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EXPONENTIAL BOUNDS IMPLYING CONSTRUCTION OF
COMPRESSED SENSING MATRICES, ERROR-CORRECTING
CODES AND NEIGHBORLY POLYTOPES BY
RANDOM SAMPLING

DAVID L. DONOHO AND JARED TANNER

ABSTRACT. In [12] the authors proved an asymptotic sampling theorem for
sparse signals, showing that n random measurements permit to reconstruct
an N-vector having k nonzeros provided

n>2-k-log(N/n)(1+o(1));

reconstruction uses 1 minimization. They also proved an asymptotic rate the-
orem, showing existence of real error-correcting codes for messages of length N
which can correct all possible k-element error patterns using just n generalized
checksum bits, where

n > 2e - klog(N/n)(1 + o(1));

decoding uses 1 minimization. Both results require an asymptotic framework,
with N growing large. For applications, on the other hand, we are concerned
with specific triples k,n, N.

We exhibit triples (k,n, N) for which Compressed Sensing Matrices and
Real Error-Correcting Codes surely exist and can be obtained with high prob-
ability by random sampling. These derive from exponential bounds on the
probability of drawing ‘bad’ matrices. The bounds give conditions effective at
finite- N, and converging to the known sharp asymptotic conditions for large
N. Compared to other finite-N bounds known to us, they are much stronger,
and much more explicit.

Our bounds derive from asymptotics in [12] counting the expected number
of k-dimensional faces of the randomly projected simplex T™V—1 and cross-
polytope CN. We develop here finite-N bounds on the expected discrepancy
between the number of k-faces of the projected polytope AQ and its generator
Q, for Q =TN-1 and CV.

Our bounds also imply existence of interesting geometric objects. Thus, we
exhibit triples (k,n, N) for which polytopes with 2IN vertices can be centrally
k-neighborly.
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Positivity-Constrained Unconstrained
N n k € 0 n k € 0
10% 3,529 1,253 | 1073 | 1/5 4,299 1,208 10=3| 1/5

10° 30,510 | 4,472 | 103 | 1/10 31,323 | 3860 | 103 |1/10
10° 35,766 | 5,487 | 10-10 | 1/10 36,810 | 4,722 | 10-10 | 1/10
10° || 1,355,580 | 113,004 | 10-1° | 1/50 || 1,365,079 | 102,646 | 10-1° | 1/50

TABLE 1. For the specified (k,n, N) and ¢, the probability of suc-
cessfully recovering a k-sparse vector zo € RY from n samples ex-
ceeds 1 —e . 6 is a parameter of our method measuring proximity at
(k,n, N) to asymptotic large N, relationships (n-p(n/N;Q),n, N);
see Section 2.

1. INTRODUCTION

This paper constructs solutions to three apparently different existence problems
in geometry, coding theory, and sampling theory. In each problem, for a given
triple of integers (k,n, N) where 0 < k < n < N, we would like to know whether a
solution exists for the given (k,n, N); and if so, we would like to construct it.

1.1. Existence of Compressed Sensing Matrices. Ordinarily, to reconstruct
a vector in RV requires N measurements. The phrase ‘Compressed Sensing’ refers
to the possibility of making fewer than N measurements, by taking nonstandard
measurements and using nonlinear reconstruction to exploit side information about
the sparsity of the vector [7, 3].

Say that a vector is k-sparse if it has only k£ nonzeros in some fixed, known basis
— without loss of generality, the standard basis. Consider some fixed but unknown
k-sparse vector xo in RY. Consider making n measurements by,...,b,, each one
a random linear combination b; = ; @ijTo (4) of entries in zg, where the a;; are
iid standard Normal random variables. Equivalently, we may write b = Azg. Now
attempt to reconstruct the unknown zy by solving

(1.1) min ||z|x  subject to  Ax =b.

Here n < N, so the linear system is underdetermined. Nevertheless, it turns out
that if k is sufficiently small, this will work with high probability.

An important variation concerns a nonnegative k-sparse vector zg in Rf - again
fixed but unknown. We again consider making n measurements by, ...,b,, each
one a random linear combination b; =} a;;jzo(j) of entries in zo. We attempt to
recover o by solving the linear program

(1.2) min1’z  subject to Ax =b, xz>0.

In either situation, we are interested in knowing for which k, n and N the
approach can be successful. Since A is a random matrix, there is also a parameter
e controlling the probability that reconstruction is successful. As an example of
the information our method will generate, see Table 1. It gives some examples of
triples for which reconstruction can be successful with high probability.

1.2. Encoding Matrices for Real Error-Correcting Codes. Consider a styl-
ized problem of data transmission with immunity to occasional transmission errors.
Suppose that we transmit a vector of N numbers but that k of these numbers will



CS MATRICES AND REAL ECCS BY RANDOM SAMPLING 3

N | m=N-n n || k: Almost All | k: All
5000 4500 500 23 21
5000 4000 1000 117 56

10% 9000 1000 86 45
10% 8000 2000 304 117
10% 5000 5000 1505 441
10° 9 x 10% 10% 1543 484
10° 8 x 10% | 2 x 10* 4246 | 1202

TABLE 2. Messages of m real numbers are encoded as blocks of
length N > m using the described random encoder-decoder pair.
All: with probability at least 50%, we draw an encoder-decoder
pair that can correct all patterns of k or fewer errors. Almost All:
We draw an encoder decoder pair that can correct the vast majority
of patterns of k or fewer errors; expected error rate one in 10%°.

be received with error. A standard strategy encodes m = N —n < N message
numbers as a redundant block of N numbers, intending that coding redundancy
will help in suppressing the transmission errors. (Note: we work over the field R
of real numbers, not over some discrete alphabet; the relevance to digital settings
will be discussed below).

Let B be an m x N matrix with real-valued entries. Given a vector a € R™ to
be transmitted, encode it as 3 = BTa € RY and transmit. Assume the receiver
measures p = 3 + z where u € R and z represents transmission errors. It
is assumed that z contains nonzeros in only k entries — most numbers in p are
received without error. The receiver in some way decodes the N numbers, hoping
to produce the m entries in a.

Consider a simple encoding decoding scheme based on linear programming [5,
2, 17]. Construct a generalized checksum matrix A (satisfying ABT = 0) that is
n X N, with m+n = N. Given the received data p, form the generalized checksum
y = Ap. Solve (1.1). The optimization result z; is an estimate of z. Reconstruct
by subtracting this estimate of the receiver error out of the received message, and
projecting down from RY to R™: a; = B(u — x1). As (1.1) is a standard convex
optimization problem, this can be considered computationally tractable. How many
errors can this scheme tolerate? This of course depends on A and B.

Letting A and B be respectively the first n rows and the last N — n rows of
a random N x N orthogonal matrix, we get a random encoder-decoder pair. For
which k,n, N triples is this likely to be able to correct k errors? Qualitative results
were given in [4, 2]; the present authors gave asymptotic results valid for large N
n [12]. This paper gives results applicable at finite-N; see Table 2.

1.3. Existence of Neighborly Polytopes. A polytope P is the convex hull of
a finite point set of N points in R™. Suppose that P has N vertices. It is called
1-neighborly if, for every pair of vertices, the line segment joining the pair does
not meet the interior of P. More colorfully: P has no diagonals. Despite the
counterintuitive nature of this situation —based on low-dimensional experience, we
would expect there to be many such diagonals, but here there are none— one can
sometimes find more impressive phenomena. The polytope is called k-neighborly
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Neighborly || Central Neighborly

N n k n k
200 150 | 24 150 14
1000 500 | 61 500 40
10* || 1,000 | 56 || 1,000 45

TABLE 3. For the specified (k, n, N) there exist k-neighborly (resp.
centrally k-neighborly) polytopes. They can be obtained with pos-
itive probability by sampling N points from the standard Normal
in R™ (resp. followed by symmetrization).

if the convex hull of every k + 1 vertices does not meet the interior of P. Then,
for some special polytopes P in high dimensions, every triple, quad, and quintuple
span a face of P. In some sense, all the points and all their k-th order interactions
are ‘on the boundary’ of such P.

