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The Balanced Unicast and Multicast Capacity
Regions of Large Wireless Networks

Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract

We consider the question of determining the scaling of tRedimensional balanced unicast and the"-
dimensional balanced multicast capacity regions of a es®hetwork withh nodes placed uniformly at random in
a square region of areaand communicating over Gaussian fading channels. We fgiehis scaling of both the
balanced unicast and multicast capacity regions in term3(af), out of 2" total possible, cuts. These cuts only
depend on the geometry of the locations of the source nodishair destination nodes and the traffic demands
between them, and thus can be readily evaluated. Our remeltsonstructive and provide optimal (in the scaling
sense) communication schemes.

I. INTRODUCTION

Characterizing the capacity region of wireless networks isng standing open problem in information
theory. The exact capacity region is, in fact, not known fegresimple networks like a three node relay
channel or a four node interference channel. In this papercensider the question of approximately
determining the unicast and multicast capacity regions ioéless networks by identifying their scaling
in terms of the numbenr of nodes in the network.

A. Related Work

In the last decade, exciting progress has been made towppisxamating the capacity region of
wireless networks. We shall mention a small subset of wolkted to this paper.

We first consider unicast traffic. The unicast capacity negiba wireless network witlh nodes is the
set of all simultaneously achievable rates between allipless? source-destination pairs. Since finding
this unicast capacity region of a wireless network exacdgnss to be intractable, Gupta and Kumar
proposed a simpler but insightful question in [1]. Firststead of asking for the entire?*-dimensional
unicast capacity region of a wireless network witimodes, attention was restricted to the scenario where
each node is source exactly once and chooses its destinaiimnmly at random from among all the other
nodes. All these: source-destination pairs communicate at the same ratethanthterest is in finding
the maximal achievable such rate. Second, instead of imgish finding this maximal rate exactly, they
focused on its asymptotic behavior as the number of nedgsows to infinity.

This setup has indeed turned out to be more amenable to &dlyq1], it was shown that under
random placement of nodes in a given region and under cemattels of communication motivated by
current technology (calledrotocol channel modeh the following), the per-node rate for random source-
destination pairing with uniform traffic can scale at most(®~'/?) and this can be achieved (within
poly-logarithmic factor inn) by a simple scheme based on multi-hop communication. Maorksvsince
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then have broadened the channel and communication modeé¢s which similar results can be proved
(see, for example, [2]-[13]). In particular, under Baussian fading channel modelith a power-loss of
r~® for signals sent over a distance «fit was shown in [12] that in extended wireless networks,(he
nodes are located in a region of ai®4&n)) the largest uniformly achievable per-node rate underoand
source-destination pairing scales essentially fildg' " {33/2),

Analyzing such random source-destination pairing witifama traffic yields information about the?-
dimensional unicast capacity region along one dimensi@mdd, the results in [1] and in [12] mentioned
above provide a complete characterization of the scalinthisf one-dimensional slice of the capacity
region for the protocol and Gaussian fading channel modesgectively. It is therefore natural to ask
if the scaling of the entire’-dimensional unicast capacity region can be characteritedhis end, we
describe two related approaches taken in recent works.

One approach, taken by Madan, Shah, and Lévéque [14Hsupon the celebrated works of Leighton
and Rao [15] and Linial, London, and Rabinovich [16] on theragimate characterization of the unicast
capacity region of capacitated wireline networks. For swateline networks, the scaling of the unicast
capacity region is determined (withinl@z(n) factor) by the minimum weighted cut of the network graph.
As shown in [14], this naturally extends to wireless netvgoukider the protocol channel model, providing
an approximation of the unicast capacity region in this case

Another approach, first introduced by Gupta and Kumar [1fizes geometric properties of the wireless
network. Specifically, the notion of thteansport capacityof a network, which is the rate-distance product
summed over all source-destination pairs, was introducétl]i It was shown that in an extended wireless
network withn nodes and under the protocol channel model, the transppacitg can scale at most as
©(n). This bound on the transport capacity provides a hypereplahich has the capacity region and
origin on the same side. Through a repeated applicationi®tridnsport capacity bound at different scales
[17], [18] obtained an implicit characterization of the cast capacity region under the protocol channel
model.

For the Gaussian fading channel model, asymptotic uppendsodor the transport capacity were
obtained in [2], [3], and for more general distance weigtgach rates in [19].

So far, we have only considered unicast traffic. We now tummtdticast traffic. The multicast capacity
region of a wireless network with nodes is the set of all simultaneously achievable rates dsstvall
possiblen2™ source—multicast-group pairs. Instead of considering mhilticast capacity region directly,
various authors have analyzed the scaling of restricteffictqaatterns under a protocol channel model
assumption (see [20]-[24], among others). For example2@, [Li, Tang, and Frieder obtained a scaling
characterization under a protocol channel model and randode placement for multicast traffic when
each node chooses a certain number of its destinationsromyfcat random. Independently, in [21],
Shakkottali, Liu, and Srikant considered a similar setupalad obtained the precise scaling when sources
and their multicast destinations are chosen at random. &othese results are non information-theoretic
(in that they assume a protocol channel model). Furthermbey provide information about the scaling
of the n2"-dimensional multicast capacity region only along oneipaldr dimension.

