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A constructive proof of the existence of Viterbi
processes

Jüri Lember, Alexey Koloydenko

Abstract—Since the early days of digital communication, hid-
den Markov models (HMMs) have now been also routinely used
in speech recognition, processing of natural languages, images,
and in bioinformatics. In an HMM (Xi, Yi)i≥1, observations
X1, X2, . . . are assumed to be conditionally independent given
an “explanatory” Markov process Y1, Y2, . . ., which itself is not
observed; moreover, the conditional distribution of Xi depends
solely on Yi. Central to the theory and applications of HMM
is the Viterbi algorithm to find a maximum a posteriori (MAP)
estimateq1:n = (q1, q2, . . . , qn) of Y1:n given observed datax1:n.
Maximum a posteriori paths are also known as Viterbi paths
or alignments. Recently, attempts have been made to study the
behavior of Viterbi alignments when n → ∞. Thus, it has been
shown that in some special cases a well-defined limiting Viterbi
alignment exists. While innovative, these attempts have relied
on rather strong assumptions and involved proofs which are
existential. This work proves the existence of infinite Viterbi
alignments in a more constructive manner and for a very general
class of HMMs.

Index Terms—Asymptotic, HMM, maximum a posteriori path,
Viterbi algorithm, Viterbi extraction, Viterbi training.

I. I NTRODUCTION

L ET Y = (Yi)i≥1 be a Markov chain with state space
S = {1, . . . ,K}, K > 1, and transition matrixP =

(pij)i,j∈S . Suppose thatY is irreducible and aperiodic, hence
a unique stationary distributionπ = πP exists; suppose further
thatYi ∼ π from timei = 1. To every statel ∈ S, let us assign
anemission distributionPl on (X ,B), whereX = RD, theD-
dimensional Euclidean space. Letfl be the density ofPl with
respect to a suitable reference measureλ on (X ,B). Most
commonly,λ is either the Lebesgue measure (continuously
distributedXi) or the counting measure (discretely distributed
Xi).

Definition 1.1: The stochastic process(X,Y ) is a hidden
Markov model if there is a (measurable) functionh such that
for eachn, Xn = h(Yn, en), wheree1, e2, . . . are i.i.d. and
independent ofY .
Hence, the emission distributionPl is the distribution of
h(l, en). The distribution ofX is completely determined by
P and the emission distributionsPl, l ∈ S. It can be shown
that X is also ergodic [1], [2], [3]. Let x1:n = (x1, . . . , xn)
and y1:n = (y1, . . . , yn) be fixed observed and unobserved
realizations, respectively, of HMM(Xi, Yi)i≥1 up to timen.
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Treatingy1:n as parameters to be estimated, letΛ(q1:n;x1:n)
be the likelihood functionP(Y1:n = q1:n)

∏n
i=1 fqi(xi; θqi)

of q1:n, and letV(x1:n) be the set of the maximum-likelihood
estimatesv(x1:n) ∈ Sn of y1:n. The elements ofV(x1:n) are
called(Viterbi) alignmentsand are commonly computed by the
Viterbi algorithm [4], [5]. If P(Y1:n = q1:n) is thought of as
the prior distribution ofY1:n, thenv(x1:n)’s also maximize the
probability mass function of the posterior distribution ofY ,
hence the termmaximum a posteriori (MAP) paths. Besides
their direct significance for prediction ofY from X , Viterbi
alignments, or MAP paths, are also central to the theory
and applications of HMMs [6] in the more general setting
when any parameters of the emission distributionsPl and
any of the transition probabilitiespij , i, j ∈ S, would also
be unknown and of interest. Therefore, asymptotic behavior
of Viterbi alignments is also crucial for the inference on the
unknown parameters [6], [7].

To appreciate that the question of extendingv(x1:n) ad
infinitum is not a trivial one even if the problem of non-
uniqueness ofv(x1:n) is disregarded, suffice it to say that
an additional observationxn+1 can in principle change the
entire alignment based onx1:n, i.e. v(x1:n) andv(x1:n+1)1:n
can disagree significantly, if not fully. Fortunately, the sit-
uation is not hopeless and in this paper we prove that
in most HMMs alignments can be consistently extended
piecewise. Specifically, motifs of (contiguous) observations
z1:b, called barriers, are observed with positive probability,
forcing Viterbi alignments based on extended observations
(x1:n, z1:b, xn+b+1:n+b+r), n ≥ 0, r ≥ 1, to stabilize as
follows: Roughly,v(x1:nz1:bxn+b+1:n+b+r)1:n = v(x1:n) for
all x1:n and all extensionsxn+b+1:n+b+r . To be more precise,
a particular statel ∈ S and an elementbk, called anode, of the
barrierb can be found such that regardless of the observations
before and afterb, the alignment has to go throughl at
time u = n + k. The optimality principle then insures the
stabilization v(x1:nz1:bxn+b+1:n+b+r)1:u = v(x1:u) and in
particularvu = l.

Suppose now thatx1:n contains several barriers with nodes
occurring at timesu1 < · · · < um ≤ n. Then the Viterbi
alignmentv(x1:n) can be constructed piecewise as follows: Let
v(x1:∞) = (v1, v2, . . . , vm, vm+1), wherev1 is the alignment
based onx1:u1 and ending inl, and letvi, for i = 2, 3, . . . ,m+
1, be the conditional alignment based onxui−1:ui

given that
Yui−1 = l; note that the alignmentsvi, i = 2, 3, . . . ,m also
end inl. Now, if a new observationxn+1 is added, then the last
segmentvm+1 can change, but the segmentsv1, . . . , vm are
intact. Suppose now that a realizationx1:∞ contains infinitely
many barriers, and hence also infinitely many nodes. Then the

http://arxiv.org/abs/0804.2138v1
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(piecewise) infinitealignmentv(x1:∞) is defined naturally as
the infinite succession of the segmentsv1, v2, . . . .

In this paper, we prove that for some fixed integerM > 0,
the probability that the finite random processX1:M generates a
barrier, is positive. SinceX is ergodic, almost every realization
x1:∞ has infinitely many barriers and, therefore, the infinite
piecewise alignment is well-defined. Apparently, the piecewise
alignment gives rise to a decoding processv : X∞ 7→ S∞ via
V1:∞ = v(X1:∞), which we shall call theViterbi alignment
process. The construction ensures thatV is regenerative and
ergodic. Note also how this piecewise construction naturally
calls for a buffered on-line implementation in which the
memory used to storexui−1 :ui

can be released oncevi has
been computed.

A. Previous related work and contribution of this work

The problem of constructing infinite Viterbi processes has
been brought to the attention of the IEEE Information Theory
community fairly recently by [8] and [9]. Although the piece-
wise structure of Viterbi alignments was already acknowledged
in [10], to our best knowledge, the subject has been first
seriously considered in [8], [9]. In these latter works, the
existence of infinite alignments for certain special cases,such
as K = 2 and Markov chains with additive white Gaussian
noise, has been proved. In particular, in these cases the authors
of [8], [9] have proved the existence of ‘meeting times’ and
‘meeting states’, which are a special (stronger) type of nodes.
While innovative, the main result of [8] (Theorem 2) makes
several restrictive assumptions and is proved in an existential
manner, which prevents its extension beyond theK = 2 case.

Independently of these works, [11], [7], [12] have developed
a more general theory to include the problem of estimating
unknown parameters (θi, andpij , i, j ∈ S). Namely, the focus
of this theory has been the Viterbitraining (VT), or extraction,
algorithm [13]. Competing with EM-based procedures, this
algorithm provides computationally and intuitively appealing
estimates which, on the other hand, are biased, even in the
limit when n → ∞. In order to reduce this bias, theadjusted
Viterbi training (VA) has been introduced in [11], [7], [12].
Naturally, VA relies on the existence of infinite alignments
and their ergodic properties. Although the general theory has
been presented in [12], [7], some of the main results of the
theory (Lemma 3.1 and 3.2 of [7]) have appeared without
proof due to the limitations of scope and size. This paper
slightly refines these results and, most importantly, presents
their complete proofs. Whereas these results are formulated for
general HMMs (K ≥ 2), [14] has most recently considered in
full detail the special case ofK = 2, generalizing similar
results of [8], [9]. Specifically, it has been proved in [14]
that infinitely many barriers (and hence the infinite Viterbi
alignment) exist for any aperiodic and irreducible 2-state
HMM. Thus, the results presented here generalize the ones of
[14] and [8], [9] for K ≥ 2. It turns out that this generalization
is far from being straightforward and requires a more advanced
analysis and tools. Furthermore, as we show below, when
K > 2, not every aperiodic and irreducible HMM has
infinitely many nodes, undermining the piecewise construction

of infinite alignments for those models. The disappearance
of nodes is due to the fact that an aperiodic and irreducible
Markov chain can have zeros in the transition matrix. If this
possibility is excluded, as is the case in [8], [9], the ‘meeting
times’ and ‘meeting states’ of [8], [9] are sufficient to prove
the existence of infinite Viterbi alignments for many HMMs
used in practice. In their recent communication with us, the
authors of [8], [9] have corrected those statements in their
above works where the strict positivity of the transition matrix
is implicitly assumed but formally omitted (see [7] for details).
At the same time, in order to accommodate for zeros in the
transition matrix, [7] introduced a more general notion of
nodes, effectively removing the limitations of the notion of
‘meeting times’ and ‘meeting states’. However, the price for
this generalization has been rather high due to the interfering
issue of non-uniqueness of (finite) Viterbi alignments. Fora
detailed treatment of the piecewise construction of the infinite
alignment and process in general HMMs, and the role of the
infinite Viterbi process for the adjusted Viterbi training theory,
we refer to the state-of-the-art article [7].

