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Abstract

The relation between the girth and the guaranteed error correction capability ofγ-left regular LDPC codes

when decoded using the bit flipping (serial and parallel) algorithms is investigated. A lower bound on the size of

variable node sets which expand by a factor of at least3γ/4 is found based on the Moore bound. An upper bound

on the guaranteed error correction capability is established by studying the sizes of smallest possible trapping sets.

The results are extended to generalized LDPC codes. It is shown that generalized LDPC codes can correct a linear

fraction of errors under the parallel bit flipping algorithmwhen the underlying Tanner graph is a good expander.

It is also shown that the bound cannot be improved whenγ is even by studying a class of trapping sets. A lower

bound on the size of variable node sets which have the required expansion is established.

Index Terms

Low-density parity-check codes, bit flipping algorithms, trapping sets, error correction capability

I. INTRODUCTION

Iterative algorithms for decoding low-density parity-check (LDPC) codes [1] have been the focus of

research over the past decade and most of their properties are well understood [2], [3]. These algorithms

operate by passing messages along the edges of a graphical representation of the code known as the

Tanner graph, and are optimal when the underlying graph is a tree. Message passing decoders perform

remarkably well which can be attributed to their ability to correct errors beyond the traditional bounded

distance decoding capability. However, in contrast to bounded distance decoders (BDDs), the guaranteed

error correction capability of iterative decoders is largely unknown.
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The problem of recovering from a fixed number of erasures is solved for iterative decoding on the

binary erasure channel (BEC). If the size of the minimum stopping set in the Tanner graph of a code is

at leastt + 1, then the decoder is guaranteed to recover from anyt erasures. Orlitskyet al. [4] studied

the relation between stopping sets and girth and derived bounds on the smallest stopping set in anyd-left

regular Tanner graph with girthg.

An analogous result does not exist for decoding on other channels such as the binary symmetric channel

(BSC) and the additive white Gaussian noise (AWGN) channel.In this paper, we present such a result for

hard decision decoding algorithms. Gallager [1] proposed two binary message passing algorithms, namely

Gallager A and Gallager B, for decoding over the BSC. He showed that for the column-weightγ ≥ 3 and

ρ > γ, there exist(n, γ, ρ) 1 regular LDPC codes for which the bit error probability asymptotically tends

to zero whenever we operate below the threshold. The minimumdistance was shown to increase linearly

with the code length, but correction of a linear fraction of errors was not shown. Zyablov and Pinsker

[6] analyzed LDPC codes under a simpler decoding algorithm known as the bit flipping algorithm, and

showed that almost all the codes in the regular ensemble withγ ≥ 5 can correct a constant fraction of

worst case errors. Sipser and Spielman [7] used expander graph arguments to analyze two bit flipping

algorithms, serial and parallel. Specifically, they showedthat these algorithms can correct a fraction of

errors if the underlying Tanner graph is a good expander. Burshtein and Miller [8] applied expander

based arguments to show that message passing algorithms canalso correct a fixed fraction of worst case

errors when the degree of each variable node is more than five.Feldmanet al. [9] showed that the linear

programming decoder [10] is also capable of correcting a fraction of errors. Recently, Burshtein [11]

showed that regular codes with variable nodes of degree fourare capable of correcting a linear number of

errors under bit flipping algorithm. He also showed tremendous improvement in the fraction of correctable

errors when the variable node degree is at least five.

Tanner [5] studied a class of codes constructed based on bipartite graphs and short error correcting

codes. Tanner’s work is a generalization of the LDPC codes proposed by Gallager [1] and hence these

codes are referred to as generalized LDPC (GLDPC) codes. Tanner proposed code construction techniques,

decoding algorithms and complexity and performance analysis to analyze these codes and derived bounds

on the rate and minimum distance for these codes. Sipser and Spielman [7] analyzed a special case of

GLDPC codes (which they termed as expander codes) using expansion arguments and proposed explicit

constructions of asymptotically good codes capable of correcting a fraction of errors. Zemor [12] improved

the fraction of correctable errors under a modified decodingalgorithm. Barg and Zemor in [13] analyzed

the error exponents of expander codes and showed that expander codes achieve capacity over the BSC.

1Precise definitions will be given in Section II and we follow standard terminology from [1] and [5]
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Janwa and Lal [14] studied GLDPC codes in the most general setting by considering unbalanced bipartite

graphs. Miladinovic and Fossorier [15] derived bounds on the guaranteed error correction capability of

GLDPC codes for the special case of failures only decoding.

The focus of this paper is to establish lower and upper boundson the guaranteed error correction

capability of LDPC codes and GLDPC codes as a function of their column-weight and girth. For the

case of GLDPC codes, we also find the expansion required to guarantee correction of a fraction of errors

under the parallel bit flipping algorithm, as a function of the error correction capability of the sub-code.