Consider random vectors a;, ¢ = 1,..., N drawn iid standard normal in R".
Consider the random polytope P = conv({a;}) formed by taking the convex hull
of the points of P. For what k, n, and N can P be expected to be k-neighborly

polytope?
A closely related notion is central neighborliness. Consider centrosymmetric
polytopes, formed from N points a; in R™ by symmetrization {a1, —a1,as, —as,...,an, —an}

and then taking the convex hull. Such a centrally-symmetric polytope is called
centrally k-neighborly if the convex hull of every k + 1 vertices not including an
antipodal pair does not meet the interior of P.

Consider random vectors a;, ¢ = 1, ..., N drawn iid standard normal in R"™. For
what values of k is there a positive probability that the resulting convex hull is
centrally k-neighborly?

For specific examples, see Table (3). For the (k,n,N) given, one can obtain
k-neighborly (or centrally k-neighborly) polytopes by sampling N points from the
standard Normal in R™.

1.4. What Else Can be Said? The three existence problems we have just dis-
cussed are closely related. A single method is used in subtly different ways to
produce the various tables given above. The method can of course produce many
other such tables; we make software available to do so.

Our method also provides rigorous memorable formulas that can take the place
of tables. For example, we will see that random coder-decoder pairs with block-
length N and n generalized checksums are able to correct all patterns of k errors,
if (k,n, N) obey®

(1.3) n > 2e- k-log(N/n) + remainder;

here the remainder is easily characterized. We will also see that in the problem
of compressed sensing, we can exactly reconstruct a k-sparse object in RY from n
generalized samples provided

(1.4) n > 2-klog(N/n)(1 + remainder),

where again the remainder is explicitly characterized.

1an logarithms throughout this article are “natural base-e” logarithms.
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Such statements offer simple, appealing conclusions. They might be helpful to
engineers designing a compressed sensing system; indeed ‘n > 2klog(N/n)’ might
be called the ‘sampling theorem for sparse vectors’; Section 4 contains further
discussions of this interpretation.

1.5. The Paper. Of the three applications presented so far — compressed sensing,
error-correcting codes, and neighborly polytopes — we view the polytope setting
as the fundamental one; the one in which all the questions can be most precisely
stated and their answers most easily obtained.

Most of our paper focuses on counting the number of k-dimensional faces of
certain random polytopes with N vertices in R™. It turns out that the above
applications all flow from making calculations of the expected number of faces of
random polytopes.

In the remainder of the introduction, we describe existing knowledge about the
counting the faces of random polytopes in an asymptotic, large N setting, and
about the connection to the applications mentioned above.

In Section 2 we state our main results, which give finite-V bounds on the ex-
pected number of faces of random polytopes; Section 3 develops the applications
discussed earlier and explains how the tables presented above were calculated. Sec-
tion 4 develops a precise, finite-N sampling theorem. Sections 5-7 provide proofs
of our main results.

1.6. Counting Faces of Polytopes. Let T™V~! denote the standard unit simplex
in RY, and CV the standard cross-polytope in RV :

{xERN| inzl, xiEO},

=1

{xGRN| Z|xi|§1,}.

=1

TNfl

ON

Let A be an n x N matrix with n < N; the image polytopes ATN =1 and ACV lie
in R™. Quite general polytopes can be constructed in this way; for n fixed and NV
varying, any polytope can arise as some ATN~! for appropriate N and A, and any
centrally-symmetric polytope as some ACY.

Earlier papers by the authors [8, 10, 12] studied random matrices A and ob-
served very different behavior when n and N are both large-behavior with several
surprising implications. For n x N matrices A with iid standard Normal entries
they considered the number of k-faces of the image polytope AQ, fr(AQ). They
considered sequences of triples (k,n, N) indexed by n such that, for fixed fractions
d,p € (0,1),

(1.5) kn/n — p, n/N, — 6, n — oo;
the so-called proportional-dimensional asymptotic, and considered the limiting be-

havior as n — oo. They identified curves pw (-; Q) marking an abrupt change in
behavior of the expected fraction of faces

(L6) i Efe(AQ) { =1 p<pw(dQ),
' n—oo  fr(Q) <1l p>pw(6Q).

Here and below, we follow the convention from [10] that a display like (1.6) con-
taining @ stands for two displays, one in which Q@ = 7V ~! and one where Q = C".
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Note that the functions p(d; Q) depend on N only through the limit n/N — 0.
Here the limit is taken along sequences (ky,,n, N,,) as n — oco. Evidently, below the
curve there is weak agreement between fi(AQ) and f;(Q), while above the curve
differences are noticeable. They also identified curves pg(-; Q) such that

(1.7) lim_Prob{f4(AQ) = /+(Q)} _{ ! Z;z%g;

this curve marks strong agreement between fi(AQ) and f;(Q). Informally, although
for general A, the face count fi(AQ) is nearly arbitrary, for random A, each fi(AQ)
is exactly or approximately fx(Q), for all low dimensions k running from 0 up to
a threshold approximately of the form p(J; Q) - n. These four threshold curves are
depicted in Figure 1.1.

1

0.9 -7 I
0.8 - s
0.7 P - -
0.6 P _ B
Posl - - B

0.4 - - 4

0.3

0.2

0o.1

FIGURE 1.1. The phase transition thresholds, from bottom to top,
ps(6; C) solid-blue, ps(d;T) solid-black, pw (0;C) dash-blue and
pw (0; T) dash-black.

These phenomena imply various existence results connected to Sections 1.1-1.3.
e The relation fr(ACY) = fr(C") implies that the polytope P = ACY is
centrally k-neighborly. It follows from (1.7) that for many combinations
(k,n,N) where k/n < ps(n/N;C), the randomly-projected polytope will

be k-centrally neighborly, providing a vast supply of such polytopes.

e The relation fr(ACYN) > .99f,(CY) implies that of all systems b = Az
having a solution with at most k non-zeros, for more than 99% of the
possible sign patterns in x, the minimal £1-norm solution is also the sparsest
solution. It follows from (1.6) that for many combinations (k,n, N) where
k/n < pw(n/N;C), the random matrix A will have this property, providing
a vast supply of matrices useful for “compressed sensing”, see Section 3.1.

e The relation fr(ACYN) = fi(CV) implies that A is a perfect checksum
matrix: a linear programming decoder can use it to decode all patterns
of k or fewer errors. Hence for many combinations (k,n, N) where k/n <
ps(n/N;C), such checksum matrices are prevalent. The relation fi(ACY) >
(1 — 10712)f,(CY) implies that the checksum matrix A is nearly per-
fect: able to decode almost all patterns of k or fewer errors — failing
once in 10'? such patterns. Hence many combinations (k,n, N) where
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k/n < pw(n/N;Q), offer prevalence of nearly perfect checksum matrices
with error rates better than one part in 10'2.

Such asymptotic results however, are not finite-N results: they don’t say what
holds for specific combinations of (k,n, N). The Tables presented in Sections 1.1 -
1.3 require stronger tools.

