
Department of Computer Science, University of British Columbia
Technical Report TR-2009-07, April 2009

Joint-sparse recovery from multiple measurements∗

Ewout van den Berg Michael P. Friedlander

Abstract

The joint-sparse recovery problem aims to recover, from sets of compressed measurements,
unknown sparse matrices with nonzero entries restricted to a subset of rows. This is an
extension of the single-measurement-vector (SMV) problem widely studied in compressed
sensing. We analyze the recovery properties for two types of recovery algorithms. First, we
show that recovery using sum-of-norm minimization cannot exceed the uniform recovery rate
of sequential SMV using `1 minimization, and that there are problems that can be solved with
one approach but not with the other. Second, we analyze the performance of the ReMBo
algorithm [M. Mishali and Y. Eldar, IEEE Trans. Sig. Proc., 56 (2008)] in combination with
`1 minimization, and show how recovery improves as more measurements are taken. From
this analysis it follows that having more measurements than number of nonzero rows does not
improve the potential theoretical recovery rate.

1 Introduction

A problem of central importance in compressed sensing [1, 10] is the following: given an m × n
matrix A, and a measurement vector b = Ax0, recover x0. When m < n, this problem is ill-posed,
and it is not generally possible to uniquely recover x0 without some prior information. In many
important cases, x0 is known to be sparse, and it may be appropriate to solve

minimize
x∈Rn

‖x‖0 subject to Ax = b, (1.1)

to find the sparsest possible solution. (The `0-norm ‖ · ‖0 of a vector counts the number of nonzero
entries.) If x0 has fewer than s/2 nonzero entries, where s is the number of nonzeros in the sparsest
null-vector of A, then x0 is the unique solution of this optimization problem [12, 19]. The main
obstacle of this approach is that it is combinatorial [24], and therefore impractical for all but the
smallest problems. To overcome this, Chen et al. [6] introduced basis pursuit:

minimize
x∈Rn

‖x‖1 subject to Ax = b. (1.2)

This convex relaxation, based on the `1-norm ‖x‖1, can be solved much more efficiently; moreover,
under certain conditions [2, 11], it yields the same solution as the `0 problem (1.1).

A natural extension of the single-measurement-vector (SMV) problem just described is the
multiple-measurement-vector (MMV) problem. Instead of a single measurement b, we are given a
set of r measurements

b(k) = Ax
(k)
0 , k = 1, . . . , r,

in which the vectors x(k)
0 are jointly sparse—i.e., have nonzero entries at the same locations. Such

problems arise in source localization [22], neuromagnetic imaging [8], and equalization of sparse-
communication channels [7, 15]. Succinctly, the aim of the MMV problem is to recover X0 from
observations B = AX0, where B = [b(1), b(2), . . . , b(r)] is an m× r matrix, and the n× r matrix

∗Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
({ewout78,mpf}@cs.ubc.ca). Research partially supported by the Natural Sciences and Engineering Research
Council of Canada.

1

ar
X

iv
:0

90
4.

20
51

v1
 [

cs
.I

T
]

 1
4

A
pr

 2
00

9

X0 is row sparse—i.e., it has nonzero entries in only a small number of rows. The most widely
studied approach to the MMV problem is based on solving the convex optimization problem

minimize
X∈Rn×r

‖X‖p,q subject to AX = B,

where the mixed `p,q norm of X is defined as

‖X‖p,q =
(n∑

j=1

‖Xj→‖pq
)1/p

,

and Xj→ is the (column) vector whose entries form the jth row of X. In particular, Cotter et al. [8]
consider p = 2, q ≤ 1; Tropp [28,29] analyzes p = 1, q =∞; Malioutov et al. [22] and Eldar and
Mishali [14] use p = 1, q = 2; and Chen and Huo [5] study p = 1, q ≥ 1. A different approach is
given by Mishali and Eldar [23], who propose the ReMBo algorithm, which reduces MMV to a
series of SMV problems.

In this paper we study the sum-of-norms problem and the conditions for uniform recovery of
all X0 with a fixed row support, and compare this against recovery using `1,1. We then construct
matrices X0 that cannot be recovered using `1,1 but for which `1,2 does succeed, and vice versa.
We then illustrate the individual recovery properties of `1,1 and `1,2 with empirical results. We
further show how recovery via `1,1 changes as the number of measurements increases, and propose
a boosted-`1 approach to improve on the `1,1 approach. This analysis provides the starting point
for our study of the recovery properties of ReMBo, based on a geometrical interpretation of this
algorithm.

We begin in Section 2 by summarizing existing `0-`1 equivalence results, which give conditions
under which the solution of the `1 relaxation (1.2) coincides with the solution of the `0 problem (1.1).
In Section 3 we consider the `1,2 mixed-norm and sum-of-norms formulations and compare their
performance against `1,1. In Sections 4 and 5 we examine two approaches that are based on
sequential application of (1.2).

Notation. We assume throughout that A is a full-rank matrix in Rm×n, and that X0 is an s
row-sparse matrix in Rn×r. We follow the convention that all vectors are column vectors. For
an arbitrary matrix M , its jth column is denoted by the column vector M ↓j ; its ith row is the
transpose of the column vector M i→. The ith entry of a vector v is denoted by vi. We make
exceptions for ei = I↓i and for x0 (resp., X0), which represents the sparse vector (resp., matrix)
we want to recover. When there is no ambiguity we sometimes write mi to denote M ↓i. When
concatenating vectors into matrices, [a, b, c] denotes horizontal concatenation and [a; b; c] denotes
vertical concatenation. When indexing with I, we define the vector vI := [vi]i∈I , and the m× |I|
matrix AI := [A↓j]j∈I . Row or column selection takes precedence over all other operators.

2 Existing results for `1 recovery

The conditions under which (1.2) gives the sparsest possible solution have been studied by applying
a number of different techniques. By far the most popular analytical approach is based on the
restricted isometry property, introduced by Candès and Tao [3], which gives sufficient conditions
for equivalence. Donoho [9] obtains necessary and sufficient (NS) conditions by analyzing the
underlying geometry of (1.2). Several authors [12,13,19] characterize the NS-conditions in terms of
properties of the kernel of A:

Ker(A) = {x | Ax = 0}.
Fuchs [16] and Tropp [27] express sufficient conditions in terms of the solution of the dual of (1.2):

maximize
y

bTy subject to ‖ATy‖∞ ≤ 1. (2.1)

In this paper we are mainly concerned with the geometric and kernel conditions. We use the
geometrical interpretation of the problems to get a better understanding, and resort to the null-space

2

properties of A to analyze recovery. To make the discussion more self-contained, we briefly recall
some of the relevant results in the next three sections.