B. Organization of the rest of the paper

In §II we briefly outline the construction of the infinite
alignments§II-B based on [7]. This includes definitions of
nodes§II-A and barriers§II-C. Next, §III states our main
results which have first appeared in [7] and guarantee the
existence of the alignment processV . In §III-B , we give
a counterexample to explain the necessity of our technical
assumptions. In§IV, we present a complete and detailed
proof of our main results. This is followed in§V by a brief
discussion of the significance of the presented results.

II. CONSTRUCTION

A. Nodes

First, consider thescores

δu(l)
def
= max

q∈Su−1
Λ
(

(q, l);x1:u

)

. (1)

Thus, δu(l) is the maximum of the likelihood of the paths
terminating atu in statel. Note thatδ1(l) = πlfl(x1) and the
recursion below

δu+1(j) = max
l∈S

(δu(l)plj)fj(xu+1) ∀ u ≥ 1, ∀j ∈ S,

helps to verify thatV(x1:n), the set of all the Viterbi
alignments, can be written as follows:V(x1:n) =
{v ∈ Sn : ∀i ∈ S, δn(vn) ≥ δn(i) and
∀u : 1 ≤ u < n, vu ∈ t(u, vu+1)}, where∀u ≥ 1, ∀j ∈ S,

t(u, j)
def
= {l ∈ S : ∀i ∈ S δu(l)plj ≥ δu(i)pij}. (2)

Next, we introducep(r)ij (u), the maximum of the likeli-
hood realized along the paths connecting statesi and j

at times u and u + r, respectively. Thus,p(0)ij (u)
def
=

pij and ∀u ≥ 1, and ∀r ≥ 1, let p
(r)
ij (u)

def
=

maxq1:r∈Sr piq1fq1(xu+1)pq1q2fq2(xu+2)pq2q3 · · ·

· · · pqr−1qrfqr (xu+r)pqrj . (3)
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Note also

δu+1(j) = max
i∈S

{

δu−r(i)p
(r)
ij (u − r)

}

fj(xu+1) ∀r < u,

p
(r)
ij (u) = max

q∈S
p
(r−1)
iq (u)fq(xu+r)pqj . (4)

Definition 2.1: Let 0 ≤ r < n, u ≤ n − r and let l ∈ S.
Givenx1:u+r , the firstu+ r observations,xu is said to be an
l-node of orderr if

δu(l)p
(r)
lj (u) ≥ δu(i)p

(r)
ij (u) ∀i, j ∈ S. (5)

Also, xu is said to be a node of orderr if it is an l-node of
orderr for somel ∈ S; xu is said to be a strong node of order
r if the inequalities in (5) are strict for everyi, j ∈ S, i 6= l.1

Let x1:n be such thatxui
is an li-node of orderr, 1 ≤ i ≤ k,

for somek < n, and assumeuk+r < n andui+1 > ui+r for
all i = 1, 2, . . . , k − 1. Such nodes are said to beseparated.

B. Piecewise alignment

Supposex1:n is such that for someui, ri, i = 1, 2, . . . , k,
u1 + r1 < u2 + r2 < · · · < uk + rk < n, xui

is an li-
node of orderri. It follows then easily from the definition
of the node that there exists a Viterbi alignmentv(x1:n) ∈
V(x1:n) that goes throughli at ui (i.e. vui

= li) for each
i = 1, 2, . . . , k (see [7]). It is not difficult to verify that such
v(x1:n) can actually be computed as follows: Obtainv1, a
path that is optimal among all those that end atu1 in l1. (Note
that unless the order of the nodexu1 is 0, v1 need not be in
V(x1:u1).) Givenxu1+1:u2 , continue on by takingv2 to be a
maximum likelihood path froml1 to l2. That is,v2 maximizes
the constrained likelihood under the initial distribution(pl1·)
and the constraintv2u2−u1

= l2. Now, (v1, v2) maximizes the
likelihood givenx1:u2 over all paths ending withl2. Similarly,
we define the piecesv3, . . . , vk. Finally, vk+1 is chosen to
maximize the (unconstrained) likelihood givenxuk+1:n under
the initial distribution(plk·).

The separated nodes assumptionui+1 > ui + r, 1 ≤ i < k,
is not restrictive at all since it is always possible to choose
from any infinite sequence of nodes an infinite subsequence
of separated ones. The reason for this requirement has to do
with the non-uniqueness of alignments and is as follows. The
fact that xui

is an rth order li-node guarantees that when
backtracking fromui+r down toui, ties (if any) can be broken
in such a way that, regardless of the values ofxui+r+1:n and
how ties are broken in betweenn andui + r, the alignment
goes throughli atui. At the same time, segmentui, . . . , ui+r
is ‘delicate’, that is, unlessxui

is a strong node, breaking the
ties arbitrarily withinui, . . . , ui + r can result invui

6= li.
Hence, when neitherxui

norxui+1 is strong andui+1 ≤ ui+r,
breaking the ties in favor ofxui

can result invui+1 6= li+1.
Clearly, such a pathological situation is impossible ifr = 0
and might also be rare in practice even forr > 0.

1Note that ifxu is a node of orderr, it is then also a node of any order
higher thanr. Hence, the order of a node is defined to be the minimum such
r.

To formalize the piecewise construction, let

W l(x1:n)
def
= {v ∈ Sn : vn = l

Λ(v;x1:n) ≥ Λ(w;x1:n) ∀w ∈ Sn : wn = l},

V l(x1:n)
def
= {v ∈ V(x1:n) : vn = l} be the set of

maximizers of the constrained likelihood, and the subset of
maximizers of the (unconstrained) likelihood, respectively,
all elements of which go throughl at n. Note that unlike
W l(x1:n), V l(x1:n) might be empty. It can be shown that
V l(x1:n) 6= ∅ ⇒ V l(x1:n) = W l(x1:n). Also, let subscript the
(l) in Wm

(l)(x1:n) andV(l)(x1:n) refer to(pli)i∈S being used as
the initial distribution in place ofπ. With these notations, the
piecewise alignment isv = (v1, . . . , vk+1) ∈ V(x1:n), where

v1 ∈W l1(x1:u1 ), vk+1 ∈ V(lk)(xuk+1:un
)

vi ∈W li
(li−1)

(xui−1+1:ui
), 2 ≤ i ≤ k. (6)

Moreover, for i = 1, 2, . . . , k, the partial pathsw(i)
def
=

(v1, . . . , vi) ∈ W li(x1:ui
).

If x1:∞ has infinitely many (separated) nodes{xuk
}k≥1

then v(x1:∞), an infinite piecewise alignment based on
the node times{uk(x1:∞)}k≥1 can be defined as follows:
If the sets W li

(li−1)
(xui−1+1:ui

), i = 2, . . . , k as well as
V(lk)(xuk+1:n) and W l1(u1, x1:u1) are singletons, then (6)
immediately defines a unique infinite alignmentv(x1:∞) =
(v1(x1:u1), v

2(xu1+1:u2), . . .). Otherwise, ties must be broken.
If we want our infinite alignment processV to be regen-
erative (see [7]), a natural consistency condition must be
imposed on rules to select uniquev(x1:n) from W l1(x1:u1)×
W l2

(l1)
(xu1+1:u2)×· · ·×W lk

(lk−1)
(xuk−1+1:uk

)×V(lk)(xuk+1:n).
In [7], resulting infinite alignments, as well as decoding
v : X∞ → S∞ based on such alignments, are calledproper.
This condition is, perhaps, best understood by the follow-
ing example. Suppose for somex1:5 ∈ X 5, W1

(1)(x1:5) =

{12211, 11211}, and suppose the tie is broken in favor of
11211. Now, wheneverW1

(l)(x
′
1:4) contains{1221, 1121}, we

naturally require that1221 not be selected. In particular, we
select1121 from W1

(1)(x1:4) = {1221, 1121}. Subsequently,
112 is selected fromW2

(1)(x1:3) = {122, 112}, and so on.
It can be shown that a decoding by piecewise alignment(6)
with ties broken in favor of min (or max) under the reverse
lexicographic ordering ofSn, n ∈ N, is a proper decoding.

