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A constructive proof of the existence of Viterbi
processes

Juri Lember, Alexey Koloydenko

Abstract—Since the early days of digital communication, hid- Treatingy.,, as parameters to be estimated, Aét.,,; x1.,,)
den Markov models (HMMs) have now been also routinely used pe the likelinood functionP (Y1, = qi.n) H:’_l fa: (i504,)
in speech recognition, processing of natural languages, mges, of g1.,, and letV(z1.,) be the set of the maximum-likelihood
and in bioinformatics. In an HMM (X;,Y;);>1, observations P 1'"n
X1, Xo,... are assumed to be conditionally independent given estlmate&;(:zrllm).e 5™ of yi.,. The elements oV (x1.,) are
an “explanatory” Markov process Y1, Ya,..., which itself is not ~called(Viterbi) alignmentsand are commonly computed by the
observed; moreover, the conditional distribution of X; depends Viterbi algorithm H], [5]. If P(Y3., = ¢1.,) is thought of as
solely on'Y;. Central to the theory and applications of HMM  the prior distribution ofy;.,,, thenv(z1.,,)’s also maximize the
is the Viterbi algorithm to find a maximum a posteriori (MAP)  opapility mass function of the posterior distribution Y

estimate 1. = (q1, g2, ..., qn) Of Y1.,, given observed datazi.,,. . L .
Maximum a posteriori paths are also known as Viterbi paths hence the ternmaximum a posteriori (MAP) path8esides

or a|ignmentsl Recenﬂy’ a’[tempts have been made to Study@h their direCt Signiﬁcance fOI‘ prediction df from X, V|terb|
behavior of Viterbi alignments when n — co. Thus, it has been alignments, or MAP paths, are also central to the theory
shown that in some special cases a well-defined limiting Vitei  gnd applications of HMMs4] in the more general setting
alignment exists. While innovative, these attempts have lied |\ han any parameters of the emission distributidhsand
on rather strong assumptions and involved proofs which are o .
existential. This work proves the existence of infinite Vitebi any of the transmon.probabllltlepij, i,j €5, Wou_ld also .
alignments in a more constructive manner and for a very genaal  0€ unknown and of interest. Therefore, asymptotic behavior
class of HMMs. of Viterbi alignments is also crucial for the inference om th
Index Terms—Asymptotic, HMM, maximum a posteriori path, ~UNknown parameters], [7]. _ _
Viterbi algorithm, Viterbi extraction, Viterbi training. To appreciate that the question of extendingr:.,) ad
infinitum is not a trivial one even if the problem of non-
uniqueness ofv(z1.,) is disregarded, suffice it to say that
an additional observatiom,,.; can in principle change the
ETY = (Yi)i>1 be a Markov chain with state spacesntire alignment based of.,,, i.€. v(z1.,) aNd V(2141 )1:m
S =A{1,...,K}, K > 1, and transition matrix® = can disagree significantly, if not fully. Fortunately, thi- s
(pij)ijes. Suppose thal” is irreducible and aperiodic, henceyation is not hopeless and in this paper we prove that
a unique stationary distribution = 7> exists; suppose furtherijn most HMMs alignments can be consistently extended
thatY; ~ m from timei = 1. To every staté € S, let us assign piecewise Specifically, motifs of (contiguous) observations
anemission distributiorP; on (X, B), whereX = R”, theD- . called barriers, are observed with positive probability,
dimensional Euclidean space. Lgtbe the density of; with  forcing Viterbi alignments based on extended observations
respect to a suitable reference measdren (X, B). Most (L1ins 210y TngbpLimsvir), n > 0, 7 > 1, to stabilize as
commonly, \ is either the Lebesgue measure (continuousfg|iows: Roughly, v(#1: 21:6%n b4 1t ) 1m = 0(21:m) fO
distributedX;) or the counting measure (discretely distributed)| »-,.,, and all extensions,, ;4 1:n+o4r. TO be more precise,
X;). a particular staté € S and an elemerit,, called anode of the
Definition 1.1: The stochastic processY,Y’) is a hidden parriers can be found such that regardless of the observations
Markov model if there is a (measurable) functibrsuch that pefore and afters, the alignment has to go throughat
for eachn, X,, = h(Y,,e,), wheree, e, ... are i.i.d. and time u = n + k. The optimality principle then insures the
independent ot stabilization v(z 1., 21:6%n b1 1mtbir) 1w = v(21.,) and in
Hence, the emission distributio®, is the distribution of particularv, = L.
h(l,e,). The distribution ofX is completely determined by  Suppose now that;.,, contains several barriers with nodes
P and the emission distributiong,, [ € S. It can be shown occurring at timesu; < --- < u,, < n. Then the Viterbi
that X is also ergodic 1], [2], [3]. Let 21, = (21,...,2n) alignmentv(z1.,) can be constructed piecewise as follows: Let
and y1., = (y1,...,yn) be fixed observed and unobserved(z,. )= (v 02, ... v™ v™*1), wherev! is the alignment
realizations, respectively, of HMMX, Y;);>1 up to timen.  pased on;.,,, and ending i, and letv?, fori = 2,3, ..., m+
o . . . 1, be the conditional alignment based op, ,.,, given that
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(piecewise) infinitealignmentu(x1.,) is defined naturally as of infinite alignments for those models. The disappearance
the infinite succession of the segments 2, .... of nodes is due to the fact that an aperiodic and irreducible
In this paper, we prove that for some fixed integér> 0, Markov chain can have zeros in the transition matrix. If this