This paper repackages the inequalities and asymptotic statements developed in
our earlier papers [6, 11, 12] and develops exponential bounds on certain probabil-
ities and expectations which are shown to be effective already at moderate values
of (k,n, N). Moreover, these bounds involve the asymptotic thresholds p(-) in an
explicit way, even in this finite-n case. Thus, for a fraction 8 € (0,1), triples
where k/n = (1—0)-p(n/N) are subject to inequalities depending explicitly on the
sizes of § and n/N. In consequence there is a clearly defined family of curves in-
dexed by problem size N, converging to the asymptotic threshold curves p(-) with
increasing n, and implying lower bounds on the probability of sampling “good”
matrices/polytopes for triples along the curve, at a given N.

These curves are significantly higher than those available by any other finite-n
bounds known to us, and they converge to the right asymptotic limit at the right
rate. As we show, they allow practical answers to problems of reasonable size that
might be of interest in signal processing or other applied fields.

A different asymptotic studied by the authors in [12] involved sequences of triples
(kn,n, N,) where N,, is much larger than n (but not exponentially larger) so that
the projection lowers dimension drastically. For a random n x N, matrix A with
entries are drawn iid from the standard Gaussian, it was found that eventually

f(AQ) = fx(Q) provided
(1.8) n > 2e-k-log(N/n)(1+o(1)),

with an appropriate o(1) term.? Moreover, it was found that fx(AQ) = fi(Q)(1 +
o(1)) provided

(1.9) n > 2-klog(N/n)(1+ o(1)),

with appropriate o(1) terms. Such asymptotic results have greater force if known
to hold for specific combinations of (k,n, N). In Section 4, we develop inequalities
valid for finite (k,n, N) having the same leading terms but replacing the o(1) terms
by simple and explicit remainders.

2. MAIN RESULTS

2.1. Absolute Agreement of Face Numbers. In [8, 10] the authors established
bounds on the absolute face deficit fi,(Q) — &€ fr(AQ) for A with entries drawn iid
Gaussian and for Q@ = C and TN ~!. They defined functions ¥,,.;(d, p; Q) affording
the inequalities
(2.1)

m(N3 Q)eN e MM < f(Q) = Efr(AQ) < my (N3 Q)eNner /NI,

where m(N; Q) and 7, (N; Q) are known polynomial functions in N.

In display (2.1), the exponents ¥, are overwhelmingly more important for
large N than the polynomial terms. For any triple (k,n,N) set p = k/n and
d = n/N. This pair of coordinates (4, p) drives all of the asymptotic large N
behaviour of £ f;(AQ). In the portion of the (4, p)-plane where U,.:(, p; Q) < 0,

20(1) indicates a term tending to zero as n — co.
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the face deficit tends to zero with increasing N, and in the portion of the (d, p)-
plane where WU,,.(d, p; Q) > 0, the face deficit grows with N. The level curve
{Uret(6,p;Q) = 0} is the boundary between these two “phases”. As it turns
out, for each fixed 6 € (0,1), U,et(d, p; Q) is monotone increasing in p, and has
a unique zero crossing; call this pg(d; Q). The two curves pg(0;T) and pg(d; C) are
displayed in Figure 1.1; the are both smooth and monotone increasing. “Below”
ps(6;Q), the face deficit fr(Q) — £ fx(AQ) tends to zero exponentially fast in N;
“above” pg(d; Q), the face deficit grows exponentially fast. Of course, the notion of
“exponentially fast” is qualitative. We now supply an effective quantitative notion,
valid for specific triples (k,n, N).

Theorem 2.1 (Exponential Bounds for Face Deficit). Let Qg(5;Q) denote the
function defined in (5.5) below and displayed in Figure 2.1, panel (a). Let cs(T) :=
32717—53/2 and cg(C) = %. Let A be a random matriz with iid standard Normal en-
tries, and fi(Q) denote the number of k-dimensional faces of polytope Q. Consider
a triple (k,n,N) obeying k/n < (1 —0)ps(5;Q), where § € (0,1) and 6 = n/N.
Then

(2.2) fr(@) — Efr(AQ) < ¢5(Q) - N?(N 4 2)* exp(—nbs(6; Q)).

In this inequality, the driving factor is nf, with 6 the fractional distance from
the asymptotic phase transition pg(d; Q).

The exponent function Qg(d; Q) can be seen in Figure 2.1 Panel (a) to be strictly
positive, in fact always at least 1/2; see subsection 2.3.

Q4(8:Q) for Q=T (black) and Q=C (blue) Q,,(8:Q) for Q=T (black) and Q=C (blue)

0.55 1 1 1 1 0.2 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
3 3

(a) (b)

FIGURE 2.1. Panel (a) Q5(d;Q); panel (b) Qw (6;Q) for @ =T
(black) and @ = C (blue).

2.2. Relative Agreement of Face Numbers. Also in [8, 10, 12] the authors
established bounds on the fractional face deficit (f1(Q) — € fr(AQ))/ fx(Q) for Q =
TN~ and CN. They defined functions ¥ s4.c(d, p; Q) giving the inequalities

. NWnot— o) (n/Ni@) _ 16(Q) — Efu(AQ)
m(N; Q) Verg%%n] ¢ ' < fx(Q)

(2.3) < ﬂ'u(N,Q) max e]\,(\I/nct7‘Ilface)(n/]\]1’/§<2)7
ve(0,k/n]
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where m;(N; Q) and 7, (N; Q) are known polynomials (different from those in (2.1)).

Again, the exponents are overwhelmingly more important for large N than the
polynomial terms. Because fi(AQ) must be less than f;(Q), it follows that (¥t —
U face) (0, p; Q) < 0 everywhere in the (d, p) parameter space for each @ = T and
@ = C, and that each function U,e; — Vg reaches its maximum only along
the corresponding curve pw (9; @), also displayed in Figure 1.1. Controlling the
fractional face deficit is a weaker notion than controlling the absolute face deficit; we
call pw (0; Q) the weak phase transition. Consider parameters (4, p) falling “below”
the curve pw (6;Q) and a sequence of triples (k,n, N), the fractional face deficit
decays to zero exponentially fast. We now quantify this effect.

Theorem 2.2 (Exponential Bounds on Fractional Face Deficit). Let Qw (4; Q) be
the function defined in (6.2) below and displayed in Figure 2.1, panel (b). Let

ew(T) = 35?152‘? and ey (C) = 5612257:52. Let A be a random matriz with iid standard
Normal entries, and fr(Q) denote the number of k-dimensional faces of polytope
Q. Consider a triple (k,n,N) where k/n < (1 — 0)pw (n/N;Q) for 8 € (0,1). Set

d=n/N. Then

f1(Q) — £1(AQ)
f(@Q)

In this inequality, the driving factor is nf?; again, 6 is the fractional distance
below phase transition.

The exponent function Qyw (d; Q) can be seen in Figure 2.1 Panel (b) to be strictly
positive, in fact always at least 1/4; see subsection 2.3.

(2.4) < ew(Q) - N3(N + 2)? exp(—n8*Qw (6; Q)).

2.3. Convenient Simplifications. Theorems 2.1 and 2.2 give the strongest known
finite-N bounds on the expected discrepancy between the number of k-faces of the
polytopes in question and the corresponding randomly-projected polytope. How-
ever, because they involve rate exponents Qg(d;Q) and Qu (6;Q) they are not
completely explicit and transparent. One can develop simplified results which are
slightly weaker, but more memorable. These follow from numerical evaluation of
the rate exponents which are consequently framed as ‘Findings’ rather than as
theorems or lemmas.
We first develop a simplified form of (2.2), in which Qg(d; Q) does not appear.