2.1 The geometry of `1 recovery

The set of all points of the unit `1-ball, {x ∈ Rn | ‖x‖1 ≤ 1}, can be formed by taking convex
combinations of ±ej , the signed columns of the identity matrix. Geometrically this is equivalent
to taking the convex hull of these vectors, giving the cross-polytope C = conv{±e1,±e2, . . . ,±en}.
Likewise, we can look at the linear mapping x 7→ Ax for all points x ∈ C, giving the polytope
P = {Ax | x ∈ C} = AC. The faces of C can be expressed as the convex hull of subsets of
vertices, not including pairs that are reflections with respect to the origin (such pairs are sometimes
erroneously referred to as antipodal, which is a slightly more general concept [21]). Under linear
transformations, each face from the cross-polytope C either maps to a face on P or vanishes into
the interior of P.

The solution found by (1.2) can be interpreted as follows. Starting with a radius of zero, we
slowly “inflate” P until it first touches b. The radius at which this happens corresponds to the
`1-norm of the solution x∗. The vertices whose convex hull is the face touching b determine the
location and sign of the non-zero entries of x∗, while the position where b touches the face determines
their relative weights. Donoho [9] shows that x0 can be recovered from b = Ax0 using (1.2) if
and only if the face of the (scaled) cross-polytope containing x0 maps to a face on P. Two direct
consequences are that recovery depends only on the sign pattern of x0, and that the probability of
recovering a random s-sparse vector is equal to the ratio of the number of (s− 1)-faces in P to the
number of (s− 1)-faces in C. That is, letting Fd(P) denote the collection of all d-faces [21] in P,
the probability of recovering x0 using `1 is given by

P`1(A, s) =
|Fs−1(AC)|
|Fs−1(C)|

.

When we need to find the recoverability of vectors restricted to a support I, this probability
becomes

P`1(A, I) =
|FI(AC)|
|FI(C)|

, (2.2)

where FI(C) = 2|I| denotes the number of faces in C formed by the convex hull of {±ej}i∈I , and
FI(AC) is the number of faces on AC generated by {±A↓j}j∈I .

2.2 Null-space properties and `1 recovery

Equivalence results in terms of null-space properties generally characterize equivalence for the set
of all vectors x with a fixed support, which is defined as

Supp(x) = {j | xj 6= 0}.

We say that x can be uniformly recovered on I ⊆ {1, . . . , n} if all x with Supp(x) ⊆ I can be
recovered. The following theorem illustrates conditions for uniform recovery via `1 on an index set;
more general results are given by Gribonval and Nielsen [20].

Theorem 2.1 (Donoho and Elad [12], Gribonval and Nielsen [19]). Let A be an m× n matrix and
I ⊆ {1, . . . , n} be a fixed index set. Then all x0 ∈ Rn with Supp(x0) ⊆ I can be uniquely recovered
from b = Ax0 using basis pursuit (1.2) if and only if for all z ∈ Ker(A) \ {0},∑

j∈I
|zj | <

∑
j 6∈I

|zj |. (2.3)

That is, the `1-norm of z on I is strictly less than the `1-norm of z on the complement Ic.

3

2.3 Optimality conditions for `1 recovery

Sufficient conditions for recovery can be derived from the first-order optimality conditions necessary
for x∗ and y∗ to be solutions of (1.2) and (2.1) respectively. The Karush-Kuhn-Tucker (KKT)
conditions are also sufficient in this case because the problems are convex. The Lagrangian function
for (1.2) is given by

L(x, y) = ‖x‖1 − yT(Ax− b);
the KKT conditions require that

Ax = b and 0 ∈ ∂xL(x, y), (2.4)

where ∂xL denotes the subdifferential of L with respect to x. The second condition reduces to

0 ∈ sgn(x)−ATy,

where the signum function

sgn(γ) ∈

{
sign(γ) if γ 6= 0,
[−1, 1] otherwise,

is applied to each individual component of x. It follows that x∗ is a solution of (1.2) if and only if
Ax∗ = b and there exists an m-vector y such that |aT

jy| ≤ 1 for j 6∈ Supp(x), and aT
jy = sign(x∗j) for

all j ∈ Supp(x). Fuchs [16] shows that x∗ is the unique solution of (1.2) when [aj]j∈Supp(x) is full
rank and, in addition, |aT

jy| < 1 for all j 6∈ Supp(x). When the columns of A are in general position
(i.e., no k + 1 columns of A span the same k − 1 dimensional hyperplane for k ≤ n) we can weaken
this condition by noting that for such A, the solution of (1.2) is always unique, thus making the
existence of a y that satisfies (2.4) for x0 a necessary and sufficient condition for `1 to recover x0.

3 Recovery using sums-of-row norms

Our analysis of sparse recovery for the MMV problem of recovering X0 from B = AX0 begins with
an extension of Theorem 2.1 to recovery using the convex relaxation

minimize
X

n∑
j=1

‖Xj→‖ subject to AX = B; (3.1)

note that the norm within the summation is arbitrary. Define the row support of a matrix as

Supprow(X) = {j | ‖Xj→‖ 6= 0}.

With these definitions we have the following result. (A related result is given by Stojnic et al. [26].)

Theorem 3.1. Let A be an m× n matrix, k be a positive integer, I ⊆ {1, . . . , n} be a fixed index
set, and let ‖·‖ denote any vector norm. Then all X0 ∈ Rn×r with Supprow(X0) ⊆ I can be uniquely
recovered from B = AX0 using (3.1) if and only if for all Z with columns Z↓k ∈ Ker(A) \ {0},∑

j∈I
‖Zj→‖ <

∑
j 6∈I

‖Zj→‖. (3.2)

Proof. For the “only if” part, suppose that there is a Z with columns Z↓k ∈ Ker(A) \ {0} such
that (3.2) does not hold. Now, choose Xj→ = Zj→ for all j ∈ I and with all remaining rows
zero. Set B = AX. Next, define V = X − Z, and note that AV = AX − AZ = AX = B. The
construction of V implies that

∑
j ‖Xj→‖ ≥

∑
j ‖V j→‖, and consequently X cannot be the unique

solution of (3.1).
Conversely, let X be an arbitrary matrix with Supprow(X) ⊆ I, and let B = AX. To show that

X is the unique solution of (3.1) it suffices to show that for any Z with columns Z↓k ∈ Ker(A)\{0},∑
j

‖(X + Z)j→‖ >
∑

j

‖Xj→‖.

4

This is equivalent to ∑
j 6∈I

‖Zj→‖+
∑
j∈I
‖(X + Z)j→‖ −

∑
j∈I
‖Xj→‖ > 0.

Applying the reverse triangle inequality, ‖a+ b‖ − ‖b‖ ≥ −‖a‖, to the summation over j ∈ I and
reordering exactly gives condition (3.2).

In the special case of the sum of `1-norms, i.e., `1,1, summing the norms of the columns is
equivalent to summing the norms of the rows. As a result, (3.1) can be written as

minimize
X

r∑
k=1

‖X↓k‖1 subject to AX↓k = B↓k, k = 1, . . . , r.

Because this objective is separable, the problem can be decoupled and solved as a series of
independent basis pursuit problems, giving one X↓k for each column B↓k of B. The following result
relates recovery using the sum-of-norms formulation (3.1) to `1,1 recovery.