Our approach can be summarized as follows: (a) to establish lower bounds, we determine the size of

variable node sets in a left regular Tanner graph which are guaranteed to have the expansion required by

bit flipping algorithms, based on the Moore bound [16, p.180]and (b) to find upper bounds, we study

the sizes of smallest possible trapping sets [17] in a left regular Tanner graph.

It is well known that a random graph is a good expander with high probability [7]. However, the fraction

of nodes having the required expansion is very small and hence the code length to guarantee correction of

a fixed number of errors must be large. Moreover, determiningthe expansion of a given graph is known

to be NP hard [18], and spectral gap methods cannot guaranteean expansion factor of more than1/2

[7]. On the other hand, code parameters such as column weightand girth can be easily determined or

are assumed to be known for the code under consideration. We prove that for a given column-weight,

the error correction capability grows exponentially in girth. However, we note that since the girth grows

logarithmically in the code length, this result does not show that the bit flipping algorithms can correct a

linear fraction of errors.

To find an upper bound on the number of correctable errors, we study the size of sets of variable

nodes which lead to decoding failures. A decoding failure issaid to have occurred if the output of the

decoder is not equal to the transmitted codeword [17]. The conditions that lead to decoding failures are

well understood for a variety of decoding algorithms such asmaximum likelihood decoding, bounded

distance decoding and iterative decoding on the BEC. However, for iterative decoding on the BSC and

AWGN channel, the understanding is far from complete. Two approaches have been taken in this direction,

namely trapping sets [17] and pseudo-codewords [19]. We adopt the trapping set approach in this paper

to characterize decoding failures. Richardson [17] introduced the notion of trapping sets to estimate the

error floor on the AWGN channel. In [20], trapping sets were used to estimate the frame error rate of

column-weigh-three LDPC codes. In this paper, we define trapping sets with the help of fixed points for

the bit flipping algorithms (both serial and parallel). We then find bounds on the size of trapping sets

based on extremal graphs known as cage graphs [21], thereby finding an upper bound on the guaranteed

error correction capability. By saying that a code with column weightγ and girth2g′ is not guaranteed to
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correctk errors, we mean that there exists a code with column weightγ and girth2g′ that fails to correct

k errors.

The rest of the paper is organized as follows. In Section II, we provide a brief introduction to LDPC

codes, decoding algorithms and trapping sets [17]. In Section III, we prove our main theorem relating the

column weight and girth to the size of variable node sets which expand by a factor of at least3γ/4. We

derive bounds on the size of trapping sets based on cage graphs in Section IV. In Section V, we prove

that the parallel bit flipping algorithm can correct a fraction of errors if the underlying Tanner graph is a

good expander. We conclude with a few remarks in Section VI.

II. PRELIMINARIES

In this section, we first establish the notation and then proceed to give a brief introduction to LDPC

codes and hard decision decoding algorithms. We then give the relation between the error correction

capability of the code and the expansion of the underlying Tanner graph. We finally describe trapping

sets for the algorithms.

A. Graph Theory Notation

We adopt the standard notation in graph theory (see [22] for example).G = (U,E) denotes a graph

with set of nodesU and set of edgesE. When there is no ambiguity, we simply denote the graph byG.

An edgee is an unordered pair(u1, u2) of nodes and is said to be incident onu1 andu2. Two nodesu1

andu2 are said to be adjacent (neighbors) if there is an edgee = (u1, u2) incident on them. The order of

the graph is|U | and the size of the graph is|E|. The degree ofu, d(u), is the number of its neighbors.

A node with degree one is called a leaf or a pendant node. A graph is d-regular if all the nodes have

degreed. The average degreed of a graph is defined asd = 2|E|/|U |. The girthg(G) of a graphG, is

the length of smallest cycle inG. H = (V ∪ C,E ′) denotes a bipartite graph with two sets of nodes;

variable (left) nodesV and check (right) nodesC and edge setE ′. Nodes inV have neighbors only inC

and vice versa. A bipartite graph is said to beγ-left regular if all variable nodes have degreeγ, ρ-right

regular if all check nodes have degreeρ and (γ, ρ) regular if all variable nodes have degreeγ and all

check nodes have degreeρ. The girth of a bipartite graph is even.

B. LDPC Codes and Decoding Algorithms

LDPC codes [1] are a class of linear block codes which can be defined by sparse bipartite graphs [23].

