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Abstract—This paper proposes some simple propagation rules exceeding63, the latter table focuses mainly on codes for
which give rise to new binary constant-weight codes. lengths betweeR9 and 63, having small weights.

Index Terms—constant-weight codes, cosetg-ary codes In this paper, we present simple propagation rules for lginar
constant-weight codes throughary codes. It turns out that
some good binary constant-weight codes can be obtained from
these propagation rules. In particular, we improve on a rermb

HE ring Z/qZ is denotedZ,. We endowZ with the of bounds in the online tables of Rain and Sloane [20], and

Hamming distance metric A: for u,v € Z”, A(u,v) Smith and Montemanni [21].
is the number of positions whene and v differ. A (g-ary) We remark that the table of Smith and Montemanni [21]
code of lengthn is a subsetC C Zj. The elements o was created because the table of Rains and Sloane [20] had
are calledcodewords, and thesize of C is the number of not been updated for many years. For code parameters that
codewords it contains. Theinimum distance of a codeC are not covered by Smith and Montemanni [21], we have
is A(C) = miny vec,uxv A(u,v). We often denote byn,d),- checked against recent literature, to the best of our sffort
code ag-ary code of length and minimum distance at leastin ascertaining that our results here do indeed improve upon
d. existing results.

Theweight, wt(u), of u € Zj is its distance from the origin,
that is,wt(u) = A(u,0). For0 < w < n, the @-ary) Johnson I
space J,'(w) is the set of all elements @ having weightw,

I. INTRODUCTION

. PROPAGATIONRULES

that is, Jn( ) = {u €z wt(u) = w}. A (g-ary) constant- In this section, we present some simple propagation rules
weight code of length n, distanced, and weightuw, denoted for binary constant-weight codes frograry codes. We begin
(n,d, w),-code, is a cod€ C J'(w) such thatA(C) > d.  With a simple observation.

We adopt the convention throughout this paper thati§  LetC € Zg. Foru € Zg, we denote by + C the coset of
not specified, then we assume= 2. Hence, for example, an C,
(n,d,w)-code refers to attn, d, w)2-code, and/"(w) refers {utc: cec}.
to J3(w). . . "
Binary constant-weight codes have been extensively sdudle atl)so embed; into Z,. r|1t IS (deefnt tha(u +g) l JA; _)
for more than four decades due to their fascinating combu‘ﬁ a énaryjionstanst We'gtr: code o wegzh:ancésufe
torial structures and applications [1]-[19]. Givend, andw, ut 7 M )l |trzlce dg/mlnlmgm Istan f I(I) (u+ h
the central problem of interest in binary constant-weigittes 7 Q ‘21 ((d 4)_ 'S;’g | e‘?ﬁusa;‘ve h;?/zsttheef;}loevcmlt oflows that
is in the determination ofi(n, d, w), the largest possible size™ = : ' 9-
of an (n,d, w)-code. Exact values ofi(n,d,w) are known
only for a few infinite families of parameterns, d, and w,
and in some other sporadic instances (see, for example,
[4]). In light of the difficulty of determiningA(n, d, w) exactly, n
various bounds have also been developedf There)are twaeonlin N = Eéa’f |(u+C)n T ()
tables devoted to bounds ofi(n,d,w): one maintained by
Rain and Sloane [20] and the other by Smith and Montemannl
[21]. While the former table considers codes of lengths n%e

Theorem 2.1: Let 0 < w < n. If there exists ann,d),-
b%ﬂdec then there exists afn, 2| (d + 1)/2], w)-code of size
where

A simple bound on the size of the constant-weight codes in
orem 2.1 can be obtained by considering the average size
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VL, V2, V(Y denote all the elements of*(w). Define codes of the same parameters, and a entry superscripted by an
asterisk indicates that the size of the code constructee her
1, ifvjeu +C is of the same size as the best known code of the same
A v; i +C. parametersM,,., denotes the lower bound oA(n,d, w)
given by Theorems 2.1 or 2.3(i), and,,, denotes the lower
For eachv; € J"(w), there areM elementsu; € Zj such phound onA(n,d, w) given by Theorems 2.2 or 2.3(iilMgs
thatu; + C containsv; (to see this, note that; € u; + C if  denotes the lower bound ofi(n, d,w) in the tables of Rains