Finding 2.1 (Lower bound of Q5(6;Q)). Qs(d;Q) > 1/2 for all § € [0, 1].

Demonstration of Finding 2.1. Lemma 5.2 shows that the lower bound 1/2 is
approached from above as 6 — 0. In the limit as § — 1, all factors comprising
Qs(0; Q) approach finite values, and those values, numerically evaluated, imply the
coresponding limit of Qg(d; Q) is greater than 1/2, see Figure 2.1 Panel (a). For
moderate values of 4, 5(d;Q) is again observed in Figure 2.1 Panel (a) to be
greater than 1/2. O

Corollary 2.1 (Exponential Bounds Uniform in ¢). Under the same conditions and
notation as in Theorem 2.1, assuming the validity of Finding 2.1. Then

(2.5) Fe(Q) = Efu(AQ) < es(Q) - N*(N +2)° exp(—nb/2).

This finding shows that, everywhere on or below the curves (1 — 8)p%(d), the
exponential term in (2.2) is bounded by exp(—n#f/2); this follows from Theorem 2.1
and Finding 2.1.
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Clearly, the face deficit bounds (2.2) and (2.5) become effective at moderately
large N. As a simple example, we have

Corollary 2.2. Let ng(e; Ny, 6p, Q) denote the solution to the equation
loge =logcs(Q) + 5log(No + 2) — nby/2.
Assume the validity of Finding 2.1. Then for every triple (k,n, Ng) where k/n <
(1 =60)ps(n/N;Q),
n > ng(e; No, 6o, Q) implies fe(Q) — Efr(AQ) <.

This simple result directly makes the point that our bounds become effective for
many triples (k,n, N) where n and N are not very large. It is not best possible
- Theorem 2.1 yields stronger bounds than Corollaries 2.1 and 2.2. More precise
information and examples will be given in Section 3 below.

We now develop a simplified form of (2.4), in which Qy (; Q) does not appear.

Finding 2.2 (Lower bound of Qw (8;Q)). Qw (;Q) > 1/4 for all 6 € [0,1].

Demonstration of Finding 2.2. Lemma 6.2 shows that the lower bound 1/4 is
approached from above as 6 — 0. In the limit as § — 1, all factors comprising
Qw (5; Q) approach finite values, and those values, numerically evalueated, imply
the corresponding limit of Qu(d; Q) is greater than 1/4, see Figure 2.1 Panel (b).
For moderate values of 4, Qu (0; Q) is again observed in Figure 2.1 Panel (b) to be
greater than 1/4. O

Corollary 2.3 (Exponential Bounds uniform in ¢). Under the same conditions and
notation of Theorem 2.2, assume also the validity of Finding 2.2. Then

fe(Q) — Efx(AQ)
fx(Q)

In Corollary 2.3, everywhere on or below the curves (1 — 6)pw (J; @), the expo-
nential term in (2.4) is bounded by exp(—nf?/4); this follows from Theorem 2.2
and Finding 2.2. While the dependence on 6? is markedly different than in the
earlier case, we still see that these fractional face deficit bounds become effective
at moderately large N.

(2.6) < ew(Q) - N3(N +2)3 exp(—nb?/4).

Corollary 2.4. Let nw (¢; No, 6o, Q) denote the value of n solving the equation
log e = log ey (Q) + 6log(Ng + 2) — nb3 /4.
Assume the validity of Finding 2.2. Then for every triple (k,n, Ng) where k/n <
(1 = 60)pw (n/No; Q),
Q) — £1(AQ) _
<e.
fu(@Q)

3. COROLLARIES AND APPLICATIONS

n > nw (€ No, 0o, Q) implies

The explicit bounds in Theorems 2.1 and 2.2 allow us to make non-asymptotic
statements concerning specific triples (k,n, N), producing the tables in introduc-
tion. We now review the meaning of those tables; it is convenient to do so in
reversed order. We also provide figures summarizing a large range of other triples.
We also describe the computational approach, the software which implements it,
our philosophy towards reproducibility, and make comparisons to previous work.
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3.1. Existence of Compressed Sensing Matrices. Table 1 arose from consid-
ering the following questions.

Q1: Compressed Sensing Matrices. A random matrix A will be called accept-
able for Compressed Sensing at failure fraction € > 0 if, among all k-sparse
problem instances xg, sensing b = Axg then solving (1.1) perfectly recovers
xo in at least a fraction (1 — €) of such instances. Can we set a thresh-
old n > ncg(k,N,e;C) implying that n x N iid Gaussian matrices are
acceptable for CS?

Q2: Compressed Sensing with positivity. A random matrix A will be called
acceptable for Compressed Sensing of positive objects at failure probability
e > 0 if, among all nonnegative k-sparse problem instances zg, sensing
b = Axg then solving (1.2) perfectly recovers z in at least a fraction (1 —¢)
of such instances. Can we set a threshold n > ncg(k, N, ¢; T) implying that
n x N iid Gaussian matrices are acceptable for CS of positive objects?

These questions can be answered for e = 0.01 by establishing the bounds [6, 11]

ka(ATN_l) ka(ACN)
Se(TN=1) fe(CN)

for the given (k,n, N) of interest. Such inequalities can be developed using our
bounds on the fractional face deficit. (Equivalence of the recovery of sparse vectors
from linear measurements by solving (1.1)-(1.2) and the face counts of the convex
hull of A and its associated cross-polytope were proven by the authors in [6, 11].)

Figures 3.1(c-d) provide graphical answers to Q1-Q2. They show the domain
in the phase diagram in which, on average, 99% of faces survive the prescribed
dimension reduction. Let Bound(Q, k,n, N') denote the right-hand side of (2.4) for
the given values of k,n, and N and the specific binding (). The Figures display the
level sets Bound(Q,k,n, N) = 1072 for N = 200, 1000, and 5000.

>0.99, for (Q2); >0.99, for (Q1);

Corollary 3.1. For a given N € {200, 1000, 5000}, consider values of k£ and n such
that (n/N, k/n) lies strictly beneath the curve for that N depicted in Figures 3.1(c).
Fix a given face F' of TV~ independently of A. There is at least a 99% chance
that AF is a face of ATV ~!. Again, we refer to A generated by random sampling
from the standard Gaussian distribution.

Consider values of k and n such that (n/N, k/n) lies strictly beneath the curve
for that N depicted in Figures 3.1(d). Fix a given face F' of CV independently of
A. There is at least a 99% chance that AF is a face of ACY. Here probability
refers to random sampling from the standard Gaussian distribution on R™*¥,

For specific numerical values, see Table 1.

3.2. Encoding Matrices for Error-Correcting Codes. Consider again the en-
coding/decoding scheme described in Section 1.2. Let U be a random orthogonal
matrix, drawn uniformly from the distribution on orthogonal N x N matrices,

O(N), and partition it as U = A> where the encoding matrix B is m x N and

(5
the generalized checksum matrix A is n x N, with m +n = N. Given the re-
ceived data u, form the generalized checksum y = Ap. Solve (1.1). Reconstruct
by subtracting this estimate of the receiver error out of the received message, and
projecting down from RY to R™: a; = B(p — z1).
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Q3: Perfect ECC Matrices. Call the pair (A, B) a perfect k-error correcting
code (k-ECQ) if the above encoder-decoder correctly decodes every received
message corrupted by an error vector with k or fewer nonzeros. For par-
ticular values of k, N and n, is the probability at least 50% that random
sampling of U = (A, B) from the uniform distribution on O(N) yields a
perfect ECC?