Let G be a bipartite graph with two sets of nodes:n variable nodes andm check nodes. This graph defines

a linear block codeC of lengthn and dimension at leastn−m in the following way: Then variable nodes
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are associated to then coordinates of codewords. A vectorv = (v1, v2, . . . , vn) is a codeword if and only

if for each check node, the modulo two sum of its neighbors is zero. Such a graphical representation of

an LDPC code is called the Tanner graph [5] of the code. The adjacency matrix ofG gives a parity check

matrix of C. An (n, γ, ρ) regular LDPC code has a Tanner graph withn variable nodes each of degreeγ

(column weight) andnγ/ρ check nodes each of degreeρ (row weight). This code has lengthn and rate

r ≥ 1− γ/ρ [23].

We now describe a simple hard decision decoding algorithm known as the parallel bit flipping algorithm

[6], [7] to decode LDPC codes. As noted earlier, each check node imposes a constraint on the neighboring

variable nodes. A constraint (check node) is said to be satisfied by a setting of variable nodes if the sum

of the variable nodes in the constraint is even; otherwise the constraint is unsatisfied.

Parallel Bit Flipping Algorithm

• In parallel, flip each variable that is in more unsatisfied than satisfied constraints.

• Repeat until no such variable remains.

A serial version of the algorithm is also defined in [7] and allthe results in this paper hold for the serial

bit flipping algorithm also. The bit flipping algorithms are iterative in nature but do not belong to the

class of message passing algorithms (see [8] for an explanation).

C. Expansion and Error Correction Capability

Sipser and Spielman [7] analyzed the performance of the bit flipping algorithms using the expansion

properties of the underlying Tanner graph of the code. We summarize the results from [7] below for the

sake of completeness. We start with the following definitions from [7].

Definition 1: Let G = (U,E) with |U | = n1. Thenevery set of at mostm1 nodes expands by a factor

of δ if, for all setsS ⊂ U

|S| ≤ m1 ⇒ |{y : ∃x ∈ S such that(x, y) ∈ E}| > δ|S|.

We consider bipartite graphs and expansion of variable nodes only.

Definition 2: A graph is a(γ, ρ, α, δ) expander if it is a(γ, ρ) regular bipartite graph in which every

subset of at mostα fraction of the variable nodes expands by a factor of at leastδ.

The following theorem from [7] relates the expansion and error correction capability of an(n, γ, ρ) LDPC

code with Tanner graphG when decoded using the parallel bit flipping decoding algorithm.

Theorem 1:[7, Theorem 11] LetG be a(γ, ρ, α, (3/4 + ǫ)γ) expander overn variable nodes, for any

ǫ > 0. Then, the simple parallel decoding algorithm will correctanyα0 < α(1 + 4ǫ)/2 fraction of errors

after log1−4ǫ(α0n) decoding rounds.

Notes:
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1) The serial bit flipping algorithm can also correctα0 < α/2 fraction of errors ifG is a(γ, ρ, α, (3/4)γ)

expander.

2) The results hold for any left regular code as expansion is needed for variable nodes only.

From the above discussion, it is observed that finding the number of variable nodes which are guaranteed

to expand by a factor of at least3γ/4, gives a lower bound on the guaranteed error correction capability

of LDPC codes.

D. Decoding Failures and Trapping Sets

We now characterize failures of the iterative decoders using fixed points and trapping sets. Some of the

following discussion appears in [24], [20], [25] and we include it for sake of completeness.

Consider an LDPC code of lengthn and letx = (x1x2 . . . xn) be the binary vector which is the input to

the iterative decoder. LetS(x) be the support ofx. The support ofx is defined as the set of all positions

i wherexi 6= 0. The set of variable nodes (bits) which differ from their correct value are referred to as

corrupt variables.

Definition 3: [24] A decoder failure is said to have occurred if the output of the decoder is not equal

to the transmitted codeword.

Definition 4: x is a fixed point of the bit flipping algorithm if the set of corrupt variables remains

unchanged after one round of decoding.

Definition 5: [20] The support of a fixed point is known as a trapping set. A(V, C) trapping setT is

a set ofV variable nodes whose induced subgraph hasC odd degree checks.

If the variable nodes corresponding to a trapping set are in error, then a decoder failure occurs. However,

not all variable nodes corresponding to a trapping set need to be in error for a decoder failure to occur.

Definition 6: [20] The minimal number of variable nodes that have to be initially in error for the

decoder to end up in the trapping setT will be referred to ascritical numberm for that trapping set.

Definition 7: [24] A set of variable nodes which if in error lead to a decoding failure is known as a

failure set.

III. COLUMN WEIGHT, GIRTH AND EXPANSION

In this section, we prove our main theorem which relates the column weight and girth of a code to its

error correction capability. We show that the size of variable node sets which have the required expansion

is related to the well known Moore bound [16, p.180]. We startwith a few definitions required to establish

the main theorem.
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A. Definitions

Definition 8: The reduced graphHr = (V ∪ Cr, E
′
r) of H = (V ∪ C,E ′) is a graph with vertex set

V ∪ Cr and edge setE ′
r given by

Cr = C \ Cp, Cp = {c ∈ C : c is a pendant node}

E ′
r = E ′ \ E ′

p, E ′
p = {(vi, cj) ∈ E : cj ∈ Cp}.

