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Abstract

The relation between the girth and the guaranteed erroeciion capability ofy-left regular LDPC codes
when decoded using the bit flipping (serial and parallelpathms is investigated. A lower bound on the size of
variable node sets which expand by a factor of at 18agtl is found based on the Moore bound. An upper bound
on the guaranteed error correction capability is estadtidhy studying the sizes of smallest possible trapping sets.
The results are extended to generalized LDPC codes. It isrstimat generalized LDPC codes can correct a linear
fraction of errors under the parallel bit flipping algorithmhen the underlying Tanner graph is a good expander.
It is also shown that the bound cannot be improved whes even by studying a class of trapping sets. A lower

bound on the size of variable node sets which have the rejaitpansion is established.

Index Terms

Low-density parity-check codes, bit flipping algorithmspping sets, error correction capability

I. INTRODUCTION

Iterative algorithms for decoding low-density parity-cke(LDPC) codes [1] have been the focus of
research over the past decade and most of their propergesedr understood [2], [3]. These algorithms
operate by passing messages along the edges of a graphpoaseetation of the code known as the
Tanner graph, and are optimal when the underlying graph iee Message passing decoders perform
remarkably well which can be attributed to their ability tori@ct errors beyond the traditional bounded
distance decoding capability. However, in contrast to ldeghdistance decoders (BDDs), the guaranteed
error correction capability of iterative decoders is ldygenknown.
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The problem of recovering from a fixed number of erasures Igedofor iterative decoding on the
binary erasure channel (BEC). If the size of the minimum itog set in the Tanner graph of a code is
at leastt + 1, then the decoder is guaranteed to recover from taesasures. Orlitskyet al. [4] studied
the relation between stopping sets and girth and derivedd®aon the smallest stopping set in afieft
regular Tanner graph with girth.

An analogous result does not exist for decoding on otherraélarsuch as the binary symmetric channel
(BSC) and the additive white Gaussian noise (AWGN) charindhis paper, we present such a result for
hard decision decoding algorithms. Gallager [1] proposedinary message passing algorithms, namely
Gallager A and Gallager B, for decoding over the BSC. He sldatlvat for the column-weight > 3 and
p > 7, there exist(n, v, p) * regular LDPC codes for which the bit error probability asyatically tends
to zero whenever we operate below the threshold. The minimlistance was shown to increase linearly
with the code length, but correction of a linear fraction ofoes was not shown. Zyablov and Pinsker
[6] analyzed LDPC codes under a simpler decoding algoritimowi as the bit flipping algorithm, and
showed that almost all the codes in the regular ensemble with5 can correct a constant fraction of
worst case errors. Sipser and Spielman [7] used expandph giguments to analyze two bit flipping
algorithms, serial and parallel. Specifically, they showleat these algorithms can correct a fraction of
errors if the underlying Tanner graph is a good expanderstidam and Miller [8] applied expander
based arguments to show that message passing algorithnascacorrect a fixed fraction of worst case
errors when the degree of each variable node is more thanF@ldmanet al. [9] showed that the linear
programming decoder [10] is also capable of correcting atifsa of errors. Recently, Burshtein [11]
showed that regular codes with variable nodes of degreedi@icapable of correcting a linear number of
errors under bit flipping algorithm. He also showed tremersdmprovement in the fraction of correctable
errors when the variable node degree is at least five.

Tanner [5] studied a class of codes constructed based omtitépgraphs and short error correcting
codes. Tanner’'s work is a generalization of the LDPC codepgsed by Gallager [1] and hence these
codes are referred to as generalized LDPC (GLDPC) codesefamoposed code construction techniques,
decoding algorithms and complexity and performance arsatgsanalyze these codes and derived bounds
on the rate and minimum distance for these codes. Sipser piethfan [7] analyzed a special case of
GLDPC codes (which they termed as expander codes) usingiexpaarguments and proposed explicit
constructions of asymptotically good codes capable ofeoting a fraction of errors. Zemor [12] improved
the fraction of correctable errors under a modified decodiggrithm. Barg and Zemor in [13] analyzed

the error exponents of expander codes and showed that expandes achieve capacity over the BSC.

Precise definitions will be given in Section Il and we followarsdard terminology from [1] and [5]
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Janwa and Lal [14] studied GLDPC codes in the most generahgdty considering unbalanced bipartite
graphs. Miladinovic and Fossorier [15] derived bounds o giaranteed error correction capability of
GLDPC codes for the special case of failures only decoding.