Q4: Almost-Perfect ECC Matrices. Call an error pattern a configuration of
k nonzeros with specified signs. Say that the pair (4, B) is almost perfect,
with failure rate € > 0, if the above encoder-decoder pair can correct all
but a fraction € of k-error patterns. For a given failure rate e = 1071°, at
what specific values of k, N and n do we expect an almost-perfect k-ECC
code by random sampling U?

These questions can be answered by establishing the bounds [6]
fu(CY) — Efr(ACT)
fr(C)

Exemplar values of (k,n, N), with m = N — n, were given in Table 2.

fe(CN)—Ef(ACN) < 1/2, for (Q3) <1071, for (Q4)

Corollary 3.2. For a given N € {200, 1000, 5000}, consider values of k£ and n such
that (n/N, k/n) lies strictly beneath the curve corresponding to that N depicted in
Figure 3.1(b). There exist perfect ECC matrix pairs for that (k,n, N). They can be
obtained with positive probability by a random draw from the uniform distribution
on O(N).

Consider values of k and n such that (n/N, k/N) lies strictly beneath the curve
corresponding to that N depicted in Figure 3.1(d). There exist almost-perfect ECC
matrix pairs for that (k,n, N), at error rate ¢ = 1072, They can be obtained with
positive probability by a random draw from the uniform distribution on O(N). O

Note that the ECC matrix pairs referred to in Corollary 3.2 have real-valued
rather than integer-valued entries. Empirically, various ensembles of random ma-
trices with rational entries behave similarly; compare [13]. Theorems 2.1 and 2.2
supply triples (k,n, N) that satisfy specified bounds for A with entries drawn Gauss-
ian iid, and we can empirically test if these bounds are also satisfied for other ran-
dom matrix ensembles. For instance, consider checksum matrices A with entries
drawn the Bernoulli ensemble: iid uniform on {—1,1}:

e Our answer to Q3 implies prevalence of perfect ECC pairs (A, B) with
real-valued matrices at (k = 7,n = 85, N = 100), but not at k = 8 for
the same n, N. An integer-valued checksum matrix A, 85 by 100, was
generated with entries iid from the uniform distribution on {—1,1}. Tt
was consistently able to correct errors corrupting 7 entries of the encoded
vector ; when challenged with 100,000 instances of uniformly distributed
patterns of errors, this A allowed to correct every set of errors — consistent
with the prediction of Theorem 2.1.

e Our answer to Q4 furnishes triples (k,n, N) for which almost perfect ECC
pairs (A, B) with e = .01 are prevalent. We selected triples (20,150, 200),
(20,200,400), and (20,250,400) at the edge of this regime, and for each
triple generated a random integer-values matrix A with entries iid uniform
{—1,1}; in each case the A so obtained was challenged 1000 times with an
encoded message corrupted by a k-error pattern. In each case, the decoder
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was able to correct each set of errors - consistent with the predictions of
Theorem 2.2.

3.3. Neighborly Polytope Existence Questions. Table 3 arose from these the-
oretical questions:

Q5: Random Neighborly Polytopes. At a particular choice of N and n, for
what values of k is there a positive chance that a standard Gaussian point
cloud of N points in R™ has a k-neighborly convex hull?

Q6: Random Centrally Neighborly Polytopes. For a particular choice of n

and for a given value of N, consider random vectors a;, i = 1,..., N iid
standard normal in R"™. Consider the symmetrized point cloud with N
points {ai,—aj,as, —az,...,an,—an}. For what values of k is there a

positive probability that the resulting convex hull is centrally k-neighborly?
These questions can be answered by establishing the bounds [6, 11]

(TN H=EfATVN Y < 1, for (Q5) or fr(CV)=Efp(ACN) <1, for (Q6)

The existence of k-neighborly polytopes follows from these bounds, as the expected
number of lost faces is less than one, implying that there must exist projected
polytopes AQ which have exactly as many k— 1 dimensional faces as ). Tightening
the discrepancy even further than one, say to 1 — ¢, implies that such polytopes not
only exist, but can even be found with positive probability (at least) e when drawn
at random from the distribution of AQ. In polytope theory random projection is
the most powerful known way to generate highly centrally neighborly polytopes
having many vertices. (Other techniques exist for few vertices).

Figures 3.1(a-b) are relevant to Q5 and Q6. Let Bound(Q,k,n, N) denote the
right-hand side of display (2.2), for a given choice of k, n, N, and binding Q@ =T
and @ = C. The figures portray the unit level set Bound(Q,k,n,N) = 1 for
N = 200, 1000, and 5000.

Corollary 3.3. For a given N € {200, 1000,5000}, consider values of k and n such
that (n/N,k/n) lies strictly beneath the curve corresponding to that N in Figure
3.1(a). There exist n x N matrices A such that ATV~ is k-neighborly. One can
be obtained with positive probability by iid random sampling from the standard
Gaussian distribution on R"*¥,

Consider values of k and n such that (n/N, k/n) lies strictly beneath the curve
corresponding to that N depicted in Figure 3.1(b). There exist n x N matrices A so
that AC™ is centrally k-neighborly. One can be obtained with positive probability
by iid random sampling from the standard Gaussian distribution on R™*¥.

O

Specific examples were given in Table 3. For the (k,n, N) given, one can obtain
k-neighborly (resp. centrally k-neighborly) polytopes by sampling N points from
the standard Normal in R™ (resp. then symmetrizing).

3.4. About the Calculations. The graphical and numerical results presented in
this section were obtained by plugging specified triples (k,n, N) into the expressions
in Theorems 2.1 and 2.2. We have developed computational tools to evaluate
Qs(0;Q), Qw(0;Q), ps(d;Q), and pw(J; Q). These allowed us to obtain specific
numerical results.

Less precise results can be obtained by hand using Corollaries 2.1 and 2.3.
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Although some calculations assumed specific thresholds e on fractional face
deficits, the results are relatively robust against changes in those thresholds. Due
to the exponentiality of the bounds in Theorems 2.1 and 2.2, there would be barely
perceptible changes in Figure 3.1 if the specified levels used in calculating those fig-
ures were changed moderately. Thus if we changed from 99% success rate to 50%
success rate in panels (c-d), or from existence (|Bound(k,n, N)| = 1) to prevalence
(|[Bound(k,n, N)| = 1/2) or even highly prevalent (|Bound(k,n,N)| = 1/1000) in
panels (a-b), the figures would not change substantially.

It should also be noted from Figure 3.1 that even for small N, say 200, when
0 = n/N is relatively large there is already a large region below the level curves.
However, for N and n/N simultaneously small, the bounds in Theorems 2.1 and
2.2 become weak or useless. For instance, the N = 200 contour in Figure 3.1(a)
reaches zero at about n/N = 0.17, corresponding to n = 34. In such instances,
as a method of last resort, more accurate results can be obtained for particular
triples by resorting to the full (4, p) dependent exponents W,..(d, p; Q) in (2.1) and
U ace(d, p; Q) in (2.3); however, significant gains are only obtained when N and/or
n/N are small.

3.5. Computational Epistemology. Our existence claims can be verified em-
pirically: one can take a specific triple we identify and, by random sampling and
subsequent testing, attempt to verify/falsify our claim.

To facilitate such empirical work we follow the principle of reproducible com-
putational science [9]. Software is available [1] that can reproduce our numerical
results or can empirically test specific triples.