Note also that we break ties locally, i.e. within individual
intervalsui−1 +1, . . . , ui, i ≥ 2, enclosed by adjacent nodes.
This is in contrast to global ordering ofV(x1:n), such as
the one in [8], [9]. Since a global order need not respect
decomposition (6), it can fail to produce an infinite alignment
going through infinitely many nodes unless the nodes are
strong.

C. Barriers

Recall (Definition2.1) that nodes of orderr at timeu are
definedrelative to the entire realizationx1:u+r. Thus, whether
xu is a node or not depends, in principle, on all observations
up to xu.

We show below that typically a blockxb
1:k ∈ X k (k ≥ r)

can be found such that for anyw ≥ 1 and for anyx′
1:w ∈ Xw,
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(w + k − r)th element of(x′
1:w, x

b
1:k) is a node of orderr

(relative to(x′
1:w, x

b
1:k)). Sequencesxb

1:k that ensure existence
of such persistent nodes are calledbarriers in [7]. Specifically,

Definition 2.2: Givenl ∈ S, xb
1:k ∈ X k is called an (strong)

l-barrier of order r ≥ 0 and lengthk ≥ 1 if, for any
w ≥ 1 and for everyx′

1:w ∈ Xw, (x′
1:w, x

b
1:k) is such that

(x′
1:w, x

b
1:k)w+k−r is an (strong)l-node of orderr.

III. E XISTENCE

A. Clusters and main results

For eachi ∈ S, let

Gi
def
= {x ∈ X : fi(x) > 0}.

Definition 3.1: We call a subsetC ⊂ S a cluster if the
following conditions are satisfied:

min
j∈C

Pj(∩i∈CGi) > 0, and max
j 6∈C

Pj(∩i∈CGi) = 0.

Hence, a cluster is a maximal subset of states such thatGC =
∩i∈CGi, the intersection of the supports of the corresponding
emission distributions, is ‘detectable’. Distinct clusters need
not be disjoint and a cluster can consist of a single state. In
this latter case such a state is not hidden, since it is exposed by
any observation it emits. WhenK = 2, S is the only cluster
possible, since otherwise all observations would expose their
states and the underlying Markov chain would cease to be
hidden. In practice, many other HMMs have the entirety ofS
as their (necessarily unique) cluster.

We now state the main results. For every statel ∈ S, let

p∗l = max
j

pjl. (7)

Lemma 3.1:Assume that for each statel ∈ S,

Pl

({

x ∈ X : fl(x)p
∗
l > max

i,i6=l
fi(x)p

∗
i

})

> 0. (8)

Moreover, assume that there exists a clusterC ⊂ S and
a positive integerm such that themth power of the sub-
stochastic matrixQ = (pij)i,j∈C is strictly positive. Then,
for some integersM and r, M > r ≥ 0, there exist a set
B = B1×· · ·×BM ⊂ XM , anM -tuple of statesq1:M ∈ SM

and a statel ∈ S, such that everyx1:M ∈ B is an l-barrier of
orderr (and lengthM ), qM−r = l and

P (X1:M ∈ B, Y1:M = q1:M ) > 0.

Lemma 3.1 implies thatP(X1:M ∈ B) > 0. Also, since
every element ofB is a barrier of orderr, the ergodicity
of X therefore guarantees thatalmost every realization ofX
contains infinitely manyl-barriers of orderr. Hence, almost
every realization ofX also has infinitely manyl-nodes of order
r.

In two state HMMs,S is the only cluster (otherwise the
Markov chain would not be hidden), henceQ = P. The irre-
ducibility and aperiodicity in this case imply strict positivity of
P2. Thus, the only condition to be verified is (8), which in this
case writes asP1 ({x ∈ X : f1(x)p

∗
1 > f2(x)p

∗
2}) > 0 and

P2 ({x ∈ X : f2(x)p
∗
2 > f1(x)p

∗
1}) > 0. In [14], it is shown

that in the case of two state HMMs, one of these two positivity
conditions is always met, which, in fact, turns out to be
sufficient for the existence of infinitely many strong barriers in
this (K = 2) case. Thus,any two state HMM with irreducible
and aperiodicY has infinitely many strong barriers.Lemma
3.1significantly generalizes this and associated results of [14].
The caseK = 2 is special in several respects, hence the
generalization is technically involved, and in particularthe
CLT-based proof of the existence of infinitely many nodes in
[8] (Theorem 2) does not apply whenK > 2.

For certain technical reasons, instead of extracting subse-
quences of separated nodes from general infinite sequences of
nodes guaranteed by Lemma3.1, we achieve node separation
by adjusting the notion of barriers. Namely, note that tworth-
order l-barriersxj:j+M−1 andxi:i+M−1 might be inB with
j < i ≤ j + r, implying that the associated nodesxj+M−r−1

andxi+M−r−1 are not separated. Thus, we impose onB the
following condition:

xj:j+M−1 , xi:i+M−1 ∈ B, i 6= j ⇒ |i− j| > r. (9)

If (9) holds, we say that the barriers fromB ⊂ XM are
separated. This is often easy to achieve by a simple extension
of B as shown in the following example. Suppose there exists
x ∈ X such thatx 6∈ Bm, for all m = 1, 2, . . . ,M . All
elements ofB∗ def

= {x} × B are evidently barriers, and
moreover, they are now separated. The following Lemma
incorporates a more general version of the above example.

Lemma 3.2:Suppose the assumptions of Lemma3.1 are
satisfied. Then, for some integersM andr, M > r ≥ 0, there
existB = B1×· · ·×BM ⊂ XM , q1:M ∈ SM , andl ∈ S, such
that everyxb

1:M ∈ B is a separatedl-barrier of orderr (and
lengthM ), qM−r = l, andP (X1:M ∈ B, Y1:M = q1:M ) >
0.

B. Counterexamples

The condition onC in Lemma 3.1 might seem technical
and even unnecessary. We next give an example of an HMM
where the cluster condition is not met and no node (barrier)
can occur. Then, we will modify the example to enforce the
cluster condition and consequently gain barriers.

Example 3.2:Let K = 4 and consider an ergodic Markov
chain with transition matrix

P =









1
2 0 0 1

2
0 1

2
1
2 0

1
2 0 1

2 0
0 1

2 0 1
2









.

Let the emission distributions be such that (8) is satisfied and
G1 = G2 andG3 = G4 andG1∩G3 = ∅. Hence, in this case
there are two disjoint clustersC1 = {1, 2}, C2 = {3, 4}. The
matricesQi corresponding toCi, i = 1, 2 are

Q1 = Q2 =

(

1
2 0
0 1

2

)

.

Evidently, the cluster assumption of Lemma3.1is not satisfied.
Note also that the alignment cannot change (in one step)
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its state to the opposite one within the same cluster. Since
the supportsG1,2 and G3,4 are disjoint, any observation
exposes the corresponding cluster. Hence any sequence of
observations can be regarded as a sequence of blocks emitted
from alternating clusters. However, the alignment inside each
block stays constant. It can be shown that in this case noxu

can be a node (of any order) for anyn > 1, x1:n ∈ Xn, and
1 ≤ u < n.

Let us modify the HMM in Example3.2 to ensure the
assumptions of Lemma3.1.

Example 3.3:Let ǫ be such that0 < ǫ < 1
2 and let us

replaceP by the following transition matrix








1
2 − ǫ ǫ 0 1

2
ǫ 1

2 − ǫ 1
2 0

1
2 0 1

2 0
0 1

2 0 1
2









.

Let the emission distributions be as in the previous example.
In this case, the clusterC1 satisfies the assumption of Lemma
3.1. As previously, every observation exposes its cluster.
Lemma 3.1 now applies to guarantee barriers and nodes.
To be more specific, letǫ = 1/4, f1(x) = exp(−x)x≥0,
f2(x) = 2 exp(−2x)x≥0, and f3(x) = exp(x)x≤0, f4(x) =
2 exp(2x)x≤0. It can then be verified that ifx1:2 = (1, 1) then
x1 is a 1-node of order 2. Indeed, in that case any element
of B = (0,+∞)× (log(2),+∞)× (0,+∞) is a 1-barrier of
order 2.

Another way to modify the HMM in Example3.2 to
enforce the assumptions of Lemma3.1 is to change the
emission probabilities. Namely, assume that the supportsGi,
i = 1, . . . , 4 are such thatPj(∩

4
i=1Gi) > 0 for all j ∈ S, and

(8) holds. Now,S = {1, . . . , 4} is the only cluster. Since the
matrixP2 has all its entries positive, the conditions of Lemma
3.1 are now satisfied and barriers can now be constructed.

