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Abstract—Compressive sensing (CS) is an alternative to
Shannon/Nyquist sampling for the acquisition of sparse or am-
pressible signals that can be well approximated by just < N
elements from anN-dimensional basis. Instead of taking periodic
samples, CS measures inner products withM < N random
vectors and then recovers the signal via a sparsity-seeking
optimization or greedy algorithm. Standard CS dictates tha
robust signal recovery is possible fromM = O (K log(N/K))
measurements. It is possible to substantially decreas®l without
sacrificing robustness by leveraging more realistic signainodels
that go beyond simple sparsity and compressibility by inclding
structural dependencies between the values and locations the
signal coefficients. This paper introduces a model-based Cie-
ory that parallels the conventional theory and provides cogrete
guidelines on how to create model-based recovery algorithsnwith
provable performance guarantees. A highlight is the introdiction
of a new class of structured compressible signals along wita
new sufficient condition for robust structured compressibk signal
recovery that we dub the restricted amplification property, which
is the natural counterpart to the restricted isometry property
of conventional CS. Two examples integrate two relevant sigl
models — wavelet trees and block sparsity — into two state-
of-the-art CS recovery algorithms and prove that they offer
robust recovery from just M = O (K) measurements. Extensive
numerical simulations demonstrate the validity and appli@bility
of our new theory and algorithms.

Index Terms—Compressive sensing, sparsity, signal model,
union of subspaces, wavelet tree, block sparsity
I. INTRODUCTION

E ARE in the midst of a digital revolution that is

enabling the development and deployment of ne
sensors and sensing systems with ever increasing fidelity &

resolution. The theoretical foundation is the Shannonihitq
sampling theorem, which states that a signal’s informaigson

can be so high that we end up with too many samples and
must compress in order to store or transmit them. In other
applications the cost of signal acquisition is prohibitigéher
because of a high cost per sample, or because state-oftthe-a
samplers cannot achieve the high sampling rates required by
Shannon/Nyquist. Examples include radar imaging and exoti
imaging modalities outside visible wavelengths.

Transform compression systems reduce the effective di-
mensionality of anV-dimensional signat by re-representing
it in terms of a sparse or compressible set of coefficienis
a basis expansian = ¥q, with ¥ an N x N basis matrix. By
sparse we mean that only < N of the coefficientsx are
nonzero and need to be stored or transmitted. By compressibl
we mean that the coefficients when sorted, decay rapidly
enough to zero that can be well-approximated ds-sparse.
The sparsity and compressibility properties are pervaisive
many signal classes of interest. For example, smooth sgnal
and images are compressible in the Fourier basis, while
piecewise smooth signals and images are compressible in a
wavelet basis [1]; the JPEG and JPEG2000 standards are
examples of practical transform compression systems based
on these bases.

Compressive sensingCS) provides an alternative to
Shannon/Nyquist sampling when the signal under acquisitio
is known to be sparse or compressible [2-4]. In CS, we
measure not periodic signal samples but rather inner ptsduc
with M <« N measurement vectors. In matrix notation, the
measurementy = ®x = dWVa, where the rows of the
W x N matrix & contain the measurement vectors. While
Re matrix®V is rank deficient, and hence loses information
in general, it can be shown to preserve the information in
sparse and compressible signals if it satisfies the soecalle

preserved if it is uniformly sampled at a rate at least twgStricted isometry propertyRIP) [3]. Intriguingly, a large

times faster than its Fourier bandwidth. Unfortunatelyyiany
important and emerging applications, the resulting Nytjaite
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class of random matrices have the RIP with high probability.
To recover the signal from the compressive measuremgnts
we search for the sparsest coefficient veatothat agrees
with the measurements. To date, research in CS has focused
primarily on reducing both the number of measuremewts
(as a function ofN and K) and on increasing the robustness
and reducing the computational complexity of the recovery
algorithm. Today’s state-of-the-art CS systems can rdpust
recover K-sparse and compressible signals from jl$t =

O (K log(N/K)) noisy measurements using polynomial-time
optimization solvers or greedy algorithms.

While this represents significant progress from Nyquist-
rate sampling, our contention in this paper is that it is fides
to do even better by more fully leveraging concepts from
state-of-the-art signal compression and processing ighgas.


http://arxiv.org/abs/0808.3572v5

2 BARANIUK et al. MODEL-BASED COMPRESSIVE SENSING

In many such algorithms, the key ingredient is a more rgressible signals is independent &t

alistic structured sparsity modethat goes beyond simple . .
sparsity by codifying the inter-dependensyucture amon To take practical advantage of this new theory, we demon-
P y by 9 P sy 9 strate how to integrate structured sparsity models into two

; o 1 . )
the signal cogfﬁuent&. For instance, modern wavelet IMagE 1o of-the-art CS recovery algorithms, CoSaMP [11] and
coders exploit not only the fact that most of the wavelet

coefficients of a natural image are small but also the f |t(tarat|ve hard thresholding (IHT) [12-16]. The key modifica

. . Afion is surprisingly simple: we merely replace the nonlinea
that the values and locations of the large coefficients have P gy P y rep

. ) s . Sparse approximation step in these greedy algorithms with a
a particular structure. Coding the coefficients accordm@ t P bp b g y &g

) . structured sparse approximation. Thanks to our new theory,
structured sparsity model enables these algorithms to msap )
) . . S oth new model-based recovery algorithms have provable
images close to the maximum amount possible — significan

N : fobustness guarantees for both structured sparse antustaic
better than a naive coder that just processes each large co- . .
S : compressible signals.

efficient independently. We have previously developed a new

CS recovery algorithm that promotes structure in the sparse To validate our theory and algorithms and demonstrate

representation by tailoring the recovered signal accgrdin their general applicability and utility, we present two siiie

a sparsity-promoting probabilistic model, such as an Isirigstances of model-based CS and conduct a range of simula-

graphical model [5]. Such probabilistic models favor ciertation experiments. The first structured sparsity model aotou

configurations for the magnitudes and indices of the siganific for the fact that the large wavelet coefficients of piecewise

coefficients of the signal. smooth signals and images tend to live on a rooted, connected

: . . tree structure[17]. Using the fact that the number of such

In this paper, we expand on this concept by mtroducE— . N
rqes is much smaller thaflK), the number of K-sparse

ing a model-based CS theory that parallels the conventlona}eqnal supports inV dimensions, we prove that a tree-based

. Cn I

theory and _prowdes concrete g_wdellne_s on how to Cre%oSaMP algorithm needs only — O (K) measurements

structured signal recovery algorithms with provable perfo . )
to trobustly recover tree-sparse and tree-compressibialsig

mance guarantees. By reducmg th‘? number of QggreesT%IS provides a significant reduction against the standa&d C
freedom of a sparse/compressible signal by permitting on

: . . ONquirementys = Klog(N/K)) as the signal lengthiv

certain configurations of the large and zero/small coefiitsie . q . O(. .Og( /K)) = sl gt
. . . . it [pcreases. Figure 1 indicates the potential performanaesga

structured sparsity models provide two immediate benadits . : : .

: : - n a tree-compressible, piecewise smooth signal.
CS. First, they enable us to reduce, in some cases 5|gnlj4,can(f
the number of measurements required to stably recover a The second structured sparsity model accounts for the
signal. Second, during signal recovery, they enable ustterbefact that the large coefficients of many sparse signals clus-
differentiate true signal information from recovery atifs, ter together [8,9]. Such a so-calldslock sparsemodel is
which leads to a more robust recovery. equivalent to gjoint sparsity model for an ensemble of,

To precisely quantify the benefits of model-based C ngth-v s!g.nals [10], where the supports of the S|gpals
. : drge coefficients are shared across the ensemble. Using the
we introduce and study several new theoretical concepts t

a
could be of more general interest. We begin with structur JN) we prove that a block-based CoSaMP algorithm

ct that the number of clustered supports is much smaller
. ) ) : n(5x
sparsity models forK -sparse signals and mal_<e precise h.OWeFds onlyM = O (JK—i-Klog(ﬂ)) measurements to
the structure reduces the number of potential sparse sign K . .
robustly recover block-sparse and block-compressibleadsy

supports ine. Then using thenodel-based restricted isometryIn contrast, standard CS requirdé — O (JK log(N/K)):
property from [6, 7], we prove that suclstructured sparse block sparéity reduces the dependenceMfon the signl’;tl

signals can be robustly recovered _from noisy compressn@ngthN’ particularly for large block sized.
measurements. Moreover, we quantify the required number of

measurementd/ and show that for some structured sparsity  Our new theory and methods relate to a small body of
modelsM is independent ofV. These results unify and gen-previous work aimed at integrating structured sparsity int
eralize the limited related work to date on structured sparsCS. Several groups have developed structured sparse signal
models for strictly sparse signals [6—10]. We then intralilhe recovery algorithms [6—8, 18—24]; however, their appresch
notion of astructured compressible signathose coefficients have either been ad hoc or focused on a single structured
a are no longer strictly sparse but have a structured powsparsity model. Most previous work on unions of subspaces
law decay. To establish that structured compressible EgnEs, 7, 24] has focused exclusively on strictly sparse sigaad
can be robustly recovered from compressive measuremeatshas considered neither compressibility nor feasible regov
generalize the standard RIP to a nmsgtricted amplification algorithms. A related CS modeling framework for structured
property(RAmMP). Using the RAmP, we show that the requiredparse and compressible signals [9] collects Mesamples
number of measuremenfd for recovery of structured com- of a signal into D groups,D < N, and allows signals
where K out of D groups have nonzero coefficients. This
1obviously, sparsity and compressibility correspond topsansignal mod- frame\_Nork IS Immedlately applicable to block-sparse sllgna_
els where each coefficient is treated independently; fomgia in a sparse and signal ensembles with common sparse supports. While
model, the fact that the coefficient; is large has no bearing on the size of[9] provides recovery algorithms, measurement bounds, and
any o, j # i. We will reserve the use of the term “model” for sﬁuatlonsrecovery guarantees similar to those provided in Sectian VI

where we are enforcing structured dependencies betweevathes and the - !
locations of the coefficients;. our proposed framework has the ability to focus on arbitrary
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(a) test signal (b) CoSaMP (€)-norm min. (d) model-based recovery
(RMSE = 1.123) (RMSE = 0.751) (RMSE = 0.037)
Fig. 1. Example performance of structured signal recovery. (a)éwése smoothieaviSinetest signal of lengtlN = 1024. This signal is compressible under
a connected wavelet tree model. Signal recovered téra=- 80 random Gaussian measurements using (b) the iterativeegcaigorithm CoSaMP, (c) standard

