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New Constant-Weight Codes from
Propagation Rules

Yeow Meng Chee,Senior Member, IEEE, Chaoping Xing and Sze Ling Yeo

Abstract—This paper proposes some simple propagation rules
which give rise to new binary constant-weight codes.

Index Terms—constant-weight codes, cosets,q-ary codes

I. I NTRODUCTION

T HE ring Z/qZ is denotedZq. We endowZ
n
q with the

Hamming distance metric ∆: for u, v ∈ Z
n
q , ∆(u, v)

is the number of positions whereu and v differ. A (q-ary)
code of length n is a subsetC ⊆ Z

n
q . The elements ofC

are calledcodewords, and thesize of C is the number of
codewords it contains. Theminimum distance of a codeC
is ∆(C) = minu,v∈C,u 6=v∆(u, v). We often denote by(n, d)q-
code aq-ary code of lengthn and minimum distance at least
d.

Theweight, wt(u), of u ∈ Z
n
q is its distance from the origin,

that is,wt(u) = ∆(u, 0). For 0 ≤ w ≤ n, the (q-ary) Johnson
space Jn

q (w) is the set of all elements ofZn
q having weightw,

that is,Jn
q (w) = {u ∈ Z

n
q : wt(u) = w}. A (q-ary) constant-

weight code of lengthn, distanced, and weightw, denoted
(n, d, w)q-code, is a codeC ⊆ Jn

q (w) such that∆(C) ≥ d.
We adopt the convention throughout this paper that ifq is

not specified, then we assumeq = 2. Hence, for example, an
(n, d, w)-code refers to an(n, d, w)2-code, andJn(w) refers
to Jn

2 (w).
Binary constant-weight codes have been extensively studied

for more than four decades due to their fascinating combina-
torial structures and applications [1]–[19]. Givenn, d, andw,
the central problem of interest in binary constant-weight codes
is in the determination ofA(n, d, w), the largest possible size
of an (n, d, w)-code. Exact values ofA(n, d, w) are known
only for a few infinite families of parametersn, d, and w,
and in some other sporadic instances (see, for example, [3],
[4]). In light of the difficulty of determiningA(n, d, w) exactly,
various bounds have also been developed. There are two online
tables devoted to bounds onA(n, d, w): one maintained by
Rain and Sloane [20] and the other by Smith and Montemanni
[21]. While the former table considers codes of lengths not
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exceeding63, the latter table focuses mainly on codes for
lengths between29 and63, having small weights.

In this paper, we present simple propagation rules for binary
constant-weight codes throughq-ary codes. It turns out that
some good binary constant-weight codes can be obtained from
these propagation rules. In particular, we improve on a number
of bounds in the online tables of Rain and Sloane [20], and
Smith and Montemanni [21].

We remark that the table of Smith and Montemanni [21]
was created because the table of Rains and Sloane [20] had
not been updated for many years. For code parameters that
are not covered by Smith and Montemanni [21], we have
checked against recent literature, to the best of our efforts,
in ascertaining that our results here do indeed improve upon
existing results.

II. PROPAGATION RULES

In this section, we present some simple propagation rules
for binary constant-weight codes fromq-ary codes. We begin
with a simple observation.

Let C ⊆ Z
n
q . For u ∈ Z

n
q , we denote byu+ C the coset of

C,
{u+ c : c ∈ C}.

We also embedZ2 into Zq. It is evident that(u+ C)∩Jn(w)
is a binary constant-weight code of weightw and sizeN =
|(u + C) ∩ Jn(w)|. Since the minimum distanced′ of (u +
C) ∩ Jn(w) is at leastd andd′ must be even, it follows that
d′ ≥ 2⌊(d+ 1)/2⌋. Thus, we have the following.

Theorem 2.1: Let 0 < w < n. If there exists an(n, d)q-
codeC, then there exists an(n, 2⌊(d+1)/2⌋, w)-code of size
N , where

N = max
u∈Zn

q

|(u+ C) ∩ Jn(w)|.

A simple bound on the size of the constant-weight codes in
Theorem 2.1 can be obtained by considering the average size
of the cosets.

Theorem 2.2: Let 0 < w < n. If there exists an(n, d)q-
code of sizeM , then

A(n, 2⌊(d+ 1)/2⌋, w) ≥

⌈

M
(

n
w

)

qn

⌉

.

Proof: Let C be an (n, d)q-code of size M . Let
u1, u2, . . . , uqn denote all the elements ofZn

q , and let
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v1, v2, . . . , v(n
w
) denote all the elements ofJn(w). Define

δi,j =

{

1, if vj ∈ ui + C

0, if vj 6∈ ui + C.