The focus of this paper is to establish lower and upper bowmlshe guaranteed error correction
capability of LDPC codes and GLDPC codes as a function ofr tbelumn-weight and girth. For the
case of GLDPC codes, we also find the expansion required t@gigege correction of a fraction of errors
under the parallel bit flipping algorithm, as a function oé tarror correction capability of the sub-code.
Our approach can be summarized as follows: (a) to estalbiskrlbounds, we determine the size of
variable node sets in a left regular Tanner graph which aesagiteed to have the expansion required by
bit flipping algorithms, based on the Moore bound [16, p.180§ (b) to find upper bounds, we study
the sizes of smallest possible trapping sets [17] in a |gftlee Tanner graph.

It is well known that a random graph is a good expander with pigobability [7]. However, the fraction
of nodes having the required expansion is very small andehtmecode length to guarantee correction of
a fixed number of errors must be large. Moreover, determitiiegexpansion of a given graph is known
to be NP hard [18], and spectral gap methods cannot guarantexpansion factor of more than2
[7]. On the other hand, code parameters such as column waighiirth can be easily determined or
are assumed to be known for the code under consideration.rgve phat for a given column-weight,
the error correction capability grows exponentially intigirHowever, we note that since the girth grows
logarithmically in the code length, this result does notwglibat the bit flipping algorithms can correct a
linear fraction of errors.

To find an upper bound on the number of correctable errors, tudy she size of sets of variable
nodes which lead to decoding failures. A decoding failureasl to have occurred if the output of the
decoder is not equal to the transmitted codeword [17]. Thelitions that lead to decoding failures are
well understood for a variety of decoding algorithms suchrasimum likelihood decoding, bounded
distance decoding and iterative decoding on the BEC. Homvéoeiterative decoding on the BSC and
AWGN channel, the understanding is far from complete. Twarapches have been taken in this direction,
namely trapping sets [17] and pseudo-codewords [19]. Weptatthe trapping set approach in this paper
to characterize decoding failures. Richardson [17] inticl the notion of trapping sets to estimate the
error floor on the AWGN channel. In [20], trapping sets wereduo estimate the frame error rate of
column-weigh-three LDPC codes. In this paper, we defineptrapsets with the help of fixed points for
the bit flipping algorithms (both serial and parallel). Weerthfind bounds on the size of trapping sets
based on extremal graphs known as cage graphs [21], therebgdian upper bound on the guaranteed

error correction capability. By saying that a code with coluweighty and girth2¢’ is not guaranteed to
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correctk errors, we mean that there exists a code with column wejgnd girth2¢’ that fails to correct
k errors.

The rest of the paper is organized as follows. In Section d,provide a brief introduction to LDPC
codes, decoding algorithms and trapping sets [17]. In &edtl, we prove our main theorem relating the
column weight and girth to the size of variable node sets wkeipand by a factor of at lea3t /4. We
derive bounds on the size of trapping sets based on cagesgima@ection IV. In Section V, we prove
that the parallel bit flipping algorithm can correct a fractiof errors if the underlying Tanner graph is a

good expander. We conclude with a few remarks in Section VI.

I[I. PRELIMINARIES

In this section, we first establish the notation and then gedcto give a brief introduction to LDPC
codes and hard decision decoding algorithms. We then gieerdlation between the error correction
capability of the code and the expansion of the underlyingn€a graph. We finally describe trapping

sets for the algorithms.

A. Graph Theory Notation

We adopt the standard notation in graph theory (see [22] Xample).G = (U, E) denotes a graph
with set of noded/ and set of edge&. When there is no ambiguity, we simply denote the graptGby
An edgee is an unordered paifu;, u,) of nodes and is said to be incident ap andu,. Two nodesu,
andu, are said to be adjacent (neighbors) if there is an edge(u;, u,) incident on them. The order of
the graph isl{U| and the size of the graph j&|. The degree of;, d(u), is the number of its neighbors.
A node with degree one is called a leaf or a pendant node. Ahgiag-regular if all the nodes have
degreed. The average degregof a graph is defined a¢ = 2|E|/|U|. The girthg(G) of a graphG, is
the length of smallest cycle itr. H = (V U C, E’) denotes a bipartite graph with two sets of nodes;
variable (left) noded” and check (right) node§' and edge sek’. Nodes inl” have neighbors only i’
and vice versa. A bipartite graph is said to deft regular if all variable nodes have degregp-right
regular if all check nodes have degreeand (v, p) regular if all variable nodes have degreeand all

check nodes have degreeThe girth of a bipartite graph is even.