IV. PROOF OF THE MAIN RESULT

A. Proof of Lemma3.1

The proof below is a rather direct construction which
is, however, technically involved. In order to facilitate the
exposition of this proof, we have divided it into 17 short parts
as follows.

1) Xl ⊂ X : It follows from the assumption (8) and
finiteness ofS that there exists anǫ > 0 such that for all
l ∈ S Pl(Xl) > 0, where

Xl
def
=

{

x ∈ X : max
i,i6=l

p∗i fi(x) < (1 − ǫ)p∗l fl(x)
}

. (10)

(Note thatp∗l > 0 for all l ∈ S by irreducibility of Y .) Also
note thatXl, l ∈ S are disjoint and have positive reference
measureλ(Xl) > 0.

2) Z ⊂ X andδ−K bounds on cluster densitiesfi, i ∈ C:
Let C be a cluster as in the assumptions of the Lemma. The
existence ofC implies the existence of a set̂Z ⊂ ∩i∈CGi

and δ > 0, such thatλ(Ẑ) > 0, and∀z ∈ Ẑ, the following
statements hold:

(i) mini∈C fi(z) > δ;
(ii) maxj 6∈C fj(z) = 0.

Indeed,minj∈C Pj(∩i∈CGi) > 0 implies (and indeed is
equivalent to)λ(∩i∈CGi) > 0. The latter implies the exis-
tence ofẐ ⊂ ∩i∈CGi with positive λ-measure andδ > 0
such that (i) holds. Sinceλ(∩i∈CGi) > 0, the condition
Pj(∩i∈CGi) = 0 for j 6∈ C implies (is equivalent to)fj = 0
λ-almost everywhereon ∩i∈CGi. Thus,maxj 6∈C fj = 0 λ-
almost everywhereon ∩i∈CGi, which implies (ii).

Evidently,K > 0 can be chosen sufficiently large to make
λ({z ∈ X : fi(z) ≥ K}) arbitrarily small, and in particular,

to guarantee thatλ({z ∈ X : fi(z) ≥ K}) < λ(Ẑ)
|C| , where

|C| is the size ofC. Clearly then, redefininĝZ
def
= Ẑ ∩ {z ∈

X : fi(z) < K, i ∈ C} preservesλ(Ẑ) > 0. Next, consider

λ(Ẑ\(∪l∈SXl)). (11)

If (11) is positive, then define

Z
def
= Ẑ\(∪l∈SXl). (12)

If (11) is zero, then there must bes ∈ C such that

λ(Ẑ ∩ Xs) > 0

and in this case, let

Z
def
= Ẑ ∩ Xs. (13)

Such s ∈ S must clearly exist sinceλ(Ẑ) > 0 but
λ(Ẑ\(∪l∈SXl)) = 0. To see thats must necessarily be in
the clusterC, note∀s 6∈ C, fs(z) = 0 ∀z ∈ Ẑ, which implies
Ẑ ∩ Xs = ∅.

3) Sequencess, a, andb of states inS: Let us define an
auxiliary sequence of statesq1, q2, and so on, as follows: If
(11) is zero, that is, ifZ = Ẑ ∩ Xs for somes ∈ C, then
defineq1 = s, otherwise letq1 be an arbitrary state inC. Let
q2 be a state with maximal probability of transition toq1, i.e.:
pq2 q1 = p∗q1 Supposeq2 6= q1. Then findq3 with pq3 q2 = p∗q2 .
If q3 6∈ {q1, q2}, find q4 : pq4 q3 = p∗q3 , and so on. LetU be
the first index such thatqU ∈ {q1, . . . , qU−1}, that is,qU = qT
for someT < U . This means that there exists a sequence of
states{qT , . . . , qU} such that

• qT = qU
• qT+i = argmaxj pjqT+i−1 , i = 1, . . . , U − T.

To simplify the notation and without loss of generality, assume
qU = 1. Reorder and rename the states as follows:

s1
def
= qU−1, s2

def
= qU−2, . . . , si

def
= qU−i, . . . ,

sL
def
= qT = 1 i = 1, . . . , L

def
= U − T,

a1
def
= qT−1, a2

def
= qT−2, . . . , aP

def
= q1,

whereP
def
= T − 1. Hence,

{q1, . . . , qT−1, qT , qT+1, . . . , qU−1, qU} =

{aP , . . . , a1, 1, sL−1, . . . , s1, 1}.

Note that ifT = 1, thenP = 0 and{q1, . . . , . . . , qU−1, qU} =
{1, sL−1, . . . , s1, 1}. We have thus introduced special se-
quencesa = (a1, a2, . . . , aP ) and s = (s1, s2, . . . , sL−1, 1).
Clearly,

psi−1 si =p∗si , i = 2, . . . , L, p∗s1 = p1 s1

pai−1 ai
=p∗ai

, i = 2, . . . , P, p∗a1
= sL = 1. (14)
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Next, we are going to exhibitb = (b1, . . . , bR), another
auxiliary sequence for someR ≥ 1, characterized as follows:

(i) bR = 1;
(ii) ∃ b0 ∈ C such thatpb0 b1pb1 b2 · · · pbR−1 bR > 0;

(iii) if R > 1, thenbi−1 6= bi for every i = 1, . . . , R.

Thus, the pathb1:R connects clusterC to state 1 inR steps.
Let us also require thatR be minimum such. Clearly such
b and b0 do exist due to irreducibility ofY . Note also that
minimality of R guarantees (iii) (in the special case ofR = 1
it may happen thatb1 = 1 ∈ S and p1 1 > 0, in which case
b0 can be taken to be also1).

4) Determiningk: Let Qm be themth power of the sub-
stochastic matrixQ = (pij)i,j∈C ; let qij be the entries of
Qm. By the hypothesis of the Lemma,qij > 0 ∀i, j ∈ C.
This means that for everyi, j ∈ C, there exists a positive
probability path fromi to j of length m. Let q∗ij be the
probability of a maximum probability path fromi to j. In other
words, for everyi, j ∈ C, there exist statesw1, . . . , wm−1 ∈ C
such that

piw1pw1w2 · · · pwm−1wm−1pwm−1j = q∗ij > 0. (15)

Let us define

q = min
i,j∈C

q∗i j > 0, and (16)

A = max
i∈S

max
j∈S

{

p∗i
pji

: pji > 0

}

, (17)

wherep∗i ’s are as defined in (7). Choosek sufficiently large
for the following to hold:

(1 − ǫ)k−1 < q2
(

δ

K

)2m

A−R, (18)

whereǫ is as in (10) andδ andK are as introduced in§IV-A2.
5) Thes-path: We now fix the state sequence

b0, b1, . . . , bR, s1, s2, . . . , s2Lk, a1, . . . , aP , (19)

where sLj+i = si, j = 1, . . . , 2k − 1, i = 1, . . . , L, (and
in particular sLj = 1, j = 1, . . . , 2k). The sequence (19)
will be called thes-path. The s-path is a concatenation of
2k s cycles s1:L, the beginning and the end of which are
connected to the clusterC via positive probability pathsb and
a, respectively (recall thataP = q1 ∈ C and bR = 1 by con-
struction). Additionally, thebR, s1, s2, . . . , s2Lk, a1, . . . , aP -
segment of thes-path (19) has the important property (14),
i.e. every consecutive transition along this segment occurs with
the maximal transition probability given its destination state.
(However,b, the beginning of thes-path, need not satisfy
this property.) Thes-path is almost ready to serve asq1:M
promised by the Lemma and its conversion toq1:M will be
completed in§IV-A17. In fact, the idea of the Lemma and
its proof is to exhibit (a cylinder subset of) observations such
that once emitted along thes-path, these observations would
trap the Viterbi backtracking so that the latter winds up on the
s-path. That will guarantee that an observation corresponding
to the beginning of thes-path, is a node.

6) The barrier: Consider the following sequence of obser-
vations

z0, z1, . . . , zm, y′1, . . . , y
′
R−1, y0, y1, . . . , y2Lk,

y
′′

1 , . . . , y
′′

P , z
′
1, . . . , z

′
m, (20)

where

z0, zi, z
′
i ∈ Z, i = 1, . . . ,m;

y′i ∈ Xbi , i = 1, . . . , R− 1;

y0 ∈ X1, yi+Lj ∈ Xsi , j = 1, . . . , 2k − 1, i = 1, . . . , L

y
′′

i ∈ Xai
, i = 1, . . . , P.

From this point on throughout§IV-A15, we shall be proving
that yLk is a 1-node of order(kL +m + P ), and, therefore,
that (20) is a 1-barrier of order(kL+m+ P ).