Theorem 3.2. Let A be an m× n matrix, r be a positive integer, I ⊆ {1, . . . , n} be a fixed index
set, and ‖ ·‖ denote any vector norm. Then uniform recovery of all X ∈ Rn×r with Supprow(X) ⊆ I
using sums of norms (3.1) implies uniform recovery on I using `1,1.

Proof. For uniform recovery on support I to hold it follows from Theorem 3.1 that for any matrix
Z with columns Z↓k ∈ Ker(A) \ {0}, property (3.2) holds. In particular it holds for Z with Z↓k = z̄
for all k, with z̄ ∈ Ker(A)\{0}. Note that for these matrices there exist a norm-dependent constant
γ such that

|z̄j | = γ‖Zj→‖.

Since the choice of z̄ was arbitrary, it follows from (3.2) that the NS-condition (2.3) for independent
recovery of vectors B↓k using `1 in Theorem 2.1 is satisfied. Moreover, because `1,1 is equivalent to
independent recovery, we also have uniform recovery on I using `1,1.

An implication of Theorem 3.2 is that the use of restricted isometry conditions—or any technique,
for that matter—to analyze uniform recovery conditions for the sum-of-norms approach necessarily
lead to results that are no stronger than uniform `1 recovery. (Recall that the `1,1 and `1 norms
are equivalent).

3.1 Recovery using `1,2

In this section we take a closer look at the `1,2 problem

minimize
X

‖X‖1,2 subject to AX = B, (3.3)

which is a special case of the sum-of-norms problem. Although Theorem 3.2 establishes that uniform
recovery via `1,2 is no better than uniform recovery via `1,1, there are many situations in which
it recovers signals that `1,1 cannot. Indeed, it is evident from Figure 1 that the probability of
recovering individual signals with random signs and support is much higher for `1,2. The reason for
the degrading performance or `1,1 with increasing k is explained in Section 4.

In this section we construct examples for which `1,2 works and `1,1 fails, and vice versa. This
helps uncover some of the structure of `1,2, but at the same time implies that certain techniques
used to study `1 can no longer be used directly. Because the examples are based on extensions of
the results from Section 2.3, we first develop equivalent conditions here.

5

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

s

R
ec

ov
er

y
ra

te
 (

%
)

r = 2
r = 3
r = 5

Figure 1: Recovery rates for fixed, randomly drawn 20× 60 matrices A, averaged over 1,000 trials
at each row-sparsity level s. The nonzero entries in the 60× r matrix X0 are sampled i.i.d. from
the normal distribution. The solid and dashed lines represent `1,2 and `1,1 recovery, respectively.

3.1.1 Sufficient conditions for recovery via `1,2

The optimality conditions of the `1,2 problem (3.3) play a vital role in deriving a set of sufficient
conditions for joint-sparse recovery. In this section we derive the dual of (3.3) and the corresponding
necessary and sufficient optimality conditions. These allow us to derive sufficient conditions for
recovery via `1,2.

The Lagrangian for (3.3) is defined as

L(X,Y) = ‖X‖1,2 − 〈Y,AX −B〉 , (3.4)

where 〈V,W 〉 := trace(V TW) is an inner-product defined over real matrices. The dual is then given
by maximizing

inf
X
L(X,Y) = inf

X
{‖X‖1,2 − 〈Y,AX −B〉} = 〈B, Y 〉 − sup

X

{〈
ATY,X

〉
− ‖X‖1,2

}
(3.5)

over Y . (Because the primal problem has only linear constraints, there necessarily exists a dual
solution Y ∗ that maximizes this expression [25, Theorem 28.2].) To simplify the supremum term,
we note that for any convex, positively homogeneous function f defined over an inner-product
space,

sup
v
{〈w, v〉 − f(v)} =

{
0 if w ∈ ∂f(0),
∞ otherwise.

To derive these conditions, note that positive homogeneity of f implies that f(0) = 0, and thus
w ∈ ∂f(0) implies that 〈w, v〉 ≤ f(v) for all v. Hence, the supremum is achieved with v = 0. If on
the other hand w 6∈ ∂f(0), then there exists some v such that 〈w, v〉 > f(v), and by the positive
homogeneity of f , 〈w,αv〉 − f(αv)→∞ as α→∞. Applying this expression for the supremum
to (3.5), we arrive at the necessary condition

ATY ∈ ∂‖0‖1,2, (3.6)

which is required for dual feasibility.
We now derive an expression for the subdifferential ∂‖X‖1,2. For rows j where ‖Xj→‖2 > 0,

the gradient is given by ∇‖Xj→‖2 = Xj→/‖Xj→‖2. For the remaining rows, the gradient is not

6

defined, but ∂‖Xj→‖2 coincides with the set of unit `2-norm vectors Br
`2

= {v ∈ Rr | ‖v‖2 ≤ 1}.
Thus, for each j = 1, . . . , n,

∂Xj→‖X‖1,2 ∈

{
Xj→/‖Xj→‖2 if ‖Xj→‖2 > 0,

Br
`2

otherwise.
(3.7)

Combining this expression with (3.6), we arrive at the dual of (3.3):

maximize
Y

trace(BTY) subject to ‖ATY ‖∞,2 ≤ 1. (3.8)

The following conditions are therefore necessary and sufficient for a primal-dual pair (X∗, Y ∗) to
be optimal for (3.3) and its dual (3.8):

AX∗ = B (primal feasibility); (3.9a)

‖ATY ∗‖∞,2 ≤ 1 (dual feasibility); (3.9b)

‖X∗‖1,2 = trace(BTY ∗) (zero duality gap). (3.9c)

The existence of a matrix Y ∗ that satisfies (3.9) provides a certificate that the feasible matrix
X∗ is an optimal solution of (3.3). However, it does not guarantee that X∗ is also the unique
solution. The following theorem gives sufficient conditions, similar to those in Section 2.3, that also
guarantee uniqueness of the solution.

Theorem 3.3. Let A be an m × n matrix, and B be an m × r matrix. Then a set of sufficient
conditions for X to be the unique minimizer of (3.3) with Lagrange multiplier Y ∈ Rm×r and row
support I = Supprow(X), is that

AX = B, (3.10a)

(ATY)↓j = (X∗)j→/‖(X∗)j→‖2, j ∈ I (3.10b)

‖(ATY)↓j‖2 < 1, j 6∈ I (3.10c)
rank(AI) = |I|. (3.10d)

Proof. The first three conditions clearly imply that (X,Y) primal and dual feasible, and thus
satisfy (3.9a) and (3.9b). Conditions (3.10b) and (3.10c) together imply that

trace(BTY) ≡
n∑

j=1

[(ATY)↓j]TXj→ =
n∑

j=1

Xj→ ≡ ‖X‖1,2.

The first and last identities above follow directly from the definitions of the matrix trace and of the
norm ‖ · ‖1,2, respectively; the middle equality follows from the standard Cauchy inequality. Thus,
the zero-gap requirement (3.9c) is satisfied. The conditions (3.10a)–(3.10c) are therefore sufficient
for (X,Y) to be an optimal primal-dual solution of (3.3). Because Y determines the support and
is a Lagrange multiplier for every solution X, this support must be unique. It then follows from
condition (3.10d) that X must be unique.