B. LDPC Codes and Decoding Algorithms

LDPC codes [1] are a class of linear block codes which can Eaatkby sparse bipartite graphs [23].
Let G be a bipartite graph with two sets of nodesvariable nodes angh check nodes. This graph defines

a linear block cod€ of lengthn and dimension at least—m in the following way: Then variable nodes
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are associated to thecoordinates of codewords. A vecter= (vy, vy, ..., v,) is a codeword if and only

if for each check node, the modulo two sum of its neighborsei®.zSuch a graphical representation of
an LDPC code is called the Tanner graph [5] of the code. Thacadry matrix of7 gives a parity check
matrix of C. An (n,~, p) regular LDPC code has a Tanner graph witkariable nodes each of degree
(column weight) anduy/p check nodes each of degregrow weight). This code has lengthand rate
r>1—~/p[23].

We now describe a simple hard decision decoding algorithowknas the parallel bit flipping algorithm
[6], [7] to decode LDPC codes. As noted earlier, each chedenmposes a constraint on the neighboring
variable nodes. A constraint (check node) is said to befsatiby a setting of variable nodes if the sum
of the variable nodes in the constraint is even; otherwigsecthinstraint is unsatisfied.

Parallel Bit Flipping Algorithm

« In parallel, flip each variable that is in more unsatisfiechtkatisfied constraints.

« Repeat until no such variable remains.

A serial version of the algorithm is also defined in [7] andth# results in this paper hold for the serial
bit flipping algorithm also. The bit flipping algorithms artenative in nature but do not belong to the

class of message passing algorithms (see [8] for an expbapat

C. Expansion and Error Correction Capability

Sipser and Spielman [7] analyzed the performance of theippifig algorithms using the expansion
properties of the underlying Tanner graph of the code. Wensarize the results from [7] below for the
sake of completeness. We start with the following defingidom [7].

Definition 1: Let G = (U, E) with |U| = n,. Thenevery set of at most:; nodes expands by a factor
of ¢ if, for all setsS Cc U

|S| <my = |{y: 3z € S such that(z,y) € E}| > 0|S5].

We consider bipartite graphs and expansion of variable s\ooéy.

Definition 2: A graph is a(v, p, «, §) expander if it is &y, p) regular bipartite graph in which every
subset of at most fraction of the variable nodes expands by a factor of at leéast
The following theorem from [7] relates the expansion andrecorrection capability of an, v, p) LDPC
code with Tanner grapty when decoded using the parallel bit flipping decoding athanri

Theorem 1:[7, Theorem 11] Let7 be a(~, p, o, (3/4 + €)y) expander over. variable nodes, for any
e > 0. Then, the simple parallel decoding algorithm will corraaty oy < (1 + 4¢)/2 fraction of errors
afterlog, ,.(apn) decoding rounds.

Notes:
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1) The serial bit flipping algorithm can also corregt < «/2 fraction of errors ifG is a(v, p, «, (3/4)7)
expander.

2) The results hold for any left regular code as expansioreedad for variable nodes only.

From the above discussion, it is observed that finding thebeuraf variable nodes which are guaranteed
to expand by a factor of at lea3t//4, gives a lower bound on the guaranteed error correctionbiitya
of LDPC codes.

D. Decoding Failures and Trapping Sets

We now characterize failures of the iterative decodersguiked points and trapping sets. Some of the
following discussion appears in [24], [20], [25] and we umbé it for sake of completeness.

Consider an LDPC code of lengthand letx = (x5 . .. x,) be the binary vector which is the input to
the iterative decoder. Lef(x) be the support ok. The support ofk is defined as the set of all positions
1 wherez; # 0. The set of variable nodes (bits) which differ from their reat value are referred to as
corrupt variables.

Definition 3: [24] A decoder failure is said to have occurred if the outputhe decoder is not equal
to the transmitted codeword.

Definition 4: x is a fixed point of the bit flipping algorithm if the set of coptuvariables remains
unchanged after one round of decoding.

Definition 5: [20] The support of a fixed point is known as a trapping setVAC) trapping set7 is
a set ofVV variable nodes whose induced subgraph @iasdd degree checks.