First, letu ≥ 2Lk + 2m+ 1 + P + R and letx1:u be any
sequence of observations containing the sequence (20) in the
tail.

7) α, β, γ, η: Recall the definition of the scoresδu(i) (1)
and the maximum partial likelihoodsp(r)i j (u) (3). Now, we
need to introduce the following abbreviated notation. For any
i, j ∈ S and appropriater ≥ 0, let

δi(yl)
def
= δu−P−m−2kL+l(i) ∀l : 0 ≤ l ≤ 2kL

p
(r)
ij (yl)

def
= p

(r)
ij (u− P −m− 2kL+ l), (21)

p
(r)
ij (y′l)

def
= p

(r)
ij (u− P −m− 2kL−R+ l) ∀l :

1 ≤ l ≤ R− 1,

δi(zl)
def
= δu−2Lk−2m−P−R+l(i) ∀l : 0 ≤ l ≤ m,

p
(r)
ij (zl)

def
= p

(r)
ij (u− 2Lk − 2m− P −R+ l),

δi(z
′
l)

def
= δu−m+l(i) ∀l : 1 ≤ l ≤ m,

p
(r)
ij (z′l)

def
= p

(r)
ij (u−m+ l). (22)

Also, we will be frequently using the scores corresponding to
z0, y′1, yLk, andy2Lk, hence the following further abbrevia-
tions:

αi
def
= δi(z0), βi

def
= δi(zm), γi

def
= δi(y0), ηi

def
= δi(yLk).

Note that∀j 6∈ C, f(z0) = fj(z
′
l) = fj(zl) = 0, l = 1, . . . ,m

by construction ofZ (§IV-A2). Hence,αj = βj = 0 ∀j 6∈ C,
and a more general implication is that for everyj ∈ S

βj = max
i∈C

αip
(m−1)
ij (z0)fj(zm) (23)

= αiβ(j)p
(m−1)
iβ(j) j

(z0)fj(zm) for someiβ(j) ∈ C;

γj = max
i∈C

βip
(R−1)
ij (zm)fj(y0) (24)

= βiγ(j)p
(R−1)
iγ (j) j

(zm)fj(y0) for someiγ(j) ∈ C.

Also, we will use the following representation ofηj in terms
of γ:

ηj = max
i∈S

γip
(kL−1)
i j (y0)fj(ykL) (25)

= γiη(j)p
(kL−1)
iη(j) j

(y0)fj(ykL) for someiη(j) ∈ S.
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8) Bounds onβ: Recall (§IV-A3) that b0 ∈ C. We show
that for everyj ∈ S

βj < q−1
(K

δ

)m

βb0 . (26)

Fix j ∈ S and considerαiβ(j) from (23). Let v1, . . . , vm−1

be a path that realizesp(m−1)
ij (z0).

Then βj = αiβ(j)piβ(j) v1fv1(z1)pv1 v2fv2(z2) · · ·
pvm−1 jfj(zm) < αiβ(j)K

m. (The last inequality follows from
(12), (13).) Let w1, . . . , wm−1 be a maximum probability
path fromiβ(j) to b0 as in (15). Thus,

βb0 ≥αiβ(j)p
(m−1)
iβ(j) b0

(z0)fb0(zm)

≥αiβ(j)piβ(j)w1
fw1(z1)pw1 w2fw2(z2) · · ·

· · · pwm−1 b0fb0(zm) ≥ αiβ(j)qδ
m.

(The last inequality again follows from (12), (13).) Sinceq > 0
(16), we thus obtain:

βj < αiβ(j)K
m ≤

βb0

qδm
Km,

as required.
9) Likelihood ratio bounds:We next prove the following

claims

p
(L−1)
i1 (ylL) ≤ p

(L−1)
11 (ylL)

∀i ∈ S ∀l = 0, . . . , 2k − 1, (27)

p
(L−1)
ij (ylL)fj(y(l+1)L)

p
(L−1)
11 (ylL)f1(y(l+1)L)

< 1− ǫ

∀i, j ∈ S, j 6= 1,∀l : 0 ≤ l ≤ 2k − 1, (28)

p
(R−1)
ij (zm)fj(y0) ≤ ARp

(R−1)
b01

(zm)f1(y0)

∀i, j ∈ S, (29)

p
(m+P−1)
ij (y2kL)

p
(m+P−1)
1j (y2kL)

≤ q−1
(K

δ

)m−1

∀j ∈ C∀i ∈ S. (30)

If L = 1, then (27) becomespi 1 ≤ p1 1 for all i ∈ S, which
is true by the assumptionp∗1 = p1 1 made in the course of
constructing thes sequence (§IV-A3). If L = 1, then (28)
becomes

pijfj(yl+1)

p11f1(yl+1)
< 1− ǫ ∀i, j ∈ S, j 6= 1,

and thus, sinceyl+1 ∈ X1, 0 ≤ l < 2k in this case, (28) is true
by the definition ofX1 (§IV-A1) (and the fact thatp∗1 = p1 1).
Let us next prove (27) and (28) for the caseL > 1. Consider
any l = 0, 1, . . . , 2k − 1. Note that the definitions of thes-
path (19), Xsi (§IV-A1), and the fact thatylL+i ∈ Xsi for
1 ≤ i < L imply that given observationsyLl+1:L(l+1)−1, the

paths1:L−1 realizes the maximum inp(L−1)
11 (yLl), i.e.

p
(L−1)
11 (ylL) =p1 s1fs1(ylL+1)ps1 s2 · · · (31)

· · · psL−2 sL−1fsL−1(y(l+1)L−1)psL−1 1.

(Indeed,p1 s1fs1(ylL+1)ps1 s2 · · ·

· · · psL−2 sL−1fsL−1(y(l+1)L−1)psL−1 1 =

p∗s1fs1(ylL+1)p
∗
s2
· · · p∗sL−1

fsL−1(y(l+1)L−1)p
∗
1,

and for i = 1, 2, . . . , L− 1, p∗sifsi(ylL+i) ≥ phjfj(ylL+i) for

anyh, j ∈ S.) Supposej 6= 1 andt1:L−1 realizesp(L−1)
ij (ylL),

i.e.

p
(L−1)
ij (ylL) =pi t1ft1(ylL+1)pt1 t2 · · · (32)

· · · ptL−2 tL−1ftL−1(y(l+1)L−1)ptL−1 j .

Hence, witht0 andtL standing fori andj, respectively (and
s0 = sL = 1), the left-hand side of (28) becomes

( pt0 t1ft1(ylL+1)

ps0 s1fs1(ylL+1)

)( pt1 t2ft2(ylL+2)

ps1 s2fs2(ylL+2)

)

· · · (33)

( ptL−2 tL−1ftL−1(y(l+1)L−1)

psL−2 sL−1fsL−1(y(l+1)L−1)

)( ptL−1 tLfj(y(l+1)L)

psL−1 sLf1(y(l+1)L)

)

.

For h = 1, . . . , L such thatth 6= sh,

pth−1 thfth(ylL+h)

psh−1 shfsh(ylL+h)
< 1− ǫ, sinceylL+h ∈ Xsh . (34)

For all otherh, sh = th and therefore, the left-hand side of
(34) becomes

pth−1 th

psh−1 sh

=
pth−1 sh

p∗

sh

≤ 1 (by property (14)).

Since the last term of the product (33) above does satisfy (34)
(j 6= 1), (28) is thus proved. Suppose next thatt1, . . . , tL−1

realizesp(L−1)
i1 (ylL). With s0 = 1 andt0 = i, similarly to the

previous arguments, we have

p
(L−1)
i 1 (ylL)

p
(L−1)
1 1 (ylL)

=

L−1
∏

h=1

( pth−1 thfth(ylL+h)

psh−1 shfsh(ylL+h)

) ptL−1 1

psL−1 1
≤ 1,

implying (27).

Let us now prove (29). To that end, note that for all
statesh, i, j ∈ S such thatpjh > 0, it follows from the
definitions (7) and (17) that

pih
pjh

≤
p∗h
pjh

≤ A. (35)

If R = 1, then (29) becomes

pijfj(y0) ≤ Apb01f1(y0).

By the definition ofX1 (recall thaty0 ∈ X1), we have that for
every i, j ∈ S pijfj(y0) ≤ p∗1f1(y0). Using (35) with h = 1
and j = b0, we getp∗1f1(y0) ≤ Apb0 1f1(y0) (pb0 1 > 0 by
the construction ofb §IV-A3). Putting these all together, we
obtain

pijfj(y0) < p∗1f1(y0) ≤ Apb01f1(y0), as required.

