa EPI (2) is equivalent to the concavity of

the entropy powerexp
[
2
n
h(
√
aX+ Z)

]
with respect to the scalar parametera. Unlike the scalar case, Payaró and

Palomar [15] showed that the entropy-powerexp
[
2
n
h(A

1

2X+ Z)
]

is in generalnot concave with respect to the

matrix parameterA. However, the concavity does hold whenA is restricted to bediagonal [15].

In information theory, a main application of the EPI is to derive extremal entropy inequalities, which can then be

used to solve network communication problems. In their work[16], Liu and Viswanath derived an extremal entropy

inequality based on the classical EPI of Shannon [1] and Stam[2] and used it to establish the private message

capacity region of the vector Gaussian broadcast channel via the Marton outer bound [17, Theorem 5]. In this paper,

we will derive a new extremal entropy inequality based on thegeneralized Costa EPI and use it to characterize the

secrecy capacity regions of the degraded vector Gaussian broadcast channel with layered confidential messages.

The rest of the paper is organized as follows. In Section II, we summarize the main results of the paper, including a

new extremal entropy inequality and its applications on thedegraded vector Gaussian broadcast channel with layered

confidential messages. In Section III, we prove the generalized Costa EPI, following a perturbation approach via a

fundamental relationship between the derivative of mutualinformation and MMSE estimate in linear vector Gaussian

channels [18, Theorem 2]. In Section IV, we derive the new extremal entropy inequality from the generalized Costa

EPI. The coding theorems for the degraded vector Gaussian broadcast channel with layered confidential messages

are proved in Section V and Section VI. Finally, in Section VII, we conclude the paper with some remarks.

II. SUMMARY OF MAIN RESULTS

The following notation will be used throughout the paper. A random vector is denoted with an upper-case letter

(e.g.,X), its realization is denoted with the corresponding lower-case letter (e.g.,x), and its probability density

function is denoted withp(x) = pX(x). We useE[X] to denote the expectation ofX. Thus, the covariance matrix

of X is given by

Cov(X) = E

[
(X− E[X])(X− E[X])T

]
.
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Given any jointly distributed random vectors(X,Y), the MMSE estimate ofX from the observationY is the

conditional meanE[X|Y]. The MMSE (matrix) is given by:

Cov(X|Y) = E

[
(X− E[X|Y])(X − E[X|Y])T

]
.

A. A New Extremal Entropy Inequality

The following extremal entropy inequality is a consequenceof the generalized Costa EPI.

Theorem 2:Let Zk, k = 0, . . . ,K, be a total ofK + 1 Gaussian randomn-vectors with positive definite

covariance matricesNk, respectively. Assume thatN1 � . . . � NK . If there exists ann× n positive semidefinite

matrix B
∗ such that

K∑

k=1

µk(B
∗ +Nk)

−1 +M1 = (B∗ +N0)
−1 +M2 (4)

for somen× n positive semidefinite matricesM1, M2 andS with

B
∗
M1 = 0 (5)

and (S−B
∗)M2 = 0 (6)

and real scalarsµk ≥ 0 with
∑K

k=1 µk = 1, then

K∑

k=1

µkh(X+ Zk|U)− h(X+ Z0|U) ≤
K∑

k=1

µk

2
log |B∗ +Nk| −

1

2
log |B∗ +N0| (7)

for any (X, U) independent of(Z0, . . . ,ZK) such thatE[XX
T] � S.

Note that (4)–(6) are precisely the Karush-Kuhn-Tucker (KKT) conditions (see [7, Appendix IV] and [19,

Section 5.2]) for the optimization program:

max
0�B�S

[
K∑

k=1

µk

2
log |B+Nk| −

1

2
log |B+N0|

]
.

Therefore, (7) implies that a jointlyGaussian(U,X) such that for eachU = u, X has thesamecovariance matrix

is an optimal solution to the optimization program:

max
(U,X)

[
K∑

k=1

µkh(X+ Zk|U)− h(X+ Z0|U)

]

where the maximization is over all(U,X) independent of(Z0, . . . ,ZK) such thatE[XX
T] � S. Note that when

K = 1, this is a special case of [16, Theorem 8] withµ = 1.
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Receiver 1

Receiver 2

(W1,W2)

Transmitter 

X

Z1~(0,N1)

Y1

Y2

W2

W1 W2
^

Z2~(0,N2)

Z3~(0,N3)

Y3

Receiver 3

(W1, W2)
^^

W1

(a) Communication scenario 1

Receiver 1

Receiver 2

(W1,W2)

Transmitter 

X

Z1~(0,N1)

Y1

Y2

W2

W2
^

Z2~(0,N2)

Z3~(0,N3)

Y3

Receiver 3 

(eavesdropper)

(W1, W2)
^^

W1

(b) Communication scenario 2

Fig. 1. Degraded vector Gaussian broadcast channel with layered confidential messages

B. Applications on the Degraded Vector Gaussian Broadcast Channel with Layered Confidential Messages

Consider the following vector Gaussian broadcast channel with three receivers:

Yk[t] = X[t] + Zk[t], k = 1, 2, 3 (8)

where{Zk[t]}t, k = 1, 2, 3, are independent and identically distributed additive vector Gaussian noise processes

with zero means and positive definite covariance matricesNk, respectively. The channel input{X[t]}t is subject

to a matrix constraint:
1

n

n∑

t=1

X[t]XT[t] � S (9)

whereS is a positive semidefinite matrix, andn is the block length. We assume that the noise covariance matrices

are ordered as

N1 � N2 � N3, (10)

i.e., the received signalY3[t] is (stochastically) degraded with respect toY2[t], which is further degraded with

respect toY1[t].

We consider two different communication scenarios, both with two independent messagesW1 andW2. In the

first scenario (see Fig. 1-(a)), messageW1 is intended for receiver 1 but needs to be kept secret from receivers

2 and 3, and messageW2 is intended for receivers 1 and 2 but needs to be kept confidential from receiver 3.

In the second scenario (see Fig. 1-(b)), messageW1 is intended for receivers 1 but needs to be kept secret from

receiver receiver 3, and messageW2 is intended for receivers 1 but needs to be kept secret from receiver 3. The

confidentiality of the messages at the unintended receiversis measured using the normalized information-theoretic
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criteria [20], [21]:

1

n
I(W1;Y

n
2 ) → 0,

1

n
I(W1;Y

n
3 ) → 0, and

1

n
I(W2;Y

n
3 ) → 0 (11)

for the first scenario and

1

n
I(W1;Y

n
3 ) → 0, and

1

n
I(W2;Y

n
3 ) → 0 (12)

for the second scenario. Here, the limits are taken as the block lengthn → ∞. The goal is to characterize the

entire secrecy rate regionCs = {(R1, R2)} that can be achieved by any coding scheme.

To characterize the secrecy capacity regions, we will first consider the discrete memoryless version of the problem

with transition probabilityp(y1, y2, y3|x) and degradedness order

X → Y1 → Y2 → Y3. (13)

We have the following single-letter characterizations of the secrecy capacity regions.

Theorem 3:The secrecy capacity region of the discrete memoryless broadcast channelp(y1, y2, y3|x) with

confidential messagesW1 (intended for receiver 1 but needs to be kept secret from receivers 2 and 3) andW2

(intended for receivers 1 and 2 but needs to be kept secret from receiver 3) under the degradedness order (13) is

given by the set of nonnegative rate pairs(R1, R2) such that

R1 ≤ I(X;Y1|U)− I(X;Y2|U)

and R2 ≤ I(U ;Y2)− I(U ;Y3) (14)

for some jointly distributed(U,X) satisfying the Markov relation

U → X → (Y1, Y2, Y3).

Theorem 4 ([22, Theorem 2]):The secrecy capacity region of the discrete memoryless broadcast channelp(y1, y2, y3|x)

with confidential messagesW1 (intended for receiver 1 but needs to be kept secret from receiver 3) andW2 (intended

for receivers 1 and 2 but needs to be kept secret from receiver3) under the degradedness order (13) is given by

the set of nonnegative rate pairs(R1, R2) such that

R1 ≤ I(X;Y1|U)− I(X;Y3|U)

and R2 ≤ I(U ;Y2)− I(U ;Y3) (15)
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for some jointly distributed(U,X) satisfying the Markov relation

U → X → (Y1, Y2, Y3).