£1-norm minimization via linear programming, and (d) the waté&ree-based CoSaMP algorithm from Section V. In all figureot mean-squared error (RMSE)
values are normalized with respect to thenorm of the signal.

subsets of theéf;) groups that yield more elaborate structures, Many natural and manmade signals are not strictly sparse,
such as connected subtrees for wavelet coefficients. To the can be approximated as such; we call such sigoats-
best of our knowledge, our general algorithmic framework fgressible Consider a signat whose coefficients, when sorted
model-based recovery, the concept of a model-compressilleorder of decreasing magnitude, decay according to the
signal, and the associated RAmMP are new to the literature.power law

This paper is organized as follows. A review of the CS U
. . . 1/ .

theory in Section 1l lays out the foundational concepts that 22| < G ;=1 N, 1)
we extend to the model-based case in subsequent sections.
Section Il develops the concept of structured sparse EignwhereZ indexes the sorted coefficients. Thanks to the rapid
and introduces the concept of structured compressiblaksigndecay of their coefficients, such signals are well-appratad
We also quantify how structured sparsity models improve tiy K-sparse signals. Letx € Xk represent the besk-
measurement and recovery process by exploiting the modem approximation ofz, which is obtained by keeping just
based RIP for structured sparse signals and by introdubimg the first K’ terms inzz(; from (1). Denote the error of this
RAmP for structured compressible signals. Section IV ind&pproximation in the/,, norm as
cates how to tune CoSaMP to incorporate structured sparsity
models and establishes its robustness properties forsteac oK (z)p := min ||z — Z|, = ||z — zx]lp, %)
sparse and structured compressible signals; the modificati Z€Tk
to the IHT algorithm are very similar, so we defer them to
an appendix to reduce redundancy. Sections V and VI thglrl? 1p
specialize our theory to the special cases of wavelet tree nzfil |:ci|P) for 0 < p < co. Then, forr < p, we have
block sparse signal models, respectively, and report oni@ssethat
of numerical experiments that validate our theoreticainta

ere the/, norm of the vectorz is defined as|z|, =

_1 —s
We conclude with a discussion in Section VII. To make the ox(@)p < (rs) P GK ™, 3)
paper more readable, all proofs are relegated to a series of
appendices. with s = 1 — 1. That is, when measured in thg norm,

the signal's best approximation error has a power-law decay
with exponents as K increases. In the sequel we let= 2,
yielding s = 1/r — 1/2, and we dub a signal that obeys (3)
A. Sparse and compressible signals an s-compressiblesignal.

The approximation of compressible signals by sparse
signals is the basis défansform codingas is used in algorithms
like JPEG and JPEG2000 [1]. In this framework, we acquire
the full N-sample signalx; compute the complete set of
transform coefficients via o = ¥~ '; locate theK largest

s(I:toef“ficients and discard thev — K') smallest coefficients; and
eMcode thek values and locations of the largest coefficients.
While a widely accepted standard, this sample-then-cosspre

A signal z is K-sparseif only K <« N entries ofz framework suffers from three inherent inefficiencies. t-ivee
are nonzero. We call the set of indices corresponding to thmust start with a potentially large number of samplésven
nonzero entries theupportof « and denote it by sugp). if the ultimate desired< is small. Second, the encoder must
The set of allK-sparse signals is the union of tt@%) K- compute all of theV transform coefficients, even though it
dimensional subspaces aligned with the coordinate axR§in will discard all but K of them. Third, the encoder faces the

We denote this union of subspaces By . overhead of encoding the locations of the large coefficients

II. BACKGROUND ON COMPRESSIVESENSING

Given a basig; }¥ |, we can represent every signak
RY in terms of N coefficients{a;}¥ , asz = Zfil o
stacking they; as columns into theV x N matrix ¥, we
can write succinctly thatt = Ta. In the sequel, we will
assume without loss of generality that the signak sparse
or compressible in the canonical domain so that the spar
basisV¥ is the identity andy = .
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B. Compressive measurements and the restricted isometiyere the/y “norm” of a vector counts its number of nonzero
property entries. While this optimization can recovefasparse signal
from just M = 2K compressive measurements, it is unfor-
Compressive sensing (CS) integrates the signal acquiginately a combinatorial, NP-hard problem [26]; furthermo

tion and compression steps into a single process [2—4]. the recovery is not stable in the presence of noise [4].

CS we do not acquire directly but rather acquird/ < N ) _

linear measurementg = ®x using anM x N measurement Practical, stablt_e recovery algorithms rely on the RIP
matrix ®. We then recover: by exploiting its sparsity or (@nd therefore require at least = O (K log(N/K)) mea-
compressibility. Our goal is to push as close as possible toSUTéments); they can be grouped into two camps. The first
K in order to perform as much signal “compression” duringPProach convexifies th& “norm” minimization (5) to the

acquisition as possible. 1-norm minimization

In order to recover a good estimate of(the K largest T = arg Hglﬁl,n 2]l sty = ®a’. (6)
x;'s, for example) from thél/ compressive measurements, th

measurement matri$ should satisfy theestricted isometry polynomial time [2, 3]. Adaptations to deal with additiveise

property (RIP) [3] in y or z include basis pursuit with denoising (BPDN) [27],
Definition 1: An M x N matrix  has theK-restricted complexity-based regularization [28], and the DantzigeSel

isometry property(KX-RIP) with constantix if, for all x € tor [29].

Yk,

q‘his corresponds to a linear program that can be solved in

The second approach finds the sparsesgreeing with
the measuremenisthrough an iterative, greedy search. Algo-
_ rithms such as matching pursuit, orthogonal matching pursu
In words, theK-RIP ensures that all submatrices®fof [30], StOMP [31], iterative hard thresholding (IHT) [1216
size M x K are close to an isometry, and therefore distanggssamMp [11], and Subspace Pursuit (SP) [32] all revolve
(and information) preserving. Practical recovery aldomis around a best-term approximation for the estimated signal,

RIP, or higher-order RIP in order to preserve distances &etw

K-sparse vectors (which apd(-sparse in general), three-way
sums of K-sparse vectors (which as¥(-sparse in general), D. Performance bounds on signal recovery
and other higher-order structures.

(1= a3 < 1223 < (1 + ) |13 (4)

_ ) o Given M = O(Klog(N/K)) compressive measure-
While checking whether a measurement madrigatisfies nents a number of different CS signal recovery algorithims,
the K-RIP is an NP-Complete problem in general [26]g),qing all of the;-norm minimization techniques mentioned
random matrices whose entries are independent and ideglipye and the CoSaMP, SP, and IHT iterative techniques,
cally distributed (i.i.d.) Gaussian, Rademachef), or more qter provably stable signal recovery with performanceselo
generally subgaussiarwork with high probability provided to optimal K -term approximation (recall (3)) [2, 3, 11, 16]. For

M = O(Klog(N/K)). These random matrices also have \5nqoma, all results hold with high probability.
a so-calleduniversality property in that, for any choice of

orthonormal basis matrix, ®¥ has the X -RIP with high For a noise-free/-sparse signal, these algorithms offer
probability. This is useful when the signal is sparse nohim t Perfect recovery, meaning that the sigiatecovered from the
canonical domain but in basi. A random® corresponds Compressive measurements= ®x is exactlyz = z.

to an intriguing data acquisition protocol in which each  por g K-sparse signak: whose measurements are cor-
measuremeny; is a randomly weighted linear combinationypted by noisen of bounded norm (that is, we measure
of the entries ofz. y = ®x + n) the mean-squared error of the sigaais

[l = Zlls < Clln]l2, ()

C. Recovery algorithms with C a small constant.

Since there are infinitely many signal coefficient vectors  For ans-compressible signat whose measurements are
o' that produce the same set of compressive measuremeigsupted by noise of bounded norm, the mean-squared error
y = ®x, to recover the “right” signal we exploit our a prioriof the recovered signat is
knowledge of its sparsity or compressibility. For example,
could seek the sparsestthat agrees with the measurements||z—Z|2 < Ci||lz—2 k| 2+ C>

Y.

—=le=zxli+Callnl. @)
(5) Using (3) we can simplify this expression to

T = argmin [|2[[o S.t.y = @2,
’ CiGK™  C,GK™*

+ Csln[l2.  (9)

-T2 <
2A random variableX is called subgaussian if there exists> 0 such H H2 -

_l’_
DIE V2s S — 1/2
that E (eX*) < et /2 for all t € R. Examples include the Gaussian,F h lgorithm (6 btai b d imil
Bernoulli, and Rademacher random variables, as well as angded random FOF the recovery algorithm (6), we obtain a bound very simila

variable. [25] to (8), albeit with the/>-norm error component removed [33].
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Ill. STRUCTURED SPARSITY AND COMPRESSIBILITY for all x € Mg, we have
2 2 2
While many natural and manmade signals and images (1= dam)llzllz < [[@zfz < (1+dmy) |zl (10)
can be described to first-order as sparse or compressikele, th . »
support of their large coefficients often has an underlyingr Blumensath and Davies [6] have quantified the number of

dependency structure. This phenomenon has received dmgasurementd/ necessary for a random CS matrix to have
limited attention by the CS community to date [6-9, 19-23{he Mx-RIP with a given probability.

In this section, we introduce a model-based theory of CS Theorem 1: [6] Let M be the union ofny subspaces

that captures such structure. A model reduces the degreeg{of-dimensions inR". Then, for anyt > 0 and any
freedom of a sparse/compressible signal by permitting only

certain configurations of supports for the large coefficient M>— (ln(ZmK) 4+ Kln 12 +t> ,

As we will show, this allows us to reduce, in some cases O OMic

significantly, the number of compressive measuremelits wherec is a positive constant, ai/ x N i.i.d. subgaussian

required to stably recover a signal. random matrix has theM x-RIP with constants,,, with
probability at leastl — e™*.