the probability that the finite random process ,; generates a possibility is excluded, as is the case 8},[[9], the ‘meeting
barrier, is positive. Sinc& is ergodic, almost every realizationtimes’ and ‘meeting states’ o8], [9] are sufficient to prove
T1.00 has infinitely many barriers and, therefore, the infinitthe existence of infinite Viterbi alignments for many HMMs
piecewise alignment is well-defined. Apparently, the pieise used in practice. In their recent communication with us, the
alignment gives rise to a decoding processY> — S via authors of 8], [9] have corrected those statements in their
Vi.0o = v(X1.00), Which we shall call theviterbi alignment above works where the strict positivity of the transitiontrixa
process The construction ensures thit is regenerative and is implicitly assumed but formally omitted (sef for details).
ergodic. Note also how this piecewise construction nafuralAt the same time, in order to accommodate for zeros in the
calls for a buffered on-line implementation in which thdransition matrix, 7] introduced a more general notion of
memory used to store,, ,.,, can be released oneé has nodes, effectively removing the limitations of the notioh o
been computed. ‘meeting times’ and ‘meeting states’. However, the price fo
this generalization has been rather high due to the intager
issue of non-uniqueness of (finite) Viterbi alignments. Bor
detailed treatment of the piecewise construction of theniiefi
The problem of constructing infinite Viterbi processes hadignment and process in general HMMs, and the role of the
been brought to the attention of the IEEE Information Theoiyfinite Viterbi process for the adjusted Viterbi trainirtegory,
community fairly recently by§] and [9]. Although the piece- we refer to the state-of-the-art articlé][
wise structure of Viterbi alignments was already acknogést
in [10], to our best knowledge, the subject has been firgt_
seriously considered in8J, [9]. In these latter works, the ] ] ) -
existence of infinite alignments for certain special casash !N &Il we briefly outline the construction of the infinite
as K — 2 and Markov chains with additive white Gaussiaignments§ll-B based on ]. This includes definitions of
noise, has been proved. In particular, in these cases theraut"deséll-A and barriers§ll-C. Next, §ill states our main
of [8], [9] have proved the existence of ‘meeting times’ anffSults which have first appeared i [and guarantee the
‘meeting states’, which are a special (stronger) type ofesod €Xistence of the alignment proce$s In §llI-B, we give
While innovative, the main result o8] (Theorem 2) makes & counte_rexample to explain the necessity of our tech_nlcal
several restrictive assumptions and is proved in an exiaten@SSumptions. In§lV, we present a complete and detailed
manner, which prevents its extension beyond&he- 2 case. Proof of our main results. This is followed igv by a brief
Independently of these work<.7], [7], [12] have developed discussion of the significance of the presented results.
a more general theory to include the problem of estimating
unknown parameterg{, andp;;, i, j € S). Namely, the focus Il. CONSTRUCTION
of this theory has been the Vitertsaining (VT), or extraction A. Nodes
algor?thm [13]._Competing w_ith EM—basgd pr_ocedure_s, this First, consider thescores
algorithm provides computationally and intuitively apfyeg
estimates which, on the other hand, are biased, even in the 5.() % max A((q,1); 21:0). 1)
limit when n — oo. In order to reduce this bias, tlaljusted gest
Viterbi training (VA) has been introduced inlfl], [7], [12]. Thus,d,(!) is the maximum of the likelihood of the paths
Naturally, VA relies on the existence of infinite alignmentserminating at: in statel. Note thatd; (1) = m; f;(x1) and the
and their ergodic properties. Although the general the@y hrecursion below
been presented inlf], [7], some of the main results of the ) )
theory (Lemma 3.1 and 3.2 of7]) have appeared without ~ Ou+1(7) = Max(0u(Dpyj) fi(zu1) ¥ u=1,¥j €5,
proof due to the limitations of scope and size. This pap
slightly refines these results and, most importantly, presse
their complete proofs. Whereas these results are forntiiate
general HMMs K > 2), [14] has most recently considered in
full detail the special case ok = 2, generalizing similar
results of B, [9]. Specifically, it has been proved il 4, )9 (1 ¢ §.vie 5 6, ()py > bui)ps). 2
that infinitely many barriers (and hence the infinite Viterbi
alignment) exist for any aperiodic and irreducible 2-stateNext, we introducepg)(u), the maximum of the likeli-
HMM. Thus, the results presented here generalize the ones06d realized along the paths connecting stateand j
[14] and [8], [9] for K > 2. It turns out that this generalizationat times « and u + r, respectively. Thus,pgg) (w) &
is farfr_om being straightforward and requires a more adgdnc and Vu > 1, and Vr > 1, let p(f')(u)
analysis and tools. Furthermore, as we show below, Wh%ﬂﬁaX o o (Zusn) oo (Zuso) o
K > 2, not every aperiodic and irreducible HMM has 0157 Pigr Ja1 (Put1)Pa1az Jaz (Fut2)Pazgs
infinitely many nodesundermining the piecewise construction “Dar_1gr o (Tutr)Pg,j- 3)

A. Previous related work and contribution of this work

Organization of the rest of the paper

ﬁ{elps to verify thatV(z1.,), the set of all the Viterbi
alignments, can be written as followsV(z1.,) =
{vels: Vies§, o,(v,) > d,(i) and

u: 1<u<n, v, € t(u,v,41)}, whereVu > 1,Vj € S,

def
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Note also To formalize the piecewise construction, let
Susr () = max {8, ()P (u = 1)} fi(wuss) ¥r <u, Wi(arn) € {v e 5™ vy =1
") s (r—1) Ay x1m) > AMw; x1.0,) Yw € S 1w, =1},
V2% (u) = mag:piq (u) fo(Tutr)Pg;- (4)

1 Vi (21.0) dof {v € V(z1n) : v, = 1} be the set of
maximizers of the constrained likelihood, and the subset of
Definition 2.1:Let 0 < r < n, u <n —r and letl € S. maximizers of the (unconstrained) likelihood, respedyive

Givenzi.,,, the firstu +r observationsg,, is said to be an || elements of which go through at n. Note that unlike

[-node of orderr if WH(x1.n), V! (z1.,) might be empty. It can be shown that
Vi (21.0) # 0 = V(21.,) = W (21.,). Also, let subscript the
(r) () .o “lin n mn ) .
Su(D)py; (u) > 0y (i)ps;’ (u) Vi, j € S. (5) (1) iIn Wi (z1:0) @ndV) (1:5,) refer to(pr;)ies being used as
. . R the initial distribution in place ofr. With these notations, the
Also, z,, is said to be a node of orderif it is an /-node of iecewise alignment is — (v! W*+1) € V(z1.n), where
orderr for somel € S; x,, is said to be a strong node of orde|p 9 TN Lin/s
r if the inequalities in §) are strict for evenyi,j € S,i # 1.1 ot W (z1y), VT € Vi) (Tup 4 1iun)
Let x;., be such that,,, is anl;-node of order, 1 <i <k, v ewéfiil)(%iilﬂw’ 2<i<k. (6)
for somek < n, and assumey +r < n andwu; 1 > u;+r for
alli=1,2,...,k — 1. Such nodes are said to Beparated \oreover, fori = 1,2,...,k, the partial pathsw(i) <

(v, .. 0h) € Whi(1.,).

If 1.0 has infinitely many (separated) nodés,, }x>1
then v(z1.00), an infinite piecewise alignment based on
Supposer;., is such that for some,,r;, i = 1,2,...,k, the node times{ui(z1.00)}x>1 can be defined as follows:

U471 < Uy 1y < oo < Up 41 < N, 2y, IS anl;-  If the setsWé;H)(quH:ui), i = 2,...,k as well as
node of orderr;. It follows then easily from the definition v, \(2y, 11.) and W' (uy,z1.,,) are singletons, then6)

of the node that there exists a Viterbi alignmerit;.,) € immediately defines a unique infinite alignmertr;...) =
V(x1.,) that goes through; at u; (i.e. v,, = I;) for each (v!(21.4,), v*(Tu, +1:4,), - - -). Otherwise, ties must be broken.
i=1,2,...,k (see []). It is not difficult to verify that such If we want our infinite alignment procesg to be regen-
v(z1:,) can actually be computed as follows: Obtaih, a erative (see 7]), a natural consistency condition must be
path that is optimal among all those that endiain [;. (Note imposed on rules to select uniquér;.,,) from Wi (z.,,) x
that unless 'Fhe order of the n(_)alzg1 is 0, v! n(_eed not be in Wéi)(xuﬁl:uz)x“'XW(lf,cfl)(CCuk,lﬂ:uk)XV(lk)(CCuml:n)-
V(21:4,).) Givenz,, 1.4,, continue on by taking? to be a In [7], resulting infinite alignments, as well as decoding
maximum likelihood path fronk; to l,. That is,v* maximizes v : x> — §° based on such alignments, are calpedper.
the constrained likelihood under the initial distributiom,.) This condition is, perhaps, best understood by the follow-