A proof of Theorem 4 can be found in [22]. Theorem 3 can be proved in a similar fashion; for completeness, a

proof is included in Appendix I. For the vector Gaussian broadcast channel (8) under the degradedness order (10),

the single-letter expressions (14) and (15) can be further evaluated using the extremal entropy inequality (7). The

results are summarized in the following theorems.

Theorem 5:The secrecy capacity region of the vector Gaussian broadcast channel (8) with confidential messages

W1 (intended for receiver 1 but needs to be kept secret from receivers 2 and 3) andW2 (intended for receivers 1

and 2 but needs to be kept secret from receiver 3) and degradedness order (10) under the matrix constraint (9) is

given by the set of nonnegative secrecy rate pairs(R1, R2) such that

R1 ≤
1

2
log

∣∣∣∣
B+N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B+N2

N2

∣∣∣∣

and R2 ≤
1

2
log

∣∣∣∣
S+N2

B+N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B+N3

∣∣∣∣ (16)

for some0 � B � S.

Theorem 6:The secrecy capacity region of the vector Gaussian broadcast channel (8) with confidential messages

W1 (intended for receiver 1 but needs to be kept secret from receiver 3) andW2 (intended for receivers 1 and 2

but needs to be kept secret from receiver 3) and degradednessorder (10) under the matrix constraint (9) is given

by the set of nonnegative secrecy rate pairs(R1, R2) such that

R1 ≤
1

2
log

∣∣∣∣
B+N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B+N3

N3

∣∣∣∣

and R2 ≤
1

2
log

∣∣∣∣
S+N2

B+N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B+N3

∣∣∣∣ (17)

for some0 � B � S.

III. PROOF OFTHEOREM 1

In this section, we prove the generalized Costa EPI (3) as stated in Theorem 1. We first examine the equality

condition. Note that whenX is Gaussian, the generalized Costa EPI (3) becomes the matrix inequality:

|B+A
1

2NA
1

2 | 1

n ≥ |B−AB| 1

n + |AB+AN| 1

n .

Suppose thatB−AB andB+A
1

2NA
1

2 are proportional, i.e., there exists a real scalarc such that

B+A
1

2NA
1

2 = c(B −AB).
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Since both matricesA andB are symmetric, this implies thatAB is also symmetric, i.e.,

AB = B
T
A

T = BA.

Therefore,A andB must have thesameeigenvector matrix [23] and hence

AB = A
1

2BA
1

2 .

It follows that

A
1

2BA
1

2 +A
1

2NA
1

2 = B+A
1

2NA
1

2 − (B−AB)

= (c− 1)(B −AB)

i.e., A
1

2BA
1

2 +A
1

2NA
1

2 andB−AB are proportional. Therefore,

|B+A
1

2NA
1

2 | 1

n = |B−AB+ (A
1

2BA
1

2 +A
1

2NA
1

2 )| 1

n

= |B−AB| 1

n + |A 1

2BA
1

2 +A
1

2NA
1

2 | 1

n

= |B−AB| 1

n + |AB+AN| 1

n .

This proved the desired equality condition.

We now turn to the proof of the inequality. First consider thespecial case when|A| = 0. Since

h(X+A
1

2Z)− h(X) = I(A
1

2Z;X+A
1

2Z) ≥ 0,

we have

exp

[
2

n
h(X+A

1

2Z)

]
≥ exp

[
2

n
h(X)

]

≥ |I−A| 1

n exp

[
2

n
h(X)

]

where the last inequality follows from the assumption that0 � A � I and hence0 ≤ |I−A| ≤ 1.

Next, consider the general case when|A| > 0. The proof is rather long so we divide it into several steps.

Step 1–Constructing a monotone path.To prove the generalized Costa EPI (3), we can equivalently show that

exp

[
2

n
h(X+ Z)

]
≤ |A|− 1

n exp

[
2

n
h(X+A

1

2Z)

]
−

( |I−A|
|A|

) 1

n

exp

[
2

n
h(X)

]
. (18)
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SinceX andZ are independent, we have

h(X+A
1

2Z)− h(X) = h(A− 1

2X+ Z)− h(A− 1

2X)

= h(A− 1

2X+ Z)− h(A− 1

2X|Z)

= I(Z;A− 1

2X+ Z) (19)

and

h(X+ Z)− h(X) = I(Z;X+ Z). (20)

Divide both sides of (18) byexp
[
2
n
h(X)

]
and use (19) and (20). Then, (18) can be equivalently writtenas

exp

[
2

n
I(Z;X+ Z)

]
≤ |A|− 1

n

{
exp

[
2

n
I(Z;A− 1

2X+ Z)

]
− |I−A| 1

n

}
. (21)

Let

F (D) := |D| 2

n

{
exp

[
2

n
I(Z;DX+ Z)

]
− |I−D

−2| 1

n

}
. (22)

With this definition, (21) can be equivalently written as

F (I) ≤ F (A− 1

2 ). (23)

To show the inequality (23), it is sufficient to construct a family of n × n positive definite matrices{D(γ)}γ
connectingI andA− 1

2 such thatF (D(γ)) is monotone along the path. Unlike the scalar case where there is only

one path connecting1 to 1/
√
a, in the matrix case there are infinitely many paths connecting I andA

− 1

2 . Here,

we consider the special choice

D(γ) :=
[
I+ γ(A−1 − I)

] 1

2 (24)

and show that
∂F

∂γ
≥ 0, ∀γ ∈ [0, 1]. (25)

along this particular path.

Step 2–Calculating the derivative∂F
∂γ

. Following [14, Theorem 5], we have

I(Z;DX+ Z) = I(X;DX + Z) + h(Z)− h(X)− log |D|

and

Cov(X|DX+ Z) = D
−1

Cov(Z|DX+ Z)D−T.



10

Let N := Cov(Z) and note thatD is symmetric. We have

∂

∂D
I(Z;DX + Z) =

∂

∂D
I(X;DX+ Z)−D

−1

= N
−1

DCov(X|DX+ Z)−D
−1

=
(
N

−1
Cov(Z|DX+ Z)− I

)
D

−1 (26)

where the second equality follows from the fundamental relationship between the derivative of mutual information

and MMSE estimate in linear vector Gaussian channels as stated in [18, Theorem 2].

From (26), the derivative∂F
∂D

can be calculated as

∂F

∂D
=
2

n
|D| 2

nD
−1

{
exp

[
2

n
I(Z;DX+ Z)

]
− |I−D

−2| 1

n

}
+

|D| 2

n

{
2

n
exp

[
2

n
I(Z;DX + Z)

]
∂I(Z;DX + Z)

∂D
− 2

n
|I−D

−2| 1

n (I−D
−2)−1

D
−3

}

=
2

n
|D| 2

n

{{
exp

[
2

n
I(Z;DX + Z)

]
− |I−D

−2| 1

n

}
I+

exp

[
2

n
I(Z;DX + Z)

]
(N−1

Cov(Z|DX+ Z)− I)− |I−D
−2| 1

n (D2 − I)−1

}
D

−1

=
2

n
|D| 2

n

{
exp

[
2

n
I(Z;DX + Z)

]
N

−1
Cov(Z|DX+ Z)− |I−D

−2| 1

n

[
I+ (D2 − I)−1

]
}
D

−1. (27)

The derivative∂D
∂γ

can be calculated as

∂D

∂γ
=

1

2

[
I+ γ(A−1 − I)

]− 1

2 (A−1 − I)

=
1

2γ
D

−1(D2 − I)

=
1

2γ
D(I −D

−2). (28)

By (27), (28) and the chain rule of differentiation [24, Chapter 17.5],

∂F

∂γ
= Tr

{
∂F

∂D

∂D

∂γ

}

=
|D| 2

n

n
Tr

{[
exp

[
2

n
I(Z;DX+ Z)