This bound can be used to recover the conventional CS
result by substitutingng = () ~ (Ne/K)¥. Similarly,
Recall from Section II-A that & -sparse signal vector as the number of subspaces, that arise from the structure
z lives in ¥ < RY, which is a union of(%) subspaces imposed can be significantly smaller than the stan(ﬂ%r)d the
of dimension K. Other than its K-sparsity, there are no number of rows needed for a random matrix to havettg -
further constraints on the support or values of its coefiiiie RIP can be significantly lower than the number of rows needed
A structured sparsity modetndows theK-sparse signak for the standard RIP. Tha1 x-RIP property is sufficient for
with additional structure that allows certaiii-dimensional robust recovery of structured sparse signals, as we shawbel
subspaces itk and disallows others [6, 7]. in Section IV-B.

A. Structured sparse signals

To state a formal definition of a structured sparsity model,
let 2| represent the entries of corresponding to the set of C. Structured compressible signals

indicesQ C {1,..., N}, and letQ¢ denote the complement
of the set(. Just as compressible signals are “nedklysparse” and

thus live close to the union of subspaégsg in RY, structured
compressible signals are “neatkstructured sparse” and live
close to the restricted union of subspagdés . In this section,
mK we make this new concept rigorous. Recall from (3) that we
Mg =] X, st X = {2 :2lo, € R¥ z]gc =0},  defined compressible signals in terms of the decay of their
m=1 K-term approximation error.

where{Qi,...,Qn, } is the set containing all allowed sup-  1he ¢, error incurred by approximating € RV by the

ports, with [2,,| = K for eachm = 1,...,mx, and each pact srctured sparse approximationifix is given by
subspace¥,,, contains all signals: with supp(z) C Q,,.

Definition 2: A structured sparsity mode\  is defined
as the union ofng canonicalK-dimensional subspaces

. o z):= inf |z — Z|2.
Signals from My are called K-structured sparseClearly, Mic () TEMK ” I

My C Sx and containsn < (j) subspaces. We defineMp(z, K) as the algorithm that obtains the best

In Sections V and VI below we consider two concretés -term structured sparse approximatia = in the union of
structured sparsity models. The first model accounts for tRdDspaces\Vik:
fact that the large wavelet coefficients of piecewise smooth
signals and images tend to live on a rooted, connetressl
structure [17]. The second model accounts for the fact thathis implies thatl|z — M(z, K)||2 = o, (). The decay of

the large coefficients of sparse signals oftduster together this approximation error defines the structured compréigib
into blocks[8-10]. of a signal.

M(z, K) = i — %l
(z,K) argjrenﬁl}(llw |2

Definition 4: The set ofs-structured compressible sig-
B. Model-based RIP nalsis defined as

N —s
: . . . = : < <K< .
If we know that the signal: being acquired isK- R {x ERT oMy (2) SGET IS K< N,G < OO}
structured sparse, then we can relax the RIP constrainten Befine |z|o;, as the smallest value off for which this
CS measurement matri®¢ and still achieve stable recoverycondition holds forxz ands.

from the compressive measurements: oz [6, 7] We say thatz € 9, is an s-structured compressible

Definition 3: [6,7] An M x N matrix & has theM - signalunder the structured sparsity modelx . These approx-
restricted isometry propertyM i -RIP) with constant »,. if, imation classes have been characterized for certain stectt
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sparsity models; see Section V for an example. We wiind bounding the recovery error ferstructured compressible
select the value ofs for which the distance between thesignals when the model obeys the NAP.
approximation errorg o, () and the corresponding bounds
GK~'/5 is minimal.
E. The restricted amplification property (RAmMP)

D. Nested model approximations and residual subspaces For exactlyK -structured sparse signals, we discussed in
. . . Section IlI-B that the number of compressive measurements
In conventional CS, the same requirement (RIP) is P

. " required for a random matrix to have the -RIP is de-
sufficient condition for the stable recovery of both sparse . ,
! : ermined by the number of canonical subspaegs via (11).
and compressible signals. In model-based recovery, hawe

the class of structured compressible signals is much Iar%ergfortunately, such structured sparse concepts and sesalt

. . . t immediately extend to structured compressible signals
than that of structured sparse signals, since the union c* Y P 9

. . . 'IQnus, we develop a generalization of t -RIP that we
subspaces defined by structured sparse signals does naithcont. bag I, el e

. ; . will use to quantify the stability of recovery for structdre
all canonicalK -dimensional subspaces.

compressible signals.
To address this difference, we introduce some additional
tools to develop aufficientcondition for the stable recoveryrecovery in conventional CS is to consider the tail of thealg

of structured compressible signals. We will pay particaltr o o - "
tention to structured sparsity modeld ». that generateested outside its K-term approximation as contributing additional
parsity K g ‘noise” to the measurements of sizeb(z — zx)|l2 [11,

approximationssince they are more amenable to analysis an( 33]. Consequently, the conventionAl-sparse recovery

computation. performance result can be applied with the augmented noise
Definition 5: A structured sparsity modelM = n+ ®(x —zk).

{Mi, M3, ...} has thenested approximation proper{iNAP)

if supp(M(zx, K)) C supp(M(z, K”)) for all K < K’ and for

all z € RY.

One way to analyze the robustness of compressible signal

This technique can also be used to quantify the robustness
of structured compressible signal recovery. The key qtanti
we must control is the amplification of the structured sparse

In words, a structured sparsity model generates nestgabroximation residual through. The following property is
approximations if the support of the bekY-term structured a new generalization of the RIP and model-based RIP.
sparse approximation contains the support of the hestrm
structured sparse approximation for All< K’. An important
example of a NAP-generating structured sparse model is
standard compressible signal model of (3).

When a structured sparsity model obeys the NAP, the [@ull3 < (14 ex)i? [|ul3 (11)
support of the difference between the bgkt-term structured ,
sparse approximation and the bégt+ 1) K-term structured for anyu € R; x for eachl < j < [N/K].
sparse approximation of a signal can be shown to lie in a The regularity parameter > 0 caps the growth rate of
small union of subspaces, thanks to the structure enforgedthe amplification ofu € R, x as a function ofj. Its value can
the model. This structure is captured by the set of subspageschosen so that the growth in amplification wijthalances

that are included in each subsequent approximation, asedefithe decay of the norm in each residual subspReg with ;.
below.

Definition 7: A matrix ® has the(ex, r)-restricted am-
lification property(RAmMP) for the residual subspac®&s
of model M if

We can quantify the number of compressive measure-
Definition 6: The ;" set of residual subspacesf size ments M required for a random measurement matfixto
K is defined asR; k(M) = {u € RY : u = M(z,jK) — have the RAMP with high probability; we prove the following
M(z, (j — 1)K) for somez € RV}, for j =1,...,[N/K]. in Appendix A.

Under the NAP, each structured compressible signal Theorem 2:Let ® be an M x N matrix with i.i.d.
can be partitioned into its besk-term structured sparsesubgaussian entries and let the set of residual subspaces
approximationzr, , the additional components present in thef the structured sparsity modéh contain R; subspaces of
best2 K -term structured sparse approximatios, and so on, dimensionk for eachl < j < [N/K]. If
with = = Zg{m o7, andzr, € R; k(M) for eachj. Each

signal partitionzr, is a K-sparse signal, and thd®; x (M) 2K +41ln B + 2t

. X i . 4 T M > max , (12)
is a union of subspaces of dimensiégh We will denote by LGSIN/KT (5T + ex — 1)2

R; the number of subspaces that comp&se« (M) and omit

the dependence aM in the sequel for brevity. then the matrixp has the(ek, r)-RAMP with probabilityl —

—t
Intuitively, the norms of the partitiongz, || decay as ¢
j increases for signals that are structured compressible. As The order of the bound of Theorem 2 is lower than
the next subsection shows, this observation is instrurhénta O (K log(N/K)) as long as the number of subspaces
relaxing the isometry restrictions on the measurementim@tr grows slower thanV¥.
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Armed with the RaMP, we can state the following resulthe IHT and SP algorithms amenable to modification; see
which will provide robustness for the recovery of structureAppendix C for details on IHT. Pseudocode for the modified
compressible signals; see Appendix B for the proof. CoSaMP algorithm is given in Algorithm 1, wherd denotes

Theorem 3:Letx € M be ans-structured compressiblethe Moore-Penrose pseudoinverseof

signal under a structured sparsity model that obeys the

NAP. If & has the(es,)-RAMP andr = s —1, then we have g performance of structured sparse signal recovery

N
|®(z — M(z, K))|l2 < Csv/1+ex K *In {?-‘ |z|on, , We now study the performance of model-based CoSaMP
_ signal recovery on structured sparse and structured casypre
whereC; is a constant that depends only en ible signals. A robustness guarantee for noisy measurement

of structured sparse signals can be obtained using the model
based RIP (10). Our performance guarantee for structured
sparse signal recovery will require that the measurement

To take practical advantage of our new theory for modéglPatrix ® be a near-isometry for all subspacesfi for some
based CS, we demonstrate how to integrate structured sgar=> 1. This requirement is a direct generalization of #f¢-
CoSaMP [11] (in this section) and iterative hard threshagdi theory. The following theorem is proven in Appendix D.

(IHT) _[12_—16]_ (in_ Appendix C to avoid repetition). The key Theorem 4:Let z € My and lety = &z + n be a set
modification is simple: we merely replace the béstterm of noisy CS measurements. df has anM% -RIP constant of
sparse approximation step in these greedy algorithms withsa , < (.1, then the signal estimate obtained from iteration

best K-term structured sparse approximation. Since at eagh{‘the model-based CoSaMP algorithm satisfies
iteration we need only search over thg; subspaces oM

rather than(%) subspaces oE, fewer measurements will [ = Zilla < 27|22 + 15]|n2. (13)
be required for the same degree of robust signal recovery. Or

alternatively, using the same number of measurements, more
accurate recovery can be achieved. This guarantee matches that of the CoSaMP algorithm [11,

) . , Theorem 4.1]; however, our guarantee is only for structured
After presenting the modified CoSaMP algorithm, ngarse signals rather than for all sparse signals.
prove robustness guarantees for both structured sparse and

structured compressible signals. To this end, we must define

an enlarged union of subspaces that includes sums of elsment performance of structured compressible signal recovery
in the structured sparsity model.