If the variable nodes corresponding to a trapping set arerar,ghen a decoder failure occurs. However,
not all variable nodes corresponding to a trapping set nedsktin error for a decoder failure to occur.
Definition 6: [20] The minimal number of variable nodes that have to bealht in error for the

decoder to end up in the trapping $etwill be referred to agritical numberm for that trapping set.

Definition 7: [24] A set of variable nodes which if in error lead to a decadfailure is known as a

failure set

IIl. CoLUMN WEIGHT, GIRTH AND EXPANSION

In this section, we prove our main theorem which relates tlenen weight and girth of a code to its
error correction capability. We show that the size of vdaainde sets which have the required expansion
is related to the well known Moore bound [16, p.180]. We stath a few definitions required to establish

the main theorem.
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A. Definitions
Definition 8: The reduced graphHd, = (VUC,,E]) of H = (V UC, E’) is a graph with vertex set
V U C, and edge sef given by

C. = C\C, C,={ceC :cisapendant node
E. = E'\E,, E ={(v,c;) € E:c;€C}.
Definition 9: Let H = (V U C, £’) be such thatvv € V,d(v) < ~. The v augmented graplf, =
(VUud,, E) is a graph with vertex sét’ U C, and edge set’ given by

Vi
C, = CuUC,, whereC, =|JC} and

i=1

C; = {Civ R Cfy—d(%—)}?
14
E, = E'UE,, whereE, =| J E, and
=1
E' = {(vi,c;) €V xCy:c; €CY.
Definition 10: [7, Definition 4] Theedge-vertex incidence graph., = (U U E, E,,) of G = (U, F)
is the bipartite graph with vertex sétU £ and edge set

E., ={(e,u) € E x U :uis an endpoint of g
Notes:
1) The edge-vertex incidence graph is right regular withreegwo.
2) |Ew| = 2|E|.
3) 9(Gen) = 29(G).
Definition 11: An inverse edge-vertex incidence graph., = (V, E!,,) of H = (VUC, E’) is a graph
with vertex setl” and edge sek!,, which is obtained as follows. Fere C,, let N(c) denote the set of

1€V

neighbors ofc. Label one node; € N(c) as a root node. Then

E., = {(vi,v;) €V xV :v; € N(c),v; € N(c),
i # j, v; is a root node, for somee C,}.
Notes:
1) Given a graph, the inverse edge-vertex incidence graplotisinique.
2) g(Hiew) > g(H)/2, |E},,| = |E\| — |C;] and |Gy < |E7|/2.
3) |E;
4) The term inverse edge-vertex incidence is used for tHewoilg reason. Suppose all checksfih

| > |E!|/2 with equality only if all checks inC, have degree two.

ev

have degree two. Then the edge-vertex incidence graph;ofis H.
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The Moore bound[16, p.180] denoted by (d, g) is a lower bound on the least number of vertices in

a d-regular graph with girthy. It is given by

r—1
no(d,g) =no(d,2r+1) = 1+d» (d—1)", g odd
=0

r—1
no(d,g) =no(d,2r) = 2 (d—1)", g even
=0

In [26], it was shown that a similar bound holds for irreguigaphs.
Theorem 2:[26] The number of nodes(d, g) in a graph of girthg and average degree at le@st 2
satisfies
n(d, g) > no(d, g).
Note thatd need not be an integer in the above theorem.

B. The Main Theorem

We now state and prove the main theorem.
Theorem 3:Let G be ay > 4-left regular Tanner grapfy with ¢(G) = 2¢'. Then for allk < ng(v/2, ¢'),
any set ofk variable nodes irG expands by a factor of at lea3t /4.
Proof: Let GF = (V*UC*, E*) denote the subgraph induced by a set: ofariable noded’*. Since

G is v-left regular,| E*| = vk. Let GF = (V¥ U C*, E¥) be the reduced graph. We have

C* = |CF+ 1G]
BY = |E|+|E]
Byl = |Gyl

Gyl = k- Bl

We need to prove thdtC*| > 3vk/4.

Let f(k,¢’) denote the maximum number of edges in an arbitrary graph agrdr and girthg’. By
Theorem 2, for allk < ny(v/2,¢’), the average degree of a graph witmodes and girtly’ is less than
v/2. Hence, f(k,q¢") < vk/4. We now have the following lemma.