B. Piecewise alignment

and the constraint?, , = ls. Now, (v',v?) maximizes the ing example. Suppose for somg.; € X°, W(ll)($1:5) =
likelihood givenz.,, over all paths ending with. Similarly, {12211,11211}, and suppose the tie is broken in favor of
we define the pieces?, ... v*. Finally, v**! is chosen to 11211. Now, wheneveV], («}.,) contains{1221, 1121}, we
maximize the (unconstrained) likelihood given, ., under naturally require thai221 not be selected. In particular, we
the initial distribution(px,.). select1121 from W}y (z1.4) = {1221, 1121}. Subsequently,

The separated nodes assumptiop; > u; +7, 1 <i <k, 112 is selected fromW? (z1.3) = {122,112}, and so on.
is not restrictive at all since it is always possible to cl®ost can be shown that a decoding by piecewise alignnféht
from any infinite sequence of nodes an infinite subsequenggh ties broken in favor of min (or max) under the reverse
of separated ones. The reason for this requirement has toj&@cographic ordering of5™, n € N, is a proper decoding.
with the non-uniqueness of alignments and is as follows. TheNnote also that we break ties locally, i.e. within individual
fact thatz,, is anrth orderi/;-node guarantees that whenntervalsu;_, +1,...,u;, i > 2, enclosed by adjacent nodes.
backtracking from.;+r down tou;;, ties (if any) can be broken This is in contrast to global ordering 0f(z1.,), such as
in such a way that, regardless of the values:pf;, 1., and the one in 8], [9]. Since a global order need not respect
how ties are broken in betweenandu; + r, the alignment decomposition), it can fail to produce an infinite alignment

goes throughy; atu,. At the same time, segment, ..., u;+7 going through infinitely many nodes unless the nodes are
is ‘delicate’, that is, unless,,, is a strong node, breaking thestrong.

ties arbitrarily withinw;,...,u; + r can result inv,, # [;.
Hence, when neither,, norz,, , isstrongand.; 11 < u;+r, C. Barriers
breaking the ties in favor of,, can result inv,,,, # lj;1.
Clearly, such a pathological situation is impossible-if= 0
and might also be rare in practice even for 0.

Recall (Definition2.1) that nodes of order at time v are
definedrelativeto the entire realization;., ... Thus, whether
x,, IS a node or not depends, in principle, on all observations

. . - up to x,,.
INote that ifz,, is a node of order, it is then also a node of any order v . b k
higher thanr. Hence, the order of a node is defined to be the minimum such We show below that typlcally a bIOCklzk e (k 2 T)

T, can be found such that for any > 1 and for anyz}.,, € X%,
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(w + k — r)th element of(z}.,,,2%.,) is a node of order P, ({z € X : fa(z)ps > fi(x)pi}) > 0. In [14], it is shown
(relative to(1.,,, 2}.,.)). Sequences! , that ensure existencethat in the case of two state HMMs, one of these two positivity
of such persistent nodes are calletriersin [7]. Specifically, conditions is always met, which, in fact, turns out to be
sufficient for the existence of infinitely many strong barsia
Definition 2.2: Givenl € S, 2%, € X" is called an (strong) this (K = 2) case. Thusany two state HMM with irreducible
[-barrier of order »r > 0 and lengthk > 1 if, for any and aperiodicY has infinitely many strong barrierd.emma
w > 1 and for everyz!., € X%, (z}.,,2%,) is such that 3.1significantly generalizes this and associated resultd4f |

(2}, %1 )w+k—r IS @N (strong)-node of order. The caseK = 2 is special in several respects, hence the
generalization is technically involved, and in particutae
I1l. EXISTENCE CLT-based proof of the existence of infinitely many nodes in
A. Clusters and main results [8] (Theorem 2) does not apply whei > 2.

For certain technical reasons, instead of extracting subse
guences of separated nodes from general infinite sequehces o
G Y irex: fi(z) >0 nodes guaranteed by LemrBal, we achieve node separation
by adjusting the notion of barriers. Namely, note that o
o ) orderl-barriersz;.j;apr—1 and ;. p—1 Might be inB with
Definition 3.1: We call a subseC C 5 a clusterif the ; —; < ; ;. implying that the associated nodes, n/_,_1

For eachi € S, let

following conditions are satisfied: andz;,_,_1 are not separated. Thus, we impose®rhe
mig P;(NiccGi) > 0, and max Pj(NiccGi) = 0. following condition:
JE€ J

. . TjitM—1,TiieM—1 € B, 1 # 7 =i —7j| > 9
Hence, a cluster is a maximal subset of states suchhat FItM=1, St M1 7 [ =l ©)

NiccGs, the intersection of the supports of the correspondirf) (9) holds, we say that the barriers froll ¢ XM are
emission distributions, is ‘detectable’. Distinct clustseed separatedThis is often easy to achieve by a simple extension
not be disjoint and a cluster can consist of a single state.®h B as shown in the following example. Suppose there exists
this latter case such a state is not hidden, since it is exfdmse = € X such thatz ¢ B, for all m = 1,2,..., M. All
any observation it emits. WheR = 2, S is the only cluster elements of B* ' {2z} x B are evidently barriers, and
possible, since otherwise all observations would exposg thmoreover, they are now separated. The following Lemma
states and the underlying Markov chain would cease to Imorporates a more general version of the above example.
hidden. In practice, many other HMMs have the entiretysof
as their (necessarily unique) cluster. Lemma 3.2:Suppose the assumptions of LemiB4 are

We now state the main results. For every states, let satisfied. Then, for some integel$ andr, M > r > 0, there
existB = By x---x By C XM qi.p € SM andl € S, such
that everyz}. ,, € B is a separated-barrier of orderr (and
IengthM), qQr—r =1, andP (Xl:]\l eEB, Yi.uy= q1:M) >
Lemma 3.1:Assume that for each statec S, 0.

B <{I €& file)pr > Iﬂi)l(fi(“?)pf}) >0. (8) B. Counterexamples

Moreover. assume that there exists a clusferc S and The condition onC' in Lemma3.1 might seem technical

a positive integerm such that themth power of the sub- @nd e€ven unnecessary. We next give an example of an HMM
stochastic matrixQ = (p;;);.jcc is strictly positive. Then, where the cluster condition is not met and no node (barrier)

for some integers\l andr, M > r > 0, there exist a set can occur. Then, we will modify the example to enforce the
B=Byx---xBy C XM 'anM-tupIg of'statesh.M c §M cluster condition and consequently gain barriers.
and a staté € S, such that every:1.,, € B is ani-barrier of Example 3.2:Let K = 4 and consider an ergodic Markov

orderr (and lengthM), g, = | and chain with transition matrix

P(Xi.m€B, Yim=q.u)>0.