IV. M ODEL-BASED SIGNAL RECOVERY ALGORITHMS

Using the new tools introduced in Section Ill, we can
provide a robustness guarantee for noisy measurements of
structured compressible signals, using the RAmP as a con-
dition on the measurement matrix

Definition 8: The B-order sumfor the set Mg, with
B > 1 an integer, is defined as

B
ME =Sz = ) with (™ € Mg 3. _
{x ; S K Theorem 5:Letx € M, be ans-structured compressible

signal from a structured sparsity mode! that obeys the NAP,
DefineMp(x, K) as the algorithm that obtains the besénd lety = ®z +n be a set of noisy CS measurementsblf
approximation ofz in the enlarged union of subspacés?: has the M -RIP with d,s < 0.1 and the(ex,r)-RAMP
) ~ with ex < 0.1 andr = s — 1, then the signal estimate

Mp(z, K) = arg s [ = Z[]2. Z; obtained from iterationi of the model-based CoSaMP
. algorithm satisfies
We note thatM(z, K) = M, (z, K). Note also that for many ,
structured sparsity models, we will hat? < Mgk, lz =il < 27"||z[]2 + 35[n|l2
and so the algorithiVI(z, BK') will provide a strictly better +35C5|z|om, K~ *(1 4+ In[N/K1). (14)
approximation thaM g (z, K).

Proof sketchTo prove the theorem, we first bound the optimal
structured sparse recovery error for @structured compress-

We choose to modify the CoSaMP algorithm [11] fo}b.Ie signalz € 2, when the matrd has the(EK’T) RAmP
. . with » < s — 1 (see Theorem 3). Then, using Theorem 4, we
two reasons. First, it has robust recovery guarantees tbkat a . .
. Lo can easily prove the result by following the analogous proof
on par with the best convex optimization-based approach€s
. . . . mn [11]. O

Second, it has a simple iterative, greedy structure based o

a bestBK-term approximation (withB a small integer) that The standard CoSaMP algorithm also features a similar
is easily modified to incorporate a beBtK-term structured guarantee for structured compressible signals, with the co
sparse approximatioM s (K, z). These properties also makestant changing from 35 to 20.

A. Model-based CoSaMP
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Algorithm 1 Model-based CoSaMP

Inputs: CS matrixd, measurementg, structured sparse approximation algoritfuin
Output: K-sparse approximation to true signalr

Z0=0,d=y;i=0 {initialize}
while halting criterion falsedo
l.i—i+1
2.e+— ®Tq {form signal residual estimate
3. 2 — supp(Mz(e, K)) {prune residual estimate according to strucfure
4. T — QUsupp(T;—1) {merge supporis
5.b|p « <I>TTy, blre {form signal estimate
6. %; — M(b, K) {prune signal estimate according to structure
7.d—y— oI {update measurement residpal
end while

returnz « z;

D. Robustness to model mismatch We end with an intuitive worst-case result for signals that

are arbitrarily far away from structured sparse or struedur
We now analyze the robustness of model-based CS recg¥mpressible. Consider such an arbitrarg R™ and compute

ery to model mismatchwhich occurs when the signal beingits nested structured sparse approximatieps = M(z, j K),
recovered from compressive measurements does not conform. | [N/K7. If 2 is not structured compressible,

algorithm. guaranteed to decay gsdecreases. Additionally, the number

We begin with optimistic results for signals that ar®f residual subspacek; x could be as large aé%)i that
“close” to matching the recovery structured sparsity modd$, the j** difference between subsequent structured sparse
First consider a signat that is not K-structured sparse as@Pproximationscr; = xjx — x(;—1)x might lie in any arbi-
the recovery algorithm assumes but rath&r+ «)-structured trary K-dimensional subspace. This worst case is equivalent

. ) . . N . .
sparse for some small integer. This signal can be de-t0 settingr =0andR; = (k) in Theorem 2. Itis easy to see
Composed intOSCK, the Signa"s K-term structured Sparsethat the reSU|tIng condition on the number of measurem&hts

approximation, and: — zx, the error of this approximation. matches that of the standard RIP for CS. Hence, if we inflate
For x < K, we have thatr — zxc € Ry k. If the matrix® the number of measurements 26 = O (K log(N/K)) (the

has the(ex, r)-RAMP, then it follows than usual number for conventional CS), the performance of model
. based CoSaMP recovery on an arbitrary signdbllows the
[®(z — 2K )2 < 2"V1+ ex|lz — zk 2 (15) distortion of the besk -termstructured sparse approximation

Using equations (13) and (15), we obtain the following guaffTor of z within a bounded constant factor.
antee for thei” iteration of model-based CoSaMP:

o = Zill2 < 27[|l2ll2 +16 - 2"V1 + el — 25 [l2 + 15]|n 2.

By noting that||z — x| is small, we obtain a guarantee thaE. Computational complexity of model-based recovery
is close to (13).

Second, consider a signal that is not s-structured The computational complexity of a structured signal
compressible as the recovery algorithm assumes but ratfRgovery algorithm differs from that of a standard algaritby

(s — €)-structured compressible. The following bound can &0 factors. The first factor is the reduction in the number of

obtained under the conditions of Theorem 5 by modifying tH&easurementd/ necessary for recovery: since most current

argument in Appendix B: recovery algorithms have a computational complexity that

is linear in the number of measurements, any reduction in

o —Flla < 2i||$|2+35<”n”2 M reduces the total complexity. The _secqnd factor is the
cost of the structured sparse approximation. Thieterm

[Nje 1 approximation used in most current recovery algorithms can
K )) be implemented with a simple sorting operatidh((V log V)
€ complexity, in general). Ideally, the structured sparsitygdel
should support a similarly efficient approximation alglonit.

+Cs|x|om, K° <1 +

As ¢ becomes smaller, the facto% approaches
log[ N/K], matching (14). In summary, as long as the devi- To validate our theory and algorithms and demonstrate
ations from the structured sparse and structured comptesstheir general applicability and utility, we now present two
classes are small, our model-based recovery guarantdles sgiecific instances of model-based CS and conduct a range of
apply within a small bounded constant factor. simulation experiments.
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V. EXAMPLE: WAVELET TREEMODEL

Wavelet decompositions have found wide application in
the analysis, processing, and compression of smooth and
piecewise smooth signals because these signal&’asparse
and compressible, respectively [1]. Moreover, the wavelet
coefficients can be naturally organized into a tree stregtur
and for many kinds of natural and manmade signals the
largest coefficients cluster along the branches of this frhis
motivates a connected tree model for the wavelet coeffigient
[34-36].

\_Nh”e Cs rgcovery for wavelet-spars_e S|gnal$ has _beﬁﬁ. 2. Binary wavelet tree for a one-dimensional signal. The segidenote
considered previously [19-23], the resulting algorithmigi the large wavelet coefficients that arise from the discaitiizs in the piecewise

grated the tree constraint in an ad-hoc fashion. FurthEEmO?mOOth signal drawn below; the support of the large coefftsiéorms a rooted,
connected tree.

the algorithms provide no recovery guarantees or bounds on
the necessary number of compressive measurements.

A set of wavelet coefficient§) forms aconnected sub-

tree if, whenever a coefficienw; ; € £, then its parent

A. Tree-sparse signals w;—1,7j/21 € © as well. Each such sé? defines a subspace
of signals whose support is contained & that is, all

We first describe tree sparsity in the context of sparsgavelet coefficients outsid@ are zero. In this way, we define
wavelet decompositions. We focus on one-dimensional 8gnghe structured sparsity moddl, as the union of allK-

and binary wavelet trees, but all of our results extend direc dimensional subspaces corresponding to supgottsat form

to d-dimensional signals an2f-ary wavelet trees. connected subtrees.
Consider a signak of length N = 2/, for an integer Definition 9: Define the set ofk -tree sparse signalas
value of I. The wavelet representation ofis given by 1 o
I-12i-1 Tx = (T =+ Z Zwi,ﬂ/)i,j twlge =0,
IZUOV+Z Z wi7j1[1i7j, =0 j=1

i=0 j=0

wherev is the scaling function andg; ; is the wavelet function

|Q| = K, Q) forms a connected subtr}e
at scales and offset;. The wavelet transform consists of the

scaling coefficienty, and wavelet coefficients; ; at scalei, To quantify the number of subspacesy, it suffices
0 <i<1I-1, and positionj, 0 < j < 2¢ — 1. In terms to count the number of distinct connected subtrees of Aize
of our earlier matrix notationg has the representatian = in a binary tree of sizeV. We prove the following result in

Vo, whereW is a matrix containing the scaling and wavelefppendix E.

functions as columns, and = [vy woo w1 W11 Wag...|T ..
[vo wo,0 w10 W11 Wao. ] Proposition 1: The number of subspaces ifik obeys

is the vector of scaling and wavelet coefficients. We are, %f < B S loes N oand Th < (2¢)% tor K
course, interested in sparse and compressible 1 K N Ker 1O = logp [V and fx = =y 1or <
08y V.

The nested supports of the wavelets at different scales ., . L A
create a parent/child relationship between wavelet coeffis To simplify the presenta(t;gr;m the sequel, we will simpheus
at different scales. We say that_, |; /2, is theparentof w; ; the weaker bound’x < 7=+ for all values of K’ and .
and thatw; 1 2; andw; 41 2;4+1 are thechildrenof w; ;. These
relationships can be expressed graphically by the Wavegt

coefficient tree in Figure 2.