Lemma 1: The number of edges i6* cannot exceedf(k, ') i.e.,

|EF| < 2f(k,q).
Proof: The proof is by contradiction. Assume thadt*| > 2f(k, ¢’). ConsiderGY,, = (V* EE,), an

€ev €ev

inverse edge vertex incidence graph@f. We have

|Eiel > f(k.9).
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This is a contradiction a&”*,,
We now find a lower bound ofC*| in terms of f(k, ¢’). We have the following lemma.
Lemma 2:|C*| > vk — f(k, ).
Proof: Let |E}f| =2f(k,g') — j for some integey > 0. Then|E}| = vk — 2f(k, ') + j. We claim

that |C*| > f(k,¢') + j. To see this, we note that

is a graph of ordek and girth at least/’. [ |

12 |Ef| —|CF|, or
CE| = |EF| = |EL,.
But
EL < f(k,9g)

= |G > flkg) .
Hence we have,

ICH = |71+ 1G]
flk,g") —j+vk—2f(k,g") +j
= |C* > Ak~ f(k,g).

= |C¥|

v

The theorem now follows as
fk,g') < vk/4

and therefore
|C*| > 3vk/4.

u
Corollary 1: Let C be an LDPC code with column-weight> 4 and girth2¢’. Then the bit flipping
algorithm can correct any error pattern of weight less thgn /2, ¢') /2.

V. CAGE GRAPHS AND TRAPPING SETS

In this section, we first give necessary and sufficient camakt for a given set of variables to be a
trapping set. We then proceed to define a class of interegtiaghs known as cage graphs [21] and
establish a relation between cage graphs and trapping Wetshen give an upper bound on the error
correction capability based on the sizes of cage graphs.pfbefs in this section are along the same

lines as in Section lll. Hence, we only give a sketch of theofso
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Theorem 4:Let C be an LDPC code with-left regular Tanner graplyr. Let 7 be a set consisting of
V variable nodes with induced subgraphLet the checks T be partitioned into two disjoint subsets,
consisting of checks with odd degree afidtonsisting of checks with even degree. THEns a trapping
set for bit flipping algorithm iff : (a) Every variable node fhas at leasf~/2| neighbors inf, and (b)
No |v/2] + 1 checks ofO share a neighbor outside

Proof: We first show that the conditions stated are sufficient.st;etoe the input to the bit flipping
algorithm, with supporf/. The only unsatisfied constraints aredh By the conditions of the theorem,
we observe that no variable node is involved in more unsatisfonstraints than satisfied constraints.
Hence, no variable node is flipped and by definitionis a fixed point implying tha¥ is a trapping set.

To see that the conditions are necessary, observe that;fdo be a trapping set, no variable node
should be involved in more unsatisfied constraints tharsfsadi constraints. [ |

Remark:Theorem 4 is a consequence of Fact 3 from [17].

To determine whether a given set of variables is a trappingitses necessary to not only know the
induced subgraph but also the neighbors of the odd degrekshdowever, in order to establish general
bounds on the sizes of trapping sets given only the columghtaind the girth, we consider only condition
(a) of Theorem 4 which is a necessary condition. A set of égiaodes satisfying condition (a) is known
as apotential trapping setA trapping set is a potential trapping set that satisfieditimm (b). Hence,

a lower bound on the size of the potential trapping set is atdmound on the size of a trapping set.
It is worth noting that a potential trapping set can alwayskiended to a trapping set by successively
adding a variable node till condition (b) is satisfied.

Definition 12: [21] A (d, g)-cage graphG(d, g), is ad-regular graph with girtly having the minimum
possible number of nodes.

A lower bound,n;(d, g), on the number of nodes.(d, g) in a (d, g)-cage graph is given by the Moore
bound. An upper bound,(d, g) onn.(d, g) (see [21] and references therein) is given by

4 4 29 9g-2
nu(3.9) — 2 + ;z 2 2 for g odd
3+ 15 2972 forgeven

2(d —1)9=* for g odd
n.(d,g) = )
4(d —1)9=3 for g even
Theorem 5:Let C be an LDPC code with-left regular Tanner graplr and girth2g’. Let 7 (v, 2g")

denote the size of smallest possible potential trappingp&étfor the bit flipping algorithm. Then,