For eachvj ∈ Jn(w), there areM elementsui ∈ Z
n
q such

that ui + C containsvj (to see this, note thatvj ∈ ui + C if
and only if ui = vj + c for somec ∈ C). Thus,

∑

1≤i≤qn

∑

1≤j≤(n
w
)

δi,j = M

(

n

w

)

.

Hence, there exists at least oneℓ, 1 ≤ ℓ ≤ qn, such that

∑

1≤j≤(n

w
)

δℓ,j ≥
M

(

n

w

)

qn
.

The theorem now follows by noting that the size of(uℓ+C)∩
Jn(w) is precisely

∑

1≤j≤(n
w
) δℓ,j , and we have seen above

that (uℓ + C) ∩ Jn(w) is an (n, 2⌊(d+ 1)/2⌋, w)-code.

Next, we consider binary constant-weight codes of length
n+ 1 from q-ary codes of lengthn.

Theorem 2.3: Let 0 < w < n. Suppose there exists an
(n, d)q-codeC of sizeM . Then,

(i) there exists an(n+1, 2⌊(d+ 1)/2⌋, w)-code of sizeN ,
where

N = max
u∈Zn

q

|(u+ C) ∩ (Jn(w − 1) ∪ Jn(w))|;

(ii)

A(n+ 1, 2⌊(d+ 1)/2⌋, w) ≥

⌈

M(
(

n
w−1

)

+
(

n
w

)

)

qn

⌉

.

Proof:

(i) Let u ∈ Z
n
q such that|(u+ C) ∩ (Jn(w − 1) ∪ Jn(w))|

achieves the maximum sizeN . It is clear thatC′ = (u+
C)∩ (Jn(w− 1)∪Jn(w)) is an(n, d)-code, where each
codeword has weight eitherw−1 orw. To each codeword
c ∈ C′, append a new coordinate which takes on value
one if wt(c) = w− 1 and value zero ifwt(c) = w. The
set of resulting codewords is an(n+1, 2⌊(d+1)/2⌋, w)-
code.

(ii) Using the same arguments as in the proof of Theorem
2.2, we get an(n, d)-code of sizeM(

(

n
w−1

)

+
(

n
w

)

)/qn,
in which the weight of every codeword is eitherw − 1
or w. By appending a new coordinate to every codeword
as in (i) above, we get an(n+1, 2⌊(d+1)/2⌋), w)-code
of the required size.

III. E XAMPLES

We provide some examples where the propagation rules
given by Theorems 2.2 and 2.3 lead to improved bounds on
A(n, d, w).

In the tables of this section, a bold entry indicates that the
size of the code constructed here is larger than any known

codes of the same parameters, and a entry superscripted by an
asterisk indicates that the size of the code constructed here
is of the same size as the best known code of the same
parameters.Mmax denotes the lower bound onA(n, d, w)
given by Theorems 2.1 or 2.3(i), andMavg denotes the lower
bound onA(n, d, w) given by Theorems 2.2 or 2.3(ii).MRS

denotes the lower bound onA(n, d, w) in the tables of Rains
and Sloane [20].

Example 3.1: Let C be the Goethals(63, 7)-code of size
247 [22] (see [23, Chapter 5] for the structure of this code).

• Theorems 2.2 and 2.3(ii) give

A(63, 8, w) ≥

⌈(

63

w

)

/216
⌉

,

A(64, 8, w) ≥

⌈((

63

w − 1

)

+

(

63

w

))

/216
⌉

.

The implications of these bounds are given in Table I.

TABLE I
SOME CONSTANT-WEIGHT CODES OF DISTANCE EIGHT

Lower Bounds onA(63, 8, w)
w Mavg MRS

7 8443 7182
8 59096 50274
9 361141 -

10 1950158 -
11 9396214 -
12 40716926 -
13 159735632 -
14 570484400 -

Lower Bounds onA(64, 8, w)
w Mavg MRS

7 9480 8064
8 67538 57456
9 420236 -

10 2311298 -
11 11346372 -
12 50113140 -
13 200452558 -
14 730220032 -

• ShorteningC at the lasti positions,1 ≤ i ≤ 46, results
in a (63 − i, 7)-code of size247−i. It follows from
Theorem 2.2 that there exists a(63− i, 8, 7)-code of size
(

63−i
7

)

/216. In particular, wheni ∈ {1, 2, 3}, this implies

A(62, 8, 7) ≥ 7505, (1)

A(61, 8, 7) ≥ 6657, (2)

A(60, 8, 7) ≥ 5894. (3)

The three lower bounds (1)–(3) improve those in [21] (the
corresponding lower bounds given there are 6693, 6223,
and 5770, respectively, obtained by Smith et al. [13]).