Tree-based approximation

Wavelet functions act as local discontinuity detectors, 10 implement tree-based signal recovery, we seek an
and using the nested support property of wavelets at difter&fficient algorithnil'(z, K) to solve the optimal approximation
sgale_s, it _is straightfo_rward to see that a sign_a_l discaittin 2k = arg min ||z — || (16)
will give rise to a chain of large wavelet coefficients along a €Tk
branch of the wavelet tree from a leaf to the root. Moreovefprtuitously, an efficient solver exists, called tbendensing
smooth signal regions will give rise to regions of small wate sort and select algorithiiCSSA) [34—36]. Recall that subtree
coefficients. This “connected tree” property has been weblipproximation coincides with standakd-term approximation
exploited in a number of wavelet-based processing [17,3and hence can be solved by simply sorting the wavelet
38] and compression [39, 40] algorithms. In this section, weefficients) when the wavelet coefficients are monotohical
will specialize the theory developed in Sections Il and 8/ tnonincreasing along the tree branches out from the root. The
a connected tree modé&l. CSSA solves (16) in the case of general wavelet coefficient
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values bycondensinghe nonmonotonic segments of the treds wavelet coefficients belong to the tree approximaticacsp
branches using an iterative sort-and-average routinengwxi T, with
greedy search through the nodes. For each node in the teee, th
algorithm calculates the average wavelet coefficient ntagdai lenls, < lIzallz, o) + ll2al B (Lp([0,1]))s

for each subtree rooted at that node, and records the larggstre “<” denotes an equivalent norm. The same result holds
average among all the subtrees as the energy for that ngge. = 1/p—1/2 andq < p.

The CSSA then searches for the unselected node with the

largest energy and adds the subtree corresponding to tleésnod

energy to the estimated support asupernodea single node D. Stable tree-based recovery from compressive measutemen
that provides a condensed representation of the corresmpnd . )

subtree [36]. Condensing a large coefficient far down the tre [0 {ree-sparse signals, by applying Theorem 1 and

accounts for the potentially large cost (in terms of the Itots "OPOsition 1, we find that a subgaussian random matrix has

budget of tree node&’) of growing the tree to that point. _theTK'RIP property with constardtz, and probabilityl —e ™
if the number of measurements obeys
Since the first step of the CSSA involves sorting all 9 48 519

of the wavelet coefficients, overall it requir€d (N log N) M>—— <Kln— 4+ln—2 4+ t> .
computations. However, once the CSSA grows the optimal 07, 0T Ke?

tree of sizeK, it is trivial to determine the optimal trees ofThus, the number of measurements necessary for stable re-
size < K and computationally efficient to grow the optimakovery of tree-sparse signals is linear i, without the
trees of size> K [34]. dependence oV present in conventional non-model-based

The constrained optimization (16) can be rewritten as &rP '€COVery.

unconstrained problem by introducing the Lagrange mietipl For tree-compressible signals, we must quantify the num-
A [41]: ber of subspaceg; in each residual sek; x for the approx-
min ||z — |3 + A(||@llo — K), imation class. We can then apply the theory of Section IV-C
zeT with Proposition 1 to calculate the smallest allowablevia
whereT = UN_,7, and a are the wavelet coefficients of Theorem S.
x. Except for the inconsequentiaK term, this Optimization Proposition 2: The number of-dimensional Subspaces
coincides with Donoho’somplexity penalized sum of squareshat compriseR,; x obeys
[41], which can be solved in onl{ (N) computations using '
coarse-to-fine dynamic programming on the tree. Its primary R. < .
shortcoming is the nonobvious relationship between thagun T (Kj+ K+ 1)(Kj+1)
parameterA and and the resulting siz& of the optimal
connected subtree.

(2€)K(2j+1)

(17)

Using Proposition 2 and Theorem 5, we obtain the following
condition for the matrixd to have the RAmMP, which is proved

) _ in Appendix F.
C. Tree-compressible signals N S
Proposition 3: Let ® be anM x N matrix with i.i.d.

Specializing Definition 2 from Section I1I-C t@, we Subgaussian entries. If

make the following definition.
© forlowing cetini o 2 (10K + 210 ey + 1)
Definition 10: Define the set ok-tree compressible sig- M > 5 ,
nals as (VI+ex —1)
T, = {2€RY:|z—T(w K)|s < GK—* then the matrix® has the(ek, s)-RAmP for the structured

C sparsity modell” and alls > 0.5 with probability 1 — e~*.
1<K <N,G< oo}
- J Both cases give a simplified bound on the number of

Furthermore, defingr|<_ as the smallest value @ for which measurements required &8 = O (K'), which is a substantial
this condition holds forr and s. improvement over thel/ = O (K log(N/K)) required by

L L onventional CS recovery methods. Thus, whirsatisfies
Tree approximation classes contain signals whose wavi o
- . . foposition 3, we have the guarantee (14) for sampled Besov
coefficients have a loose (and possibly interrupted) deca

from coarse to fine scales. These classes have been WS |"i‘°e signals froan(Lp([O,l])).

characterized for wavelet-sparse signals [35, 36, 40] amtha

trinsically linked with the Besov spacé; (L, ([0, 1])). Besov g Experiments

spaces contain functions of one or more continuous vasgable

that have (roughly speaking) derivatives inL,([0,1]); the We now present the results of a number of numerical
parameter; provides finer distinctions of smoothness. Wheaxperiments that illustrate the effectiveness of a tremefla
a Besov space signal, € B, (L,([0,1])) with s > 1/p—1/2  recovery algorithm. Our consistent observation is thatiexp

is sampled uniformly and converted to a lengthvectorx, incorporation of the structured sparsity model in the recpv
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-+-CoSaMP

process significantly improves the quality of recovery for 12} Lo
a given number of measurements. In addition, model-based ——Model-based recovery Lt
recovery remains stable when the inputs are no longer tree- 10l _.__—"'

sparse, but rather are tree-compressible and/or corruythd P

differing levels of noise. We employ the Daubechies-6 wetvel __,—"'

basis for sparsity, and recover the signal using modelebase x 8 .=~

CoSaMP (Algorithm 1) with a CSSA-based structured sparse = +-°~

approximation step in all experiments. 6

We first study one-dimensional signals that match the
connected wavelet-tree model described above. Among such at
signals is the class of piecewise smooth functions, whieh ar
commonly encountered in analysis and practice.

10 11 12 13 14 15
Figure 1 illustrates the results of recovering the tree- log,(N)
compressibleHeaviSinesignal of lengthN = 1024 from

M = 80 nmse-freg .rando_m Ga_USS|an measurements USKI8 4. Required overmeasuring factbf / K to achieve a target recovery error
CoSaMP/;-norm minimization using theé1_eq solver from |z — 3| < 2.507, () as a function of the signal length for standard and

the ¢;-M agic t00|b0X:,” and our tree-based recovery algorith mmynodel-based recovery of piecewise smooth signals. Whiledstrd recovery
It i | that th b f g & 80) i requiresM to increase logarithmically wittV, the requiredV! is essentially
IS clear tha € number or measureme (_ ) IS constant for model-based recovery.

far fewer than the minimum number required by CoSaMP

and ¢,-norm minimization to accurately recover the signal.

In contrast, tree-based recovery usiig= 26 is accurate and

uses fewer iterations to converge than conventional CoSaMgwer iterations and yielding much smaller recovery ernant
Moreover, the normalized magnitude of the squared error fetandard recovery.

tree-based recovery is equal to 0.037, which is remarkably
close to the error between the noise-free signal andbetst
K-term tree-approximation (0.036).

Figure 4 shows the growth of the overmeasuring factor

M/K with the signal lengthN for conventional CS and

model-based recovery. We generated 50 sample piecewise
Figure 3(a) illustrates the results of a Monte Carlo simwubic signals and numerically computed the minimum number

lation study on the impact of the number of measureménts of measurements/ required for the recovery errdee—2|| <

on the performance of model-based and conventional regoverssr, (), thebesttree-approximation error, for every sample

for a class of tree-sparse piecewise polynomial signalshEasignal. The figure shows that while doubling the signal langt

data point was obtained by measuring the normalized regovéricreases the number of measurements required by standard

error of 500 sample trials. Each sample trial was conductestovery by I, the number of measurements required by

by generating a new piecewise polynomial signal of lengtodel-based recovery is constant for all. These experi-

N = 1024 with five polynomial pieces of cubic degreemental results verify the theoretical performance descriin

and randomly placed discontinuities, computing its b&st Proposition 3.

term tree-approximation using the CSSA, and then measuring

the resulting signal using a matrix with i.i.d. Gaussian erll(_)rms stably in the presence of measurement noise. We

tries. Model-based recovery attains near-perfect regoaér . . . :
M = 3K measurements, while CoSaMP only matches thgsenerated Saf"p'e piecewise polynom!al s_|gnals as above,
performance af/ = 5K. computed their besi -term tree-approximations, _computed
M measurements of each approximation, and finally added
For the same class of signals, we empirically comparghussian noise of varianee to each measurement, so that
the recovery times of our proposed algorithm with those ef thhe expected variancg|||n||»] = ov/M. We emphasize that
standard approach (CoSaMP). Experiments were conducteid noise model implies that the energy of the noise added
on a Sun workstation with a 1.8GHz AMD Opteron dualwill be larger asM increases. Then, we recovered the signals
core processor and 2GB memory running UNIX, using noising CoSaMP and model-based recovery and measured the
optimized Matlab code and a function-handle based implescovery error in each case. For comparison purposes, we als
mentation of the random projection operatarAs is evident tested the recovery performance offanorm minimization
from Figure 3(b), wavelet tree-based recovery is in genemyorithm that accounts for the presence of noise, which
slower than CoSaMP. This is due to the fact that the CSS#s been implemented as thé_qc solver in the/;-Magic
step in the iterative procedure is more computationally desolbox. First, we determined the lowest valueldffor which
manding than simpleX —term approximation. Neverthelessthe respective algorithms provided near-perfect recovettye
the highest benefits of model-based CS recovery are obtaizg@ence of noise in the measurements. This corresponds to
around M = 3K; in this regime, the runtimes of the two )/ = 3.5K for model-based recovery/ = 5K for CoSaMP,
approaches are comparable, with tree-based recoveryirguiand M = 4.5K for ¢,-norm minimization. Next, we gener-
ated 200 sample tree-structured signals, computeahoisy
measurements, recovered the signal using the given digorit

Further, we demonstrate that model-based recovery per-

Shttp://www.acm.caltech.edu/llmagic
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Fig. 3. Performance of CoSaMP vs. wavelet tree-based recovery lassaiaf tree-sparse signals. (a) Average normalized regeveor and (b) average runtime

for each recovery algorithm as a function of the overmeagufctorM / K. The number of measuremeiits for which the wavelet tree-based algorithm obtains
near-perfect recovery is much smaller than that require@d&5aMP. The penalty paid for this improvement is a modeséase in the runtime.