Consider the caseR > 1. Let t1:R−1 be a path that realizes
p
(R−1)
ij (zm), i.e. p(R−1)

ij (zm) =

pi t1ft1(y
′
1)pt1 t2ft2(y

′
2) · · · ptR−2 tR−1ftR−1(y

′
R−1)ptR−1j .

By the definition ofXl (§IV-A1) and the facts thaty′r ∈ Xbr ,
r = 1, 2, . . . , R− 1, andy0 ∈ X1, we have

p
(R−1)
ij (zm)fj(y0) ≤ p∗b1fb1(y

′
1)p

∗
b2
fb2(y

′
2) · · ·

p∗bR−1
fbR−1(y

′
R−1)p

∗
1f1(y0). (36)
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Now, by the construction ofb (§IV-A3), pbr−1 br > 0 for r =
1, . . . , R, (bR = 1). Thus, the argument behind (35) applies
here to bound the right-hand side of (36) from above by

Apb0 b1fb1(y
′
1)Apb1 b2fb2(y

′
2) · · ·

ApbR−2 bR−1fbR−1(y
′
R−1)ApbR−1 1f1(y0) =

ARp
(R−1)
b0 1 (zm)f1(y0), as required.

Let us now prove (30). If m = 1 then (30) becomes

p
(P )
ij (y2kL) ≤ p

(P )
1j (y2kL)q

−1 ∀j ∈ C∀i ∈ S. (37)

If P = 0, then (37) reduces topij ≤ p1jq
−1 which is true,

because in this case the stateq1 = qT = 1 belongs toC
(§IV-A3) and p1jq

−1 ≥ 1 ((15), (16) with m = 1). To see
why (37) is true withP ≥ 1, note that by the same argument
as used for proving (27) and (28), we now get∀h, l ∈ S

p
(P−1)
1 aP

(y2kL)faP
(y

′′

P ) ≥ p
(P−1)
h′,l (y2kL)fl(y

′′

P ). (38)

Also, sinceaP = q1 ∈ C (§IV-A3), paP jq
−1 ≥ 1 ((15), (16)

with m = 1). Thusp(P )
i j (y2kL) =

by (4)
= max

l∈S
p
(P−1)
i l (y2kL)fl(y

′′

P )pl j

by (38)
≤ p

(P−1)
1aP

(y2kL)faP
(y′′P )max

l∈S
pl j

≤ p
(P−1)
1 aP

(y2kL)faP
(y′′P )

≤ p
(P−1)
1 aP

(y2kL)faP
(y

′′

P )paP jq
−1

by (4)
≤ p

(P )
1 j (y2kL)q

−1.

For m > 1, let t1:m−1 be a path realizingp(m−1)
h j (y

′′

P ). Thus,

p
(m−1)
h j (y

′′

P ) =

= ph t1ft1(z
′
1)pt1 t2ft2(z

′
2) · · · ftm−1(z

′
m−1)ptm−1j

< Km−1. (39)

(This is true sincez′r ∈ Z for r = 1, 2, . . . ,m − 1 (§IV-A2)
and thus, forp(m−1)

h j (y
′′

P ) to be positive it is necessary that
tr ∈ C, r = 1, . . . ,m − 1, implying ftr(z

′
r) < K.)

Now, let t1:m−1 realize p
(m−1)
aP j (y

′′

P ), which is clearly pos-
itive, with tr ∈ C, r = 1, . . . ,m − 1 (z′r ∈ Z for
r = 1, 2, . . . ,m − 1), and aP , j ∈ C (recall the positivity
assumption onQm, §IV-A4). We thus havep(m−1)

aP j (y
′′

P ) =
paP t1ft1(z

′
1)pt1 t2ft2(z

′
2) · · · ftm−1(z

′
m−1)ptm−1j ≥

≥ q∗aP jft1(z
′
1)ft2(z

′
2) · · · ftm−1(z

′
m−1) > qδm−1. (40)

Combining the bounds of (39) and (40) (q > 0, (16)), we
obtain:

p
(m−1)
h j (y

′′

P ) < p
(m−1)
aP j (y

′′

P )
(K

δ

)m−1

/q. (41)

Finally, p(P+m−1)
ij (y2kL) =

by (4)
= max

l∈S
p
(P−1)
il (y2kL)fl(y

′′

P )p
(m−1)
lj (y

′′

P )

by (38), (41)
< p

(P−1)
1 aP

(y2kL)faP
(y

′′

P )p
(m−1)
aP j (y

′′

P )

(

K

δ

)m−1

/q

by (4)
≤ p

(P+m−1)
1j (y2kL)

(

K

δ

)m−1

/q.

10) γj ≤ const× γ1: Combining (24), (26), and (29), we
see that for every statej ∈ S,

γj
by (24)
= βiγ(j)p

(R−1)
iγ(j) j

(zm)fj(y0)

by (29)
≤ βiγ(j)p

(R−1)
b0 1 (zm)f1(y0)A

R

by (26)
≤ q−1

(K

δ

)m

ARβb0p
(R−1)
b0 1 (zm)f1(y0)

≤ U max
i∈S

βip
(R−1)
i 1 (zm)f1(y0)

by (24)
= Uγ1,

where

U
def
= q−1

(K

δ

)m

AR. (42)

Hence

γj ≤ Uγ1 ∀j ∈ S. (43)

11) Further bounds on likelihoods:Let l ≥ 0 and n >
0 be integers such thatl + n ≤ 2k but arbitrary otherwise.
Expandingp(nL−1)

1 1 (ylL) recursively according with (4), we
obtain

p
(nL−1)
1 1 (ylL) = max

i1:n−1∈Sn−1
p
(L−1)
1 i1

(ylL)fi1(y(l+1)L)×

× p
(L−1)
i1 i2

(y(l+1)L)fi2(y(l+2)L) · · · p
(L−1)
in−2 in−1

(y(l+n−2)L)×

× fin−1(y(l+n−1)L)p
(L−1)
in−1 1(y(l+n−1)L). (44)

Since for any i1 ∈ S, p
(L−1)
1 i1

(ylL)fi1(y(l+1)L) ≤

p
(L−1)
1 1 (ylL)f1(y(l+1)L), as well as

p
(L−1)
ir−1 ir

(y(l+r−1)L)fir (y(l+r)L)
by (28)
≤

p
(L−1)
1 1 (y(l+r−1)L)f1(y(l+r)L), r = 2, . . . , n− 1,

and since for anyin−1 ∈ S

p
(L−1)
in−1 1(y(l+n−1)L)

by (27)
≤ p

(L−1)
1 1 (y(l+n−1)L),

maximization (44) above is achieved as

follows: p(nL−1)
1 1 (ylL) = (45)

p
(L−1)
1 1 (ylL)f1(y(l+1)L)p

(L−1)
11 (y(l+1)L)f1(y(l+2)L) · · ·

· · · p
(L−1)
1 1 (y(l+n−2)L)f1(y(l+n−1)L)p

(L−1)
1 1 (y(l+n−1)L).

Now, we replace state1 by generic statesi, j ∈ S on the both
ends of the paths in (44) and repeat the above arguments. Thus,
also using (45), we arrive at bound (46) below:

p
(nL−1)
ij (ylL)fj(y(l+n)L) ≤

l+n
∏

u=l+1

p
(L−1)
11 (y(u−1)L)f1(yuL)

by (45)
=

p
(nL−1)
11 (ylL)f1(y(l+n)L) ∀i, j ∈ S. (46)

In particular, (46) states∀i, j ∈ S

p
(kL−1)
ij (y0)fj(ykL) ≤ p

(kL−1)
11 (y0)f1(ykL). (47)
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12) ηj ≤ const× η1: In order to see

ηj ≤ Uη1 ∀j ∈ S, (48)

note:ηj
(25)
= max

i∈S
γip

(kL−1)
i j (y0)fj(ykL)

by (47)
≤ max

i∈S
γip

(kL−1)
1 1 (y0)f1(ykL)

by (43)
≤

by (43)
≤ Uγ1p

(kL−1)
1 1 (y0)f1(ykL)

by (25)
≤ Uη1.

13) A representation ofη1: Recall thatk, the number of
cycles in thes-path, was chosen sufficiently large for (18) to
hold (in particular,k > 1). We now prove that there exists
κ ∈ {1, . . . , k − 1} such that

η1 = δ1(yκL)p
((k−κ)L−1)
1 1 (yκL)f1(ykL). (49)

The relation (49) states that (given observationsx1:u) a
maximum-likelihood path (from time1, observationx1) to
time u−m−P − kL (observationykL) goes through state1
at timeu−m−P − 2kL+κL, that is whenyκL is observed.