T (v,29) =ne(17/2],9).
Proof: We first prove the following lemma and then exhibit a potdnteapping set of size..([v/2] , ¢').
Lemma 3:|7(v,29')| = n.([v/2],9')-
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Proof: Let 7; be a trapping set withi7;| < n.([~v/2],¢’) and letG; denote the induced subgraph
of 7:. We can construct §~/2], g”)- cage graphg” > g) with |T;| < n.([~v/2], ¢’) nodes by removing
edges (if necessary) from the inverse edge-verte& ofvhich is a contradiction. [ |
We now exhibit a potential trapping set of sizg([v/2],¢’). Let G.,([~v/2],¢’) be the edge-vertex inci-
dence graph of &([v/2], ¢’). Note thatG.,([v/2], ¢’) is a left regular bipartite graph with.([~v/2] , ¢')
variable nodes of degrefey/2] and all checks have degree two. Now considey ([v/2],¢’), the vy
augmented graph af.,([7/2],¢'). It can be seen tha¥.,,([v/2],¢’) is a potential trapping set. &

Theorem 6:There exists a codé with ~-left regular Tanner graph of girthg’ which fails to correct
n.([v/2],4") errors.

Proof: LetG.,,([v/2],¢’) be as defined in Theorem 5. Now construct a c6déth column-weight
v and girth2g¢’ starting fromG.,, ,([v/2], ¢') such that the set of variable nodesGf, ,([~v/2],¢’) also
satisfies condition (b) of Theorem 4. Then, by Theorem 4 anglofiégm 5, the set of variable nodes in
Gevr([7/2],4") with cardinality n.([v/2],¢’) is a trapping set and hencg fails to decode an error
pattern of weightu.([v/2], ¢'). n

Remark:We note that fory = 3 andy = 4, the above bound is tight. Observe that tbe 2, the
Moore bound isny(d, g) = g and that a cycle of lengthg with ¢ variable nodes is always a potential
trapping set. In fact, for a code with= 3 or 4, and Tanner graph of girth greater than eight, a cycle of

the smallest length is always a trapping set (see [24] forptioef).

V. GENERALIZED LDPC CoODES

In this section, we first consider two bit flipping decoding@ithms for GLDPC codes. We then
establish a relation between expansion and error correctépability. We also establish a lower bound
on the number of variable nodes that have the required eigana/e then exhibit a trapping set and as
a consequence show that the bound on the required exparesiontcbe improved when is even. We
also establish bounds on the size of trapping sets.

We begin with the definition of GLDPC codes by adopting thenieaology from expander codes [7].
Definition 13 (Definition 6, [7]):: Let G be a(~, p) regular bipartite graph betweenvariable nodes
(v1,v2,...,v,) @andny/p check nodegcy, cs, ..., cnyp). LELD(4, j) be a function designed so that, for
each check node;, the variables neighboring are vy 1y, vs,2), - - -, Usip)- LELS be an error correcting
code of block lengttp. The GLDPC cod& (G, S) is the code of block length whose codewords are

the words(zy, xo, . .., z,) such that, forl <i < nvy/p, (Tpin), - -, Teep) iS @ codeword ofS.

The terms column-weight, row-weight, check nodes, vaeialdes and trapping sets mean the same

as in case of LDPC codes. The caofleat each check node is sometimes referred to as the sub-code.
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A. Decoding algorithms

Tanner [5] proposed different hard decision decoding algms to decode GLDPC codes. We now
describe an iterative algorithm known as parallel bit fljgpalgorithm originally described in [5], which
is employed when the sub-code is capable of correctiagors.

Parallel bit flipping algorithm: Each decoding round consists of the following steps.

« A variable node sends its current estimate to check nodes.

« A check node performs decoding on incoming messages and ttredsearest codeword. For all
variable nodes which differ from the codeword, the checkensdnds a flip message. If the check
node does not find a unique codeword, it does not send any fl§sages.

. A variable node flips if it receives more than2 flip messages.

The set of variable nodes which differ from their correctueabre known as corrupt variables. The rest
of the variable nodes are referred to as correct variabwing the algorithms, we have the following
definition adopted from [7]:

Definition 14: A check node is said to beonfusedf it sends flip messages to correct variable nodes,
or if it does not send flip message to corrupt variable nodeboth. Otherwise, a check node is said to
be helpful

Remarks:

1) For the parallel bit flipping decoding algorithm, a cheada with sub-code of minimum distance
at leastd,,,;, = 2t + 1 can be confused only if it is connected to more tharrupt variable nodes.