and only ifu; = v; + ¢ for somec € C). Thus, and Sloane [20].
Z Z 0i 5 = M<n) Example 3.1: Let C be the Goethal$63,7)-code of size
1<i<a™ 1<5<( 1) w 247 [22] (see [23, Chapter 5] for the structure of this code).
Hence, there exists at least ofiel < ¢ < ¢", such that « Theorems 2.2 and 2.3(ii) give
n 63
S gy > M) Aws.s0) > | ()20
. 7
1<5<(1)
-~ o= [((12)+ ()]
The theorem now follows by noting that the size(of +C) N w—1 w
J"(w) is prec:lselyzl.sjg(z) 0cj» and we have seen above The implications of these bounds are given in Table I.
that (ug +C) N J"(w) is an(n,2|(d+1)/2],w)-code. =
TABLE |
Next, we consider binary constant-weight codes of length SOME CONSTANFWEIGHT CODES OF DISTANCE EIGHT
n+ 1 from g-ary codes of length. Lower Bounds onA(63, 8, w) Lower Bounds onA(64, 8, w)
w Mavg Mgs w Mavg Mgs
Theorem2.3: Let 0 < w < n. Suppose there exists an 7 8443 7182 7 9480 8064
(n,d),-codeC of size M. Then, S| 090 S02r 5| Sress) 5746

(i) there exists arfn +1,2|(d + 1)/2], w)-code of sizeN, 10 | 1950158 10 | 2311298

11 | 9396214 - 11 | 11346372

where 12 | 40716926 - 12 | 50113140

_ n n , 13 | 159735632 - 13 | 200452558

N = wezn ((u+C)N (J"(w = 1) UJ"(w))]; 14 | 570484400 - 14 | 730220032
(i) « ShorteningC at the lasti positions,1 < ¢ < 46, results
M((," )+ () in a (63 — i,7)-code of size2*"~%. It follows from
Al +1,2[(d+1)/2],w) 2 { 7" : Theorem 2.2 that there exists(@3 — i, 8, 7)-code of size
(°%7%) /216, In particular, when € {1,2, 3}, this implies

Proof:

(i) Let u € Z such thatj(u +C) N (J"(w — 1) U J"(w))| A(62,8,7) > 7505, 1)
achieves the maximum siz€. It is clear thatC’ = (u+ A(61,8,7) > 6657, 2)
)N (Jm(w—1) U?]n(w).) is an(n, d)-code, where each A(60,8,7) > 5894. ©)
codeword has weight eithar—1 or w. To each codeword
c € C’, append a new coordinate which takes on value The three lower bounds (1)—(3) improve those in [21] (the
one if wt(c) = w — 1 and value zero ifvt(c) = w. The corresponding lower bounds given there are 6693, 6223,
set of resulting codewords is d@n+1,2|(d+1)/2], w)- and 5770, respectively, obtained by Smith et al. [13]).
code.

(i) Using the same arguments as in the proof of Theoremxample 3.2: Let C be the Preparatés3, 5)-code of size

2.2, we get ar(n, d)-code of sizeM ((,,",) + (;,))/a", 252 [24] (see [23, Chapter 5] for the structure of this code).
in which the weight of every codeword is either— 1  Theorems 2.2 and 2.3(ii) give

or w. By appending a new coordinate to every codeword
as in (i) above, we get am +1,2[(d+1)/2]), w)-code A(63,6,w) > KGB) /211]
) 3 — w 3

of the required size.
w—1 w

We also found via computation cosets 6fachieving the

We provide some examples where the propagation rulegiximum in Theorems 2.1 and 2.3(i). The results are given
given by Theorems 2.2 and 2.3 lead to improved bounds gnTables Il and IIl.

A(n,d,w).
In the tables of this section, a bold entry indicates that the Example 3.3: Let C be the (linear)31,9)-code of size2!?
size of the code constructed here is larger than any knowonstructed by Grassl [25].