CoSaMP (M = 5K)
== £1-minimization (M = 4.5K)
0.8r| —Model-based recovery (M = 3.5K)

(b) CoSaMP (c) model-based rec.
(RMSE = 22.8) (RMSE=11.1)

Fig. 6. Example performance of standard and model-based recovery o
images. (a)N = 128 x 128 = 16384-pixel Pepperstest image. Image
recovery fromM = 5000 compressive measurements using (b) conventional
CoSaMP and (c) our wavelet tree-based algorithm.

(a) Peppers

Maximum normalized recovery error
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VI. EXAMPLE: BLOCK-SPARSESIGNALS AND SIGNAL
ENSEMBLES

Fig. 5. Robustness to measurement noise for standard and waegldidsed
CS recovery algorithms. We plot the maximum normalized vegperror over
200 sample trials as a function of the expected signal-teennatio. The linear
growth demonstrates that model-based recovery posségseare robustness

to noise as CoSaMP arig-norm minimization. . . N
¢ In a block-sparsesignal, the locations of the signifi-

cant coefficients cluster in blocks under a specific sorting

order. Block-sparse signals have been previously studied i

CS applications, including DNA microarrays and magnetoen-
and recorded the recovery error. Figure 5 illustrates toatjir cephalography [8,9]. An equivalent problem arises in CS
in maximum normalized recovery error (over the 200 sampfer signal ensembles, such as sensor networks and MIMO
trials) as a function of the expected measurement signal-tmmmunication [9, 10, 42]. In this case, several signalsesha
noise ratio for the tree algorithms. We observe similariftgb a common coefficient support set. For example, when a
curves for all three algorithms, while noting that modeséd frequency-sparse acoustic signal is recorded by an array of
recovery offers this kind of stability using significantlgwier microphones, then all of the recorded signals contain thesa
measurements. Fourier frequencies but with different amplitudes and gela
e%uch a signal ensemble can be re-shaped as a single vector by

Finally, we turn to two-dimensional images and a wavel . -
concatenation, and then the coefficients can be rearrarged s
guadtree model. The connected wavelet-tree model hasmproye

. . ) at the concatenated vector exhibits block sparsity.
useful for compressing natural images [35]; thus, our algo-
rithm provides a simple and provably efficient method for It has been shown that the block-sparse structure enables
recovering a wide variety of natural images from compressigignal recovery from a reduced number of CS measurements,
measurements. An example of recovery performance is givieoth for the single signal case [8, 9, 43] and the signal ensem
in Figure 6. The test imagePépper$ is of size N = 128 x  ble case [10], through the use of specially tailored recpver
128 = 16384 pixels, and we computed/ = 5000 random algorithms. However, the robustness guarantees for the alg
Gaussian measurements. Model-based recovery again offéhsns [8,43] either are restricted to exactly sparse dgna
higher performance than standard signal recovery algosthand noiseless measurements, do not have explicit bounds on
like CoSaMP, both in terms of recovery mean-squared errtie number of necessary measurements, or are asymptotic
and visual quality. in nature. An optimization-based algorithm introduced % [
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provides similar recovery guarantees to those obtainedéy to obtain the best block-based approximation of the sighal
algorithm we present in this chapter; thus, our method cas follows:

be interpreted as a greedy-based counterpart to that gavid s . - _
in [9]. Xy =arg _min || X — X[[(22) S:t. [ X]|2,0) < K. (18)

XeRIxN

In this section, we formulate the block sparsity model as. . S '
. L I is easy to show that to obtain the approximation, it suffice
a union of subspaces and pose an approximation algorithm . . th

) ) Lo ) t0 perform column-wise hard thresholding: letbe the K
on this union of subspaces. The approximation algorithm s
. ; largest/s-norm among the columns of . Then our approx-
used to implement block-based signal recovery. We alsoelefin = . ; S S S
. : , imation algorithm isS(X,K) = Xg = [2%; ...2% n]

the corresponding class of block-compressible signals an ere ’ ’

i W
guantify the number of measurements necessary for robus >
recovery 25 =] In [2nll2 = p,

| Km0 Jaallz <.

for eachl < n < N. Alternatively, a recursive approximation
A. Block-sparse signals algorithm can be obtained by sorting the columngaby their

£ norms, and then selecting the columns with largest norms.

Consider a class of signal vectorst € R/Y, with J The complexity of this sorting process@(N.J + N log N).

and N integers. This signal can be reshaped into & N
matrix X, and we use both notations interchangeably in the
sequel. We will restrict entire columns &f to be part of the C. Block-compressible signals
support of the signal as a group. That is, signélg a block-
sparse model have entire columns as zeros or nonzeros. The The approximation class under the block-compressible
measure of sparsity fak is its number of nonzero columns.model corresponds to signals with blocks whdseorm has

More formally, we make the following definition. a power-law decay rate.
Definition 11: [8,9] Define the set ofK-block sparse Definition 13: We define the set of-block compressible
signalsas signals as
Sk = {X =z ... zy] € R7* such that 6, = {X=[z1 ... zy] € R”*Y such that
2, =0forn ¢ Q,QC{1,...,N},|Q = K}. 2z ll2 < Gi—*"Y2 1 <i< N,S < oo},

o ) whereZ indexes the sorted column norms.
It is important to note that d-block sparse signal has

sparsity K .J, which is dependent on the size of the blogk We say thatX is ans-block compressible signal iK' € S,.

We can extend this formulation to ensembles.foflength- For such signals, we havgX — Xk|[(22) = os,(z) <

N signals with common support. Denote this signal ensemBle K —*, and || X — Xk||21) < G2K'/?7*. Note that the

by {1,...,7s}, with &; € RN, 1 < j < J. We formulate block-compressible model does not impart a structure to the
a matrix representatio of the ensemble that features thélecay of the signal coefficients, so that the gefsc are equal
signal Z, in its j'* row: X = [#; ...Z,]7. The matrixX for all values ofj; due to this property, theds, , s)-RAmMP
features the same structure as the makiobtained from a is implied by theSg-RIP. Taking this into account, we can
block-sparse signal; thus, the mati can be converted into derive the following result from [11], which is proven silaily

a block-sparse vectar that represents the signal ensemble.to Theorem 4.

Theorem 6:Let = be a signal from the structured sparsity
model S, and lety = &z + n be a set of noisy CS
B. Block-based approximation measurements. & has theS-RIP with §s« < 0.1, then
the estimate obtained from iteratiowf block-based CoSaMP,
To pose the block-based approximation algorithm, wgsing the approximation algorithm (18), satisfies
need to define the mixed norm of a matrix.

Definition 12: The (p, ¢) mixed normof the matrixX = |z —Zilla < 279 2f2+ 20<|X - X7l 22
[x1 @2 ... zy] is defined as

1
+ X = XRlan + ol

N 1/q \/_
HXH(p,q) = <Z |xn|g> .
n=1

. Thus, the algorithm provides a recovered signal of similar
Wheng = 0, || X||,,0) Simply counts the number of nonzero . :ations o b Il nurnber of
columns inx. , quality to approximations y a small number of nonzero

columns. When the signal is K-block sparse, we have that
We immediately find thaf| X ||, ,) = [lz[|,, with 2 the ||X — X7 [/(2,2) = [[X — X% (2,1) = 0, obtaining the same
vectorization ofX . Intuitively, we pose the algorithi®(X, K) result as Theorem 4, save for a constant factor.
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D. Stable block-based recovery from compressive measudescribed above. Again, the number of measurements is far

ments below the minimum number required to guarantee stable re-
covery through conventional CS recovery. However, enfayci

Since Theorem 6 poses the same requirement on {R@ structured sparsity model in the approximation process

measurement matrik for sparse and compressible signals, thesults in a solution that is very close to the best 5-block
same number of measurementsis required to provide per- approximation of the signal.

formance guarantees for block-sparse and block-comptessi ) o )

signals. The classSx contains S — (N) subspaces of Figure 9(a) indicates the decay in recovery error as

K .
dimensionJK. Thus, a subgaussian random matrix has tife function of the numbers of measurements for CoSaMP

Sx-RIP property with constanis, and probabilityl — ¢~ and model-based recovery. We generated sample blockespars
if the number of measurements obeys signals as follows: we randomly selected a setiOblocks,
each of sizeJ, and endow them with coefficients that follow
M > 2 <K <1n el +J1In 1—2> + t) . (19) an i.i.d. Gaussian distribution. Each sample point in theres

0%, K O is generated by performing 200 trials of the corresponding

To compare with the standard CS measurement bound, ?rl%o”th”_‘- As i_n the connected wavelet-tree case, we observ
number of measurements required for robust recovery sca(fé%ar gains using _mod.el-based recovery, particularly dar-|

as M — O(JK + K log(N/K)), which is a substantial measurement regimes; CoSaMP matches model-based recov-
improvement over the\/ = O (JK log(N/K)) that would ery only forM = 5K.

be required by conventional CS recovery methods. When the Figure 9(b) compares the recovery times of the two
size of the blockJ is larger thanlog(/N/K), then this term approaches. For this particular model, we observe that our
becomes0 (K J); that is, it is linear on the total sparsity ofproposed approach is in general much faster than CoSaMP.
the block-sparse signal. This is because of two reasons: a) the block-based approx-
imation step involves sorting fewer coefficients, and thais i

We note in passing that the bound on the number than —t imation- b) block-based
measurements (19) assumes a dense subgaussian measur "ﬁ?&?ﬁ ani —term approximation, ) block-base recovery
fequires fewer iterations to converge to the true solution.