The tabulated values we publish here offer information about a small selection
of triples (k,n, N). We make it possible to study other triples. Matlab software
available for download [1] allows users to set parameters for use in a variety of
situations. The ability to accurately evaluate the functions 2¢(d; Q) and Qw (J; Q)
is the central contribution of this article. Less accurate but simplified bounds are
provided: Corollaries 2.1-2.4 and 4.2-4.3. Making the software for our calculations
publicly available also allows further investigations into how Findings 2.1 and 2.2
were obtained.

Reproducibility of computational results helps to allow errors to be easily identi-
fied and corrected; to ensure that results are widely applied; and to provide precise
numerical benchmarks which future research can aim to outperform. In particular,
our article and software provide a collection of known good finite-N triples that
others may now try to expand.

3.6. Comparison to Other Approaches. Rudelson and Vershynin (RV) raised
the issue of developing finite-sample bounds in a presentation at Princeton in 2006.
Their recent publication [18] developed bounds that can be interpreted as enabling
finite-N statements concerning C~. Table 4 lists values derived from their ap-
proach allowing for direct comparison. Comparing our tabulated values with those
of Rudelson and Vershynin, it seems that the approach developed here is generally
much stronger. For similar values of n and N, their bounds have implications only
for significantly smaller values of k; for similar values of k they require a substan-
tially larger » than ours. It should be noted that Rudelson and Verhsynin were not
aiming for sharp numerical bounds. Their motivation was economy of argument;
they gave short proofs using existing techniques from geometric functional analysis.
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Here RV [18]
N n k n k
103 500 40 652 1
10% 1,000 45 1,089 3

10° 1,000 27 4,377 | 27
107 || 100,000 | 2,993 || 100,090 | 895
TABLE 4. Comparison of existence results implied by the approach

of this paper with those implied by work of Rudelson and Ver-
shynin.

In comparison, our approach is asymptotically completely precise, at the expense
of much more involved analysis.

Other results considering neighborliness of polytopes can in some instances also
offer finite dimensional examples. For instance, in an investigation primarily focus-
ing on the rough asymptotics of “How neighborly can a centrally symmetric poly-
tope be?”, Linial and Novik [15] also established that there exist j55-neighborly
centrally symmetric polytopes in R™ with 4n vertices (N = 2n). Focusing on the
same parameter ratio, n/N = 1/2, our bounds in Theorem 2.1 show the existence of
0-neighborly polytopes for n > 37; moreover, for n > 600 there exist {5-neighborly
centrally symmetric polytopes in R™ with 4n vertices.

In principle, finite-sample implications can also be drawn from Restricted Isom-
etry Principle arguments, [4]; however, there does not appear to have been a con-
certed effort to obtain effective quantitative bounds for finite dimensions, and our
calculations show that they are generally weaker in finite samples than the approach
of Rudelson and Vershynin, [18].

4. THE SAMPLING THEOREM FOR SPARSE SIGNALS

As the introduction pointed out, displays (1.3) and (1.4) provide an appealing
pair of easily-memorable asymptotic ‘laws’ about the behavior of face lattices of
random projections. They also have applications: (1.3) implies the prevalence of
k-neighborly polytopes and perfect checksum matrices; (1.4) implies the prevalence
of compressed sensing matrices and almost-perfect checksum matrices.

Thus for example we can design a practical system able to reconstruct almost all
vectors of length IV, whose entries have at most k nonzeros; we only need to draw a
Gaussian random matrix with NV columns and roughly n > 2k log(N/k) rows, obtain
the vector of n measurements b = Ax, and apply minimum #; reconstruction. This
amounts to 2k log(N/k) generalized samples — dramatically fewer than N samples
when N is much larger than k. This formula is simple and memorable. Similarly,
in linear programming decoding with long blocklengths, we can successfully correct
every pattern of k errors if we devote roughly n out of the N entries in a block to
generalized checksums, where n > 2e - klog(N/n).

Unfortunately, the word ‘roughly’ appears in the previous paragraph, meaning
that in both statements there are some loose items that still need to be made
precise. It would be preferable to have precise statements effective at specific finite
n, but maintaining essentially the same form.



16 DAVID L. DONOHO AND JARED TANNER

FIGURE 3.1. Panels (a) and (b): Unit level curves
(|[Bound(k,n,N)| = 1) for the upper bounds in Theorem
2.1 for N = 200 (blue), 1000 (green), and 5,000 (red); Q = TN !
(left) and Q = C¥ (right). The asymptotic, N — oo, limits
ps(3; Q) are also shown, (black). Panels (c¢) and (d): The 1072
level curves for the lower bounds (|Bound(k,n, N)| = 1072) in
Theorem 2.2 again for N = 200 (blue), 1000 (green), and 5,000
(red); Q@ = TN=! (left) and Q = CV (right). The asymptotic,
N — o0, limits py (d; Q) are also shown, (black).

We develop such statements, in two simple steps. First, we show that the as-
ymptotic thresholds have effective finite n implications of the form n > k/p(n/N) +
remainder and n > k/p(n/N)(1 + remainder).

Corollary 4.1 (Bounds Using Asymptotic Thresholds and Remainders). Set § =
n/N. For € > 0 and for Q € {TV=1, CN} set

ogl(c . 5 €
Rs(eon, ;) = BC@ (120

where ¢g(Q) was defined in Theorem 2.1; (c¢s(Q) < 1/6). Then for
(4.1) n>k/ps(n/N;Q) + Rs(e,n, N; Q),
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we have

Prob{fs(Q) = fi(AQ)} =1 —e.
For € > 0 and for Q € {T™N~1,CN} set

log(ew (Q) - (N +2)%/e))
nQw (6; Q)

where ey (Q) was defined in Theorem 2.2; (cw (Q) < 4). Then for Ry (e,n, N;Q) <
L,

(42) n > k/pW(n/NaQ) (1—RW(€,TL,N;Q))_1,

we have

1/2

RW(67 n, N; Q) =

fu(Q) — Ef(AQ) _
fe(Q) -
Proof. By Theorem 2.1, if nf > Rg(e,n, N;Q), the expected face deficit is bounded

by € for all k < n(1—0)-ps(n/N; Q). Rewriting the bound as nf < n—k/ps(d; Q),
we obtain the inequalities

n—k/ps(6;Q) >nb > Rs(e,n, N;Q),

which implies (4.1).
6
By Theorem 2.2, if nf? > log(cwﬂ(g)(gggm /9 the expected relative face deficit
is bounded by € for all k£ < n(1 —0) - pw(n/N;Q). Rewriting this as § < 1 —

k/(npw(n/N;Q)), and employing the condition on nf? we have

k
1————>0> Rw(e,n,N;Q).
now (1/N: Q) (e Q)
Dropping the intermediate 6 and solving for n we arrive at (4.2). (Il

Remarks.

e Notice once again an explicit appearance of the asymptotic thresholds in a
finite-sample bound; this reaffirms the significance of the asymptotic thresh-
olds.

e By inspection, the remainders in this corollary are small if N is not expo-
nentially larger than n, i.e. if log(N) is small relative to n.

e The reader may be concerned that the upper bounds presented could be ex-
cessively pessimistic; in fact, this is not the case. These explicit conditions
on (k,n, N) for the ‘strong agreement’ differ from the asymptotic limit n >
k/ps(9; Q) by a logarithmic additive term asymptotically negligible com-
pared to the the asymptotic limit; for the ‘weak agreement’ these explicit
conditions on (k,n, N) differ from the asymptotic limit n > k/pw (§; Q) by
a multiplicative term tending to 1.