To see this, suppose no suchκ existed.Then, applying (4)
to (25) and recalling thatδ1(yκL) is introduced in (21), we
would have

η1 = γjη(1)p
(L−1)
jη(1) j1

(y0)fj1(yL)p
(L−1)
j1 j2

(yL)×

× fj2(y2L)p
(L−1)
j2 j3

(y2L) · · · p
(L−1)
jk−1 1(y(k−1)L)f1(ykL)

for somej1 6= 1, . . . , jk−1 6= 1. Furthermore, this would imply
η1 <

by (28), (27)
< γjη(1)(1− ǫ)k−1

k
∏

i=1

p
(L−1)
1 1 (y(i−1)L)f1(yiL)

by (18)
< γjη(1)q

2

(

δ

K

)2m

A−R

k
∏

i=1

p
(L−1)
1 1 (y(i−1)L)f1(yiL)

by (43)
≤ γ1Uq2

(

δ

K

)2m

A−R

k
∏

i=1

p
(L−1)
1 1 (y(i−1)L)f1(yiL)

by (42)
= γ1q

(

δ

K

)m k
∏

i=1

p
(L−1)
1 1 (y(i−1)L)f1(yiL)

< γ1

k
∏

i=1

p
(L−1)
1 1 (y(i−1)L)f1(yiL). (50)

(The last inequality follows fromq ≤ 1 (16) and δ < K,
§IV-A2.) On the other hand, by definition (25) (andk−1-fold
application of (4)), η1 ≥ γ1

∏k

i=1 p
(L−1)
1 1 (y(i−1)L)f1(yiL),

which evidently contradicts (50) above. Therefore,κ satisfying
(49) and1 ≤ κ < k, does exist.

14) An implication of(45) and (49) for δ1(ylL): Clearly,
the arguments of the previous section (§IV-A13) are valid if
k is replaced by anyl ∈ {k, . . . , 2k}. Hence the following
generalization of (49): For someκ(l) < l

δ1(ylL) = δ1(yκ(l)L)p
((l−κ(l))L−1)
11 (yκ(l)L)f1(ylL). (51)

We apply (51) recursively, starting withκ(0) def
= l and returning

κ(1) def
= κ(l) < l. If κ(1) ≤ k, we stop, otherwise we substitute

κ(1) for l, and obtainκ(2) def
= κ(l) < κ(1), and so, on until

κ(j) ≤ k for somej > 0. Thus,δ1(ylL) =

= δ1(yκ(j)L)p
((κ(j−1)−κ(j))L−1)
11 (yκ(j)L)f1(yκ(j−1)L) · · ·

p
((l−κ(1))L−1)
11 (yκ(1)L)f1(ylL). (52)

Applying (45) to the appropriate factors of the right-hand side
of (52) above, we obtain:

δ1(ylL) = δ1(yκ(j)L)p
(L−1)
11 (yκ(j)L)f1(y(κ(j)+1)L) · · ·

p
(L−1)
11 (y(k−1)L)f1(ykL) · · · p

(L−1)
11 (ykL)f1(y(k+1)L) · · ·

p
(L−1)
11 (y(κ(j−1)−1)L)f1(yκ(j−1)L) · · ·

p
(L−1)
11 (y(κ(1)−1)L)f1(yκ(1)L) · · ·

p
(L−1)
11 (y(l−1)L)f1(ylL). (53)

Also, according to (45),

δ1(yκ(j)L)p
(L−1)
11 (yκ(j)L)f1(y(κ(j)+1)L) · · ·

p
(L−1)
11 (y(k−1)L) = δ1(yκ(j)L)p

((k−κ(j))L−1)
11 (yκ(j)L).

At the same time,

δ1(yκ(j)L)p
((k−κ(j))L−1)
11 (yκ(j)L)f1(ykL)

by (4)
≤ η1. (54)

However, we cannot have the strict inequality in (54)
above since that, by virtue of (53), would contradict max-
imality of δ1(ylL). We have thus arrived atδ1(ylL) =

η1p
(L−1)
11 (ykL)f1(y(k+1)L) · · ·

· · · p
(L−1)
11 (y(l−1)L)f1(ylL). (55)

In summary, for anyl ≥ k and l ≤ 2k there exists a
realization of δ1(ylL) that goes through state1 every time
whenyiL, i = k, . . . , l, is observed.

15) ykL is a (kL+m+P )-order 1-node:In §IV-A16, we
will prove that for anyi ∈ S, i 6= 1, and anyj ∈ C,

ηip
(kL+m+P−1)
ij (ykL) ≤ η1p

(kL+m+P−1)
1j (ykL), (56)

which implies thatykL is a 1-node of orderkL + m + P .
Indeed, letl ∈ S be arbitrary. Sincefj(z′m) = 0 for every
j ∈ S \ C, any maximum likelihood path to statel at time
u+1 (observationxu+1) must go through a state inC at time
u (observationxu = z′m.) Formally,

ηip
(kL+m+P )
il (ykL) =

= max
j∈S

ηip
(kL+m+P−1)
ij (ykL)fj(z

′
m)pjl

= max
j∈C

ηip
(kL+m+P−1)
ij (ykL)fj(z

′
m)pjl

by (56)
≤ max

j∈C
η1p

(kL+m+P−1)
1j (ykL)fj(z

′
m)pjl

by (4)
= η1p

(kL+m+P )
1l (ykL).

Therefore, by Definition2.1 ykL is a 1-node of orderkL +
m+ P .
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16) Proof of (56): Let i ∈ S and j ∈ C be arbitrary. Let
statej∗ ∈ S be such thatp(kL+m+P−1)

i j (ykL) =

p
(kL−1)
i j∗ (ykL)fj∗(y2kL)p

(m+P−1)
j∗ j (y2kL) =

ν(i, j∗)p
(m+P−1)
j∗ j (y2kL), where

ν(i, j)
def
= p

(kL−1)
ij (ykL)fj(y2kL), for all i, j ∈ S.

We consider the following two cases separately:

1. There exists a path realizingp(kL−1)
i j∗ (ykL) and going

through state 1 at the time of observingylL for some
l ∈ {k, . . . , 2k}. p(kL−1)

i j∗ (ykL) =

p
((l−k)L−1)
i 1 (ykL)f1(ylL)p

((2k−l)L−1)
1 j∗ (ylL). (57)

Equation (57) above together with the fundamental recur-
sion (4) yields the following:

ηip
(kL−1)
i j∗ (ykL) =

by (57)
= ηip

((l−k)L−1)
i 1 (ykL)f1(ylL)p

((2k−l)L−1)
1 j∗ (ylL)

by (21), (4)
≤ δ1(ylL)p

((2k−l)L−1)
1 j (ylL). (58)

At the same time, the right hand-side of (58) can be
expressed as follows:

δ1(ylL)p
((2k−l)L−1)
1 j∗ (ylL)

by (55)
= η1p

((l−k)L−1)
1 1 (ykL)f1(ylL)p

((2k−l)L−1)
1 j∗

by (45)
= η1p

(kL−1)
1 j∗ (ykL). (59)

Therefore, if there existsl ∈ {k, . . . , 2k} such that
(57) holds, we have by virtue of (58) and (59):
ηip

(kL−1)
i j∗ (ykL) ≤ η1p

(kL−1)
1 j∗ (ykL), that is

ηiν(i, j
∗) ≤ η1ν(1, j

∗). (60)

Hence,ηip
(kL+m+P−1)
i j (ykL) =

by (57)
= ηiν(i, j

∗)p
(m+P−1)
j∗ l (y2kL)

by (60)
≤ η1ν(1, j

∗)p
(m+P−1)
j∗ j (y2kL)

by (4)
≤ η1p

(kL+m+P−1)
1 j (ykL)

and (56) holds.
2. Assume now that no path exists to satisfy (57). Argue as

for (50) to obtainν(i, j∗) <

(1− ǫ)k−1
2k
∏

n=k+1

p
(L−1)
1 1 (y(n−1)L)f1(ynL). (61)

By 45, the (partial likelihood) product in the right-hand
side of (61) equalsν(1, 1). Thus,

ηiν(i, j
∗)p

(m+P−1)
j∗ j (y2kL) < (62)

by (61)
< ηi(1 − ǫ)k−1ν(1, 1)p

(m+P−1)
j∗ j (y2kL)

by (18)
< ηiq

2

(

δ

K

)2m

A−Rν(1, 1)p
(m+P−1)
j∗ j (y2kL)

by (42), (48)
≤ η1q

(

δ

K

)m

ν(1, 1)p
(m+P−1)
j∗ j (y2kL).

Hence, for everyj′ ∈ S,

ηiν(i, j
′)p

(m+P−1)
j′ j (y2kL)

by (57)
≤ ηiν(i, j

∗)p
(m+P−1)
j∗ j (y2kL)

by (62)
<

by (62)
< η1q

(

δ

K

)m

ν(1, 1)p
(m+P−1)
j∗ j (y2kL)

by (30)
≤ η1

(

δ

K

)

ν(1, 1)p
(m+P−1)
1 j (y2kL)

< η1ν(1, 1)p
(m+P−1)
1 j (y2kL)

by (4)
≤ η1p

(kL+m+P−1)
1 j (ykL),

which, by virtue of (4), implies (56).