]
N

−1
Cov(Z|DX+ Z)− |I−D

−2| 1

n

[
I+ (D2 − I)−1

]] I−D
−2

γ

}

=
|D| 2

n

nγ
Tr

{
exp

[
2

n
I(Z;DX + Z)

]
N

−1
Cov(Z|DX+ Z)(I−D

−2)− |I−D
−2| 1

n I

}

=
|D| 2

n

nγ

{
exp

[
2

n
I(Z;DX+ Z)

]
Tr

{
N

−1
Cov(Z|DX+ Z)(I−D

−2)
}
− n|I−D

−2| 1

n

}
. (29)
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Step 3–Proving∂F
∂γ

≥ 0. The mutual informationI(Z;DX+ Z) can be bounded from below as follows:

I(Z;DX+ Z) ≥ I(Z;E[Z|DX + Z])

= h(Z) − h(Z|E[Z|DX + Z])

=
1

2
log(2πe)n|N| − h(Z− E[Z|DX+ Z]|E[Z|DX + Z])

≥ 1

2
log(2πe)n|N| − h(Z− E[Z|DX+ Z])

≥ 1

2
log(2πe)n|N| − 1

2
log(2πe)n

∣∣Cov(Z|DX+ Z)
∣∣

=
1

2
log

|N|
|Cov(Z|DX+ Z)| . (30)

Here, the first inequality follows from the Markov relation

Z → DX+ Z → E[Z|DX + Z]

and the chain rule of mutual information [25, Chapter 2.8]; the second inequality follows from the fact that

conditioning reduces differential entropy [25, Chapter 9.6]; and the third inequality follows from the well-known

fact that Gaussian maximizes differential entropy for a given covariance matrix [25, Chapter 9.6]. By (30),

|I−D
−2| 1

n exp

[
− 2

n
I(Z;DX + Z)

]
≤ |N−1

Cov(Z|DX+ Z)(I −D
−2)| 1

n

≤ 1

n
Tr

{
N

−1
Cov(Z|DX+ Z)(I −D

−2)
}

(31)

where the last inequality follows from the well-known inequality of arithmetic and geometric means [26, p. 136].

Finally, substituting (31) into (29) establishes the fact that ∂F
∂γ

≥ 0 for all γ ∈ [0, 1]. In particular, we have

F (D(1)) ≥ F (D(0)). This proved the desired inequality (21) and hence the generalized Costa EPI (3).

IV. PROOF OFTHEOREM 2

In this section, we prove the extremal entropy inequality (7) as stated in Theorem 2. We will first state a series

of corollaries of Theorem 1, as intermediate results leading to Theorem 2. Based on the final corollary, we will

prove Theorem 2 using anenhancementargument.

Corollary 1: Let Z be a Gaussian randomn-vector with a positive definite covariance matrix, and letA be an

n× n positive real symmetric matrix such that0 � A � I. Then

exp

[
2

n
h(X+A

1

2Z|U)

]
≥ |I−A| 1

n exp

[
2

n
h(X|U)

]
+ |A| 1

n exp

[
2

n
h(X+ Z|U)

]
(32)

for any (X, U) independent ofZ.
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Corollary 2: Let Z1, Z2 andZ3 be Gaussian randomn-vectors with positive definite covariance matricesN1,

N2 andN3, respectively. Assume thatN1 � N3. If there exists ann×n positive semidefinite matrixB∗ such that

(B∗ +N1)
−1 + µ(B∗ +N3)

−1 = (1 + µ)(B∗ +N2)
−1 (33)

for some real scalarµ ≥ 0, then

h(X+ Z1|U) + µh(X+ Z3|U)− (1 + µ)h(X + Z2|U)

≤ 1

2
log |B∗ +N1|+

µ

2
log |B∗ +N3| −

1 + µ

2
log |B∗ +N2| (34)

for any (X, U) independent of(Z1,Z2,Z3).

Corollary 3: Let Zk, k = 0, . . . ,K, be a collection ofK+1 Gaussian randomn-vectors with respective positive

definite covariance matricesNk. Assume thatN1 � . . . � NK . If there exists ann×n positive semidefinite matrix

B
∗ such that

K∑

k=1

µk(B
∗ +Nk)

−1 = (B∗ +N0)
−1 (35)

for someµk ≥ 0 with
∑K

k=1 µk = 1, then

K∑

k=1

µkh(X+ Zk|U)− h(X+ Z0|U) ≤
K∑

k=1

µk

2
log |B∗ +Nk| −

1

2
log |B∗ +N0| (36)

for any (X, U) independent of(Z0, . . . ,ZK).

A proof of Corollaries 1, 2 and 3 can be found in Appendices II,III and IV, respectively. We are now ready to

prove Theorem 2. Note that the special case withM1 = M2 = 0 was proved in Corollary 3. To extend the result

of Corollary 3 to nonzeroM1 andM2, we will consider an enhancement argument, which was first introduced by

Weingarten, Steinberg and Shamai in [7].

Let Ñ1 andÑ0 ben× n real symmetric matrices such that:

µ1(B
∗ + Ñ1)

−1 = µ1(B
∗ +N1)

−1 +M1 (37)

and (B∗ + Ñ0)
−1 = (B∗ +N0)

−1 +M2. (38)

As shown in [7, Lemma 11 and 12],̃N1 andÑ0 satisfy the following properties:

0 ≺ Ñ1 =
(
N

−1
1 + µ−1

1 M1

)−1 � N1, (39)

Ñ1 � Ñ0 � N0, (40)
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∣∣∣∣∣
B

∗ + Ñ1

Ñ1

∣∣∣∣∣ =
∣∣∣∣
B

∗ +N1

N1

∣∣∣∣ (41)

and
∣∣∣∣∣
S+ Ñ0

B∗ + Ñ0

∣∣∣∣∣ =
∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣ . (42)

Let Z̃0 and Z̃1 be two Gaussiann-vectors with covariance matrices̃N0 andÑ1, respectively. Note from (39) that

Ñ1 � N1 � N2 � . . . � NK . Moreover, substitute (37) and (38) into (4) and we have

µ1(B
∗ + Ñ1)

−1 +

K∑

k=2

µk(B
∗ +Nk)

−1 = (B∗ + Ñ0)
−1. (43)

Thus, by Corollary 3

µ1h(X+ Z̃1|U)+

K∑

k=2

µkh(X+ Zk|U)− h(X+ Z̃0|U)

≤ µ1

2
(B∗ + Ñ1)

−1 +
K∑

k=2

µk

2
log |B∗ +Nk| −

1

2
log |B∗ + Ñ0| (44)

for any (X, U) independent of(Z̃0, Z̃1,Z2, . . . ,ZK).

On the other hand, note from (39) thatÑ1 � N1. We have

I(X;X + Z1|U) ≤ I(X;X+ Z̃1|U)

for any (X, U) independent of(Z1, Z̃1). Thus,

h(X+ Z̃1|U)− h(X+ Z1|U) ≥ h(Z̃1)− h(Z1)

=
1

2
log

∣∣∣∣∣
Ñ1

N1

∣∣∣∣∣

=
1

2
log

∣∣∣∣∣
B

∗ + Ñ1

B∗ +N1

∣∣∣∣∣ (45)

where the last equality follows from (41).
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Also note from (40) thatÑ0 � N0. Let Ẑ0 be a Gaussiann-vector with covariance matrixN0 − Ñ0 and

independent of(Z̃0,X, U). We have

h(X+ Z0|U)− h(X+ Z̃0|U) = h(X+ Z̃0 + Ẑ0|U)− h(X+ Z̃0|U)

= I(Ẑ0;X+ Z̃0 + Ẑ0|U)

≥ I(Ẑ0;X+ Z̃0 + Ẑ0)

≥ 1

2
log

∣∣∣∣∣
Cov(X) +N0

Cov(X) + Ñ0

∣∣∣∣∣

≥ 1

2
log

∣∣∣∣
S+N0

S+ Ñ0

∣∣∣∣ (46)

=
1

2
log

∣∣∣∣
B

∗ +N0

B∗ + Ñ0

∣∣∣∣ (47)

for any (X, U) independent of(Z0, Z̃0) such thatE[XX
T] � S. Here, the first inequality follows from the

independence of̂Z0 and U ; the second inequality follows from the worst noise result [27, Lemma II.2]; the

third inequality follows from the fact that̃N0 � N0 andCov(X) � E[XX
T] � S; and the last inequality follows

from (42).