3.2 Counter examples

Using the sufficient and necessary conditions developed in the previous section we now construct
examples of problems for which `1,2 succeeds while `1,1 fails, and vice versa. Because of its simplicity,
we begin with the latter.

Recovery using `1,1 where `1,2 fails. Let A be an m× n matrix with m < n and unit-norm
columns that are not scalar multiples of each other. Take any vector x ∈ Rn with at least m+ 1
nonzero entries. Then X0 = diag(x), possibly with all identically zero columns removed, can be
recovered from B = AX0 using `1,1, but not with `1,2. To see why, note that each column in X0

7

has only a single nonzero entry, and that, under the assumptions on A, each one-sparse vector can
be recovered individually using `1 (the points ±A↓j ∈ Rm are all 0-faces of P) and therefore that
X0 can be recovered using `1,1.

On the other hand, for recovery using `1,2 there would need to exist a matrix Y satisfying the
first condition of (3.9) for all j ∈ I = {1, . . . , n}. For this given X0 this reduces to ATY = M , where
M is the identity matrix, with the same columns removed as X. But this equality is impossible
to satisfy because rank(A) ≤ m < m+ 1 ≤ rank(M). Thus, X0 cannot be the solution of the `1,2

problem (3.3).

Recovery using `1,2 where `1,1 fails. For the construction of a problem where `1,2 succeeds
and `1,1 fails, we consider two vectors, f and s, with the same support I, in such a way that
individual `1 recovery fails for f , while it succeeds for s. In addition we assume that there exists a
vector y that satisfies

yTA↓j = sign(sj) for all j ∈ I, and |yTA↓j | < 1 for all j 6∈ I;

i.e., y satisfies conditions (3.10b) and (3.10c). Using the vectors f and s, we construct the 2-column
matrix X0 = [(1 − γ)s, γf], and claim that for sufficiently small γ > 0, this gives the desired
reconstruction problem. Clearly, for any γ 6= 0, `1,1 recovery fails because the second column can
never be recovered, and we only need to show that `1,2 does succeed.

For γ = 0, the matrix Y = [y, 0] satisfies conditions (3.10b) and (3.10c) and, assuming (3.10d)
is also satisfied, X0 is the unique solution of `1,2 with B = AX0. For sufficiently small γ > 0, the
conditions that Y need to satisfy change slightly due to the division by ‖Xj→

0 ‖2 for those rows in
Supprow(X). By adding corrections to the columns of Y those new conditions can be satisfied. In
particular, these corrections can be done by adding weighted combinations of the columns in Ȳ ,
which are constructed in such a way that it satisfies AT

I Ȳ = I, and minimizes ‖AT
Ic Ȳ ‖∞,∞ on the

complement Ic of I.
Note that on the above argument can also be used to show that `1,2 fails for γ sufficiently close

to one. Because the support and signs of X remain the same for all 0 < γ < 1, we can conclude the
following:

Corollary 3.4. Recovery using `1,2 is generally not only characterized by the row-support and the
sign pattern of the nonzero entries in X0, but also by the magnitude of the nonzero entries.

A consequence of this conclusion is that the notion of faces used in the geometrical interpretation
of `1 is not applicable to the `1,2 problem.

3.3 Experiments

To get an idea of just how much more `1,2 can recover in the above case where `1,1 fails, we
generated a 20 × 60 matrix A with entries i.i.d. normally distributed, and determined a set of
vectors si and fi with identical support for which `1 recovery succeeds and fails, respectively.
Using triples of vectors si and fj we constructed row-sparse matrices such as X0 = [s1, f1, f2] or
X0 = [s1, s2, f2], and attempted to recover from B = AX0W , where W = diag(ω1, ω2, ω3) is a
diagonal weighting matrix with nonnegative entries and unit trace, by solving (3.3). For problems
of this size, interior-point methods are very efficient and we use SDPT3 [30] through the CVX
interface [17, 18]. We consider X0 to be recovered when the maximum absolute difference between
X0 and the `1,2 solution X∗ is less than 10−5. The results of the experiment are shown in Figure 2.
In addition to the expected regions of recovery around individual columns si and failure around fi,
we see that certain combinations of vectors si still fail, while other combinations of vectors fi may
be recoverable. By contrast, when using `1,1 to solve the problem, any combination of si vectors
can be recovered while no combination including an fi can be recovered.

8

|I| = 5 |I| = 5 |I| = 5 |I| = 7

|I| = 10 |I| = 10 |I| = 10 |I| = 10

Figure 2: Generation of problems where `1,2 succeeds, while `1,1 fails. For a 20 × 60 matrix A
and fixed support of size |I| = 5, 7, 10, we create vectors fi that cannot be recovered using `1, and
vectors si than can be recovered. Each triangle represents an X0 constructed from the vectors
denoted in the corners. The location in the triangle determines the weight on each vector, ranging
from zero to one, and summing up to one. The dark areas indicates the weights for which `1,2

successfully recovered X0.

4 Boosted `1

As described in Section 3, recovery using `1,1 is equivalent to individual `1 recovery of each column
xk := X↓k0 based on bk := B↓k, for k = 1, . . . , r:

minimize
x

‖x‖1 subject to Ax = bk. (4.1)

Assuming that the signs of nonzero entries in the support of each xk are drawn i.i.d. from {1,−1},
we can express the probability of recovering a matrix X0 with row support I using `1,1 in terms of
the probability of recovering vectors on that support using `1. To see how, note that `1,1 recovers
the original X0 if and only if each individual problem in (4.1) successfully recovers each xk. For
the above class of matrices X0 this therefore gives a recovery rate of

P`1,1(A, I, k) = [P`1(A, I)]r .

Using `1,1 to recover X0 is clearly not a good idea. Note also that uniform recovery of X0 on a
support I remains unchanged, regardless of the number of observations, r, that are given. As a
consequence of Theorem 3.2, this also means that the uniform-recovery properties for any sum-
of-norms approach cannot increase with r. This clearly defeats the purpose of gathering multiple
observations.

In many instances where `1,1 fails, it may still recover a subset of columns xk from the
corresponding observations bk. It seems wasteful to discard this information because if we could
recognize a single correctly recovered xk, we would immediately know the row support I =
Supprow(X0) = Supp(xk) of X0. Given the correct support we can recover the nonzero part X̄ of
X0 by solving

minimize
X̄

‖AIX̄ −B‖F . (4.2)

In practice we obviously do not know the correct support, but when a given solution x∗k of (4.1)
that is sufficiently sparse, we can try to solve (4.2) for that support and verify if the residual at
the solution is zero. If so, we construct the final X∗ using the non-zero part and declare success.

9

given A, B
for k = 1, . . . , r do

solve (1.2) with bk = B↓k to get x
I ← Supp(x)
if |I| < m/2 then

solve (4.2) to get X
if AIX = B then

X∗ = 0
(X∗)j→ ← Xj→ for j ∈ I
return solution X∗

return failure
0 5 10 15 20

0

10

20

30

40

50

60

70

80

90

100

r

R
ec

ov
er

y
ra

te
 (

%
)

s = 8
s = 9
s = 10

Figure 3: The boosted `1 algorithm Figure 4: Theoretical (dashed) and experimental
(solid) performance of boosted `1 for three problem
instances with different row support s.