2) The parallel bit flipping algorithm is different from thégarithm presented by Sipser and Spielman
in [7] for expander codes, but is similar to the algorithm poeed by Zemor in [12]. However,
we note that the codes considered in [12] are based-@mgular bipartite graphs and are a special
case of doubly generalized LDPC codes, where each varialde i also associated with an error
correcting code.

3) Apart from helpful checks and confused checks, Sipser $yidlman defined unhelpful checks.
However, our definition of confused checks includes unhglpiecks as well.

4) Miladinovic and Fossorier in [15] considered a decodihgpathm where the decoding at every
check either results in correct decoding or a failure butmisicorrection. While this assumption is
reasonable when the sub-code is a long code, it is not truenergl. We however, point out that
the methodology we adopt can be applied to this case as well.

5) The work by Sipser and Spielman [7], Zemor [12], Barg anth@e[13] and Janwa and Lal [14]
focused on asymptotic results and explicit constructiorexfpander codes. The proofs and con-

structions are based on spectral gap and as noted eartibrnsethods cannot guarantee expansion



SUBMITTED TO |IEEE TRANSACTIONS ON INFORMATION THEORY, MAY Q08 13

factor of more than 1/2. Our proofs require a greater expantictor.

B. Expansion and Error Correction Capability

We now prove that the above described algorithm can corrdcaciion of errors if the underlying
Tanner graph is a good expander.

Theorem 7:Let C(G,S) be a GLDPC code with a-left regular Tanner grapli=. Assume that the
sub-codeS has minimum distance at leagt,;, = 2t + 1 and is capable of correctingerrors. LetG be
a (v, p, a, By) expander where

t+2
2(t+1)

Then the parallel bit flipping decoding algorithm will cocteany oy < « fraction of errors.

1>p8>

Proof: Let n be the number of variable nodes ¢h Let VV be the set of corrupt variables at the
beginning of a decoding round. Assume thit < an. We will show that after the decoding round, the
number of corrupt variables is strictly less than|.

Let F' be the set of corrupt variables that fail to flip in one decgdiound, and leC' be the set of
variables that were originally uncorrupt, but which becocoerupt after one decoding round. After one
decoding round, the set of corrupt variablesis) C'. In the worst case scenario, a confused check sends
t flip messages to the uncorrupt variables and no flip messatie tocorrupt variables. We now have the
following lemma:

Lemma 4:Let C), be the set of confused checks, then

Gyl < w ()

Proof: The total number of edges connected to the corrupt variables/|. Each confused check
must have at least+ 1 neighbors inV. Let S be the set of helpful checks that have at least one beigh
in V. Then,

WV = |G|t + 1) + 5] (2
By expansion,
S|+ 1Ckl > By[V]. ©)
By (2) and (3), we obtain
el < L= B0V,

t
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We now prove thatF"u C| < |V|. The proof is by contradiction. Assume th#&t U C| > |V|. Then there
exists a subset” C C such that 7" U C’| = |V|. We observe that a variable node ihcan have at most
|v/2] neighbors that are not i6v,. Also, a variable node iit” must have at leasty/2] + 1 neighbors
in Ck, and hence can have at mgst/2] — 1 neighbors that are not i@;. Let N(F U (") be the set of
neighbors off" U C’. Then,

NFUC) < (Gl + 13IFI+ (131 -1) I

< [l + S FI+ 210 = Gl + 21V (4)
Substituting (1) into (4), we obtain

JWFUCU<<L%E+%)ﬂW.

Now
t+2
P> 5+ 1
1— —
o o] - 28 —1
t 2
1-8 1
=> T —+ 5 < 5
=> N(Fucl') < By|V]|
which is a contradiction. [ ]

Remark: The above theorem proves that the parallel bit flipping aflgor can correct a fraction of
errors in linear number of rounds (in code length). Howeifeye assume an expansion @f + €)~, it
can be shown that the number of errors decreases by a cofettont with every iteration resulting in
convergence in logarithmic number of rounds.

The following theorem establishes a lower bound on the nurabeodes in a left regular graph which
expand by a factor required by the above algorithms.