Finally, put together (44), (45) and (47) and we may obtain

K∑

k=1

µkh(X+ Zk|U)− h(X+ Z0|U)

=

[
µ1h(X+ Z̃1|U) +

K∑

k=2

µkh(X+ Zk|U)− h(X+ Z̃0|U)

]
−

µ1

[
h(X+ Z̃1|U)− h(X+ Z1|U)

]
−

[
h(X+ Z0|U)− h(X+ Z̃0|U)

]

≤
[
µ1

2
(B∗ + Ñ1)

−1 +

K∑

k=2

µk

2
log |B∗ +Nk| −

1

2
log |B∗ + Ñ0|

]
−

µ1

2
log

∣∣∣∣∣
B

∗ + Ñ1

B∗ +N1

∣∣∣∣∣−
1

2
log

∣∣∣∣
B

∗ +N0

B∗ + Ñ0

∣∣∣∣

=
K∑

k=1

µk

2
log |B∗ +Nk| −

1

2
log |B∗ +N0|

for any (X, U) independent of(Z0,Z1, . . . ,ZK) such thatE[XX
T] � S. This completes the proof of Theorem 2.

V. PROOF OFTHEOREM 5

In this section, we prove Theorem 5. Note that the achievability of the secrecy rate region (16) can be obtained

from the secrecy rate region (14) by lettingU andV be two independent Gaussian vectors with zero means and

covariance matricesS−B andB, respectively andX = U+V. We therefore concentrate on the converse part of

the theorem.
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To show that (16) is indeed the secrecy capacity region of thevector Gaussian broadcast channel (8), we will

consider proof by contradiction. Assume that(Ro
1, R

o
2) is an achievable secrecy rate pair that liesoutsidethe secrecy

rate region (16). Note thatN1 � N2. From [28, Theorem 1], we can boundRo
1 by

Ro
1 ≤

1

2
log

∣∣∣∣
S+N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
S+N2

N2

∣∣∣∣ = Rmax
1 .

Note that whenRo
2 = 0, Rmax

1 is achievable by lettingB = S in (14). Thus, we may assume thatRo
2 > 0 and

write Ro
1 = R∗

1 + δ for someδ > 0 whereR∗
1 is given by

max
B

[
1

2
log

∣∣∣∣
B+N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B+N2

N2

∣∣∣∣
]

subject to: 0 � B � S

1

2
log

∣∣∣∣
S+N2

B+N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B+N3

∣∣∣∣ ≥ Ro
2.

Let B∗ be an optimal solution to the above optimization program. Then, B∗ must satisfy the following KKT

conditions1:

(B∗ +N1)
−1 + µ(B∗ +N3)

−1 +M1 = (1 + µ)(B∗ +N2)
−1 +M2 (48)

B
∗
M1 = 0 (49)

and (S−B
∗)M2 = 0 (50)

whereM1 andM2 aren× n positive semidefinite matrices, andµ is a nonnegative real scalar such thatµ > 0 if

and only if
1

2
log

∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B∗ +N3

∣∣∣∣ = Ro
2.

Thus,

Ro
1 + µRo

2 =

[
1

2
log

∣∣∣∣
B

∗ +N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B

∗ +N2

N2

∣∣∣∣
]
+ µ

[
1

2
log

∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B∗ +N3

∣∣∣∣
]
+ δ. (51)

1As this optimization program is not convex, a set of constraint qualifications (CQs) should be checked to make sure that the KKT
conditions indeed hold. The CQs stated in Appendix IV of [7] hold in a trivial manner for this program.



16

On the other hand, by the converse part of Theorem 3

Ro
1 + µRo

2 ≤ [I(X;X+ Z1|U)− I(X;X+ Z2|U)] + µ[I(U ;X + Z2)− I(U ;X+ Z3)]

= [h(Z2)− h(Z1)]− µ[h(X+ Z3)− h(X+ Z2)]+

[h(X+ Z1|U) + µh(X+ Z3|U)− (1 + µ)h(X+ Z2|U)]

=
1

2
log

∣∣∣∣
N2

N1

∣∣∣∣− µ[h(X+ Z3)− h(X+ Z2)]+

[h(X+ Z1|U) + µh(X+ Z3|U)− (1 + µ)h(X+ Z2|U)] (52)

for some jointly distributed(U,X) independent of(Z1,Z2,Z3). Note thatN2 � N3. Similar to (46), we may

obtain

h(X+ Z3)− h(X+ Z2) ≥
1

2
log

∣∣∣∣
S+N3

S+N2

∣∣∣∣ . (53)

Moreover, by letting

µ1 =
1

1 + µ
, µ3 =

µ

1 + µ
, M̃1 =

M1

1 + µ
, and M̃2 =

M2

1 + µ

we can rewrite the KKT conditions (48)–(50) as

µ1(B
∗ +N1)

−1 + µ3(B
∗ +N3)

−1 + M̃1 = (B∗ +N2)
−1 + M̃2

B
∗
M̃1 = 0

and (S−B
∗)M̃2 = 0.

Thus, by Theorem 2

h(X+ Z1|U) + µh(X+ Z3|U)− (1 + µ)h(X+ Z2|U)

≤ 1

2
log |B∗ +N1|+

µ

2
log |B∗ +N3| −

1 + µ

2
log |B∗ +N2|. (54)

Substituting (53) and (54) into (52), we have

Ro
1 + µRo

2 ≤
1

2
log

∣∣∣∣
N2

N1

∣∣∣∣−
µ

2
log

∣∣∣∣
S+N3

S+N2

∣∣∣∣+
[
1

2
log |B∗ +N1|+

µ

2
log |B∗ +N3| −

1 + µ

2
log |B∗ +N2|

]

=

[
1

2
log

∣∣∣∣
B

∗ +N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B

∗ +N2

N2

∣∣∣∣
]
+ µ

[
1

2
log

∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B∗ +N3

∣∣∣∣
]
. (55)

Thus, we have obtained a contradiction between (51) and (55). As a result, all the achievable rate pairs must be
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inside the secrecy rate region (16). This completes the proof of the theorem.

VI. PROOF OFTHEOREM 6

In this section, we prove Theorem 6 following similar steps as those used in the proof for Theorem 5. The

achievability of the secrecy rate region (17) can be obtained from the secrecy rate region (15) by lettingU and

V be two independent Gaussian vectors with zero means and covariance matricesS−B andB, respectively and

X = U+V. We therefore concentrate on the converse part of the theorem.

To show that (17) is indeed the secrecy capacity region of thevector Gaussian broadcast channel (8), we will

use proof by contradiction. Assume that(Ro
1, R

o
2) is an achievable secrecy rate pair that liesoutsidethe secrecy

rate region (17). Note thatN1 � N3. From [28, Theorem 1], we can boundRo
1 by

Ro
1 ≤

1

2
log

∣∣∣∣
S+N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

N3

∣∣∣∣ = Rmax
1 .

Note that whenRo
2 = 0, Rmax

1 is achievable by lettingB = S in (15). Thus, we may assume thatRo
2 > 0 and

write Ro
1 = R∗

1 + δ for someδ > 0 whereR∗
1 is given by

max
B

[
1

2
log

∣∣∣∣
B+N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B+N3

N3

∣∣∣∣
]

subject to: 0 � B � S

1

2
log

∣∣∣∣
S+N2

B+N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B+N3

∣∣∣∣ ≥ Ro
2.