Definition 9: Let H = (V ∪ C,E ′) be such that∀v ∈ V, d(v) ≤ γ. The γ augmented graphHγ =

(V ∪ Cγ, E
′
γ) is a graph with vertex setV ∪ Cγ and edge setE ′

γ given by

Cγ = C ∪ Ca, whereCa =

|V |
⋃

i=1

C i
a and

C i
a = {ci1, . . . , c

i
γ−d(vi)

};

E ′
γ = E ′ ∪ E ′

a, whereE ′
a =

|V |
⋃

i=1

E
′i
a and

E
′i
a = {(vi, cj) ∈ V × Ca : cj ∈ C i

a}.

Definition 10: [7, Definition 4] Theedge-vertex incidence graphGev = (U ∪ E,Eev) of G = (U,E)

is the bipartite graph with vertex setU ∪ E and edge set

Eev = {(e, u) ∈ E × U : u is an endpoint of e}.

Notes:

1) The edge-vertex incidence graph is right regular with degree two.

2) |Eev| = 2|E|.

3) g(Gev) = 2g(G).

Definition 11: An inverse edge-vertex incidence graphHiev = (V,E ′
iev) of H = (V ∪C,E ′) is a graph

with vertex setV and edge setE ′
iev which is obtained as follows. Forc ∈ Cr, let N(c) denote the set of

neighbors ofc. Label one nodevi ∈ N(c) as a root node. Then

E ′
iev = {(vi, vj) ∈ V × V : vi ∈ N(c), vj ∈ N(c),

i 6= j, vi is a root node, for somec ∈ Cr}.

Notes:

1) Given a graph, the inverse edge-vertex incidence graph isnot unique.

2) g(Hiev) ≥ g(H)/2, |E ′
iev| = |E ′

r| − |Cr| and |Cr| ≤ |E ′
r|/2.

3) |E ′
iev| ≥ |E ′

r|/2 with equality only if all checks inCr have degree two.

4) The term inverse edge-vertex incidence is used for the following reason. Suppose all checks inH

have degree two. Then the edge-vertex incidence graph ofHiev is H.
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The Moore bound[16, p.180] denoted byn0(d, g) is a lower bound on the least number of vertices in

a d-regular graph with girthg. It is given by

n0(d, g) = n0(d, 2r + 1) = 1 + d

r−1
∑

i=0

(d− 1)i, g odd

n0(d, g) = n0(d, 2r) = 2
r−1
∑

i=0

(d− 1)i, g even.

In [26], it was shown that a similar bound holds for irregulargraphs.

Theorem 2:[26] The number of nodesn(d, g) in a graph of girthg and average degree at leastd ≥ 2

satisfies

n(d, g) ≥ n0(d, g).

Note thatd need not be an integer in the above theorem.

B. The Main Theorem

We now state and prove the main theorem.

Theorem 3:LetG be aγ ≥ 4-left regular Tanner graphG with g(G) = 2g′. Then for allk < n0(γ/2, g
′),

any set ofk variable nodes inG expands by a factor of at least3γ/4.

Proof: Let Gk = (V k ∪Ck, Ek) denote the subgraph induced by a set ofk variable nodesV k. Since

G is γ-left regular,|Ek| = γk. Let Gk
r = (V k ∪ Ck

r , E
k
r ) be the reduced graph. We have

|Ck| = |Ck
r |+ |Ck

p |

|Ek| = |Ek
p |+ |Ek

r |

|Ek
p | = |Ck

p |

|Ck
p | = γk − |Ek

r |.

We need to prove that|Ck| > 3γk/4.

Let f(k, g′) denote the maximum number of edges in an arbitrary graph of order k and girthg′. By

Theorem 2, for allk < n0(γ/2, g
′), the average degree of a graph withk nodes and girthg′ is less than

γ/2. Hence,f(k, g′) < γk/4. We now have the following lemma.

Lemma 1:The number of edges inGk
r cannot exceed2f(k, g′) i.e.,

|Ek
r | ≤ 2f(k, g′).

Proof: The proof is by contradiction. Assume that|Ek
r | > 2f(k, g′). ConsiderGk

iev = (V k, Ek
iev), an

inverse edge vertex incidence graph ofGk. We have

|Ek
iev| > f(k, g′).
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This is a contradiction asGk
eiv is a graph of orderk and girth at leastg′.

We now find a lower bound on|Ck| in terms off(k, g′). We have the following lemma.