17) Completion of thes-path to q1:M and conclusion:
Finally, let

M = 2m+ 2Lk + P +R+ 2, r = kL+ P +m, l = 1.

Recall from§IV-A3 that b0 ∈ C. Since all the entries ofQm

are positive, there exists a pathv0:m−1, b0 ∈ C such that
pvi vi+1 > 0 and pvm−1b0 > 0. Similarly, there must exist
a pathu1:m ∈ C such thatpui ui+1 > 0 ∀i = 1, . . . ,m − 1
andpaP u1 > 0 (recall thataP ∈ C). Hence, by these, and the
constructions of§IV-A5, all of the transitions of the following
sequence occur with positive probabilities.

q1:M
def
= (v0:m−1, b0:R, s1:2Lk, a1:P , u1:m). (63)

Clearly, the actual probability of observingq1:M is positive, as
required. By the constructions of§§IV-A1-IV-A3, the condi-
tional probability ofB below, givenq1:M , is evidently positive,
as required.

B
def
= Zm+1 ×Xb1 × · · · × XbR−1 ×X1 ×Xs1×

· · · × Xs2kL−1
×X1 ×Xa1 × · · · × XaP

×Zm.

Finally, since the sequence (20) below was chosen fromB
arbitrarily (§IV-A6) and has been shown to be anl-barrier of
orderr, this completes the proof of the Lemma.

(z0:m, y′1:R−1, y0:2Lk, y
′′

1:P , z
′
1:m) ∈ B. (20)

B. Proof of Lemma3.2

Proof: We use the notation of the previous proof in
§IV-A and consider the following two distinct situations: First
(§IV-B1), all barriers fromB as constructed in the proof
of Lemma 3.2 are already separated. Obviously, there is
nothing to do in this case. The second situation (§IV-B2)
is complementary, in which case a simple extension will
immediately ensure separation.

1) All y ∈ B are already separated:Recall the definition
of Z from §IV-A2. Consider the two cases in the definition
separately. First, supposeZ = Ẑ\(∪l∈SXl), in which caseZ
andXl are disjoint for everyl ∈ S. This implies that every
barrier (20) is already separated. Indeed, for anyw, 1 ≤ w ≤
r, and for anyy ∈ B, the fact thatyM−max(m,w) 6∈ Z, for
example, makes it impossible for(y′1:w, y1:M−w) ∈ B for any
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y′1:w ∈ Xw. Consider now the case whenZ = Ẑ ∩ Xs for
somes ∈ C. Then

B ⊂ Xm+1
s ×Xb1 × · · · × XbR−1 ×X1 ×Xs1 × · · ·

Xs2kL−1
×X1 ×Xa1 × · · · × XaP−1 ×Xm+1

s . (64)

Let y ∈ B be arbitrary. Assume firstL > 1. By construction
(§IV-A3), the statess1, . . . , sL are all distinct. We now show
that(y′1:w, y1:M−w) 6∈ B for anyy′1:w ∈ Xw when1 ≤ w ≤ r.
Note that the sequence

qm+2:m+R+2kL+P+1 = (b1:R−1, 1, s1:2kL−1, 1, a1:P−1, s)

is such that no two consecutive states are equal. It is straight-
forward to verify that there exist indicesj, 0 ≤ j ≤ m − 1,
such that, when shiftedw positions to the right, the pair
yj+1 j+2 ∈ X 2

s would at the same time have to belong to
Xqj+1+w

×Xqj+2+w
with m+ 1 ≤ j + 1 + w < j + 2 + w ≤

m + R + 2kL + 1 + P . This is clearly a contradiction since
Xqj+1+w

andXqj+2+w
are disjoint for that range of indicesj.

A verification of the above fact simply amounts to verifying
that the inequalitymax(0,m−w) ≤ j ≤ min(m−1,m+R+
2kL− 1+P−w) is consistent for anyw from the admissible
range:

i.) When0 ≥ m−w, m− 1 ≤ m+R+ 2kL− 1 + P −w
(m ≤ w ≤ min(r, R + 2kL + P )), 0 ≤ j ≤ m − 1 is
evidently consistent.

ii.) When 0 ≥ m−w, m− 1 > m+R+ 2kL− 1 + P −w
(max(m,R + 2kL + P ) ≤ w ≤ r), 0 ≤ j ≤ m + R +
2kL−1+P−w is also consistent sincem+R+2kL−
1 + P − r = R+ kL− 1 ≥ 0.

iii.) When 0 < m−w, m− 1 ≤ m+R+ 2kL− 1 + P −w
(1 ≤ w ≤ min(m−1, R+2kL+P )), m−w ≤ j ≤ m−1
is consistent sincew ≥ 1.

iv.) When0 < m−w, m− 1 > m+R+ 2kL− 1 + P −w
(max(1, R+2kL+P−1) ≤ w < m), m−w ≤ j ≤ m+
R+2kL−1+P−w is consistent sinceR+2kL−1 ≥ 0.

Next consider the case ofL = 1 but s 6= 1 (that is,P > 0).
ThenB ⊂ Xm+1

s ×Xb1 × · · ·

×XbR−1 ×X 2k+1
1 ×Xa1 × · · · × XaP−1 ×Xm+1

s .

If s 6= 1, then alsobi 6= 1, i = 1, . . . , R − 1 and ai 6= 1,
i = 1, . . . , P − 1. To see thaty is separated in this case,
simply note thatyM−max(w,m+1) 6∈ Xs for any admissiblew.

2) Barriers y ∈ B need not be separated:Finally, we
consider the case whenL = 1 and s = 1 (where s ∈ C
is such thatZ = Ẑ ∩ Xs). This implies thatP = 0, 1 ∈ C,
andp1 1 > 0, which in turn implies thatR = 1, and

B ⊂ Xm+1
1 ×X 2k+1

1 ×Xm+1
1 = X 2m+2k+3

1 .

Clearly, the barriers fromB need not be, and indeed, are not
separated. It is, however, easy to extend them to separated
ones. Indeed, letq0 6= 1 be such thatpq0 1 > 0 and redefine

B
def
= Xq0 × B. Evidently, any shift of anyy ∈ B by w

(1 ≤ w ≤ r) positions to the right makes it impossible fory1
to be simultaneously inXq0 and inX1 (since the latter sets
are disjoint,§IV-A1).

V. CONCLUSION

As discussed in§I and§I-A in particular, the proper infinite
alignments (§II-B) allow us to define the decoding process
V which is regenerative and can further be stationarized to
become ergodic [7]. This in turn allows us to study the
distribution and asymptotic properties not only of the Viterbi
processV but also of the joint process(X,V ). In particular,
this reveals how different these properties are from the proper-
ties of the underlying chainY and HMM (X,Y ), respectively.
More specifically, since the processV (resp. (X,V )) can
deviate from the processY (resp.(X,Y )) significantly, using
the Viterbi alignmentsv1:n as estimates for the hidden paths
Y1:n might lead to incorrect conclusions not only for finiten
(as generally appreciated) but also in the limit asn → ∞ [7].

This certainly does not mean that one should not make
inference based onV but simply suggests that the afore-
mentioned differences may need to be taken into account.
One example of how these asymptotic differences can be
successfully accounted for is the adjusted Viterbi training for
HMM parameter estimation [11], [12], [7].

If known — possibly estimated — these differences might
also be appreciated when the Viterbi paths are used for predic-
tion, or segmentation, ofY , e.g. in speech segmentation or in
segmentation of DNA sequences into coding and non-coding
regions, or in detection of CpG islands in DNA sequences [15].
Indeed, in segmentation of DNA sequences, the underlying
chain Y has few, often two, states (e.g. coding and non-
coding regions, or CpG islands and non-CpG regions), the
probabilities of transitions between the states are very low,
hence the true (Y ) and predicted (V ) hidden paths consist
of long constant blocks. At the same time, it has been noted
that the predicted constant blocks can be somewhat longer
than what the chain parameters would suggest. With the help
of the infinite Viterbi processV it is now clear that this
discrepancy is not simply due to the random fluctuations but
is systematic, does not vanish asymptotically, and is a direct
consequence of that the transition probabilities ofV do indeed
often underestimate the true ones. Note that in these examples,
unlike in the estimation of the HMM emission parameters, the
overall performance is directly linked to the accuracy of the
transition probability estimates. Thus, finding the differences
between the processes(X,Y ) and (X,V ) in this case might
help find better alignments.
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