Let B∗ be an optimal solution to the above optimization program. Then, B∗ must satisfy the following KKT

conditions:

(B∗ +N1)
−1 + (µ− 1)(B∗ +N3)

−1 +M1 = µ(B∗ +N2)
−1 +M2 (56)

B
∗
M1 = 0 (57)

and (S−B
∗)M2 = 0 (58)

whereM1 andM2 aren × n positive semidefinite matrices, andµ is a nonnegative real scalar such thatµ ≥ 1.2

Therefore,

Ro
2 =

1

2
log

∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B∗ +N3

∣∣∣∣

and

Ro
1 + µRo

2 =

[
1

2
log

∣∣∣∣
B

∗ +N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B

∗ +N3

N3

∣∣∣∣
]
+ µ

[
1

2
log

∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B∗ +N3

∣∣∣∣
]
+ δ. (59)

2If µ < 1, it is easy to see thatB∗

= S is an optimal solution and hence contradicts the assumptionthat Ro

2 > 0.
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On the other hand, by the converse part of Theorem 4

Ro
1 + µRo

2 ≤ [I(X;X+ Z1|U)− I(X;X+ Z3|U)] + µ[I(U ;X + Z2)− I(U ;X+ Z3)]

= [h(Z3)− h(Z1)]− µ[h(X+ Z3)− h(X+ Z2)]+

[h(X+ Z1|U) + (µ− 1)h(X + Z3|U)− µh(X+ Z2|U)]

≤ 1

2
log

∣∣∣∣
N3

N1

∣∣∣∣−
µ

2
log

∣∣∣∣
S+N3

S+N2

∣∣∣∣+

[h(X+ Z1|U) + (µ− 1)h(X + Z3|U)− µh(X+ Z2|U)] (60)

for some jointly distributed(U,X) independent of(Z1,Z2,Z3), where the last inequality follows from (53).

Sinceµ ≥ 1, by letting

µ1 =
1

µ
, µ3 =

µ− 1

µ
, M̃1 =

M1

µ
, and M̃2 =

M2

µ

we can rewrite the KKT conditions (56)–(58) as

µ1(B
∗ +N1)

−1 + µ3(B
∗ +N3)

−1 + M̃1 = (B∗ +N2)
−1 + M̃2

B
∗
M̃1 = 0

and (S−B
∗)M̃2 = 0.

Thus, by Theorem 2

h(X+ Z1|U) + (µ− 1)h(X+ Z3|U)− µh(X+ Z2|U)

≤ 1

2
log |B∗ +N1|+

1− µ

2
log |B∗ +N3| −

µ

2
log |B∗ +N2|. (61)

Substituting (54) into (60), we have

Ro
1 + µRo

2 ≤
1

2
log

∣∣∣∣
N3

N1

∣∣∣∣−
µ

2
log

∣∣∣∣
S+N3

S+N2

∣∣∣∣+
[
1

2
log |B∗ +N1|+

µ− 1

2
log |B∗ +N3| −

µ

2
log |B∗ +N2|

]

=

[
1

2
log

∣∣∣∣
B

∗ +N1

N1

∣∣∣∣−
1

2
log

∣∣∣∣
B

∗ +N3

N3

∣∣∣∣
]
+ µ

[
1

2
log

∣∣∣∣
S+N2

B∗ +N2

∣∣∣∣−
1

2
log

∣∣∣∣
S+N3

B∗ +N3

∣∣∣∣
]
. (62)

Thus, we have obtained a contradiction between (59) and (62). As a result, all the achievable rate pairs must be

inside the secrecy rate region (17). This completes the proof of the theorem.
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VII. C ONCLUSIONS

This paper has considered an EPI of Costa and has establisheda natural generalization by replacing the scalar

parameter in the original Costa EPI with a matrix one. The generalized Costa EPI has been proven using a

perturbation approach via a fundamental relationship between the derivative of mutual information and the MMSE

in linear vector Gaussian channels. This is an example of howthe connections between information theory and

statistics can be explored to provide new mathematical tools for information theory.

As an application, a new extremal entropy inequality has been derived from the generalized Costa EPI and then

used to characterize the secrecy capacity regions of the degraded vector Gaussian broadcast channel problem with

layered confidential messages. We expect that the generalized Costa EPI will also play important roles in solving

some other Gaussian network communication problems.

APPENDIX I

PROOF OFTHEOREM 3

A. Achievability

We first show that the secrecy rate region (14) is achievable.Following the idea of superposition coding for the

degraded broadcast channel [3], we introduce an auxiliary codebook which can be distinguished by both receiver

1 and receiver 2. The codebook is generated using random binning [20], [21].

Fix p(u) andp(x|u) and let

R′
1 = I(X;Y2|U)− ǫ1 (63a)

and R′
2 = I(U ;Y3)− ǫ1 (63b)

for someǫ1 > 0. Let

Lk = 2nRk , Jk = 2nR
′

k and, Tk = LkJk k = 1, 2.

Without loss of generality,Lk, L′
k andJk are assumed to be integers.

Codebook generation:GenerateT2 independent codewordsun of lengthn according to
∏n

i=1 p(ui) and label

them as

un(w2, j2), w2 ∈ {1, . . . , L2}, j2 ∈ {1, . . . , J2}.

For each codewordun(w2, j2), generateT1 independent codewordsxn according to
∏n

i=1 p(xi|ui) and label them

as

xn(w1, j1, w2, j2) = xn
(
w1, j1, u

n(w2, j2)
)
, wk ∈ {1, . . . , Lk} and jk ∈ {1, . . . , Jk}.
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Encoding: To send a message pair(w1, w2), the transmitter randomly chooses a pair(j1, j2) and sends the

corresponding codewordxn(w1, j1, w2, j2) through the channel.

Decoding: Receiver 2 determines the uniquew2 such that

(
un(w2, j2), y

n
2

)
∈ A(n)

ǫ (pU,Y2
)

whereA(n)
ǫ (pU,Y2

) denotes the set of jointly typical sequencesun andyn2 with respect top(u, y2). If there are none

such or more than one such, an error is declared. Receiver 1 looks for the unique(w1, w2) such that

(
un(w2, j2), x

n(w1, j1, w2, j2), y
n
1

)
∈ A(n)

ǫ (pU,X,Y1
)

whereA(n)
ǫ (pU,X,Y1

) denotes the set of jointly typical sequencesun, xn andyn1 with respect top(u, x, y1). Otherwise,

an error is declared.

Error probability analysis: By the symmetry of the codebook generation, the probabilityerror does not depend

on which codeword was sent. Hence, without loss of generality, we may assume that the transmitter sends the

message pair(w1, w2) = (1, 1) associated with the codewordxn(1, 1, 1, 1) and define the corresponding event

K1 := {xn(1, 1, 1, 1) was sent}.

First consider the decoding at receiver 2, for which we will show that receiver 2 is able to decodeun(w2, j2)

with small probability of error ifR2 +R′
2 < I(U ;Y2). To prove this, define the event

E2(w2, j2) :=
{(

un(w2, j2), y
n
2

)
∈ A(n)

ǫ (pU,Y2
)
}
.

Then, the probability of error at receiver 2 can be bounded from above as

P
(n)
e,2 ≤ Pr




⋂

j2

Ec
2(1, j2)

∣∣∣K1



+

∑

w2 6=1, j2

Pr{E2(w2, j2)|K1}

≤ Pr{Ec
2(1, 1)|K1}+

∑

w2 6=1, j2

Pr{E2(w2, j2)|K1}

where

Ec
2(1, j2) :=

{(
un(1, j2), y

n
2

)
/∈ A(n)

ǫ (pU,Y2
)
}
.

For large enoughn andR2 +R′
2 < I(U ;Y2), the joint asymptotic equipartition property (AEP) [25, Chapter 14.2]
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implies

P
(n)
e,2 ≤ ǫ+ T22

−n[I(U ;Y2)−ǫ]

= ǫ+ 2n(R2+R′

2
) 2−n[I(U ;Y2)−ǫ]

≤ 2ǫ. (64)

Next, we will show that receiver 1 can successfully decode both un andxn if

R1 +R′
1 < I(X;Y1|U)

and R2 +R′
2 < I(U ;Y2). (65)

Define the events

E1,1(w1, j1, w2, j2) :=
{(

un(w2, j2), x
n(w1, j1, w2, j2), y

n
1

)
∈ A(n)

ǫ (pU,X,Y1
)
}
.

and E1(w2, j2) :=
{(

un(w2, j2), y
n
1

)
∈ A(n)

ǫ (pU,Y1
)
}

where A(n)
ǫ (pU,Y1

) denotes the set of jointly typical sequencesun and yn1 with respect top(u, y1). Then, the

probability of error

P
(n)
e,1 ≤ Pr{Ec

1(1, 1)|K1}+
∑

w2 6=1, j2

Pr{E1(w2, j2)|K1}+
∑

w1 6=1,j1,

Pr{E1,1(w1, j1, 1, 1)|K1}

where

Ec
1(1, 1) :=

{(
un(1, 1), yn1

)
/∈ A(n)

ǫ (pU,Y1
)
}
.