Lemma 2: |Ck| ≥ γk − f(k, g′).

Proof: Let |Ek
r | = 2f(k, g′)− j for some integerj ≥ 0. Then |Ek

p | = γk − 2f(k, g′) + j. We claim

that |Ck
r | ≥ f(k, g′) + j. To see this, we note that

|Ek
iev| = |Ek

r | − |Ck
r |, or

|Ck
r | = |Ek

r | − |Ek
iev|.

But

|Ek
iev| ≤ f(k, g′)

⇒ |Ck
r | ≥ 2f(k, g′)− j − f(k, g′)

⇒ |Ck
r | ≥ f(k, g′)− j.

Hence we have,

|Ck| = |Ck
r |+ |Ck

p |

⇒ |Ck| ≥ f(k, g′)− j + γk − 2f(k, g′) + j

⇒ |Ck| ≥ γk − f(k, g′).

The theorem now follows as

f(k, g′) < γk/4

and therefore

|Ck| > 3γk/4.

Corollary 1: Let C be an LDPC code with column-weightγ ≥ 4 and girth2g′. Then the bit flipping

algorithm can correct any error pattern of weight less thann0(γ/2, g
′)/2.

IV. CAGE GRAPHS AND TRAPPING SETS

In this section, we first give necessary and sufficient conditions for a given set of variables to be a

trapping set. We then proceed to define a class of interestinggraphs known as cage graphs [21] and

establish a relation between cage graphs and trapping sets.We then give an upper bound on the error

correction capability based on the sizes of cage graphs. Theproofs in this section are along the same

lines as in Section III. Hence, we only give a sketch of the proofs.
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Theorem 4:Let C be an LDPC code withγ-left regular Tanner graphG. Let T be a set consisting of

V variable nodes with induced subgraphI. Let the checks inI be partitioned into two disjoint subsets;O

consisting of checks with odd degree andE consisting of checks with even degree. ThenT is a trapping

set for bit flipping algorithm iff : (a) Every variable node inI has at least⌈γ/2⌉ neighbors inE , and (b)

No ⌊γ/2⌋+ 1 checks ofO share a neighbor outsideI.

Proof: We first show that the conditions stated are sufficient. LetxT be the input to the bit flipping

algorithm, with supportT . The only unsatisfied constraints are inO. By the conditions of the theorem,

we observe that no variable node is involved in more unsatisfied constraints than satisfied constraints.

Hence, no variable node is flipped and by definitionxT is a fixed point implying thatT is a trapping set.

To see that the conditions are necessary, observe that forxT to be a trapping set, no variable node

should be involved in more unsatisfied constraints than satisfied constraints.

Remark:Theorem 4 is a consequence of Fact 3 from [17].

To determine whether a given set of variables is a trapping set, it is necessary to not only know the

induced subgraph but also the neighbors of the odd degree checks. However, in order to establish general

bounds on the sizes of trapping sets given only the column weight and the girth, we consider only condition

(a) of Theorem 4 which is a necessary condition. A set of variable nodes satisfying condition (a) is known

as apotential trapping set. A trapping set is a potential trapping set that satisfies condition (b). Hence,

a lower bound on the size of the potential trapping set is a lower bound on the size of a trapping set.

It is worth noting that a potential trapping set can always beextended to a trapping set by successively

adding a variable node till condition (b) is satisfied.

Definition 12: [21] A (d, g)-cage graph, G(d, g), is ad-regular graph with girthg having the minimum

possible number of nodes.

A lower bound,nl(d, g), on the number of nodesnc(d, g) in a (d, g)-cage graph is given by the Moore

bound. An upper boundnu(d, g) on nc(d, g) (see [21] and references therein) is given by

nu(3, g) =







4
3
+ 29

12
2g−2 for g odd

2
3
+ 29

12
2g−2 for g even

nu(d, g) =







2(d− 1)g−2 for g odd

4(d− 1)g−3 for g even
.

Theorem 5:Let C be an LDPC code withγ-left regular Tanner graphG and girth2g′. Let T (γ, 2g′)

denote the size of smallest possible potential trapping setof C for the bit flipping algorithm. Then,

|T (γ, 2g′)| = nc(⌈γ/2⌉ , g
′).

Proof: We first prove the following lemma and then exhibit a potential trapping set of sizenc(⌈γ/2⌉ , g
′).

Lemma 3: |T (γ, 2g′)| ≥ nc(⌈γ/2⌉ , g
′).
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Proof: Let T1 be a trapping set with|T1| < nc(⌈γ/2⌉ , g
′) and letG1 denote the induced subgraph

of T1. We can construct a(⌈γ/2⌉ , g′′)- cage graph(g′′ ≥ g) with |T1| < nc(⌈γ/2⌉ , g
′) nodes by removing

edges (if necessary) from the inverse edge-vertex ofG1 which is a contradiction.