P = maxpji. (7

]P) =
Lemma3.1 implies thatP(Xq.ps € B) > 0. Also, since

every element ofB is a barrier of order, the ergodicity
of X therefore guarantees thalmost every realization oK' et the emission distributions be such tha} is satisfied and
contains infinitely many-barriers of orderr. Hence, almost ¢, = ¢, andG3 = G4 andG; NG5 = (). Hence, in this case
every realization ofX’ also has infinitely manitnodes of order there are two disjoint clusters; = {1,2}, Cy = {3,4}. The

O wl= Ol
= ONl= O
O N-NI= O
= O ON=

. matricesQ; corresponding ta’;, i = 1,2 are
In two state HMMs, S is the only cluster (otherwise the 1

Markov chain would not be hidden), hen@e= P. The irre- Qi=Q = < 2 (1) > ,

ducibility and aperiodicity in this case imply strict pagity of 0 3

P2, Thus, the only condition to be verified i8)( which in this Evidently, the cluster assumption of Lem®d is not satisfied.
case writes ad? ({x € X : f1(x)p; > f2(x)p3}) > 0 and Note also that the alignment cannot change (in one step)
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its state to the opposite one within the same cluster. Sinceleed, minjcc Pj(NiccGi) > 0 implies (and indeed is
the supportsG, 2 and Gs4 are disjoint, any observationequivalent to)\(N;ecG;) > 0. The latter implies the exis-
exposes the corresponding cluster. Hence any sequencdeote of 2 C N;ccG; with positive A-measure and > 0
observations can be regarded as a sequence of blocks emitezth that (i) holds. Since\(N;ccG;) > 0, the condition
from alternating clusters. However, the alignment insidehe P;(N;ccG;) = 0 for j & C implies (is equivalent to); = 0
block stays constant. It can be shown that in this case.,no A-almost everywher®n N;ccG;. Thus, max;gc f; = 0 A-
can be a node (of any order) for any> 1, z1., € A™, and almost everywheren N,c-G;, which implies (ii).

1<u<n. Evidently, K > 0 can be chosen sufficiently large to make
Let us modify the HMM in Example3.2 to ensure the A({z € X' : fi(z) > K}) arbitrarily small, and in particular,
assumptions of Lemma.1 to guarantee thak({z € X : fi(z) > K}) < % where

1

Example 3.3:Let ¢ be such tha) < ¢ < 5 and let us

. . . . 5 odef 3
replaceP by the following transition matrix |C| is the size ofC. Clearly then, redefiningg = ZnN{z €

X: fi(z) < K, i € C} preserves\(Z) > 0. Next, consider

L € 0 1 5
e 11 AZ\(Uies X)) (11)
i 0 % 0 If (12) is positive, then define
1 1 N
0 2 0 2 2T 2\(Uies ). (12)

Let the emission distributions be as in the previous examp|?(11) is zero. then there must bec C such that
In this case, the cluster; satisfies the assumption of Lemma '

3.1 As previously, every observation exposes its cluster. AMZNX) >0

Lemma 3.1 now applies to guarantee barriers and nodegnd in this case, let

To be more specific, let = 1/4, fi(z) = exp(—z)z>0, e -

fa(x) = 2exp(—2x)>0, and f3(x) = exp(z)z<o, fa(z) = Z = ZNA&,. (13)
2 exp(22)4<o- It can then be verified that if;.o = (1,1) then Suchs € S must clearly exist sinceA(Z’) -~ 0 but
x1 is a1-node of order 2. Indeed, in that_ case any eIemegEz\(Ulesxl)) — 0. To see thats must necessarily be in
of B = (0, +00) x (log(2), +-00) x (0, +-00) is al-barrier of q clusterc, notevs ¢ C, f(z) = 0 ¥z € Z, which implies
order 2. Znx, =0

Another way to modify the HMM in Exampleé3.2 10 3y Sequences, a, andb of states inS: Let us define an
enforce the assumptions of Lemnal is to change the gxiliary sequence of states, g2, and so on, as follows: If

emission probabilities. Namely, assume that the supgeyts (11) is zero, that is, ifZ = Z N X, for somes € C, then
i=1,....4 are such that;(Ni_,G;) > 0 forall j € S, and gefineq, — s, otherwise lety; be an arbitrary state iV, Let

(8) holds. Now, S = {1,...,4} is the only cluster. Since the ;, pe 5 state with maximal probability of transition gg, i.e.:

matrix P< has al] |t§ entries pos_|t|ve, the conditions of Lemm wa = Dy, Supposep # gi. Then findgs with py, 4, = py, .
3.1are now satisfied and barriers can now be constructed.if . {4, ¢}, find ¢4 : Pasas = ., and so on. LeU be
) ’ . 493 q3’ .

the first index such thaty € {q1,...,qu—1}, thatis,qu = ¢r
IV. PROOF OF THE MAIN RESULT for someT < U. This means that there exists a sequence of

A. Proof of Lemmas.1 states{qr, ..., qu} such that

The proof below is a rather direct construction which = %"~ %

. \ . 0 . grii= D i=1,....U~T.
is, however, technically involved. In order to facilitateet To si(r]nTJrl;fy tszgnrz?;;i(friqgaa\;vithéut loss of aeneralit
exposition of this proof, we have divided it into 17 shorttgar P 9 Y.

qu = 1. Reorder and rename the states as follows:

as follows. ' ' '

1) &, C A: It follows from the assumption8) and s1 % quo1, 50 Cau_a, s Haui, ..,
finiteness ofS that there exists am > 0 such that for all def 1 i1 L8
le S P(x) >0, where SL=Ar =2 =L b =Y T4

def

def def
def a1 = qr-1, a2 = 4qr—-2,...,ap = {1,

0 o€ Xmaxpi file) < (1= Opi (@) |- (10)

(Note thatp; > 0 for all [ € S by irreducibility of Y".) Also
note thatX;,! € S are disjoint and have positive reference

whereP 1 _ 1. Hence,

{QIa---7QT—1aQT7QT+17---7(]U—17QU} =

measure\(A;) > 0. {ap,...;a1,1,80-1,..., 51,1}

2) Z C X andd— K bounds on cluster densitiefs, . € C: Note that if7” = 1, thenP = 0 and{qy,...,...,qu_1,qu} =
Let C be a cluster as in the assumptions of the Lemma. TIM&’ Sp—1,...,51,1}. We have thus introduced special se-
existence ofC implies the existence of a se&f C NiccGi  quencesa = (a1, as,...,ap) ands = (s, s2,...,50_1,1).

andd > 0, such that\(Z) > 0, andVz € Z, the following Clearly,
statements hold: . 1o L o
(i) minjec f;(2) > 6; Psi s _pii’ Z.— yee ey oy Pil = P1s;
(II) max;gzc fj(Z) =0. Pa;—1a; =Pqa;s = 2,...,P, Do, = SL = 1. (14)
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Next, we are going to exhibib = (b1,...,br), another  6) The barrier: Consider the following sequence of obser-
auxiliary sequence for somg > 1, characterized as follows: vations

(I) br =1; . 2 Py / /

(i) 3 bo € C such thaty, b, Pb, b, Por_1br > 0; AR nTyl’ ,7yR_1’y07y1’ etk

(i) if R > 1, thenb;_y #b; foreveryi=1,... R. Yoo Yps 210 Zms (20)

Thus, the pattb;.gz connects cluste€' to state 1 inR steps. where
Let us also require thaiz be minimum such. Clearly such
b and by do exist due to irreducibility ofy”. Note also that
minimality of R guarantees (iii) (in the special case Bf= 1 yi€ Xy, i=1,...,R-1;
it may happen thab, = 1 € S andpy1 > 0, in which case  y, e X}, gy, €X,, j=1,...,2k—1,i=1,.
by can be taken to be alsD. "o v 1 p

4) Determiningk: Let Q™ be themth power of the sub- Yi € o =00 b
stochastic matrixQ = (pi;)i,jec; let ¢;; be the entries of From this point on throughouiV-A15, we shall be proving
Q™. By the hypothesis of the Lemma;; > 0 Vi,j € C. thaty;, is a 1-node of ordetkL + m + P), and, therefore,
This means that for every,j € C, there exists a positive that 0) is a 1-barrier of ordetkL + m + P).
probability path fromi to j of length m. Let ¢;; be the First, letu > 2Lk +2m + 1 + P + R and letxy., be any
probability of a maximum probability path froito j. In other sequence of observations containing the seque2@girf the