By the AEP [25, Chapter 14.2],

Pr{Ec
1(1, 1)|K1} ≤ ǫ,

Pr{E1(w2, j2)|K1} ≤ 2−n[I(U ;Y1)−ǫ], for w2 6= 1,

and Pr{E1,1(w1, j1, 1, 1)|K1} ≤ 2−n[I(X;Y1|U)−ǫ], for w1 6= 1.

Since the channel is degraded, we haveI(U ;Y1) ≥ I(U ;Y2). Hence, ifn is large enough and the condition (65)

holds, the probability of error at receiver 1 can be bounded from above as

P
(n)
e,1 ≤ ǫ+ T22

−n[I(U ;Y1)−ǫ] + T12
−n[I(X;Y1|U)−ǫ]

≤ ǫ+ 2n(R2+R′

2
)2−n[I(U ;Y2)−ǫ] + 2n(R1+R′

1
)2−n[I(X;Y1|U)−ǫ]

≤ 3ǫ. (66)
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Together, (64) and (66) illustrate that messages(w1, w2) can be decoded at receiver 1 with a total probability of

error that goes to0 as long as the rate pair(R1, R2) satisfies (14).

Equivocation calculation:To show that (11) holds, we consider the following lower bound on the equivocation:

H(W1|Y n
2 ) ≥ H(W1|Y n

2 , Un)

= H(W1, Y
n
2 |Un)−H(Y n

2 |Un)

= H(Xn, Y n
2 |Un)−H(Xn|W1, Y

n
2 , Un)−H(Y n

2 |Un)

= H(Xn|Un) +H(Y n
2 |Xn, Un)−H(Xn|W1, Y

n
2 , Un)−H(Y n

2 |Un)

= H(Xn|Un)−H(Xn|W1, Y
n
2 , Un)− I(Xn;Y n

2 |Un) (67)

where the second equality is due to the fact thatW1 is independent of everything else givenXn.

According to the codebook generation, for a givenUn = un, Xn hasT1 possible values with equal probabilities.

Hence,

H(Xn|Un) = n(R1 +R′
1)

= n[R1 + I(X;Y2|U)− ǫ1] (68)

where (68) follows from the definition ofR′
1 in (63a).

Next, we show that for any givenǫ2 > 0, H(Xn|W1, Y
n
2 , Un) ≤ nǫ2 for large enoughn. To calculate

H(Xn|W1, Y
n
2 , Un), consider the following hypothetical scenario. FixW1 = w1, and assume that the transmitter

sends a codewordxn
(
w1, j1, u

n(w2, j2)
)
, j1 ∈ {1, . . . , J1}. Assume that receiver 2 knows the sequenceUn =

un(w2, j2). Given indexW1 = w1, receiver 2 decodes the codewordxn(w1, j1, u
n) (i.e., looks for the indexj1)

based on the received sequencey2. Let λ(w1) denote the average probability of error of decoding the index j1 at

receiver 2. By the AEP [25, Chapter 14.2], we haveλ(w1) ≤ ǫ for sufficiently largen. By Fano’s inequality [25,

Chapter 2.11],

1

n
H(Xn|W1 = w1, Y

n
2 , Un) ≤ 1

n
+ λ(w1)

log2 J1
n

≤ 1

n
+ ǫR′

1

:= ǫ2.
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Consequently,

1

n
H(Xn|W1, Y

n
2 , Un) =

1

n

L1∑

w1=1

Pr(W1 = w1)H(Xn|W1 = w1, Y
n
2 , Un)

≤ ǫ2. (69)

By the AEP [25, Chapter 14.2], for anyǫ3

I(Xn;Y n
2 |Un) ≤ nI(X;Y2|U) + nǫ3 (70)

for sufficiently largen. Substituting (68), (69) and (70) into (67), we have

1

n
H(W1|Y n

2 ) ≥ R1 − (ǫ1 + ǫ2 + ǫ3).

Similarly, we can show that

H(W2|Y n
3 ) ≥ H(Un)−H(Un|W2, Y

n
3 )− I(Un;Y n

3 )

where

H(Un) = n[R2 + I(U ;Y3)− ǫ1]

H(Un|W2, Y
n
3 ) ≤ nǫ′2

and I(Un;Y n
3 ) ≤ n[I(U ;Y3) + ǫ′3],

whereǫ′2 andǫ′3 vanishes in the limit asn → ∞. Hence,

1

n
H(W2|Y n

3 ) ≥ R2 − (ǫ1 + ǫ′2 + ǫ′3).

Note thatY3 is degraded with respect toY2. Therefore,

H(W1|Y n
3 ) ≥ H(W1|Y n

2 , Y n
3 )

= H(W1|Y n
2 )

≥ R1 − (ǫ1 + ǫ2 + ǫ3).

This proves the security condition (11) and hence the achievability part of the theorem.
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B. The Converse

We first bound from above the secrecy rateR1. The perfect secrecy condition (11) implies that for allǫ > 0,

H(W1|Y n
2 ) ≥ H(W1)− nǫ (71a)

and H(W2|Y n
3 ) ≥ H(W2)− nǫ. (71b)

On the other hand, Fano’s inequality [25, Chapter 2.11] implies that for anyǫ0 > 0,

H(W1|Y n
1 ) ≤ ǫ0 log

(
2nR1 − 1

)
+ h(ǫ0) := nδ1 (72a)

and H(W2|Y n
2 ) ≤ ǫ0 log

(
2nR2 − 1

)
+ h(ǫ0) := nδ2. (72b)

Thus,

nR1 = H(W1)

≤
[
H(W1|Y n

2 ) + nǫ
]
+

[
nδ1 −H(W1|Y n

1 )
]

≤ H(W1,W2|Y n
2 )−H(W1|Y n

1 ,W2) + n(ǫ+ δ1)

≤ H(W1|Y n
2 ,W2)−H(W1|Y n

1 ,W2) + n(ǫ+ δ1 + δ2) (73)

where the first inequality follows from (71a) and (72a), and the last inequality follows from (72b). Letδ = ǫ+δ1+δ2.

By the chain rule of the mutual information [25, Chapter 2.5],

n(R1 − δ) ≤ I(W1;Y
n
1 |W2)− I(W1;Y

n
2 |W2)

=

n∑

i=1

[
I(W1;Y1,i|W2, Y

n
1,i+1)− I(W1;Y2,i|W2, Y

i−1
2 )

]

=
n∑

i=1

[
I(W1;Y1,i|W2, Y

n
1,i+1, Y

i−1
2 )− I(W1;Y2,i|W2, Y

n
1,i+1, Y

i−1
2 )

]
(74)

where the last equality follows from [21, Lemma 7]. Let

Vi :=
(
Y n
1,i+1, Y

i−1
2

)
. (75)
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We can further bound (74) from above as

n(R1 − δ) ≤
n∑

i=1

[I(W1,Xi;Y1,i|W2, Vi)− I(W1,Xi;Y2,i|W2, Vi)]

−
n∑

i=1

[I(Xi;Y1,i|W1,W2, Vi)− I(Xi;Y2,i|W1,W2, Vi)]

≤
n∑

i=1

[I(W1,Xi;Y1,i|W2, Vi)− I(W1,Xi;Y2,i|W2, Vi)]

=
n∑

i=1

[I(Xi;Y1,i|W2, Vi)− I(Xi;Y2,i|W2, Vi)] (76)

where the second inequality follows from the Markov relation

(W1,W2, Vi) → Xi → Y1,i → Y2,i,

and the last equality is due to the fact thatY1,i andY2,i are conditionally independent of everything else givenXi.