matrix, while the measurement matrices used in [10] ha
a block-diagonal structure. To obtain measurements from an
M x JN dense matrix in a distributed setting, it suffices to
partition the matrix intaJ pieces of sizeVf x N and calculate

the CS measurements at each sensor with the corresponding |n this paper, we have aimed to demonstrate that there are
matrix; these individual measurements are then summedsignificant performance gains to be made by exploiting more
obtain the complete measurement vector. For lafgg€19) realistic and richer signal models beyond the simplistarse
implies that the total number of measurements required f@hd compressible models that dominate the CS literature.
recovery of the signal ensemble is lower than the bound r tBuilding on the unions of subspaces results of [6] and theforo
case where each signal recovery is performed independemgliichinery of [11], we have taken some first steps towards
for each signal i/ = O (JK log(N/K))). what promises to be a general theory for model-based CS
by introducing the notion of a structured compressible a&ign

_ and the associated restricted amplification property (RAMP

E. Experiments condition it imposes on the measurement matfix Our

analysis poses the nested approximation property (NAP) as a

We conducted several numerical experiments comparingﬁ. ; - . i .
. icient condition that is satisfied by many structuredsi
model-based recovery to CoSaMP in the context of bIocE— y y b2

sparse signals. We employ the model-based CoSaMP recovng%dels'
of Algorithm 1 with the block-based approximation algo-  For the volumes of natural and manmade signals and
rithm (18) in all cases. For brevity, we exclude a thorouginages that are wavelet-sparse or compressible, our tree-
comparison of our model-based algorithm withnorm mini- based CoSaMP and IHT algorithms offer performance that
mization and defer it to future work. In practice, we observesignificantly exceeds today’s state-of-the-art while iggg
that our algorithm performs several times faster than convenly M = O (K) rather thanM = O (K log(N/K')) random
optimization-based procedures. measurements. For block-sparse signals and signal ersembl
with common sparse support, our block-based CoSaMP and
IHT algorithms offer not only excellent performance butoals
rreh%uire justM = O (JK) measurements, whetK is the
signal sparsity. Furthermore, block-based recovery ceover
gignal ensembles using fewer measurements than the number
required when each signal is recovered independently; we ha
shown such advantages using real-world data from environ-
We now consider block-compressible signals. An exarmental sensor networks [44]. Additional structured spwarsi
ple recovery is illustrated in Figure 8. In this case, the models have been developed using our general framework
norms of the blocks decay according to a power law, &s [45] and [46]; we have also released a Matlab toolbox

VII. CONCLUSIONS

Figure 7 illustrates anV = 4096 signal that exhibits
block sparsity, and its recovered version frabd = 960
measurements using CoSaMP and model-based recovery.
block sizeJ = 64 and there werek = 6 active blocks in
the signal. We observe the clear advantage of using the blo
sparsity model in signal recovery.
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(a) original block-sparse signal (b) CoSaMP (c) model-daseovery
(RMSE = 0.723) (RMSE = 0.015)
Fig. 7. Example performance of structured signal recovery for akbkparse signal. (a) Example block-sparse signal of kehgt= 4096

with K = 6 nonzero blocks of siz8 = 64. Recovered signal froml = 960 measurements using (b) conventional CoSaMP recovery and (c
block-based recovery. Standard recovery not only recasfrsous nonzeros, but also attenuates the magnitude atthal nonzero entries.

15
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(a) signal (b) best 5-block approximation (c) CoSamMP (d) etdzhsed recovery
(RMSE = 0.116) (RMSE = 0.711) (RMSE = 0.195)

Fig. 8. Example performance of structured signal recovery for lbloampressible signals. (a) Example block-compressitgea length
N = 1024. (b) Best block-based approximation wilki = 5 blocks. Recovered signal from! = 200 measurements using both (c)

conventional CoSaMP recovery and (d) block-based reco$¢aypdard recovery not only recovers spurious significainiss, but also attenuates
the magnitude of the actual significant entries
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Fig. 9. Performance of CoSaMP vs. block-based recovery on a clasledf-sparse signals. (a) Average normalized recovenyr emd (b)
average runtime for each recovery algorithm as a functidhe@bvermeasuring factdd / K. CoSaMP does not match the performance of the
block-based algorithm unt¥ = 5K . Furthermore, the block-based algorithm has faster cgevee time than CoSaMP.

containing the corresponding model-based CS recovery algoodels that are endowed with efficient structured sparse
rithms, available ahtt p: // dsp. ri ce. edu/ sof t war e. approximation algorithms.

There are many avenues for future work on model-based
CS. We have only considered the recovery of signals from APPENDIXA
models that can be geometrically described as a union of PROOF OFTHEOREM 2
subspaces; possible extensions include other, more cemple ) ) o
geometries such as high-dimensional polytopes and namline To prove th.IS theorem, we will study the d|str|but|o.n of
manifolds. We also expect that the core of our proposdd Maximum singular value of a submatrix- of a matrix
algorithms — a structured sparse approximation step — Cﬁlﬁh i.i.d. Gaussian e_ntr|e§> cor_respondlng tq_ the columns
be integrated into other iterative algorithms, such asxeala ndexed byI’. From this we obtain the probability that RAmP
¢,-norm minimization methods. Furthermore, our framewor#0€S not hold for a fixed suppoit. We will then evaluate
will benefit from the formulation of new structured sparsity'€ Same probability for all supporis of elements ofR;, x,

where the desired bound on the amplification is dependent on
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the value ofj. This gives us the probability that the RAMP APPENDIXB

does not hold for a given residual subspace7gl;. We fix PROOF OFTHEOREM 3

the probability of failure on each of these sets; we theninbta

probability that the matrixp does not have the RAmP usinga N this proof, we denoté/(z, K) = xx for brevity. To
union bound. We end by obtaining conditions on the numbBPund||®(z — zx)|[2, we write z as

of rows M of @ to obtain a desired probability of failure. [N/K]
We begin from the following concentration of measure for T=2TK+ Z LTy
the largest singular value of @ x K submatrix®r, |T| = K, 7=2

of an M x N matrix ® with i.i.d. subgaussian entries that arevhere

properly normalized [25, 47, 48]: ,
T, = TiK — T(j-1)K,] = 2,..., | N/K]

K —Mr? is the difference between the bggt structured sparse approx-
P omax(@7) > 1+ 4/ — < e M2, 1S the v parse appr
<0 (®1) + M T 6) = imation and the begtj —1) K structured sparse approximation.

Additionally, each piecerr; € R;x. Therefore, sincep
For large enoughM, 5 < 1; thus we ignore this small satisfies th€ex, s — 1)-RAmMP, we obtain

constant in the sequel. By letting= j"v/1 +ex — 1 — ,/% [N/K] [N/K]
(with the appropriate value of for T'), we obtain [z —ar)e = @ D an || < D l®ane
. 2 Jj=2 9 j=2
P (0max(®7) > j"VI+ ex) < o~ ¥ (T ViFa-1-VE) [N/K]
< Y Viters el
We use a union bound over all possililg supports foru € =2

R; k to obtain the probability tha® amplifies the norm of

Since M, the norm of each piece can be bounded as
someu by more than;”/1 + ex: ve P

) lerlle = llzjx — 21Kl
P (|[®ullz > (j"V1 + ex) ||ull2 for some u € R; k) <z —zg_nkllz + Iz — 2k )2
< Rje ¥ (VMUVITG)-VE) < el K0 (G- 17450,

Bound the right hand side by a constantthis requires Applying this bound in (22), we obtain

[N/K]
R; < e%(\/ﬁ(.jT\/1+€K_l)_\/?)2M 20) [|P(z—zx)l2 < VI+ex Z 35w, |2,
j=2
for eachj. We use another union bound among the residual [N/K1 .41 o1
V1
subspacesk; x to measure the probability that the RAmMP < #mm Z J Ty + 7 —,
does not hold: = -1 J
[N/K]
[Pull2 _ . , VItex 1 1
P > 3"y/1 , ER; k, 1<j<|N/K < 7s|$€'|zms .7.5‘1'—.,
(T > VI e, we R 125 % [N/K] K 2 ST
N
< {—w . VIter, , &Tes g
K < Tlalm Y =
K g
K =2
To bound this probability bye™*, we needuy = Fe " [N/K]
lugging this into (20), we obtain s Vi+ex —1
plugging (20) < @+ D)o [zl ; i

LV VTTer-1)-VvE)} K . . . .
R; < ex(YMG'VTTek-1)-VK) ~e ' It is easy to show, using Euler-Maclaurin summations, that

Zﬂ-ﬁé” j~1 <In[N/K7; we then obtain
for eachj. Simplifying, we obtain that ford to posess the

RAmMP with probabilityl — e, the following must hold for |®(x — 2k )|l < (2° + D)VIF exK~*In {ﬂ-‘ ||
all 5: = K o

RN which proves the theorem. O
2 (1n =+ t) +VK
M > - . (21)
JVI+ex —1 APPENDIXC

MODEL-BASED I TERATIVE HARD THRESHOLDING

Since(y/a+vb)? < 2a+2b for a,b > 0, then the hypothesis Our proposed model-based iterative hard thresholding
(12) implies (21), proving the theorem. O (IHT)is given in Algorithm 2. For this algorithm, Theorems 4
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signal estimate at the beginning of tH& iteration. Define the

signal residuak = = — Z, which implies thats € M3.. We
note that we can write = y — &7 = ®(x —7) +n = ®s+n.
Lemma 3: (ldentificationThe set? = supp(Ma (e, K)),

wheree = ®”r, identifies a subspace M2, and obeys

Islac |2 < 0.2223]|s||2 + 2.34]|n]|2-

(a) original (b) IHT (c) model-based IHT
(RMSE = 0.627)  (RMSE = 0.080)

Fig. 10. Example performance of model-based IHT. (a) Piecewise
smoothHeaviSinetest signal, lengtiN = 1024. Signal recovered
from M = 80 measurements using both (b) standard and (c) model-
based IHT recovery. Root mean-squared error (RMSE) valuves a  Proof of Lemma 3:Define the sefll = supp(s). Let
with support(2, and similarly letey; be the approximation to
. e e with supportIl. Each approximation is equal tofor the
5, and 6 can be proven with only a few modificatiofismust coefficients in the support, and zero elsewhere. Sihée the

have theM3,-RIP with §, < 0.1, and the constant factor PSRTURP! .
in the bound changes from 15 to 4 in Theorem 4, from 35 tsoupport of the best approximation Ji(j, we must have:

10 in Theorem 5, and from 20 to 5 in Theorem 6. le—eqallz < |le—enl?