Il. EXAMPLES



TABLE Il

LowERBOUNDS ONA(63, 6, w)

computation, cosets of these shortened codes achieving
the maximum in Theorems 2.1 and 2.3 (i). These provide

w J‘/[av J\/lmax M,
5 343g3 3906° 3911086 the lower bounds
6 33177 37758 37758
7 270152 270468 264771 A(29,12,11) > 76,
8 1891062 1893276 1853397
9 11556490 11594310 11594310 4(29,12,12) > 114,
10 62405042 62609274 62609274 A(29,12,13) > 140,
11 300678837 300700062 300496392
12 | 1302941625| 1302990507| 1302151032 and
13 | 5111540218| 5112164988 | 5112164988
14 | 18255500778| 18257732100 | 18257732100 A(30,12,10) > 66,
TABLE Ill A(30,12,11) > 120
LOWERBOUNDS ONA(64, 6, w) A(30,12, 2) > 190
w Mavg Minax Mrs A(30,12,13) > 234
5 3723 3906 - -
6 36609 41664 41664 A(30,12,14) > 288
7 303329 303354 -
8 2161214 2163744 2118168 Previously, no lower bounds are known ot{n, 12, w)
9 13447552 13447707 -
10 73961530 74203584 74203584 for these parameter sets.
11 363083878 363105666 - _ _
12 | 1603620460 1603680624 1602647424 Example 3.5: Let C be the (linear)31, 13)-code of size2”
13 | 6414481842| 6414487191 - i i
constructed by Grassl [25]. We found, via computation, tose
14 | 23367040996| 23369897088 | 23369897088 1ed by [ ] ) mp :
of C achieving the maximum in Theorem 2.3(i). These provide
TABLE IV the lower bounds

SOME CONSTANTWEIGHT CODES OF DISTANCELO

A(32,14,12) > 29,

Lower Bounds onA(31, 10, w) Lower Bounds onA(32, 10, w)

w Mmax MRs w Mmax MRs A(32, 14., 13) 2 42.

11 387 - 11 585 - .

12 612 N 12 953 } Lower bounds onA(32, 14, w), w € {12,13}, are previously
13 872 - 13 1443 - not known.

14 | 1106 - 14 | 1923 -

Example 3.6: Let Cy be the (linear) Reed-Mullef32, 16)-

code of size2%, and letC be the code obtained froi®, by

« We found via computation cosets ¢f achieving the puncturing it at the last position. Thehis a (31,15)-code
maximum in Theorems 2.1 and 2.3(i). The results ag sjze 26. We found, via computation, cosets @fachieving

given in Table IV. the maximum in Theorems 2.1 and 2.3(i). These provide the
« ShorteningC at the last two positions results in a (linear)ower bounds

(29,9)-code of size2!!. We found, via computation,

cosets of this shortened code achieving the maximum in A(n,16,13) > 16,
Theorem 2.3(i). This givesi(30, 10,12) > 390. Lower A(n,16,14) > 21,
bounds onA(30, 10, 12) are previously not known. A(n,16,15) > 3

Example 3.4: Let C be the (linear) BCH(31,11)-code of forn € {31,32}. Lower bounds oni(n, 16, w) are previously
size 2! [26], [27] (see [23, Chapter 8] for the structure oftot known for these parameters.
this code).

« We found, via computation, cosets 6f achieving the ACKNOWLEDGMENT
maximum in Theorems 2.1 and 2.3(i). The results are The authors are grateful to Ding Yang and Chen Jie for
given in Table V. their help on programming, to Xing Zhengrong for several

discussions on Theorem 2.1, and to the anonymous reviewer

TABLE V for invaluable comments and suggestions.

SOME CONSTANTWEIGHT CODES OF DISTANCEL2

Lower Bounds onA(31, 12, w) Lower Bounds onA(32, 12, w)

w Mmax Mgrs w Mmax Mgrs REFERENCES

9 40 - 9 40 - [1] S. M. Johnson, “Upper bounds for constant weight erarecting
10 87 - 10 122 - codes,"Discrete Math., vol. 3, pp. 109-124, 1972.
11 186 - 11 186 - [2] R. L. Graham and N. J. A. Sloane, “Lower bounds for constagight
12 310 - 12 496 - codes,”|EEE Trans. Inform. Theory, vol. 26, no. 1, pp. 37-43, 1980.
13 400 - 13 400 - [3] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. 8ni#A new
14 510 - 14 900 - table of constant weight codedEEE Trans. Inform. Theory, vol. 36,

no. 6, pp. 1334-1380, 1990.

E. Agrell, A. Vardy, and K. Zeger, “Upper bounds for coast-weight
codes,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2373-2395,
2000.