Next, we bound from above the secrecy rateR2. By (71b) and (72b),

nR2 = H(W2)

≤
[
H(W2|Y n

3 ) + nǫ
]
+

[
nδ2 −H(W2|Y n

2 )
]

= I(W2;Y
n
2 )− I(W2;Y

n
3 ) + n(ǫ+ δ2)

=

n∑

i=1

[
I(W2;Y2,i|Y n

2,i+1)− I(W2;Y3,i|Y i−1
3 )

]
+ n(ǫ+ δ2). (77)

Let δ′ := ǫ+ δ2 and

V ′
i :=

(
Y n
2,i+1, Y

i−1
3

)
. (78)

Applying [21, Lemma 7] again, we may obtain

n(R2 − δ′) ≤
n∑

i=1

[
I(W2;Y2,i|V ′

i )− I(W2;Y3,i|V ′
i )
]

=

n∑

i=1

[
I(W2, V

′
i ;Y2,i)− I(W2, V

′
i ;Y3,i)

]
−

n∑

i=1

[
I(V ′

i ;Y2,i)− I(V ′
i ;Y3,i)

]

≤
n∑

i=1

[
I(W2, V

′
i ;Y2,i)− I(W2, V

′
i ;Y3,i)

]
(79)

where the last inequality follows from the Markov relationV ′
i → Y1,i → Y2,i. Furthermore, by the definitions of

Vi andV ′
i in (75) and (78) respectively,

V ′
i → (W2, Vi) → (Y2,i, Y3,i). (80)
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By (79) and (80),

n(R2 − δ′) ≤
n∑

i=1

[
I(W2, V

′
i , Vi;Y2,i)− I(W2, V

′
i , Vi;Y3,i)

]
−

n∑

i=1

[
I(Vi;Y2,i|W2, V

′
i )− I(Vi;Y3,i|W2, V

′
i )
]

=

n∑

i=1

[I(W2, Vi;Y2,i)− I(W2, Vi;Y3,i)]−
n∑

i=1

[
I(Vi;Y2,i|W2, V

′
i )− I(Vi;Y3,i|W2, V

′
i )
]
. (81)

Note thatY3,i is conditionally independent of everything else givenY2,i. Hence,

I(Vi;Y3,i|W2, V
′
i ) ≤ I(Vi;Y2,i, Y3,i|W2, V

′
i )

= I(Vi;Y2,i|W2, V
′
i ) + I(Vi;Y3,i|Y2,i,W2, V

′
i )

= I(Vi;Y2,i|W2, V
′
i ). (82)

Substituting (82) into (81), we have

R2 ≤
1

n

n∑

i=1

[I(W2, Vi;Y2,i)− I(W2, Vi;Y3,i)] + δ′. (83)

Finally, let

Ui := (W2, Vi). (84)

With this definition, (76) and (83) can be rewritten as

R1 ≤
1

n

n∑

i=1

[I(Xi;Y1,i|Ui)− I(Xi;Y2,i|Ui)] + δ.

and R2 ≤
1

n

n∑

i=1

[I(Ui;Y2,i)− I(Ui;Y3,i)] + δ′. (85)

Following the standard single-letterization process (e.g., see [25, Chapter 14.3]), we have the desired converse

result.

APPENDIX II

PROOF OFCOROLLARY 1

Fix U = u. By the generalized Costa EPI (3), we have

h(X+A
1

2Z|U = u) ≥ n

2
log

{
|I−A| 1

n exp

[
2

n
h(X|U = u)

]
+ |A| 1

n exp

[
2

n
h(X+ Z|U = u)

]}
. (86)
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Taking expectation overU on both sides of (86), we may obtain

h(X+A
1

2Z|U) ≥ n

2
E

[
log

{
|I−A| 1

n exp

[
2

n
h(X|U = u)

]
+ |A| 1

n exp

[
2

n
h(X+ Z|U = u)

]}]

≥ n

2
log

{
|I−A| 1

n exp

[
2

n
E [h(X|U = u)]

]
+ |A| 1

n exp

[
2

n
E [h(X+ Z|U = u)]

]}

=
n

2
log

{
|I−A| 1

n exp

[
2

n
h(X|U)

]
+ |A| 1

n exp

[
2

n
h(X+ Z|U)

]}
(87)

where the second inequality follows from Jensen’s inequality [25, Chapter 2.6] and the convexity oflog (a1ex1 + a2e
x2)

in (x1, x2) for a1, a2 ≥ 0. Taking logarithm on both sides of (87) proves the desired inequality (32).

APPENDIX III

PROOF OFCOROLLARY 2

Note that whenµ = 0, (33) implies thatN1 = N2. Thus, both sides of (34) are equal to zero and the inequality

holds trivially with an equality. For the rest of the proof, we will assume thatµ > 0. The proof is rather long so

we divide it into several steps.

Step 1–Generalized eigenvalue decomposition.We start by applying generalized eigenvalue decomposition[23]

to the positive define matricesB∗ +N1 andB∗ +N2. There exists aninvertible generalized eigenvector matrixV

such that

V
T(B∗ +N1)V = Λ1 (88)

and V
T(B∗ +N2)V = Λ2 (89)

whereΛ1 andΛ2 are positive definitediagonalmatrices. Let

Λ3 := V
T(B∗ +N3)V (90)

be ann× n positive definite matrix. By (33),

Λ
−1
1 + µΛ−1

3 = (1 + µ)Λ−1
2 . (91)

Thus,Λ3 is also diagonal. Moreover, sinceN1 � N3,

Λ1 −Λ3 = V
T(N1 −N3)V � 0.

and hence

Λ1 � Λ3. (92)
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Step 2–Choosing matrix parameterA. Let Λ̃3 = Λ3 + ǫI for someǫ > 0, and letΛ̃2 be ann× n matrix such

that

Λ
−1
1 + µΛ̃−1

3 = (1 + µ)Λ̃−1
2 . (93)

Clearly, Λ̃2 is diagonal. Moreover, by (92)

Λ1 ≺ Λ̃3. (94)

Note thatµ > 0 so by (93) and (94)

Λ1 ≺ Λ̃2 ≺ Λ̃3. (95)

Comparing (91) and (93) and using the fact thatΛ3 ≺ Λ̃3, we have

Λ2 ≺ Λ̃2. (96)

Now let

Y1 := V
T(X+ Z1)

Y2 := V
T(X+ Z̃2)

and Y3 := V
T(X+ Z̃3)

whereZ̃2 and Z̃3 are Gaussiann-vectors with covariance matrices

Ñ2 = V
−T

Λ̃2V
−1 −B

∗

≻ V
−T

Λ2V
−1 −B

∗

= (B∗ +N2)−B
∗

= N2

and

Ñ3 = V
−T

Λ̃3V
−1 −B

∗

= V
−T(Λ3 + ǫI)V−1 −B

∗

= (B∗ +N3 + ǫV−T
V

−1)−B
∗

= N3 + ǫV−T
V

−1
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respectively and are independent ofX. The covariance matrices ofYk, k = 1, 2, 3, can be calculated asVT[Cov(X)−

B
∗]V + Λ1, VT[Cov(X) − B

∗]V + Λ̃2 andV
T[Cov(X) − B

∗]V + Λ̃3, respectively. Thus,Y2 andY3 can be

equivalently written as

Y3 = Y1 + Z

and Y2 = Y1 +A
1

2Z

whereZ is a Gaussiann-vector with covariance matrix̃Λ3 −Λ1 ≻ 0 and is independent ofY1, and

A := (Λ̃2 −Λ1)(Λ̃3 −Λ1)
−1. (97)

Clearly,A is diagonal. Moreover, by (95)0 ≺ A ≺ I.

Step 3–Applying generalized Costa’s EPI.By the generalized Costa EPI (3),

h(Y2|U) ≥ n

2
log

{
|I−A| 1

n exp

[
2

n
h(Y1|U)

]
+ |A| 1

n exp

[
2

n
h(Y3|U)

]}
.