We now exhibit a potential trapping set of sizenc(⌈γ/2⌉ , g
′). Let Gev(⌈γ/2⌉ , g

′) be the edge-vertex inci-

dence graph of aG(⌈γ/2⌉ , g′). Note thatGev(⌈γ/2⌉ , g
′) is a left regular bipartite graph withnc(⌈γ/2⌉ , g

′)

variable nodes of degree⌈γ/2⌉ and all checks have degree two. Now considerGev,γ(⌈γ/2⌉ , g
′), the γ

augmented graph ofGev(⌈γ/2⌉ , g
′). It can be seen thatGev,γ(⌈γ/2⌉ , g

′) is a potential trapping set.

Theorem 6:There exists a codeC with γ-left regular Tanner graph of girth2g′ which fails to correct

nc(⌈γ/2⌉ , g
′) errors.

Proof: Let Gev,γ(⌈γ/2⌉ , g
′) be as defined in Theorem 5. Now construct a codeC with column-weight

γ and girth2g′ starting fromGev,γ(⌈γ/2⌉ , g
′) such that the set of variable nodes inGev,γ(⌈γ/2⌉ , g

′) also

satisfies condition (b) of Theorem 4. Then, by Theorem 4 and Theorem 5, the set of variable nodes in

Gev,γ(⌈γ/2⌉ , g
′) with cardinality nc(⌈γ/2⌉ , g

′) is a trapping set and henceC fails to decode an error

pattern of weightnc(⌈γ/2⌉ , g
′).

Remark:We note that forγ = 3 and γ = 4, the above bound is tight. Observe that ford = 2, the

Moore bound isn0(d, g) = g and that a cycle of length2g with g variable nodes is always a potential

trapping set. In fact, for a code withγ = 3 or 4, and Tanner graph of girth greater than eight, a cycle of

the smallest length is always a trapping set (see [24] for theproof).

V. GENERALIZED LDPC CODES

In this section, we first consider two bit flipping decoding algorithms for GLDPC codes. We then

establish a relation between expansion and error correction capability. We also establish a lower bound

on the number of variable nodes that have the required expansion. We then exhibit a trapping set and as

a consequence show that the bound on the required expansion cannot be improved whenγ is even. We

also establish bounds on the size of trapping sets.

We begin with the definition of GLDPC codes by adopting the terminology from expander codes [7].

Definition 13 (Definition 6, [7]): : Let G be a(γ, ρ) regular bipartite graph betweenn variable nodes

(v1, v2, . . . , vn) andnγ/ρ check nodes(c1, c2, . . . , cnγ/ρ). Let b(i, j) be a function designed so that, for

each check nodeci, the variables neighboringci arevb(i,1), vb(i,2), . . . , vb(i,ρ). Let S be an error correcting

code of block lengthρ. The GLDPC codeC(G,S) is the code of block lengthn whose codewords are

the words(x1, x2, . . . , xn) such that, for1 ≤ i ≤ nγ/ρ, (xb(i,1), . . . , xb(i,ρ)) is a codeword ofS.

The terms column-weight, row-weight, check nodes, variable nodes and trapping sets mean the same

as in case of LDPC codes. The codeS at each check node is sometimes referred to as the sub-code.
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A. Decoding algorithms

Tanner [5] proposed different hard decision decoding algorithms to decode GLDPC codes. We now

describe an iterative algorithm known as parallel bit flipping algorithm originally described in [5], which

is employed when the sub-code is capable of correctingt errors.

Parallel bit flipping algorithm: Each decoding round consists of the following steps.

• A variable node sends its current estimate to check nodes.

• A check node performs decoding on incoming messages and findsthe nearest codeword. For all

variable nodes which differ from the codeword, the check node sends a flip message. If the check

node does not find a unique codeword, it does not send any flip messages.

• A variable node flips if it receives more thanγ/2 flip messages.

The set of variable nodes which differ from their correct value are known as corrupt variables. The rest

of the variable nodes are referred to as correct variables. Following the algorithms, we have the following

definition adopted from [7]:

Definition 14: A check node is said to beconfusedif it sends flip messages to correct variable nodes,

or if it does not send flip message to corrupt variable nodes, or both. Otherwise, a check node is said to

be helpful.

Remarks:

1) For the parallel bit flipping decoding algorithm, a check node with sub-code of minimum distance

at leastdmin = 2t+1 can be confused only if it is connected to more thant corrupt variable nodes.