Corollary 4.1 gives the best known, finite dimensional, sampling theorem for k-
sparse vectors from Gaussian measurements. This bound is given in terms of the
asymptotic phase transitions ps(n/N; Q) and py (n/N; Q) and the special functions
Qs(0; Q) and Qw (6;Q). The following Corollaries 4.2 and 4.3 are simplifications
of Corollary 4.1 which are independent of all of the above special functions. They
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follow from Corollary 4.1, the bounds on Qg(d; Q) and Quw (; Q) in Findings 2.1
and 2.3, and the asymptotic behaviour of the phase transitions [12],

ps(0:Q) ~ [2elog(1/0)]7!
pw(5Q) ~ [2log(1/8)] 7Y

here, by f(0) ~ g(d) we mean that the ratio tends to 1 as 6 — 0.
To get bounds in place of limit statements for ps(d; Q) and pw (6;Q), we add a
‘constant offset’.

Finding 4.1 (Lower bounds on pg(d; Q) and pw (4;@Q)). We find numerically that
ps(8:Q) > [2elog(1/6) + ds(Q)] ™
for all § > 1072 with ds(T) := 6, ds(C) := 10; and we find numerically that
pw (8;Q) > 2+ 21og(1/0)] 7
is valid for all 4.

Corollary 4.2 (Sampling Theorem - Strong Agreement). Define Rg(e,n, N;Q) :=
2-log(cs(Q) - (N +2)°/¢). Conditional on pg(d) > [2elog(1/6) +ds(Q)]~* (Finding
4.1), the relation,

n > 2ek - [log(N/n) + ds(Q)] + Rs(e,n, N; Q)
implies, for n/N > 10712
Prob{fi(Q) = fr(AQ)} > 1 —e.
Corollary 4.3 (Sampling Theorem - Weak Agreement). Define Rw(e,n,N;Q) :
2[nog(ew (Q) - (N + 2)%/€)]Y/2. Conditional on pw (5;Q) > [2 + 2log(1/6)]~

(Finding 4.1), Rw(e,n, N; Q) < 1 and
(4.3) n > 2k - [log(N/n) +1]- (1 — Rw(e,n, N; Q)"

—

imply
fk(@) — Ek(AQ) _ .
fe(Q) -

5. ANALYSIS OF FACE DEFICIT

Both sides of the expected face deficit bound (2.1) are of interest, but only the
upper bound has positive implications for existence questions - our focus in this
paper. We would like the upper bound to be small, and so wish to document the
extent to which the exponent U,,..(d, p; Q) is negative at p below the zero crossing
ps(0;Q). The partial derivative of W,.(0, p; Q) with respect to p has a simple
multiplicative form,

(5.1) (%\Ifnet(& p;Q) = 0F(p);

here we define
(5.2)

_ _ Y 1+p _ .
F(p) := log (p 2(1—p)ypv27f)+(1—p)~<p 1—y—p——2p2 Yy +(p 1—1)ypyp>,
P
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where y, is a quantity considered in our earlier papers [12] and defined implicitly
by
1—p
(5.3) —1y, =5,, ands,solves R(s,)=1—p;
p
with R(s) also considered in our earlier papers, and defined by

(5.4) R(s) := 8652/2/ eV 2qy.
R is closely associated to a famous quantity in probability theory, the Mills’ ratio
of the standard Normal distribution [14, Sec 5.38].

Functions y, and F'(p) are depicted in Figure 5.1, panels (a) and (b) respectively.

08 . . : : 30
07t 251
06f
20
05
y 15+
.4r i F(p)
10t
03
sk
02F
01 1 or
0 : : : : 5 : : : :
0 02 0.4 06 08 1 0 02 04 06 08 1
p p
(a) (b)

FIGURE 5.1. Panel (a) y, and, panel (b) F(p).

Lemma 5.1. Define
(5.5) Q5(6;Q) :==ps(6;Q)  min__ F(p).

0<p<ps(6;Q)
Then for 6 € (0,1)

(56) Uet (67 (1 - 9){)5(5, Q)a Q) < _9595(53 Q)
Proof. For fixed 6 € (0,1), consider the univariate Taylor series of G(p)

et (6, p; Q), expanded at p = ps(d; Q). At some point £(6) € [(1-0)ps(5; Q), ps(5; Q)]
we have the equality:

Vet (0,(1 = 0)ps(6;Q); Q) = Wit (0, ps(0;Q))
0
—0ps(6;Q) 7= Vet (6, Q)
i ap " p=£(5:Q)

5.7 < —06ps(6; min F
(5.7) < ps( Q)O<pgps(w) (p)
By definition of pg(d; Q) as the zero level curve of U,.:(d; p; Q) the first term is
Zero.

Lemma 5.1 implies the form of the exponential term in Theorem 2.1. The poly-
nomial term in Theorem 2.1 follows directly from bounds previously obtained by
the authors in [12].
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Finding 5.1 (Monotonicity of F). ‘fi—i < 0 for all p € [0,1].
Demonstration of Finding 5.1. See Figure 5.1 Panel (b). O
Corollary 5.1. Conditional on the Monotonicity of F' (Finding 5.1),
Q5(0;Q) = ps(6: Q) F(ps(6: Q))-
We now focus attention on the behavior of 25(d; Q).
Lemma 5.2. lims_,0 Qs(5; Q)(8) — 1/2 from above.

Proof. That Qg(0;Q) — 1/2 from above as § — 0 follows from an asymptotic
expansion of the behavior of F(p) summarized in Lemma 5.3. From the definition
of Qs(0; Q) in (5.5) and the asymptotic behaviour of F'(p) in (5.8), the asymptotic
expansion of Qg(d; Q) as § — 0 has a leading term 1/2; the additive remainder is
asymptotically negligible, but strictly positive for all sufficiently small 6 — 0. O

Lemma 5.3. For p <1/100,

(58) F(p) = 50" — 5 lo(p) + 5 (os(2m) ~8) +75(p),  with |rs(p)| < 60.4p.

and

d -1 ., 3 _ .
(5.9) i) == S5 i Hrelp),  with re(p)] < 40.1.

Lemma 5.3 follows from Lemma 7.1 and the definition of F(p) in (5.2).

6. ANALYSIS OF FRACTIONAL FACE DEFICIT

The phase transitions in fractional face deficit occur at the zero crossings in p of

(6.1) (%(‘Ifnet — VUrace) (0,05 Q) = 0 (F(p) +log(dp) —log(1 — dp) — ¢(Q)) -

where ¢(Q) = ?og2 g z g .

Level sets of (6.1) for Q = T are depicted in Figure 6.1 (a); the zero set is
decorated with a dashed line and the log?2 level set is indicated by the solid line.
These sets define py (0; Q) for @ = C and @ = T respectively.