Example 3.2: Let C be the Preparata(63, 5)-code of size
252 [24] (see [23, Chapter 5] for the structure of this code).
Theorems 2.2 and 2.3(ii) give

A(63, 6, w) ≥

⌈(

63

w

)

/211
⌉

,

A(64, 6, w) ≥

⌈((

63

w − 1

)

+

(

63

w

))

/211
⌉

.

We also found via computation cosets ofC achieving the
maximum in Theorems 2.1 and 2.3(i). The results are given
in Tables II and III.

Example 3.3: Let C be the (linear)(31, 9)-code of size213

constructed by Grassl [25].
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TABLE II
LOWER BOUNDS ONA(63, 6, w)

w Mavg Mmax MRS

5 3433 3906∗ 3906
6 33177 37758∗ 37758
7 270152 270468 264771
8 1891062 1893276 1853397
9 11556490 11594310∗ 11594310

10 62405042 62609274∗ 62609274
11 300678837 300700062 300496392
12 1302941625 1302990507 1302151032
13 5111540218 5112164988∗ 5112164988
14 18255500778 18257732100∗ 18257732100

TABLE III
LOWER BOUNDS ONA(64, 6, w)

w Mavg Mmax MRS

5 3723 3906 -
6 36609 41664∗ 41664
7 303329 303354 -
8 2161214 2163744 2118168
9 13447552 13447707 -

10 73961530 74203584∗ 74203584
11 363083878 363105666 -
12 1603620460 1603680624 1602647424
13 6414481842 6414487191 -
14 23367040996 23369897088∗ 23369897088

TABLE IV
SOME CONSTANT-WEIGHT CODES OF DISTANCE10

Lower Bounds onA(31, 10, w)
w Mmax MRS

11 387 -
12 612 -
13 872 -
14 1106 -

Lower Bounds onA(32, 10, w)
w Mmax MRS

11 585 -
12 953 -
13 1443 -
14 1923 -

• We found via computation cosets ofC achieving the
maximum in Theorems 2.1 and 2.3(i). The results are
given in Table IV.

• ShorteningC at the last two positions results in a (linear)
(29, 9)-code of size211. We found, via computation,
cosets of this shortened code achieving the maximum in
Theorem 2.3(i). This givesA(30, 10, 12) ≥ 390. Lower
bounds onA(30, 10, 12) are previously not known.

Example 3.4: Let C be the (linear) BCH(31, 11)-code of
size 211 [26], [27] (see [23, Chapter 8] for the structure of
this code).

• We found, via computation, cosets ofC achieving the
maximum in Theorems 2.1 and 2.3(i). The results are
given in Table V.

TABLE V
SOME CONSTANT-WEIGHT CODES OF DISTANCE12

Lower Bounds onA(31, 12, w)
w Mmax MRS

9 40 -
10 87 -
11 186 -
12 310 -
13 400 -
14 510 -

Lower Bounds onA(32, 12, w)
w Mmax MRS

9 40 -
10 122 -
11 186 -
12 496 -
13 400 -
14 900 -

• ShorteningC at the lasti positions,i ∈ {1, 2}, results
in a (31 − i, 11)-code of size211−i. We found, via

computation, cosets of these shortened codes achieving
the maximum in Theorems 2.1 and 2.3 (i). These provide
the lower bounds

A(29, 12, 11) ≥ 76,

A(29, 12, 12) ≥ 114,

A(29, 12, 13) ≥ 140,

and

A(30, 12, 10) ≥ 66,

A(30, 12, 11) ≥ 120,

A(30, 12, 12) ≥ 190,

A(30, 12, 13) ≥ 234,

A(30, 12, 14) ≥ 288.

Previously, no lower bounds are known onA(n, 12, w)
for these parameter sets.

Example 3.5: Let C be the (linear)(31, 13)-code of size27

constructed by Grassl [25]. We found, via computation, cosets
of C achieving the maximum in Theorem 2.3(i). These provide
the lower bounds

A(32, 14, 12) ≥ 29,

A(32, 14, 13) ≥ 42.

Lower bounds onA(32, 14, w), w ∈ {12, 13}, are previously
not known.

Example 3.6: Let C0 be the (linear) Reed-Muller(32, 16)-
code of size26, and letC be the code obtained fromC0 by
puncturing it at the last position. ThenC is a (31, 15)-code
of size26. We found, via computation, cosets ofC achieving
the maximum in Theorems 2.1 and 2.3(i). These provide the
lower bounds

A(n, 16, 13) ≥ 16,

A(n, 16, 14) ≥ 21,

A(n, 16, 15) ≥ 31,

for n ∈ {31, 32}. Lower bounds onA(n, 16, w) are previously
not known for these parameters.
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