! - .
20,%i,%; €Z, 1=1,...,m;

L

cey

words, for evenyi, j € C, there exist states,...,w,,—1 € C talil.
such that 7) «, B, v, n: Recall the definition of the scores (i) (1)
. and the maximum partial |ike|ih00dﬁl(-T-)(u) (3). Now, we
Piwi Pwiws " Pwyywin—1 Pwm-1j = ¢i > 0. (15) need to introduce the following abbreviated notation. Foy a

Let us define i,j € S and appropriate > 0, let

0i(y1) def Su—pP—m—2kr+1(1) VI:0<I1<2EL

q = ‘mi% ¢;; >0, and (16) def ()
” P ) = p) (w— P —m — 2kL + 1), (21)
A= r?eas?“}leasx{ﬁ Py > O}’ AN O (- P—m—2kL—R+1) Wi:
1<I<R-1,

wherep}’s are as defined in7j. Choosek sufficiently large dot
for the following to hold: 0i(21) = Su—20k—2m-pP—p+1(i) VI:0<1<m,
5\ 2" pgg)(zl) d:d'pz(-;)(u—2Lk—2m—P—R—|—l),
1-gttg () A (18)
o . . 5:(2)) Sy (i) VI:1<1<m,
wheree is as in (L0) andé and K are as introduced iflV-A2. (), def ()
5) Thes-path: We now fix the state sequence pij (21) = pi’ (w—m+1). (22)

Also, we will be frequently using the scores correspondmng t
(19) y . )

20, Y1, Yok, andyark, hence the following further abbrevia-
tions:

b07b17"'7bR1817821'"782L/€7a17"'1aP7

wheresrjri = s, j = 1,...,2k = 1,4 =1,...,L, (and
in particularsz; = 1, j = 1,...,2k). The sequencelf) def o def o def o def o .
will be called thes-path The s-path is a concatenation of iz0), B = 3ilzm), % = 8ilyo), mi = SilyLe)
2k s cycles s1.1,, the beginning and the end of which areéNote thatvj ¢ C, f(z) = f;j(2]) = fi(z1) =0,1=1,...,m
connected to the clustér via positive probability pathb and by construction ofZ (§1V-A2). Hence,a; = 5, =0 Vj ¢ C,
a, respectively (recall thaip = q; € C andbg = 1 by con- and a more general implication is that for everg S
struction). Additionally, thebg, s1, 82, ..., Sork, a1, .., Gp- (m—1)

segment of thes-path (L9) has the important propertyl4), i = A by (20)f5(zm) (23)
i.e. every consecutive transition along this segment @oatith _ o (m=1) . f () e C

the maximal transition probability given its destinatidats. @iy (5)Piy (j) ; (20)f3(2m) Tor someis(j) € C;

(However, b, the beginning of thes-path, need not satisfy v = maxﬁipgf’l)(zm)fj(yo) (24)
this property.) Thes-path is almost ready to serve as s iec (R—1) o
promised by the Lemma and its conversiongioy; will be = Bi,()Pi. ;) j(#m) fi(yo) for somei,(j) € C.

completed in§lV-Al17. In fact, the idea of the Lemma and
its proof is to exhibit (a cylinder subset of) observationsls f o
that once emitted along thepath, these observations Would0 T

trap the Viterbi backtracking so that the latter winds uploai t 1 = max~vip{" ™" (y0) f; (ykr) (25)
s-path. That will guarantee that an observation correspandi s '

to the beginning of the-path, is a node. = 'Yi,,(j)pgf(Lj)_;)(yo)fj (yrr) for somei, (j) € S.

Also, we will use the following representation gf in terms
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8) Bounds ons: Recall §IV-A3) that by € C. We show
that for everyj € S

1/ KN\™
B <a () Buo: (26)
Fix j € S and consider;, ;) from (23). Let v1,...,vm—1

be a path that realizqé;”_l)(zo).
Then B; = Qi (7)Pis () 01 for (21)Poy va fuoo (22) -+

and fori=1,2,...,L—1, p}, fs.(Yir+i) = pnjfj(yir+i) for
anyh,j € S.) Supposeg # 1 andty.r,—1 realizesz(.jL_l)(ylL),
i.e. ‘

(L-1)

Pij (32)

(ylL) =Pit, ft1 (ylL+1)pt1 to """
R TP [P (y(l‘i’l)L*l)ptL—l J

Hence, withty and¢; standing fori andj, respectively (and

Puy 13 fj(Zm) < @iy K™ (The lastinequality follows from " _ 1) “the |eft-hand side of28) becomes

(12, (13).) Let wn,..
path fromig ;) to by as in (5). Thus,

m—1
B Zaig(j)pq(;ﬁ(j) b)o (20) foo (2m)
Zaiﬁ(j)piﬁ(j) w1 fwl (Zl)p'wl wszz (22) e
o .pwm71 bofbo (Zm) Z aZB(])qém

(The last inequality again follows froni®), (13).) Sinceq > 0
(16), we thus obtain:

., wm,—1 be a maximum probability

(33)

(pto ot (yiLy1) ) (pn tofto (Vin+2) ) .

Pso s1.Js1 (WiL+1)/ \Dsy 55 fso (Y1212)

(PtL,z to_aJto_s (y(l+1)L71) ) (ptL,l thj(y(l+1)L) )
Psp—sspafsns WarnyL—1)7 \Psp_y s [1Wasnye) /)

Forh =1,..., L such thatt;, # s,

Ptn_1tn fth (ylL-i-h)
Psp_q sn fsh (ylL+h)

<1—¢, sincey;rin € X, (34)
For all otherh, s;, = t;, and therefore, the left-hand side of

(34) becomes “~=t' = Pl < 1 (by property (4).

9) Likelihood ratio bounds:We next prove the following Since the last term of the prci@luaa) above does satisfy84)

m _— Bro om
Bj < aiﬂ(j)K < q(S—:;LK )
as required.
claims
(L-1) (L-1)
Pi1 (ylL) < Piq (ylL)
VieS WI=0,...2k-1,  (27)
v ) fienr)
(L*l) < — €
i1 (i) fiyasyr)
Vi,j€S8,7£1NVI:0<1<2k—1, (28)
P (am) £ (w0) < APBLT (5m) f1 (0)
Vi,j €S, (29)
pE;nJrPfl) (yg]gL) < q71 (E)m—l
PY}HP*D(?J%L) a Y
Vje CVies. (30)

If L =1, then @7) becomesp;; < p1; for all i € S, which

is true by the assumptiop; = p;; made in the course of

constructing thes sequence§(V-A3). If L = 1, then @8)
becomes

pii fi(Wis1)

p11f1(Wis1)
and thus, sincg;; € Xy, 0 <[ < 2k in this case,Z8) is true
by the definition of; (§IV-Al) (and the fact thap] = p11).
Let us next prove27) and @8) for the casel, > 1. Consider
anyl! = 0,1,...,2k — 1. Note that the definitions of the-
path @9), X, (§IV-Al), and the fact thay;;; € X, for
1 <4 < L imply that given observationg;,1..(4+1)—1, the
paths;.;_; realizes the maximum imﬁfl)(yu), ie.