Otherwise we simply increment k and repeat this process until there are no more observations
and recovery was unsuccessful. We refer to this algorithm, which is reminiscent of the ReMBo
approach [23], as boosted `1; its sole aim is to provide a bridge to the analysis of ReMBo. The
complete boosted `1 algorithm is outlined in Figure 3.

The recovery properties of the boosted `1 approach are opposite from those of `1,1: it fails only
if all individual columns fail to be recovered using `1. Hence, given an unknown n× r matrix X
supported on I with its sign pattern uniformly random, the boosted `1 algorithm gives an expected
recovery rate of

P`B
1

(A, I, r) = 1− [1− P`1(A, I)]r . (4.3)

To experimentally verify this recovery rate, we generated a 20 × 80 matrix A with entries
independently sampled from the normal distribution and fixed a randomly chosen support set Is

for three levels of sparsity, s = 8, 9, 10. On each of these three supports we generated vectors with
all possible sign patterns and solved (1.2) to see if they could be recovered or not (see Section 3.3).
This gives exactly the face counts required to compute the `1 recovery probability in (2.2), and the
expected boosted `1 recovery rate in (4.3)

For the empirical success rate we take the average over 1,000 trials with random coefficient
matrices X supported on Is, and its nonzero entries independently drawn from the normal
distribution. To reduce the computational time we avoid solving `1 and instead compare the sign
pattern of the current solution xk against the information computed to determine the face counts
(both A and Is remain fixed). The theoretical and empirical recovery rates using boosted `1 are
plotted in Figure 4.

5 Recovery using ReMBo

The boosted `1 approach can be seen as a special case of the ReMBo [23] algorithm. ReMBo
proceeds by taking a random vector w ∈ Rr and combining the individual observations in B into a
single weighted observation b := Bw. It then solves a single measurement vector problem Ax = b
for this b (we shall use `1 throughout) and checks if the computed solution x∗ is sufficiently sparse.
If not, the above steps are repeated with a different weight vector w; the algorithm stops when a
maximum number of trials is reached. If the support I of x∗ is small, we form AI = [A↓j]j∈I , and
check if (4.2) has a solution X̄ with zero residual. If this is the case we have the nonzero rows of
the solution X∗ in X̄ and are done. Otherwise, we simply proceed with the next w. The ReMBo
algorithm reduces to boosted `1 by limiting the number of iterations to r and choosing w = ei

10

given A, B. Set Iteration← 0
while Iteration < MaxIteration do

w ← Random(n, 1)
solve (1.2) with b = Bw to get x
I ← Supp(x)
if |I| < m/2 then

solve (4.2) to get X
if AIX = B then

X∗ = 0
(X∗)j→ ← Xj→ for j ∈ I
return solution X∗

Iteration← Iteration + 1
return failure

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

r

R
ec

ov
er

y
ra

te
 (

%
)

s = 8
s = 9
s = 10

Figure 5: The ReMBo-`1 algorithm Figure 6: Theoretical performance model for ReMBo
on three problem instances with different sparsity
levels s.

in the ith iteration. We summarize the ReMBo-`1 algorithm in Figure 5. The formulation given
in [23] requires a user-defined threshold on the cardinality of the support I instead of the fixed
threshold m/2. Ideally this threshold should be half of the spark [12] of A, where

Spark(A) := min
z∈Ker(A)\{0}

‖z‖0

which is the number of nonzeros of the sparsest vector in the kernel of A; any vector x0 with fewer
than Spark(A)/2 nonzeros is the unique sparsest solution of Ax = Ax0 = b [12]. Unfortunately, the
spark is prohibitively expensive to compute, but under the assumption that A is in general position,
Spark(A) = m+ 1. Note that choosing a higher value can help to recover signals with row sparsity
exceeding m/2. However, in this case it can no longer be guaranteed to be the sparsest solution.

To derive the performance analysis of ReMBo, we fix a support I of cardinality s, and consider
only signals with nonzero entries on this support. Each time we multiply B by a weight vector
w, we in fact create a new problem with an s-sparse solution x0 = X0w corresponding with a
right-hand side b = Bw = AX0w = Ax0. As reflected in (2.2), recovery of x0 using `1 depends
only on its support and sign pattern. Clearly, the more sign patterns in x0 that we can generate,
the higher the probability of recovery. Moreover, due to the elimination of previously tried sign
patterns, the probability of recovery goes up with each new sign pattern (excluding negation of
previous sign patterns). The maximum number of sign patterns we can check with boosted `1 is
the number of observations r. The question thus becomes, how many different sign patterns we can
generate by taking linear combinations of the columns in X0? (We disregard the situation where
elimination occurs and |Supp(X0w)| < s.) Equivalently, we can ask how many orthants in Rs (each
one corresponding to a different sign pattern) can be properly intersected by the hyperplane given
by the range of the s × r matrix X̄ consisting of the nonzero rows of X0 (with proper we mean
intersection of the interior). In Section 5.1 we derive an exact expression for the maximum number
of proper orthant intersections in Rn by a hyperplane generated by d vectors, denoted by C(n, d).

Based on the above reasoning, a good model for the recovery rate of n× r matrices X0 with
Supprow(X0) = I < m/2 using ReMBo is given by

PR(A, I, r) = 1−
C(|I|,r)/2∏

i=1

[
1− FI(AC)
FI(C)− 2(i− 1)

]
. (5.1)

The term within brackets denotes the probability of failure and the fraction represents the success
rate, which is given by the ratio of the number of faces FI(AC) that survived the mapping to the

11

total number of faces to consider. The total number reduces by two at each trial because we can
exclude the face f we just tried, as well as −f . The factor of two in C(|I|, r)/2 is also due to this
symmetry1.

This model would be a bound for the average performance of ReMBo if the sign patterns
generated would be randomly sampled from the space of all sign patterns on the given support.
However, because it is generated from the orthant intersections with a hyperplane, the actual
pattern is highly structured. Indeed, it is possible to imagine a situation where the (s− 1)-faces in
C that perish in the mapping to AC have sign patterns that are all contained in the set generated
by a single hyperplane. Any other set of sign patterns would then necessarily include some faces
that survive the mapping and by trying all patterns in that set we would recover X0. In this case,
the average recovery over all X0 on that support could be much higher than that given by (5.1).
We do not yet fully understand how the surviving faces of C are distributed. Due to the simplicial
structure of the facets of C, we can expect the faces that perish to be partially clustered (if a
(d − 2)-face perishes, then so will the two (d − 1)-faces whose intersection gives this face), and
partially unclustered (the faces that perish while all their sub-faces survive). Note that, regardless
of these patterns, recovery is guaranteed in the limit whenever the number of unique sign patterns
tried exceeds half the number of faces lost, (|FI(C)| − |FI(AC)|)/2.