Lemma 6.1. Define
62 w(Q) = 5 (ow (5 Q)
Then for 6 € (0,1)

(\I]net - \I]face)((su (1 - H)PW(& Q)7 Q) S _692QW(6; Q)

Proof. Consider the Taylor series of the univariate function G(p) = (Vpet —

U pace) (6, p; Q) at p = pw(d;Q). At any point £(6) € [(1 — 0)pw (6;Q), pw (05 Q)]
we have the equality

(\Ijnet - \Ilface)((su (1 - e)pW (67 Q)7 Q) = (\I]net - \I]face)((su PW(& Q)7 Q)
(63) 00 (5:Q) 5 (aes = ¥1ac) 6,75 Q)

0
max —F + -1 + —
0<p<pw (5Q) | Op (o) 0 p

p=pw (5:Q)
2

0
+%(9pw((5; Q) gz (Tt = Ugace) (8, Q)

p=£(9)
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The definition of py (9; Q) as the zero of (6.1) yields 8% (Uret =Y face) (0, pw (0; Q); Q)
0. By definition (¥per — ¥race)(d, p; Q) < 0 for all (6, p) € (0,1)%. Hence the first
two out of three lines in the previous display are bounded above by zero. The
definition of Quw (J;Q) and 88—:2(‘Ilnet — Wtace)(0, p; Q) bounds the third line by
—3602Qw (55 Q). O
Lemma 6.1 determines the form of the exponential factor in Theorem 2.2. The
polynomial factor in Theorem 2.2 follows directly from bounds previously obtained
by the authors in [12].
Level sets of
0? 0 5
St = V) 0. Q) =6 (5P + 7+ 2 )
can be studied in Figure 6.1 (b). The level set of the maximum value is decorated
in magenta, while py (9; Q) for @ = T is depicted by the black curve and for Q@ = C
by the blue curve.
For a given fixed 4, the maximum in (6.2) occurs at p = pw(d;Q) provided
0 <4 <0.549 and Q = C or provided 0 < § < 0.886 and @ = T. For § outside
those intervals, the maximum in (6.2) occurs at the maximum level set depicted in
Figure 6.1 (b) (dash-dot).

0.7 4 3
0.6 2 25
Pos 0

0.4

0
N

0.3

'
A

0.2r

'
&

0.1

!
&

0.1 1 05
]

0‘.1 012 013 014 0;5 016 0.‘7 0‘.8 0‘.9 ) 01 02 03 04 085 06 07 08 09
(a) (b)

FIGURE 6.1. Panel (a): Contours of (%(\I/net — Uiaee) (0,0, T).

Panel (b): Level sets of —68—;2 (Tret — Urace)(0,0;T)) (logyq scale).
The magenta curve in Panel (b) indicates the location (4, p) of
minimum value attained in each constant-d section. Both panels
include overlays of py (9; C) (blue) and pw (0;T) (black).

We now focus attention on the behaviour of Qu (4; Q).

Lemma 6.2. lims_.o Qw (0; Q) — 1/4 from above.

Proof. From the definition of Qu (§; Q) in (6.2) and the asymptotic behaviour
of —81;(:) in (5.9), the asymptotic expansion of Qu (§;Q) as § — 0 has a leading

term 1/4; the additive remainder is asymptotically negligible, but strictly positive
for all sufficiently small § — 0. O
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7. APPENDIX: ASYMPTOTIC BEHAVIOUR OF Yp

The asymptotic properties of s,, (5.3), as p — 0 (and hence also of y,) were
studied in [8] using properties of an asymptotic series due to Laplace. We refine
that approach to obtain

Lemma 7.1. For p <1/100,

111 .

(1) = <1 o r2<p>) o with ()] < 48497,

o d (1 3 ‘
(72)  Go=yp=p "2 (— - <p+ r3(p)> . with |r3(p)] < 28.62p%,

1) 2 4
and
d? -1 5 .

(7.3) ap2le = 1P (L+74(p)) with  |ra(p)| < 79p.

These results are developed below in the following order. Expansion (7.1) is
obtained in Section 7.1 from properties of Laplace’s asymptotic series. Once (7.1)
has been established, we invoke the exact expressions for 5, and ¢,:

. S$p(1—p)+ ps . . —1\—
%‘W with Sp:(psp_(l_p)spl) E

(These follow from the definitions of s, and y, in (5.3)). We obtain the bound (7.2)
by simply combining (7.1) and bounds for (1 — p)~* with these expressions.

The bounds for (7.3), (5.8), and (5.9) are arrived at similarly. We made no effort
to carefully control the size of the constants in remainder terms in Lemmas 7.1 and
5.3. We have observed numerically that setting the remainder terms to zero yields
approximations which are surprisingly accurate over ranges of p much larger than
might be expected for such asymptotic approximations.

7.1. Proof of (7.1). We develop (7.1) in two stages. Initially, we develop the
asymptotic behavior of s, as p — 0; then we substitute it into equation (5.3). Our
approximation of s, uses the asymptotic series for R(s)

1 1.3 1-3-5 1-3-5-7
-+ - + +
s

R(s) == 8682/2/ eV Py =1 -

S

]

s s6 58

appropriate for the regime of s large. To obtain this series, note that R(s) =
s-Mills(s) for s > 0, where Mills(s) is the usual Mills’ ratio for the standard normal
distribution. The corresponding asymptotic series for Mills’ ratio is developed in
[14, Secs 5.37,5.38]; H. Ruben [16] credits this series to Laplace. In [14, Eq. (5.106)]
it is shown that the error in truncating the series for Mills() at the s-th term is at
most as large as the s-th term itself. R() inherits this property.

Now define L(s, p) := R(s) — 1+ p and note that s, is defined so L(s,, p) = 0.
The asymptotic series for R, combined with the Taylor series of L(s, p) in variable
s, suggest the asymptotic approximation

- _ 3 15
(7.4) Sp RS, =p 1/2 <1—§p+ §p2>.
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To quantify the error in this approximation, invoke the mean value theorem;
given a smooth function G(z), there is always a point £ € [min(z,y), max(z,y)]
satisfying

(7.5) Gly) =G(z)+ (y — I)din(y)\y:g-

Hence we can bound |y — z| if we have suitable bounds on |G(y) — G(z)| and
din(y)|y:5. Apply this principle to G(s) = L(s, p) about s,, getting

. - 0
(76) |5p - Sp| S ‘L(Spap)/%lj(s’p)b_smid ’

for some point s,,;q € [min(s,, 5,), max(s,, 5,)].

Adapting bounds from [14, Eq. (5.106)] for Mills’ ratio gives the following bound
on R(): for s > 9.8,
(7.7) 1—5 24354~ 155 %+ 965 % < R(s) <1—5 2435~ 1550+ 10555,
Inserting 5, into the above upper bound and recalling L(s, p) = R(s) — 1+ p yields
(7.8) |L(3,,p)| < 46.4p*,  for p< 1/100.

To bound the denominator, note that

O L) =[5+ 57 Bls) — s

which is a positive decreasing function of s; this attains its lower bound on the
interval s € [min(s,,5,), max(s,,5,)| at one of the endpoints {s,,5,}. At 5, we
again make use of a lower bound on Mills’ ratio, a simplified variant of equation
(7.7) that R(s) > 1—s72+ 257 for s > 9.8 is sufficient,

1o - . ~ ~
gL(Svp)\s:% =[5, +5,71R(5,) 5
_ . . S _ -
> B+ 5, 0-52+ 550 -5
3.3 <=5 3/2
9) = 55 55> 50"

For the lower bound at s, we first note that for each p, L(s, p) is a strictly increasing
function of s, equaling zero at s,. Employing a simpler variant of (7.7), R(s) >
1+ 5724257 for s > 3.9, we note that L(p~'/2(1 — p), p) > 4p? for p < 1/100
which then implies the upper bound s, < p~/2 —p!'/2. From this we have the lower
bound,

5} _ _
&L(Svp)\szsp = [SP+Sp1]'(1_p)_SP:(1_p)Sp1_pSP
1 _
(7.10) > (1—P)'m—l’(/’ V2 pt?) = p2,
Using bounds (7.8) and (7.10) in equation (7.6) we have,
(7.11) s, — 8, <46.4p°/2,  for p<1/100,

and obtain the estimate

3 15
s, =p 1?2 <1 - §p+ §p2>—|—r1(p), with |r1(p)| < 46.4p°/2, for p <1/100;

Combined with (5.3), this yields the claimed (7.1) of Lemma 7.1. O
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