L—1
pgl )(

<l—-e€ Vi,jeS,j#1,

YiL) =P1sy o, L1)Psy sy (31)
“Pspaspoafsia (y(lJrl)Lfl)pSL—l 1
(Indeed,p1 s, fs, (Yir+1)Psy 55 -
“Psp_pspoafs (Y1) L-1)Ps 1 =
Pay fos n+1)ps, - Psy o fsr o (YaryL—1)p7,

(j # 1), (28) is thus proved. Suppose next that..., ;1
realizeSpl(.lL_l)(ylL). With so = 1 andty = 4, similarly to the
previous arguments, we have

L—-1

pﬁ_l)(yu) _ (pth,—l th,fth, (ylLJrh) ) Ptr_q11 <1
ngl_l)(ylL) he1 “Psn—1 snfsnWipn)/ Psy i1
implying (27).

Let us now prove 29). To that end, note that for all
statesh,i,j € S such thatp;, > 0, it follows from the
definitions ) and @7) that

Pin  Pn <y
DPjn DPjn

If R =1, then @9) becomes

i [5(Yo) < Appy1 f1(vo)-

By the definition ofX; (recall thaty, € X;), we have that for
everyi,j € S pijfj(yo) < pifi(yo). Using @5) with i =1
andj = by, we getpifi(yo) < Appy1f1(v0) @oo1 > 0 by
the construction ob §IV-A3). Putting these all together, we
obtain

(35)

Pij fi (o) < pifi(yo) < Apwe1fi(yo), as required.

Consider the cas& > 1. Let t1.gp_1 be a path that realizes
(R-1) ; (R-1)
pi;  (zm),iepy (zm) =

Pity .ftl (yi)ptl ta ft2 (yé) *Ptr_o tR—lftR—l (y,/R—l)ptR—lj'
By the definition ofx; (§IV-Al) and the facts thag,. € A,
r=1,2,...,R—1, andyy € X1, we have

P () £5(0) < Dy For (V)07 Fia () -+

Pr s forn s (Wr—1)P1 f1(y0).  (36)
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Now, by the construction ob (§1V-A3), py,,._, . > 0 for r =

10) v; < const x v1: Combining @4), (26), and @9), we

., R, (bg = 1). Thus, the argument behin@%5) applies see that for every statge S,

here to bound the right-hand side &g6f from above by

Apbo by fbl (yll)Apbl b2fb2 (yé) T
Apr72 br—1 be—l(y;% I)Apr—l 1f1(y0) =
ARpZ()OR Y () f1(yo), as required.
Let us now prove 30). If m =1 then B0) becomes

pgf) (Y2kr) < pgf) (yorr)q

If P =0, then @7) reduces top;; < p1;q~*
because in this case the state = ¢r = 1 belongs toC

Vje CVieS. (37)

(§IV-A3) and p1;¢—! > 1 ((15), (16) with m = 1). To see
why (37) is true with P > 1, note that by the same argumen

as used for proving27) and @8), we now getvh,l € S

pﬁ” (y2kL) fap (y;;) 2 Pg{i;l)(ysz)fl(y;)- (38)

Also, sinceap = ¢ € C (§IV-A3), pa, j¢~' > 1 ((15), (16)
with m = 1). ThUSp( )(kaL) =

4 2
by (4 P (yorr) filyp )1

eg P
by§(38) ngp Y (kaL)faP( ) I}laxplj
<Y an) far (y5)
< pin Y Wane) far (yp)Dar 107" by§(4) 2 (yarr)a ™t

Form > 1, let t.,,—1 be a path reallzm@ e 1)( p). Thus,
m—1
p,(” )(yp) =

= Phty ftl (Zi)ptl tzftz (Zé)
< K™

ftm 1( Zm— l)ptm 1J
(39)

(This is true sincez!. € Z for r = 1,2,...,m — 1 (§IV-A2)
and thus, forp}" ™"
t. € C,r = 1,...,m — 1, implying f(
Now, let t1.m,_1 realizepf:j;1
itive, with ¢, ¢ C, r = 1,..
r=1,2,....,m—1), andap,j
assumptlon o™, §IV-A4). We thus haVQ)aP7

paPtlftl(Zl)ptl t2ft2(z2) ftm 1( Zm— 1)pt7n 1J 2
> qujftl (Zi)ftz(zé) ftm 1( ) > qém h (40)

Combining the bounds 0f3Q) and @0) (¢ > 0, (16)), we
obtain:

om —1 (2l € Z for

)(P):

m— ,, K\m—1
oy V) <pl Ve () Je @)

(P+m—1)

Finally, p;; (yarr) =

by (4) maxp(Pﬂ
les i

by (38), (41)
<

)(y%L)fl (y;;)pz(;nil) (y;;)

m—1
D (okr) fur ()0 (4] >( )/q

by (4) . K\™ 1
< PY;JF 1)(y2kL) (7) /q-

which is true,

(y};) to be positive it is necessary that
)(y;;), which is clearly pos-

e C (recall the positivity

b (29
v ﬁz.,(]) E’Y(])J (Zm)fj (yo)
by (29 _
< By Y (Em) fi(yo) AT
by (26)

<7 (5) " A ) w0)

_ by (24
< Ulggg(ﬁipz(-lf 1)(Zm)f1(y0) V4 )U’Yb

where

U (%)mAR. (42)

rlence

v <Umn Vjes. (43)

11) Further bounds on likelihoodstet I > 0 andn >
0 be integers such thdt+ n < 2k but arbitrary otherwise.
Expandingpg”lL_l)(ylL) recursively according with4), we

obtain
nlL—1 L—1
e )(ylL):il max, 1p§i1 ') fir arnyn) x
L—1
ngm (Yar1yn) fir (y l+2)L)"'pgn,gi)n,l(y(lJran)L)X

X fin—l(y(l+n71)L)p'§fjlli (Y(4n—-1)L)- (44)

S, Pﬁ:l)(yw)fn Wasne) <
(yie) f1(yas1)z), as well as

Since for any i; €

L—1
pgl )

I by (28
pgr,li)r(y(z+r71)L)fiT(y(z+r)L) <

71)(y(l+'rfl)L)f1 (y(l+r)L)a r= 27 sy = 11

(L
P11
and since for any,, ; € S

by (27) (L—1)

(L—1
P1y

b;,_, i(y(lJrnfl) ) < (y(lJrnfl)L),

maximization 44) above is achieved as

follows: p{" Y (y,) = (45)

L—1 L-1

PV ) Ao e)pty P s ) A areyn) -
L7

"P§1 1)(y(l+n72)L)f1(y(lJrnfl)L)pg1 )(y(l+n71)L)-

Now, we replace staté by generic states j € S on the both

ends of the paths iMld) and repeat the above arguments. Thus,

also using 45), we arrive at bound4g) below:

pz(‘?Lil)(ylL)fj Watnyz) <
I+n by (49
H p11 y(u o) f1(Yur) =
u=Il+1
P58 ) fr(yems)  Ving €S, (46)
In particular, 46) statesvi,j € S
pEfL 1)(yo)fj(yk1:) < pgﬁL_l)(yo)ﬁ(ykL)- (47)
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12) n; < const x m1: In order to see k(W for 1, and obtaink?® ' k(1) < £, and so, on until
() < k for somej > 0. Thus,d =
n; <Um Vj€S, 4g) "= J 1(yz)
G-1_ Y1
note: . @ (KL= (03 (er) = 61 (Yeir )P " (e ) Wi p)
Sy = MaxX P, Y0)J5 (YL ECO N
P Y ' P D g ) i) (52)
by (47) (kL*l) by (43
S maxvipi (o) frlyrr) < Applying (45) to the appropriate factors of the right-hand side
by (43 ( by (25) of (52) above, we obtain:

_ Y
< Unp Vo) Aulyer) < Ui

. S1(yi) = 61 (Y, )(Lfl)( o)1 (Y )
13) A representation ofy;: Recall thatk, the number of ~ 91\WiL) = AW L)P1r We L)1 (x0)+1)L
cycles in thes-path, was chosen sufficiently large fdr8f to P W) Alee) -0 () L @) -

hold (in particular,k > 1). We now prove that there exists (L-1)
k€ {l,...,k— 1} such that i1 (Ywo-v-1y)[1Yee-vp)
’ ’ (L—1)
. pit Yo —)L) i)
m = 61wer)D\S " () 1 (yir)- (49) ( ) (L-1)

_ , _ pi1  Wa-vr)filye). (53)
The relation 49) states that (given observations.,) a

maximum-likelihood path (from timel, observationz;) to Also, according to45),
time v — m — P — kL (observationy,;) goes through statée L
at timeu —m — P —2kL + kL, that is whery,,;, is observed. 61(y,€<j>L)p§17 )(ym<j>L)f1(y(N<j>+1)L) e

To see this, suppose no sughexisted.Then, applyingdj (L—1) _s _ (k—rs)L-1),
to (25) and recalling tha®; (y..z,) is introduced in 21), we P Wee-nz) = 01(Yse )Pin (Yr1)-
would have

At the same time,

L—1 L—1
m = anu)]?g»n(l)z»l (o) [, (yL)P§-1 o )(yL)X

X [ (yzL)pE-f;gl)(yzL) = 'p;fjlll)(y(kfl)L)fl (yxL)

(@) by (4)
51 D Ve ) filyrr) < om. (54)

. . _ _ However, we cannot have the strict inequality 54X
forsomej; # 1,..., jk—1 # 1. Furthermore, this would imply above since that, by virtue 0568), would contradict max-

m < imality of ¢1(y;). We have thus arrived ab;(y;,) =
(L—1)
by (28, (@7 L » mpiy - (Ykr) f1(Yeeyn) -
< %(1 (1—e) H (Ye—1yL) f1(yir) (L71)( o (55)
i=1 P11 Ya-1yr)J1\yiL)-
2m k

by<(18) Vi ()@ <£) A- RHp(L 1) (Ya—1y)f1(yir) In summary, for anyl > k and! < 2k there exists a
K realization ofd;(y;z) that goes through state every time

by (43 5\ 2" wheny;r, i =k,...,l, is observed.
< MU (E) F Hp1 1 y(z vo)fi(yir) 15) yrr is a (kL + m + P)-order 1-node:In §IV-A16, we
will prove that for anyi € S,i # 1, and any € C,

by (42) J\™ _ m m
"= g (E) Hngl Yy-nye) filyie) vy T () <P (e), (56)
i=1
which implies thaty;; is a 1-node of ordekL + m + P.
<m lel Wa—1yo) f1(yip)- (50) Indeed, letl € S be arbitrary. Sincef;(z,,) = 0 for every

j € S\ C, any maximum likelihood path to stafeat time
(The last inequality follows fromy < 1 (16) ands < K, “T1 (observationr,+1) must go through a state @i at time
. H /
§IV-A2.) On the other hand, by definitiog%) (andk — 1-fold v (observationz, = z;,.) Formally,

application of @), m >[I, p\s " (we1y) fi(vir), (RLAmtP)

which evidently contradictbQ) above. Therefore; satisfying "iPiy kL (lc_L-i- po1)

(49) and1 < k < k, does exist. = maxnip; " (kL) fi (2Pt
14) An implication of(45_) and (49_) for 01 (yip): Clef_;lrly, B ’ (kL+mtP—1)

the arguments of the previous sectigitVA13) are valid if = Tfleax iP5 (k) fi (2Pt

k is replaced by any € {k,...,2k}. Hence the following by (56) ' L s

generalization of49): For somex () < < lflflefnLX??lpg7 TP () i ()Pt
d1(yir) = 01(yryL)P11 (G=snE= 1)(% wr)fi(yin)- (51) by (4) m pgll“LerJrP)( kL)

We apply 1) recursively, starting wit*) ' { and returning Therefore, by Definitior2.1 y;; is a 1-node of ordekL +
(1) def k(1) < 1. 1f kKM <k, we stop, otherwise we substitutem + P.
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16) Proof of (56): Leti € S andj € C be arbitrary. Let Hence, for every/’ € S,

statej* € S be such thap("" """~ 1)(ykL) - i r)
(kL—1) niv (i, j )PJ j (y2rr)

(m+P—1)
i  (yrr) f- (yakL)p;""; (y2kr) = by (57) e (miP1 by (62)
< miv(i, g )PE;F Nyorr) <

-y, (mAP—1)
v(i,j )P-* i (yarz), where by (62 S\
T y<( )771q (E) (1 1) (m+ )(ysz)

v(i ) € I (yr) £ (yarr), forall i,j € S,

by (30) ) m
We consider the following two cases separately: < (E) v(1,1)p; ( e 1)(ym)
1. There exists a path reallzmg(“ 1)( x) and going (m+P—1)
through state 1 (at th)e time of observing, for some <mv(1,1)py; (y2xr)
Le{k,... 2k} plEEt - by (@) P
€ {k, bopiy (ykr) < mp&ju FP ()
((I=k)L—1) ((2k—1)L—1)
P (rer) f1 (v )py - (i) B \which, by virtue of @), implies 66).
Equation 67) above together with the fundamental recur- 17) Completion of thes-path to ¢;.p; and conclusion:
sion @) yields the following: Finally, let
(kL—1) _
mipig (Yer) = M=2m+2Lk+P+R+2, r=kL+P+m, [=1
by (57 ((l—k)L—l)( )il ((2k—1)L— 1)( ) ) )
= TiPi1 YL ) J1ITNL )Py 4= yiL Recall from§IV-A3 thatb, € C. Since all the entries o™

RS L) CEOED (g (58) &€ positive, there exists a path.,,_1,bp € C such that
YiL)Py YiL)- Puiviy, > 0 andp,,, .5, > 0. Similarly, there must exist
At the same time, the right hand-side 88 can be a pathu,.,, € C such thatp,, >0Vi=1,....m—1

Ui+1

expressed as follows: andp,, ., > 0 (recall thatap € C). Hence, by these, and the
51 (yir) (2k—1)L— 1)( ) constructions ofIV-A5, all of the transitions of the following
1L )Py - YL sequence occur with positive probabilities.
by (55) ((l—k)L—l) ((2k—=1)L—1)
=" mp (ykr) f1(yin)pi - def
by @9 (kL_1) qu:m = (Vo:m—1,b0:Rs S1:2Lk, A1:P, Uiim).- (63)
=" mpyj- (Yke)- (59)