2) The parallel bit flipping algorithm is different from the algorithm presented by Sipser and Spielman

in [7] for expander codes, but is similar to the algorithm proposed by Zemor in [12]. However,

we note that the codes considered in [12] are based ond-regular bipartite graphs and are a special

case of doubly generalized LDPC codes, where each variable node is also associated with an error

correcting code.

3) Apart from helpful checks and confused checks, Sipser andSpielman defined unhelpful checks.

However, our definition of confused checks includes unhelpful checks as well.

4) Miladinovic and Fossorier in [15] considered a decoding algorithm where the decoding at every

check either results in correct decoding or a failure but notmiscorrection. While this assumption is

reasonable when the sub-code is a long code, it is not true in general. We however, point out that

the methodology we adopt can be applied to this case as well.

5) The work by Sipser and Spielman [7], Zemor [12], Barg and Zemor [13] and Janwa and Lal [14]

focused on asymptotic results and explicit construction ofexpander codes. The proofs and con-

structions are based on spectral gap and as noted earlier, such methods cannot guarantee expansion
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factor of more than 1/2. Our proofs require a greater expansion factor.

B. Expansion and Error Correction Capability

We now prove that the above described algorithm can correct afraction of errors if the underlying

Tanner graph is a good expander.

Theorem 7:Let C(G,S) be a GLDPC code with aγ-left regular Tanner graphG. Assume that the

sub-codeS has minimum distance at leastdmin = 2t+ 1 and is capable of correctingt errors. LetG be

a (γ, ρ, α, βγ) expander where

1 > β >
t + 2

2(t+ 1)
.

Then the parallel bit flipping decoding algorithm will correct anyα0 ≤ α fraction of errors.

Proof: Let n be the number of variable nodes inC. Let V be the set of corrupt variables at the

beginning of a decoding round. Assume that|V | ≤ αn. We will show that after the decoding round, the

number of corrupt variables is strictly less than|V |.

Let F be the set of corrupt variables that fail to flip in one decoding round, and letC be the set of

variables that were originally uncorrupt, but which becomecorrupt after one decoding round. After one

decoding round, the set of corrupt variables isF ∪C. In the worst case scenario, a confused check sends

t flip messages to the uncorrupt variables and no flip message tothe corrupt variables. We now have the

following lemma:

Lemma 4:Let Ck be the set of confused checks, then

|Ck| <
(1− β)γ|V |

t
. (1)

Proof: The total number of edges connected to the corrupt variablesis γ|V |. Each confused check

must have at leastt+1 neighbors inV . Let S be the set of helpful checks that have at least one neighbor

in V . Then,

γ|V | ≥ |Ck|(t+ 1) + |S|. (2)

By expansion,

|S|+ |Ck| > βγ|V |. (3)

By (2) and (3), we obtain

|Ck| <
(1− β)γ|V |

t
.
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We now prove that|F ∪C| < |V |. The proof is by contradiction. Assume that|F ∪C| ≥ |V |. Then there

exists a subsetC ′ ⊂ C such that|F ∪C ′| = |V |. We observe that a variable node inF can have at most

⌊γ/2⌋ neighbors that are not inCk. Also, a variable node inC ′ must have at least⌊γ/2⌋ + 1 neighbors

in Ck, and hence can have at most⌈γ/2⌉ − 1 neighbors that are not inCk. Let N(F ∪ C ′) be the set of

neighbors ofF ∪ C ′. Then,

N(F ∪ C ′) ≤ |Ck|+ ⌊
γ

2
⌋|F |+

(

⌈
γ

2
⌉ − 1

)

|C ′|

< |Ck|+
γ

2
|F |+

γ

2
|C ′| = |Ck|+

γ

2
|V |. (4)

Substituting (1) into (4), we obtain

N(F ∪ C ′) <

(

1− β

t
+

1

2

)

γ|V |.

Now

β >
t+ 2

2(t+ 1)

=>
1− β

t
<

2β − 1

2

=>
1− β

t
+

1

2
< β

=> N(F ∪ C ′) < βγ|V |

which is a contradiction.

Remark:The above theorem proves that the parallel bit flipping algorithm can correct a fraction of

errors in linear number of rounds (in code length). However,if we assume an expansion of(β + ǫ)γ, it

can be shown that the number of errors decreases by a constantfactor with every iteration resulting in

convergence in logarithmic number of rounds.

The following theorem establishes a lower bound on the number of nodes in a left regular graph which

expand by a factor required by the above algorithms.

Theorem 8:LetG be aγ-left regular bipartite graph withg(G) = 2g′. Then for allk < n0(γt/(t+1), g′),

any set ofk variable nodes inG expands by a factor of at leastβγ, where

β =
t + 2

2(t+ 1)
.

Proof: The proof is similar to the proof of Theorem 3. Following the notation from Theorem 3, we

note that for allk < n0(γt/(t+ 1), g′),

f(k, g′) <
kγt

2(t+ 1)
.