» ShorteningC at the lasti positions,i € {1,2}, results 4l

in a (31 — 4,11)-code of size2!'~*. We found, via



[5] A. Barg, “Extremal problems of coding theory,” iBoding Theory and
Cryptology (Singapore, 2001), ser. Lect. Notes Ser. Inst. Math. Sci. Natl.
Univ. Singap. World Sci. Publ., River Edge, NJ, 2002, volpfi, 1-48.

[6] H. K. Aw, Y. M. Chee, and A. C. H. Ling, “Six new constant vghit
binary codes,”Ars Combin., vol. 67, pp. 313-318, 2003.

[7] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber,
“Nanowire crossbar arrays as address decoders for integranosys-
tems,” Science, vol. 302, pp. 1377-1379, 2003.

[8] T. Etzion and M. Schwartz, “Perfect constant-weight est |IEEE
Trans. Inform. Theory, vol. 50, no. 9, pp. 2156-2165, 2004.

[9] S.-T. Xia, F.-W. Fu, Y. Jiang, and S. Ling, “The probatyilof undetected
error for binary constant-weight codedEEE Trans. Inform. Theory,
vol. 51, no. 9, pp. 3364-3373, 2005.

[10] C. Xing and J. Ling, “A construction of binary constameight codes
from algebraic curves over finite fieldslEEE Trans. Inform. Theory,
vol. 51, no. 10, pp. 3674-3678, 2005.

[11] L. Ji, “Asymptotic determination of the last packingmhber of quadru-
ples,” Des. Codes Cryptogr., vol. 38, no. 1, pp. 83-95, 2006.

[12] P. J. Kuekes, W. Robinett, R. M. Roth, G. Seroussi, S. &g@y,
and R. S. Williams, “Resistor-logic demultiplexers for oatectronics
based on constant-weight codeblanotechnology, vol. 17, pp. 1052—
1061, 2006.

[13] D. H. Smith, L. A. Hughes, and S. Perkins, “A new table ohstant
weight codes of length greater than 2&ectron. J. Combin., vol. 13,
no. 1, Article #A2, p. 18 (electronic), 2006.

[14] S.-T. Xia, F.-W. Fu, and S. Ling, “A lower bound on the pability of
undetected error for binary constant weight cod&sEE Trans. Inform.
Theory, vol. 52, no. 9, pp. 42354243, 2006.

[15] Y. M. Chee, “A new lower bound for (17, 6, 6),” Ars Combin., vol. 83,
pp. 361-363, 2007.

[16] F.-W. Fu and S.-T. Xia, “The characterization of bin@gnstant weight
codes meeting the bound of Fu and Shé&wes. Codes Cryptogr., vol. 43,
no. 1, pp. 9-20, 2007.

[17] I. Gashkov, J. A. O. Ekberg, and D. Taub, “A geometric raagh to
finding new lower bounds ofl(n, d, w),” Des. Codes Cryptogr., vol. 43,
no. 2-3, pp. 85-91, 2007.

[18] I. Gashkov and D. Taub, “New optimal constant weightestiEl ectron.
J. Combin., vol. 14, no. 1, pp. Note 13, 6 pp. (electronic), 2007.

[19] Y. M. Chee and A. C. H. Ling, “Limit on the addressabilitf fault-
tolerant nanowire decoders,EEE Trans. Comput., vol. 58, no. 1, pp.

60—68, 2009.
[20] E. M. Rains and N. J. A. Sloane, “Ta-
ble of constant weight binary codes,”

URL=http://www.research.att.com/ " njas/codes/Andw/.

[21] D. H. Smith and R. Montemanni, “Bounds  for
constant  weight binary codes with n > 28,
URL=http://www.idsia.ch/ roberto/Andw29/.

[22] J.-M. Goethals, “Two dual families of nonlinear binazgdes,’Electron.
Lett., vol. 10, pp. 471-472, 1974.

[23] S. Ling and C. Xing,Coding Theory - A First Course. Cambridge:
Cambridge University Press, 2004.

[24] F. P. Preparata, “A class of optimum nonlinear doulslerecorrecting
codes,”Information and Control, vol. 13, pp. 378-400, 1968.

[25] M. Grassl, “Bounds on the minimum distance of linear e®dand
guantum codes,URL=http://www.codetables.de.

[26] A. Hocquenghem, “Codes correcteurs d’erreufStiiffres, vol. 2, pp.
147-156, 1959.

[27] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of errareziing
binary group codes,Information and Control, vol. 3, pp. 68-79, 1960.