To illustrate the performance of the algorithm, we repeat al 2 al 9
the HeaviSineexperiment from Figure 1. Recall thaf = n,l(e[n] —ean])” < Z:l(e[n] —enfn])”,
1024, and M = 80 for this example. The advantages of using B ) = 5
our tree-structured sparse approximation step (insteaukoé Z e[n]” < Z e[n]”,
hard thresholding) are evident from Figure 10. In practie, ng¢Q néll

have observed that our model-based algorithm converges in 5 5
fewer steps than IHT and yields much more accurate results Ze["] - Z e[n]
in terms of recovery error.

vV
]
o
=

[\v]
|
]
o
=
\'l\?

n=1 ngQ n=1 n¢ll

]
o
=

[\v]
v
]
o
=
“1\7

A D ne nell
PPENDIX
2 2
PROOF OFTHEOREM 4 el = ) el
neQ\II ncll\Q
The proof of this theorem is identical to that of the lelovnls > llelmeall3

CoSaMP algorithm in [11, Section 4.6], and requires a set

of six lemmas. The sequence of Lemmas 1-6 below affiere 2\ Il denotes the set difference 6f andIl. These

. e . )
modifications of the lemmas in [11] that are restricted f3i9nals are 'nMK2 (§|nce they arise as the dlfferen;:e of two
the structured sparsity model. Lemma 4 does not need di§ments fromMy); therefore, we can apply thetj.-RIP
changes from [11], so we state it without proof. The proof d:fonstants.and Lemmas 1 and 2 to provide the following bounds
Lemmas 3-6 use the properties in Lemmas 1 and 2, which &f& Poth sides (see [11] for details):

simple to prove. lelonills < daas llslls + /1 +0rez Inll2,  (22)
Lemma 1:Supposeb hasM-RIP with constant .. Let
Q be a support corresponding to a subspacéin Then we

AN

lelmallz = (1= dxz)lslaclls — da 5]l

have the following handy bounds. —y/1+re [In]2. (23)
[®Lulla < 1+ Spmlullz, Combining (22) and (23), we obtain
1
|hulls < —===llull2, (Ontz, + Oneslsllz +2/1+ Sagg lInll2
— K K K
. VI o Iskaell: < — .
[aPoullz < (14 dnm)llull2, — oM
[®LPqulls > (1 —dam)|ull2, The argument is completed by noting thaf: < s < 0.1.
_ O
1(@6P0) tull: < g—5—Ilull2,
1 M Lemma 4: (Support Merger)et 2 be a set of at most
I(@L®0) tulls > [l 2K indices. Then the set = Q U supp(Z) contains at most
1+0m 3K indices, and|z|xc |2 < ||s|ac |2

Lemma 5: (Estimation)et A be a support corresponding
to a subspace inV3,, and define the least squares signal
estimateb by b|r = ®L.y, blrc = 0. Then

Lemma 2:Supposeb hasM? -RIP with constanﬁMi.
Let ©2 be a support corresponding to a subspac#ir-, and
let x € Mg. ThenH(I>£<I>:c|QcH2 < §M?<||xlgc||2

. .. . . — <1. . .
We begin the proof of Theorem 4 by fixing an iteration lz = bll2 < 1112][]se (|2 + 1.06]n >

1 > 1 of model-based CoSaMP. We write= z,_; for the
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Algorithm 2 Model-based Iterative Hard Thresholding

Inputs: CS matrixd, measurementg, structured sparse approximation algorithi,
Output: K-sparse approximatiof to true signak:

Zo=0,d=y;i=0 {initialize}
while halting criterion falsedo
l.i—i+1
2.b—T;_1 +97d {form signal estimate
3.Z; — M(b, K) {prune residual estimate according to strucfure
4.d —y— P, {update measurement residpal
end while

returnz «— z;

Proof of Lemma 51t can be shown [11] that using Stirling’s approximation. Whe& > log, N, we parti-

B < T 1T T _ tion_this count of_ subtrees int(_) the numbers of subtiges
||$ bH2 > ”‘TlAC”Q + ”((I)A(I)A) CI)ACI)‘T'HCHQ + HCI)Hn”Q of size K and helghth, to obtain

SinceA is a support corresponding to a subspacéAr. and logy N
r € Mg, we use Lemmas 1 and 2 to obtain Tin = Z tin
[ PR Pw|ne |2 lInll2 h=[log, K |+1
[z =0bl2 < [facl2+ ; . : .
1- 5/\/@{ /1 — We obtain the following asymptotic identity from [49, page
K
51]:
Opma [In]|2 K+1.5 2
< (12 ol A e T
[ oy e = e X [ s
i 8 8
Finally, note thathys < dqa < 0.1. O KO (eflnzh) UKD (111 5h) UKD (111 4h) ’
Lemma 6: (Pruning)The pruned approximatio; = o h h
i 4 + 2K Tm 2
M(baK) IS SuCh that S h4 [ﬁ(zﬂ_m)ﬁl _ 3(27Tm)2] - K(2h2 ) . (24)
|z —@il[2 < 2[|z = b|2. >1

We now simplify the formula slightly: we seek a bound

Proof of Lemma 6:Since; is the best approximation in  1F the sum term (which we denote b, for brevity):

i 2K )2
to b, andz € My, we obtain ho= Y {F(%m)él B 3(27Tm)2] - Eemm?
[z = Zill2 < [lz = bll2 + [Ib — Zill2 < 2]z — b2 m>1
2K wm)2
0 S Z F(27Tm)4€_l((2’172)- (25)
We use these lemmas in reverse sequence for the inequal- m21
ities below: Let mmax = FL the value ofm for which the term inside
lz—Zills < 2z —bl, E;feium (25) Is maximum; this is not necessarily an integer.
< 2(1.112||z|pc]|2 + 1.06||n||2), | -1
max .
< 2.224|s|ge|l2 + 2.12(|n|2, B < Z 2h—]2{(27Tm)46_K(2hi2)
< 2.224(0.2223|s]|2 + 2.34[|n||2) + 2.12||n|2, m=1
[mmax—‘
< 0.5||s]|2 + 7.5]|n||2, 2K _ K@2rm)?
H ”2 - || ”2 + Z —2(271'77’1,)46 K(2h2 )
From the recursion of¥;, we obtain|z — ;|| < 27%||z||]2 + 2K o)t _ K@rm)?
15||n||2. This completes the proof of Theorem 4. O + Z ﬁ( mm)e” W,
m> "mmax—"f‘l
[Mmax] o
APPENDIXE < / g(zm)éle—mhz 2
PROOF OFPROPOSITION1 1 h
. [mmas] 2K K(@2rm)?
When K < log, N, the number of subtrees of siZ€ of + Z 5 (2mm)te w7
a binary tree of sizeV is the Catalan number [49] Sy po— h

1 2K\ _ (2¢)% / FO2K g o Eem?
T = — < —2— + — (27x)%e n? dx,
o=t ) S e e

Mmax
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where the second inequality comes from the fact that theserit is easy to show, using Euler-Maclaurin summations, that

in the sum is strictly increasing fon < |mma.x| and strictly ,

decreasing forn > [mmax|. One of the terms in the sum can 1 9 1
be added to one of the integrals. If we have that Zj < In-— and Z] S o7
j=a j=a
_K(2""meax”2 _K(2""rmmax-‘)2
(27 [Mmax] ) te " < (2 [mmax]) e " ( )’ we then obtain
26
then we can obtain T 4% ( 6 . logy N N 128 )
[mmax] 9 f¢ K (2mm)2 N = K\ ik llog, K| = €?|log, K |
B < / F(27TI)46_ w2 dr gK+4 4K+
1 < .
2K _ K@r[mmax])? K62L10g2 KJ - Ke?
+— (27 (mmaﬂ)% n2
h 0o 9K K(ma? This proves the proposition. O
+/[m | WW(ZW:C)‘le* n2 - dx.

When the opposite of (26) is true, we have that

/WmaxJ 2K
1

h2
2K
+? (27 | Mmax )46

+/Oo 2K
meaxj h

2
Since the term in the sum reaches its maximumfigr,., we
will have in all three cases that

o< [ G emte S
1

We perform a change of variables= 27z and definec =
h/v/2K to obtain

_ K(27rm)2

)46 w2 dx

Brn < (2mx

_ K@n|mmax])?

(2mz)te” x.

Br < % ; %uzle*“z/%zda? + EL;
1 o 1 w2 /902 8h?
20\/%/700 \/ﬂau‘le 1297 do + 7=k
Using the formula for the fourth central moment of a Gaussian
distribution:
/:: ﬁu‘*e‘lﬁ/z‘72 dz = 30?,
we obtain
By < 303 n 8h? _ 3h3 n 8h2.
~2v/or Ke? 8VrK3 Ke?
Thus, (24) simplifies to
tr,h < i (L + E) :
' K \h/rK  h2e?

Correspondingly/’x, x becomes

logy, N

4K [ 6 128
Tkn < Z —(—-l-ﬂ),
heltogy )41 NPV h7e
K logy N
< Flvm X
T iogy K41
128 el
D DR

h=|log, K |+1

APPENDIXF
PROOF OFPROPOSITION3

We wish to find the value of the bound (12) for
the subspace count given in (17). We obtavd >
maxj<;<[N/K] ]\/[j, where

1
M; = 2
(j"VT+ex — 1)
(2e)K@iH+D N )
2K + 41 , , +2t).
( "KEjF(Kj+ K +1)

We separate the terms that are linearfrand j, and obtain

1
M; = 5| K(3+4In2) +8Kj(1+1n2)
("VT+ex — 1)
N
+41 - - +2t,
"KEjF)(Kj+ K +1) >

1
(j570.5m_j70.5)2
K 4In2
(8K(1 g4 KB F4In2)

N
+-1 - -
PN KE A D)Ej K +1)

2t

J

N
The sequencéMj}LKl] is a decreasing sequence, since the
denominators are decreasing sequences wherevdr.5. We

then have

1
> . <K(11 +12In2)

(VIFex—1)

N
41 2 ) .
N RE TR+ D) )

This completes the proof of Proposition 3.
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