Theorem 8:Let G be ay-left regular bipartite graph with(G) = 2¢’. Then for allk < ng(~t/(t+1), ¢'),

any set ofk variable nodes irG expands by a factor of at leasty, where

t+42
6_2@+U‘
Proof: The proof is similar to the proof of Theorem 3. Following thetation from Theorem 3, we

note that for allk < ny(yt/(t +1), '),
k~t
2(t+1)

fk,g') <

Since|C*| > vk — f(k,g'), we have

t+2
2(t+1)

|C*| > k.
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Note that the above theorem holds wher (¢t + 1) > 2.
Corollary 2: Let C(G,S) be a GLDPC code with g-left regular Tanner grapl and ¢(G) = 2¢'.
Assume that the sub-cod®e has minimum distance at leagt,;,, = 2t + 1 and is capable of correcting

errors. Then the parallel bit flipping algorithm can corracy error pattern of weight less thap(~t/(t +
1),4").

C. Trapping Sets of GLDPC Codes

We now exhibit a trapping set for the parallel bit flipping @lighm. By examining the expansion of
the trapping set, we show that the bound given in Theorem Aatame improved when is even.

Theorem 9:Let C be a GLDPC code with-left regular Tanner grapty. Let 7 be a set consisting of
V' variable nodes with induced subgraphwith the following properties: (a) The degree of each check
in Z is eitherl or t + 1; (b) Each variable node iy is connected td~/2] checks of degreé+ 1 and
|7/2] checks of degreé; and (c) No|v/2] + 1 checks of degreé+ 1 share a variable node outside
Then, T is a trapping set.

Proof: Observe that all the checks of degree 1 in Z are confused. Further, each confused check
does not send flip messages to variable nodés.i®ince any variable node i is connected tq~/2]
confused checks, it remains corrupt. Also, no variable nmatsideZ can receive more thafyy /2| flip
messages. Hence, no variable node which is originally cocan get corrupted. By definitiory, is a
trapping set.

It can be seen that the total number of checkg iis equal to|V'|(|v/2] + [v/2] /(t+1)). Hence, the
set of variable node¥” expands by a factor of(¢ + 2)/(2(t + 1)) when~ is even. Hence, the bound
given in Theorem 7 cannot be improved in this case. [ |

For a set of variable nodes to be a trapping set, it is necesisat every variable node in the set is
connected to at leagty/2] confused checks. This observation leads to the followingnboon the size
of trapping sets.

Theorem 10:Let C be a GLDPC code withy-left regular Tanner grapliz and ¢(G) = 24'. Let
n.(d;, d,,2g") denote the number of left vertices in(@, d,.) regular bipartite graph of girthg’. Then the
size of the smallest possible trapping setCoi n.([v/2],t + 1,29).

Proof: Follows from Theorem 5 and Theorem 9 [ |

Corollary 3: Let C(G,S) be a GLDPC code with a-left regular Tanner grapl and ¢(G) = 2¢'.
Assume that the sub-code has minimum distance at leagt,;, = 2t + 1 and is capable of correcting
errors. Then the parallel bit flipping algorithm cannot beaugunteed to correct all error patterns of weight

greater than or equal to.([v/2],t+ 1,29).
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VI. CONCLUDING REMARKS

We derived lower bounds on the guaranteed error correctapalglity of LDPC and GLDPC codes
by finding bounds on the number of nodes that have the regeikpdnsion. The bounds depend on two
important code parameters namely: column-weight and .gBthce the relations between rate, column-
weight, girth and code length are well explored in the litera (see [1], [5] for example), bounds on
the code length needed to achieve certain error correcapalility can be derived for different column
weights and sub-codes (for GLDPC codes). The bounds pexbentthe paper serve as guidelines in
choosing code parameters in practical scenarios.

The lower bounds derived in this paper are weak. Howevereewl graphs avoiding three, four and
five cycles have been studied in great detail (see [27], [28}) these results can be used to derive tighter
bounds when the girth is eight, ten or twelve. Also, since gpaasion factor of3y/4 is not necessary
(see [7, Theorem 24]) for LDPC codes, it is possible thattdghower bounds can be derived for some
cases. The results can be extended to message passinghaigoais well. There is a considerable gap
between the lower bounds and upper bounds on the error torrezapability. Deriving lower bounds
based on the sizes of trapping sets rather than expansiorpassbly lead to bridging this gap.

Our approach can be used to derive bounds on the guaran@sderecovery capability for iterative
decoding on the BEC by finding the number of variable nodeshviipand by a factor of /2. In [4],
the bounds on the guaranteed erasure recovery capability dezived based on the size of the smallest
stopping set. Both approaches give the same bounds, wisigttaincide with the bounds given by Tanner
[5] for the minimum distance. Results similar to the onesoregr by Miladinovic and Fossorier [15] based

on the size of generalized stopping sets can also be derived.
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