Figure 6 illustrates the theoretical performance model based on C(n, d), for which we derive the
exact expression in Section 5.1. In Section 5.2 we discuss practical limitations, and in Section 5.3 we
empirically look at how the number of sign patterns generated grows with the number of normally
distributed vectors w, and how this affects the recovery rates. To allow comparison between ReMBo
and boosted `1, we used the same matrix A and support Is used to generate Figure 4.

5.1 Maximum number of orthant intersections with subspace

Theorem 5.1. Let C(n, d) denote the maximum attainable number of orthant interiors intersected
by a hyperplane in Rn generated by d vectors. Then C(n, 1) = 2, C(n, d) = 2n for d ≥ n. In
general, C(n, d) is given by

C(n, d) = C(n− 1, d− 1) + C(n− 1, d) = 2
d−1∑
i=0

(
n− 1
i

)
. (5.2)

Proof. The number of intersected orthants is exactly equal to the number of proper sign patterns
(excluding zero values) that can be generated by linear combinations of those d vectors. When
d = 1, there can only be two such sign patterns corresponding to positive and negative multiples
of that vector, thus giving C(n, 1) = 2. Whenever d ≥ n, we can choose a basis for Rn and add
additional vectors as needed, and we can reach all points, and therefore all 2n = C(n, d) sign
patterns.

For the general case (5.2), let v1, . . . , vd be vectors in Rn such that the affine hull with the origin,
S = aff{0, v1, . . . , vd}, gives a hyperplane in Rn that properly intersects the maximum number of
orthants, C(n, d). Without loss of generality assume that vectors vi, i = 1, . . . , d− 1 all have their
nth component equal to zero. Now, let T = aff{0, v1, . . . , vd−1} ⊆ Rn−1 be the intersection of S
with the (n − 1)-dimensional subspace of all points X = {x ∈ Rn | xn = 0}, and let CT denote
the number of (n− 1)-orthants intersected by T . Note that T itself, as embedded in Rn, does not
properly intersect any orthant. However, by adding or subtracting an arbitrarily small amount
of vd, we intersect 2CT orthants; taking vd to be the nth column of the identity matrix would
suffice for that matter. Any other orthants that are added have either xn > 0 or xn < 0, and their
number does not depend on the magnitude of the nth entry of vd, provided it remains nonzero.
Because only the first n− 1 entries of vd determine the maximum number of additional orthants,
the problem reduces to Rn−1. In fact, we ask how many new orthants can be added to CT taking
the affine hull of T with v, the orthogonal projection vd onto X . Since the maximum orthants for
this d-dimensional subspace in Rn−1 is given by C(n − 1, d), this number is clearly bounded by

1Henceforth we use the convention that the uniqueness of a sign pattern is invariant under negation.

12

C(n− 1, d)− CT . Adding this to 2CT , we have

C(n, d) ≤ 2CT + [C(n− 1, d)− CT] = CT + C(n− 1, d)
≤ C(n− 1, d− 1) + C(n− 1, d)

≤ 2
d−1∑
i=0

(
n− 1
i

)
.

(5.3)

The final expression follows by expanding the recurrence relations, which generates (a part of)
Pascal’s triangle, and combining this with C(1, j) = 2 for j ≥ 1. In the above, whenever there
are free orthants in Rn−1, that is, when d < n, we can always choose the corresponding part of vd

in that orthant. As a consequence we have that no hyperplane supported by a set of vectors can
intersect the maximum number of orthants when the range of those vectors includes some ei.

We now show that this expression holds with equality. Let U denote an (n− d)-hyperplane in
Rn that intersects the maximum C(n, n− d) orthants. We now claim that in the interior of each
orthant not intersected by U there exists a vector that is orthogonal to U . If this were not the
case then T must be aligned with some ei and can therefore not be optimal. The span of these
orthogonal vectors generates a d-hyperplane V that intersects CV = 2n −C(n, n− d) orthants, and
it follows that

C(n, d) ≥ CV = 2n − C(n, n− d)

≥ 2n − 2
n−d−1∑

i=0

(
n− 1
i

)
= 2

n−1∑
i=0

(
n− 1
i

)
− 2

n−d−1∑
i=0

(
n− 1
i

)

= 2
n−1∑
n−d

(
n− 1
i

)
= 2

d−1∑
i=0

(
n− 1
i

)
≥ C(n, d),

where the last inequality follows from (5.3). Consequently, all inequalities hold with equality.

Corollary 5.2. Given d ≤ n, then C(n, d) = 2n − C(n, n− d), and C(2d, d) = 22d−1.

Corollary 5.3. A hyperplane H in Rn, defined as the range of V = [v1, v2, . . . , vd], intersects
the maximum number of orthants C(n, d) whenever rank(V) = n, or when ei 6∈ range(V) for
i = 1, . . . , n.

5.2 Practical considerations

In practice it is generally not feasible to generate all of the C(|I|, r)/2 unique sign patterns. This
means that we would have to replace this term in (5.1) by the number of unique patterns actually
tried. For a given X0 the actual probability of recovery is determined by a number of factors. First
of all, the linear combinations of the columns of the nonzero part of X̄ prescribe a hyperplane
and therefore a set of possible sign patterns. With each sign pattern is associated a face in C that
may or may not map to a face in AC. In addition, depending on the probability distribution from
which the weight vectors w are drawn, there is a certain probability for reaching each sign pattern.
Summing the probability of reaching those patterns that can be recovered gives the probability
P (A, I, X0) of recovering with an individual random sample w. The probability of recovery after t
trials is then of the form

1− [1− P (A, I, X0)]t.

To attain a certain sign pattern ē, we need to find an r-vector w such that sign(X̄w) = ē. For a
positive sign on the jth position of the support we can take any vector w in the open halfspace
{w | X̄j→w > 0}, and likewise for negative signs. The region of vectors w in Rr that generates a
desired sign pattern thus corresponds to the intersection of |I| open halfspaces. The measure of
this intersection as a fraction of Rr determines the probability of sampling such a w. To formalize,
define K as the cone generated by the rows of −diag(ē)X̄, and the unit Euclidean (k − 1)-sphere

13

Sk−1 = {x ∈ Rr | ‖x‖2 = 1}. The intersection of halfspaces then corresponds to the interior of the
polar cone of K: K◦ = {x ∈ Rr | xTy ≤ 0, ∀y ∈ K}. The fraction of Rr taken up by K◦ is given
by the (k − 1)-content of Sk−1 ∩ K◦ to the (k − 1)-content of Sk−1 [21]. This quantity coincides
precisely with the definition of the external angle of K at the origin.

5.3 Experiments

In this section we illustrate the theoretical results from Section 5 and examine some practical
considerations that affect the performance of ReMBo. For all experiments that require the matrix
A, we use the same 20× 80 matrix that was used in Section 4, and likewise for the supports Is. To
solve (1.2), we again use CVX in conjunction with SDPT3. We consider x0 to be recovered from
b = Ax0 = AX0w if ‖x∗ − x0‖∞ ≤ 10−5, where x∗ is the computed solution.