Thus,

h(Y1|U) + µh(Y3|U)− (1 + µ)h(Y2|U)

≤ h(Y1|U) + µh(Y3|U)− (1 + µ)n

2
log

{
|I−A| 1

n exp

[
2

n
h(Y1|U)

]
+ |A| 1

n exp

[
2

n
h(Y3|U)

]}
. (98)

Now we consider the function

f(b, c) = b+ µc− (1 + µ)n

2
log

[
|I−A| 1

n exp

(
2b

n

)
+ |A| 1

n exp

(
2c

n

)]
.

Note that

∇f(b, c) =




1− (1 + µ)
|I−A| 1

n exp(2b/n)

|I−A| 1

n exp(2b/n) + |A| 1

n exp(2c/n)

µ− (1 + µ)
|A| 1

n exp(2c/n)

|I−A| 1

n exp(2b/n) + |A| 1

n exp(2c/n)




and

∇2f(b, c) = −2(1 + µ)

n

|A| 1

n |I−A| 1

n exp[(2b+ 2c)/n]
[
|I−A| 1

n exp(2b/n) + |A| 1

n exp(2c/n)
]2


 1 −1

−1 1


 � 0.

So f(b, c) is concave in(b, c). By setting∇f(b, c) = 0, the global maximum is achieved when

c = b+
n

2
log

[
µ

( |I−A|
|A|

) 1

n

]
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and the maximum is given by

µn

2
log

[
µ

( |I−A|
|A|

) 1

n

]
− (1 + µ)n

2
log

[
(1 + µ)|I−A| 1

n

]
.

Hence,

h(Y1|U)+µh(Y3|U)− (1 + µ)h(Y2|U)

≤ µn

2
log

[
µ

( |I−A|
|A|

) 1

n

]
− (1 + µ)n

2
log

[
(1 + µ)|I−A| 1

n

]
. (99)

Step 4–Calculatinglog |A| and log |I−A|. Note that (93) can be rewritten as

µ(Λ−1
1 − Λ̃

−1
3 ) = (1 + µ)(Λ−1

1 − Λ̃
−1
2 )

which gives
∣∣∣∣∣
Λ̃2 −Λ1

Λ̃3 −Λ1

∣∣∣∣∣ =
(

µ

1 + µ

)n
∣∣∣∣∣
Λ̃2

Λ̃3

∣∣∣∣∣ . (100)

Similarly, we have

(Λ−1
1 − Λ̃

−1
3 ) = (1 + µ)(Λ̃−1

2 − Λ̃
−1
3 )

and hence
∣∣∣∣∣
Λ̃3 − Λ̃2

Λ̃3 −Λ1

∣∣∣∣∣ =
(

1

1 + µ

)n
∣∣∣∣∣
Λ̃2

Λ̃1

∣∣∣∣∣ . (101)

According to the definition ofA in (97),

log |A| = log

∣∣∣∣∣
Λ̃2 −Λ1

Λ̃3 −Λ1

∣∣∣∣∣

= log

[(
µ

1 + µ

)n
∣∣∣∣∣
Λ̃2

Λ̃3

∣∣∣∣∣

]
(102)

and

log |I−A| = log

∣∣∣∣∣
Λ̃3 − Λ̃2

Λ̃3 −Λ1

∣∣∣∣∣

= log

[(
1

1 + µ

)n
∣∣∣∣∣
Λ̃2

Λ1

∣∣∣∣∣

]
(103)

where (102) and (103) follow (100) and (101), respectively.Substituting (102) and (103) into (99), we have

h(Y1|U) + µh(Y3|U)− (1 + µ)h(Y2|U) ≤ 1

2
log |Λ1|+

µ

2
log |Λ̃3| −

1 + µ

2
log |Λ̃2|. (104)
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Step 5–Lettingǫ ↓ 0. Note thatΛ̃3 = Λ3 + ǫI → Λ3 and Ñ3 = N3 + ǫV−T
V

−1 → N3 in the limit asǫ ↓ 0.

Moreover, by (93) we havẽΛ2 → Λ2 and hence

Ñ2 = V
−T

Λ̃2V
−1 −B

∗

→ V
−T

Λ2V
−1 −B

∗

= (B∗ +N2)−B
∗

= N2.

Letting ǫ ↓ 0 on both sides of (104), we have

h(VT(X+N1)|U) + µh(VT(X+N3)|U)−(1 + µ)h(VT(X+N2)|U)

≤ 1

2
log |Λ1|+

µ

2
log |Λ3| −

1 + µ

2
log |Λ2|. (105)

Using the fact that

h(VT(X+N1)|U) = h(X+N1|U) + log |V|

and

log |Λk| = log |VT(B∗ +Nk)V|

= log |B∗ +Nk|+ 2 log |V|

for k = 1, 2, 3, the desired inequality (34) can be obtained from (105). This completes the proof of the corollary.

APPENDIX IV

PROOF OFCOROLLARY 3

Here, we prove Corollary 3 using mathematical induction. Note that whenK = 1, (35) implies thatN1 = N0.

Thus, the inequality (36) holds trivially with equality forany (U,X) independent of(Z0,Z1).

Assume that the inequality (36) holds forK = Q− 1. Let N be ann× n symmetric matrix such that

(B∗ +N)−1 =

Q−1∑

k=1

µ′
k(B

∗ +Nk)
−1 (106)

where

µ′
k :=

µk∑Q−1
j=1 µj

, j = 1, . . . , Q.
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By the assumptionN1 � . . . � NQ−1, we have from (106)

N1 � N � NQ−1. (107)

Let Z be a Gaussian randomn-vector with covariance matrixN and independent of(U,X). By the induction

assumption and (106),

Q−1∑

k=1

µ′
kh(X+ Zk|U)− h(X+ Z|U) ≤

Q−1∑

k=1

µ′
k

2
log |B+Nk| −

1

2
log |B+N|. (108)

On the other hand, substitute (106) into (35) and we have

(B+N)−1 + µ′
Q(B+NQ)

−1 = (1 + µ′
Q)(B +N0)

−1.

Note from (107) thatN � NQ−1 � NQ. Thus, by Corollary 2

h(X+ Z|U) + µ′
Qh(X+ ZQ|U)− (1 + µ′

Q)h(X+ Z0|U)

≤ 1

2
log |B+N|+

µ′
Q

2
log |B+NQ| −

1 + µ′
Q

2
log |B+N0|. (109)

Putting together (108) and (109), we have

Q∑

j=1

µjh(X+ Zj|U)− h(X+ Z0|U) ≤
Q∑

j=1

µj

2
log |B+Nj | −

1

2
log |B+N0|.

This proved the induction step and hence the corollary.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423 and 623–656, Jul. and Oct. 1948.

[2] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon,”Inform. Control, vol. 2, pp. 101–112,

Jun. 1959.

[3] P. P. Bergmans, “Random coding theorem for broadcast channels with degraded components,”IEEE Trans. Inf. Theory, vol. 19, pp.

197–207, Mar. 1973.

[4] S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian wire-tap channel,”IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 51–456,

Jul. 1978.

[5] L. Ozarow, “On a source coding problem with two channels and three receivers,”Bell Syst. Tech. J., vol. 59, no. 10, pp. 1909–1921,

Dec. 1980.

[6] Y. Oohama, “The rate-distortion function for the quadratic Gaussian CEO problem,”IEEE Trans. Inf. Theory, vol. 44, no. 3, pp.

1057–1070, May 1998.

[7] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “Thecapacity region of the Gaussian multiple-input multiple-output broadcast

channel,”IEEE Trans. Inf. Theory, vol. 52, pp. 3936–3964, Sep. 2006.

[8] M. H. M. Costa, “A new entropy power inequality,”IEEE Trans. Inf. Theory, vol. 31, pp. 751–760, Nov. 1985.



33

[9] ——, “On the Gaussian interference channel,”IEEE Trans. Inf. Theory, vol. 31, pp. 607–615, Sep. 1985.

[10] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels,”

IEEE Trans. Inf. Theory, vol. 49, pp. 2426–2467, Oct. 2003.

[11] A. Dembo, T. M. Cover, and J. A. Thomas, “Information theoretic inequalities,”IEEE Trans. Inf. Theory, vol. 37, pp. 1501–1518, Nov.

1991.
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