Since|Ck| ≥ γk − f(k, g′), we have

|Ck| >
t + 2

2(t+ 1)
γk.
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Note that the above theorem holds whenγt/(t+ 1) ≥ 2.

Corollary 2: Let C(G,S) be a GLDPC code with aγ-left regular Tanner graphG and g(G) = 2g′.

Assume that the sub-codeS has minimum distance at leastdmin = 2t+ 1 and is capable of correctingt

errors. Then the parallel bit flipping algorithm can correctany error pattern of weight less thann0(γt/(t+

1), g′).

C. Trapping Sets of GLDPC Codes

We now exhibit a trapping set for the parallel bit flipping algorithm. By examining the expansion of

the trapping set, we show that the bound given in Theorem 7 cannot be improved whenγ is even.

Theorem 9:Let C be a GLDPC code withγ-left regular Tanner graphG. Let T be a set consisting of

V variable nodes with induced subgraphI with the following properties: (a) The degree of each check

in I is either1 or t + 1; (b) Each variable node inV is connected to⌈γ/2⌉ checks of degreet + 1 and

⌊γ/2⌋ checks of degree1; and (c) No⌊γ/2⌋+ 1 checks of degreet+ 1 share a variable node outsideI.

Then,T is a trapping set.

Proof: Observe that all the checks of degreet+ 1 in I are confused. Further, each confused check

does not send flip messages to variable nodes inV . Since any variable node inV is connected to⌈γ/2⌉

confused checks, it remains corrupt. Also, no variable nodeoutsideI can receive more than⌊γ/2⌋ flip

messages. Hence, no variable node which is originally correct can get corrupted. By definition,T is a

trapping set.

It can be seen that the total number of checks inI is equal to|V |(⌊γ/2⌋+ ⌈γ/2⌉ /(t+1)). Hence, the

set of variable nodesV expands by a factor ofγ(t + 2)/(2(t + 1)) when γ is even. Hence, the bound

given in Theorem 7 cannot be improved in this case.

For a set of variable nodes to be a trapping set, it is necessary that every variable node in the set is

connected to at least⌈γ/2⌉ confused checks. This observation leads to the following bound on the size

of trapping sets.

Theorem 10:Let C be a GLDPC code withγ-left regular Tanner graphG and g(G) = 2g′. Let

nc(dl, dr, 2g
′) denote the number of left vertices in a(dl, dr) regular bipartite graph of girth2g′. Then the

size of the smallest possible trapping set ofC is nc(⌈γ/2⌉ , t+ 1, 2g′).

Proof: Follows from Theorem 5 and Theorem 9

Corollary 3: Let C(G,S) be a GLDPC code with aγ-left regular Tanner graphG and g(G) = 2g′.

Assume that the sub-codeS has minimum distance at leastdmin = 2t+ 1 and is capable of correctingt

errors. Then the parallel bit flipping algorithm cannot be guaranteed to correct all error patterns of weight

greater than or equal tonc(⌈γ/2⌉ , t+ 1, 2g′).
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VI. CONCLUDING REMARKS

We derived lower bounds on the guaranteed error correction capability of LDPC and GLDPC codes

by finding bounds on the number of nodes that have the requiredexpansion. The bounds depend on two

important code parameters namely: column-weight and girth. Since the relations between rate, column-

weight, girth and code length are well explored in the literature (see [1], [5] for example), bounds on

the code length needed to achieve certain error correction capability can be derived for different column

weights and sub-codes (for GLDPC codes). The bounds presented in the paper serve as guidelines in

choosing code parameters in practical scenarios.

The lower bounds derived in this paper are weak. However, extremal graphs avoiding three, four and

five cycles have been studied in great detail (see [27], [28])and these results can be used to derive tighter

bounds when the girth is eight, ten or twelve. Also, since an expansion factor of3γ/4 is not necessary

(see [7, Theorem 24]) for LDPC codes, it is possible that tighter lower bounds can be derived for some

cases. The results can be extended to message passing algorithms as well. There is a considerable gap

between the lower bounds and upper bounds on the error correction capability. Deriving lower bounds

based on the sizes of trapping sets rather than expansion maypossibly lead to bridging this gap.

Our approach can be used to derive bounds on the guaranteed erasure recovery capability for iterative

decoding on the BEC by finding the number of variable nodes which expand by a factor ofγ/2. In [4],

the bounds on the guaranteed erasure recovery capability were derived based on the size of the smallest

stopping set. Both approaches give the same bounds, which also coincide with the bounds given by Tanner

[5] for the minimum distance. Results similar to the ones reported by Miladinovic and Fossorier [15] based

on the size of generalized stopping sets can also be derived.
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