The experiments that are concerned with the number of unique sign patterns generated depend
only on the s× r matrix X̄ representing the nonzero entries of X0. Because an initial reordering of
the rows does not affect the number of patterns, those experiments depend only on X̄, s = |I|, and
the number of observations r; the exact indices in the support set I are irrelevant for those tests.

5.3.1 Generation of unique sign patterns

The practical performance of ReMBo depends on its ability to generate as many different sign
patterns using the columns in X0 as possible. A natural question to ask then is how the number
of such patterns grows with the number of randomly drawn samples w. Although this ultimately
depends on the distribution used for generating the entries in w, we shall, for sake of simplicity,
consider only samples drawn from the normal distribution. As an experiment we take a 10 × 5
matrix X̄ with normally-distributed entries, and over 108 trials record how often each sign-pattern
(or negation) was reached, and in which trial they were first encountered. The results of this
experiment are summarized in Figure 7. From the distribution in Figure 7(b) it is clear that the
occurrence levels of different orthants exhibits a strong bias. The most frequently visited orthant
pairs were reached up to 7.3× 106 times, while others, those hard to reach using weights from the
normal distribution, were observed only four times over all trials. The efficiency of ReMBo depends
on the rate of encountering new sign patterns. Figure 7(c) shows how the average rate changes over
the number of trials. The curves in Figure 7(d) illustrate the theoretical probability of recovery
in (5.1), with C(n, d)/2 replaced by the number of orthant pairs at a given iteration, and with
face counts determined as in Section 4, for three instances with support cardinality s = 10, and
observations r = 5.

5.3.2 Role of X̄.

Although the number of orthants that a hyperplane can intersect does not depend on the basis
with which it was generated, this choice does greatly influence the ability to sample those orthants.
Figure 8 shows two ways in which this can happen. In part (a) we sampled the number of unique
sign patterns for two different 9× 5 matrices X̄, each with columns scaled to unit `2-norm. The
entries of the first matrix were independently drawn from the normal distribution, while those in
the second were generated by repeating a single column drawn likewise and adding small random
perturbations to each entry. This caused the average angle between any pair of columns to decrease
from 65 degrees in the random matrix to a mere 8 in the perturbed matrix, and greatly reduces
the probability of reaching certain orthants. The same idea applies to the case where d ≥ n,
as shown in part (b) of the same figure. Although choosing d greater than n does not increase
the number of orthants that can be reached, it does make reaching them easier, thus allowing
ReMBo to work more efficiently. Hence, we can expect ReMBo to have higher recovery on average
when the number of columns in X0 increases and when they have a lower mutual coherence
µ(X) = mini 6=j |xT

i xj |/(‖xi‖2 · ‖xj‖2).

14

10
0

10
2

10
4

10
6

10
8

0

50

100

150

200

250

Iterations

U
ni

qu
e

si
gn

 p
at

te
rn

 p
ai

rs

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

In
st

an
ce

s
(%

 o
f t

ria
ls

)

Sign pattern index

(a) (b)

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

U
ni

qu
e

si
gn

 p
at

te
rn

 p
ai

rs
 p

er
 it

er
at

io
n

10
0

10
2

10
4

10
6

10
8

0

10

20

30

40

50

60

70

80

90

100

Iterations

R
ec

ov
er

y
ra

te
 (

%
)

p = 1.17%
p = 0.20%
p = 0.78%

(c) (d)

Figure 7: Sampling the sign patterns for a 10×5 matrix X̄, with (a) number of unique sign patterns
versus number of trials, (b) relative frequency with which each orthant is sampled, (c) average
number of new sign patterns per iteration as a function of iterations, and (d) theoretical probability
of recovery using ReMBo for three instances of X0 with row sparsity s = 10, and r = 5 observations.

10
0

10
2

10
4

10
6

0

20

40

60

80

100

120

140

160

Iterations

U
ni

qu
e

si
gn

 p
at

te
rn

s

Gaussian
Perturbed

10
0

10
2

10
4

10
6

0

50

100

150

200

250

300

350

400

450

500

550

Iterations

U
ni

qu
e

si
gn

 p
at

te
rn

s

r = 10
r = 12
r = 15

(a) (b)

Figure 8: Number of unique sign patterns for (a) two 9 × 5 matrices X̄ with columns scaled to
unit `2-norm; one with entries drawn independently from the normal distribution, and one with a
single random column repeated and random perturbations added, and (b) 10× r matrices with
r = 10, 12, 15.

15

0 5 10 15 20
0

100

200

300

400

500

600

r

U
ni

qu
e

or
th

an
t p

ai
rs

Trials = 1,000
Trials = 10,000
Trials = Inf

0 5 10 15 20
0

20

40

60

80

100

r

R
ec

ov
er

y
ra

te
 (

%
)

s = 8
s = 9
s = 10

0 5 10 15 20
0

20

40

60

80

100

r

R
ec

ov
er

y
ra

te
 (

%
)

s = 8
s = 9
s = 10

(a) (b) (c)

Figure 9: Effect of limiting the number of weight vectors w on (a) the distribution of unique orthant
counts for 10 × k random matrices X̄, solid lines give the median number and the dashed lines
indicate the minimum and maximum values, the top solid line is the theoretical maximum; (b–c)
the average performance of the ReMBo-`1 algorithm (solid) for fixed 20× 80 matrix A and three
different support sizes r = 8, 9, 10, along with the average predicted performance (dashed). The
support patterns used are the same as those used for Figure 4.

5.3.3 Limiting the number of iterations

The number of iterations used in the previous experiments greatly exceeds that what is practically
feasible: we cannot afford to run ReMBo until all possible sign patterns have been tried, even if
there was a way detect that the limit had been reached. Realistically, we should set the number
of iterations to a fixed maximum that depends on the computational resources available, and the
problem setting.

In Figure 7 we show the unique orthant count as a function of iterations and the predicted
recovery rate. When using only a limited number of iterations it is interesting to know what the
distribution of unique orthant counts looks like. To find out, we drew 1,000 random X̄ matrices
for each size s × r, with s = 10 nonzero rows fixed, and the number of columns ranging from
r = 1, . . . , 20. For each X̄ we counted the number of unique sign patterns attained after respectively
1,000 and 10,000 iterations. The resulting minimum, maximum, and median values are plotted
in Figure 9(a) along with the theoretical maximum. More interestingly of course is the average
recovery rate of ReMBo with those number of iterations. For this test we again used the 20× 80
matrix A with predetermined support I, and with success or failure of each sign pattern on that
support precomputed. For each value of r = 1, . . . , 20 we generated random matrices X on I
and ran ReMBo with the maximum number of iterations set to 1,000 and 10,000. To save on
computing time, we compared the on-support sign pattern of each combined coefficient vector Xw
to the known results instead of solving `1. The average recovery rate thus obtained is plotted in
Figures 9(b)–(c), along with the average of the predicted performance using (5.1) with C(n, d)/2
replaced by orthant counts found in the previous experiment.