_ ) Clearly, the actual probability of observiig »s is positive, as
There;orlz, if therﬁ ems’;)d € {k,...f,2k} su(;:h th"_"t required. By the constructions @fIV-Al-IV-A3, the condi-
(57) holds, we have by virtue of 5¢) and ©9): jonal probability of B below, giveng:. ., is evidently positive,

kL—1 kL—1 .
nipl(‘j* )(ykL) < nlpgj* )(ykL)v that is as required_
niv (i, j°) < mv(l,57). (60) ot
B= zmt! ><2‘(b1 X X Xy X Xy X Xy X
Hence ﬁzp(kLerJrP 1)(ykL) = X Xyp g XX X Xy X oo X Xy X 2™
by (57) oy (m4P—1) . :
=" niv(i,J7)p (y2r1) Finally, since the sequenc@Q) below was chosen fronB
by (60) en (mAP—1) arbitrarily (58IV-A6) and has been shown to be &barrier of
< mv(LgT)p; (Y2rr) orderr, this completes the proof of the Lemma.
by (4)
(kL4+m+P—1) ’
< mpy (ykL) (20:m> Y1.R—1> Y0:2Lk> Y1. P+ Z1:m) € B. (20

and 66) holds.
2. Assume now that no path exists to satishyr)( Argue as B. Proof of Lemmd.2

for (50) to obtamu(z 7") < Proof: We use the notation of the previous proof in

§IV-A and consider the following two distinct situations: First

(1-¢F H 25 W) i (). (61) (s1v-B1), all barriers fromB as constructed in the proof
n=k+1 of Lemma 3.2 are already separated. Obviously, there is
By 45, the (partial likelihood) product in the right-handnothing to do in this case. The second situatiGiv{B2)
side of 61) equalsv(1,1). Thus, is complementary, in which case a simple extension will
e (mAP—1) immediately ensure separation.
niv (5 )Pje 5 (yarr) < (62) 1) All y € B are already separatedRecall the definition
by 160 7 (1= €/ Lu(1, Dp{ ) (i) of Z from §IV-A2. Consider the two cases in the definition

om separately. First, suppose = 2\ (Uies;), in which caseZ
by 19 - (i) APy, 1)p! (m+P U(yosy) ~ and A are disjoint for every € S. This implies that every
K barrier @0) is already separated. Indeed, for anyl < w <
by (42), (48) s\ m , and for anyy € B, the fact thaty;_max(m.w Z, for
< 771Q( ) v(1,1)p;. ( +P 1)(y2kL)' . Yy UM (mw) &

K example, makes it impossible ¢y} .,,, y1.p—w) € B for any
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Yi.., € X". Consider now the case wheh = Z N X, for
somes € C. Then

BCX;”HxXblx---xXbRﬂ><X1><Xsl><...
X X Xy X Xyy X -0 X X, x xmrt

S2kL—1 ap—1

(64)

Let y € B be arbitrary. Assume first > 1. By construction
(§1V-A3), the states, ..
that (y}.,,, y1:m—w) & B foranyyj.,, € X* whenl <w <r.
Note that the sequence

Om+2:m+Rt2kL+P+1 = (b1:r—1,1, S1:061—1, 1, a1:p—1, 5)

., sg, are all distinct. We now show

11

V. CONCLUSION

As discussed if§l and§l-A in particular, the proper infinite
alignments §11-B) allow us to define the decoding process
V' which is regenerative and can further be stationarized to
become ergodic7]. This in turn allows us to study the
distribution and asymptotic properties not only of the ¥hie
processl but also of the joint processX, V). In particular,
this reveals how different these properties are from thegro
ties of the underlying chail and HMM (X, Y'), respectively.
More specifically, since the proceds$ (resp. (X,V)) can
deviate from the process (resp.(X,Y)) significantly, using
the Viterbi alignmentss;.,, as estimates for the hidden paths

is such that no two consecutive states are equal. It is btraig¥1., might lead to incorrect conclusions not only for finite

forward to verify that there exist indiceg 0 < j < m — 1,

such that, when shiftedv positions to the right, the pair

(as generally appreciated) but also in the limitas> oo [7].
This certainly does not mean that one should not make

Yj+1j42 € X2 would at the same time have to belong tinference based oV but simply suggests that the afore-

X,

Q14w

X X,

qj+2+w

withm+1<j+l4+w<j+2+w<

mentioned differences may need to be taken into account.

m+ R+ 2kL + 1+ P. This is clearly a contradiction sinceOne example of how these asymptotic differences can be

X,

qj+14+w

and X,

0424, are disjoint for that range of indices

successfully accounted for is the adjusted Viterbi trajrfior

A verification of the above fact simply amounts to verifyingdMM parameter estimationif], [12], [7].

that the inequalitynax(0, m —w) < j < min(m—1,m+ R+
2kL —1+ P—w) is consistent for any from the admissible
range:

i.) When0>m—-—w,m—-1<m+R+2kL—1+P—w
(m <w <min(r,R+2kL+ P)),0<j<m-—1Iis
evidently consistent.

i.) When0>m—-—w,m—-1>m+R+2kL—-1+P—w
(max(m,R+2kL+P)<w<r),0<j<m+R+
2kL —1+ P—w is also consistent sinc@ + R+ 2k L —
1+P—r=R+kL-12>0.

ii.) When0<m—-w,m—-1<m+R+2kL—1+P—w
(1 <w <min(m—1, R+2kL+P)),m—w < j <m—1
is consistent sincev > 1.

iv.) When0<m—-—w,m—1>m+R+2kL—1+P —w
(max(1, R+2kL+P—-1) <w <m),m—w < j <m+
R+2kL—1+ P—w is consistent sinc&+2kL—1 > 0.

Next consider the case @f = 1 buts # 1 (that is, P > 0).

ThenB Cc X+l x X, x ---
x X,

2k+1
XXpp_, X X X Kgy X oo ap_1

x xmtL

If s # 1, then alsob; # 1,i =1,...,R—1 anda; # 1,

If known — possibly estimated — these differences might
also be appreciated when the Viterbi paths are used forgredi
tion, or segmentation, df’, e.g. in speech segmentation or in
segmentation of DNA sequences into coding and non-coding
regions, or in detection of CpG islands in DNA sequendé&k [
Indeed, in segmentation of DNA sequences, the underlying
chain Y has few, often two, states (e.g. coding and non-
coding regions, or CpG islands and non-CpG regions), the
probabilities of transitions between the states are vew; lo
hence the true¥Y) and predicted ) hidden paths consist
of long constant blocks. At the same time, it has been noted
that the predicted constant blocks can be somewhat longer
than what the chain parameters would suggest. With the help
of the infinite Viterbi process/ it is now clear that this
discrepancy is not simply due to the random fluctuations but
is systematic, does not vanish asymptotically, and is actlire
consequence of that the transition probabilitie$’odo indeed
often underestimate the true ones. Note that in these exampl
unlike in the estimation of the HMM emission parameters, the
overall performance is directly linked to the accuracy o th
transition probability estimates. Thus, finding the difieces
between the processéX,Y) and (X, V) in this case might

i =1,...,P — 1. To see thaty is separated in this case,help find better alignments.

simply note thaty;— paw(w,m+1) € Xs for any admissiblew.

2) Barriers y € B need not be separatedrinally, we
consider the case wheh = 1 ands = 1 (wheres € C
is such thatZ = Z N &,). This implies thatP = 0, 1 € C,
andp;, > 0, which in turn implies thatR = 1, and

m+1 2k+1 m+1 _ p2m+2k+3
B C Xy x X x X = A& .
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