6 Conclusions

The MMV problem is often solved by minimizing the sum-of-row norms of the unknown coefficients
X. We show that the (local) uniform recovery properties, i.e., recovery of all X0 with a fixed row
support I = Supprow(X0), cannot exceed that of `1,1, the sum of `1 norms. This is despite the fact
that `1,1 reduces to solving the basis pursuit problem (1.2) for each column separately, which does
not take advantage of the fact that all vectors in X0 are assumed to have the same support. A
consequence of this observation is that the use of restricted isometry techniques to analyze (local)
uniform recovery using sum-of-norm minimization can at best give improved bounds on `1 recovery.

Empirically, minimization with `1,2, the sum of `2 norms, clearly outperforms `1,1 on individual
problem instances: for supports where uniform recovery fails, `1,2 recovers more cases than `1,1.
We construct cases where `1,2 succeeds while `1,1 fails, and vice versa. From the construction where
only `1,2 succeeds it also follows that the relative magnitudes of the coefficients in X0 matter for

16

recovery. This is unlike `1,1 recovery, where only the support and the sign patterns matter. This
implies that the notion of faces, so useful in the analysis of `1, disappears.

We show that the performance of `1,1 outside the uniform-recovery regime degrades rapidly
as the number of observations increases. We can turn this situation around, and increase the
performance with the number of observations by using a boosted-`1 approach. This technique
aims to uncover the correct support based on basis pursuit solutions for individual observations.
Boosted-`1 is a special case of the ReMBo algorithm which repeatedly takes random combinations
of the observations, allowing it to sample many more sign patterns in the coefficient space. As a
result, the potential recovery rates of ReMBo (at least in combination with an `1 solver) are a
much higher than boosted-`1. ReMBo can be used in combination with any solver for the single
measurement problem Ax = b, including greedy approaches and reweighted `1 [4]. The recovery
rate of greedy approaches may be lower than `1 but the algorithms are generally much faster, thus
giving ReMBo the chance to sample more random combinations. Another advantage of ReMBo,
even more so than boosted-`1, is that it can be easily parallelized.

Based on the geometrical interpretation of ReMBo-`1 (cf. Figure 5), we conclude that, the-
oretically, its performance does not increase with the number of observations after this number
reaches the number of nonzero rows. In addition we develop a simplified model for the performance
of ReMBo-`1. To improve the model we would need to know the distribution of faces in the
cross-polytope C that map to faces on AC, and the distribution of external angles for the cones
generated by the signed rows of the nonzero part of X0.

It would be very interesting to compare the recovery performance between `1,2 and ReMBo-`1.
However, we consider this beyond the scope of this paper.

All of the numerical experiments in this paper are reproducible. The scripts used to run the
experiments and generate the figures can be downloaded from

http://www.cs.ubc.ca/~mpf/jointsparse.

Acknowledgments

The authors would like to give their sincere thanks to Özgür Yılmaz and Rayan Saab for their
thoughtful comments and suggestions during numerous discussions.

References

[1] E. J. Candès. Compressive sampling. In Proceedings of the International Congress of Mathe-
maticians, Madrid, Spain, 2006.

[2] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489–509, February 2006.

[3] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information
Theory, 51(2):4203–4215, December 2005.

[4] E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted `1 minimization.
Journal of Fourier Analysis and Applications, 14(5–6):877–905, December 2008.

[5] J. Chen and X. Huo. Theoretical results on sparse represenations of multiple-measurement
vectors. IEEE Transactions on Signal Processing, 54:4634–4643, December 2006.

[6] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, 20(1):33–61, 1998.

[7] S. F. Cotter and B. D. Rao. Sparse channel estimation via matching pursuit with application
to equalization. IEEE Transactions on Communications, 50(3), March 2002.

17

http://www.cs.ubc.ca/~mpf/jointsparse

[8] S. F. Cotter, B. D. Rao, K. Engang, and K. Kreutz-Delgado. Sparse solutions to linear
inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing,
53:2477–2488, July 2005.

[9] D. L. Donoho. Neighborly polytopes and sparse solution of underdetermined linear equations.
Technical Report 2005-4, Department of Statistics, Stanford University, Stanford, CA, 2005.

[10] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, April 2006.

[11] D. L. Donoho. High-dimensional centrosymmetric polytopes with neighborliness proportional
to dimension. Discrete and Computational Geometry, 35(4):617–652, May 2006.

[12] D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via `1 minimization. PNAS, 100(5):2197–2202, March 2003.

[13] D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE
Transactions on Information Theory, 47(7):2845–2862, November 2001.

[14] Y. C. Eldar and M. Mishali. Robust recovery of signals from a union of subspaces. arXiv
0807.4581, July 2008.

[15] I. J. Fevrier, S. B. Gelfand, and M. P. Fitz. Reduced complexity decision feedback equalization
for multipath channels with large delay spreads. IEEE Transactions on Communications,
47(6):927–937, June 1999.

[16] J.-J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Transactions on
Information Theory, 50(6):1341–1344, June 2004.

[17] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel,
S. Boyd, and H. Kimura, editors, Lecture Notes in Control and Information Sciences, pages
95–110. Springer, 2008.

[18] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming (web page
and software). http://stanford.edu/~boyd/cvx, February 2009.

[19] R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE Transactions
on Information Theory, 49(12):3320–3325, December 2003.

[20] R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are unique
and independents of the sparseness measure. Applied and Computational Harmonic Analysis,
22(3):335–355, May 2007.

[21] B. Grünbaum. Convex Polytopes, volume 221 of Graduate Texts in Mathematics. Springer-
Verlag, second edition, 2003.

[22] D. Malioutov, M. Çetin, and A. S. Willsky. A sparse signal reconstruction perspective for source
localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8):3010–3022,
August 2005.

[23] M. Mishali and Y. C. Eldar. Reduce and boost: Recovering arbitrary sets of jointly sparse
vectors. IEEE Transactions on Signal Processing, 56(10):4692–4702, October 2008.

[24] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing,
24(2):227–234, April 1995.

[25] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[26] M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-sparse signals with
an optimal number of measurements. arXiv 0804.0041, March 2008.

18

http://stanford.edu/~boyd/cvx

[27] J. A. Tropp. Recovery of short, complex linear combinations via `1 minimization. IEEE
Transactions on Information Theory, 51(4):1568–1570, April 2005.

[28] J. A. Tropp. Algorithms for simultaneous sparse approximation: Part II: Convex relaxation.
Signal Processing, 86:589–602, 2006.

[29] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse approximation:
Part I: Greedy pursuit. Signal Processing, 86:572–588, 2006.

[30] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear programs
using SDPT3. Mathematical Programming Ser. B, 95:189–217, 2003.

19

	Introduction
	Existing results for 1 recovery
	The geometry of 1 recovery
	Null-space properties and 1 recovery
	Optimality conditions for 1 recovery

	Recovery using sums-of-row norms
	Recovery using 1,2
	Sufficient conditions for recovery via 1,2

	Counter examples
	Experiments

	Boosted 1
	Recovery using ReMBo
	Maximum number of orthant intersections with subspace
	Practical considerations
	Experiments
	Generation of unique sign patterns
	Role of .
	Limiting the number of iterations

	Conclusions