B. Our Contributions

Despite the long list of results, the question of approxatyatharacterizing the unicast capacity region
under the Gaussian fading channel model remains far fromgbeisolved. In fact, for Gaussian fading
channels, the only traffic pattern that is well understoagislom source-destination pairing with uniform
rate. This is limiting in several aspects. First, by chogsfar each source a destination at random,
most source-destination pairs will be at a distance of tlaendier of the network with high probability,
i.e., at distanced(y/n) for an extended network. However, in many wireless netwadk®e degree of
locality of source-destination pairs can be expected. @#call source-destination pairs are assumed to
be communicating at uniform rate. Again, in many settings waild expect nodes to be generating
traffic at widely varying rates. Third, each node is sourcacly once, and destination on average once.



However, in many scenarios the same source node (e.g., ersamght transmit data to many different
destination nodes, or the same destination node might segaga from many different source nodes. All
these heterogeneities in the traffic demands can resulffereht scaling behavior of the performance of
the wireless network than what is obtained for random sedestination pairing with uniform rate.

As is pointed out in the last section, even less is known altle@itmulticast capacity region under
Gaussian fading. In fact, the only available results aretlier protocol channel model, and even there
only for special traffic patterns resulting from randomlyooking sources and their multicast groups and
assuming uniform rate. To the best of our knowledge, no méiron-theoretic results (i.e., assuming
Gaussian fading channels) are available even for speaiffictpatterns.

We address these issues by analyzing the scaling of a braasl af traffic, termedbalanced traffian
the following, in a wireless network of randomly placed nodes under a Gaussian fading channel model
The notion of balanced traffic is a natural generalizatiorsypghmetric traffic, in which the data to be
transmitted from a node to a nodev is equal to the amount of data to be transmitted froto «. We
analyze the scaling of the set of achievable balanced uriedfic (thebalanced unicast capacity regipn
and achievable balanced multicast traffic (tedanced multicast capacity regipnThe balanced unicast
capacity region provides information abowt — n of the n? dimensions of the unicast capacity region;
the balanced multicast capacity region provides inforamatiboutn2™ — n of the n2™ dimensions of the
multicast capacity region.

As a first set of results of this paper, we present an apprdeimoharacterization of the balanced
unicast and multicast capacity regions. We show that bagions can be approximated by a polytope
with less than2n faces, each corresponding to a distinct cut (i.e., a sulisabdes) in the wireless
network. This polyhedral characterization provides a swtcapproximate description of the balanced
unicast and multicast capacity regions even for large wabie.. Moreover, it shows that onlgn out of
2™ possible cuts in the wireless network are asymptoticallgveat and reveals the geometric structure
of these relevant cuts.

Second, we establish the approximate equivalence of theless network and a wireline tree graph,
in the sense that balanced traffic can be transmitted rgliabér the wireless network if and only if
approximately the same traffic can be routed over the treghgrghis equivalence is the key component
in the derivation of the approximation result for the bakshainicast and multicast capacity regions and
provides insight into the structure of large wireless nekso

Third, we propose a novel three-layer communication aechire that achieves (in the scaling sense)
the entire balanced unicast and multicast capacity regitimes top layer of this scheme treats the wireless
network as the aforementioned tree graph and routes mesbaggeen sources and their destinations—
dealing with heterogeneous traffic demands. The middle lafythis scheme provides this tree abstraction
to the top layer by appropriately distributing and concatimig traffic over the wireless network—choosing
the level of cooperation in the network. The bottom layer lenpents this distribution and concentration
of messages in the wireless network—dealing with interfeeeand noise. The approximate optimality
of this three-layer architecture implies that a separabiased approach, in which routing is performed
independently of the physical layer, is order-optimal. thes words, techniques such as network coding
can provide at most a small (in the scaling sense) multifiieayain for transmission of balanced unicast
or multicast traffic in wireless networks.

C. Organization

The remainder of this paper is organized as follows. Sedfibntroduces the network model and
notation. Sectiol Tl presents our main results. We illatgtrthe strength of these results in Secfioh 1V
by analyzing various example scenarios with heterogenenicaist and multicast traffic patterns. Section
[Vl provides a high level description of the proposed commation schemes. SectiofsIVI-MIII contain
proofs. Finally, Sections X and]X contain discussions aodctuding remarks.



II. MODELS AND NOTATION
In this section, we discuss network and traffic models, andnireduce some notational conventions.

A. Network Model
Consider the square region

A(n) £ [0, V/n)?

and letV(n) C A(n) be a set ofV(n)| = n nodes onA(n). Each such node represents a wireless device,
and then nodes together form a wireless network. This setting withodes on a square of areais
referred to as amextended networKThroughout this paper, we consider this extended netwettng.
However, all results carry over fatense networkswvheren nodes are placed on a square of unit area
(see Sectiof IX-E for the details).

We use the same channel model as in [12]. Namely, the recsiged! at node) and timet is

yolt] £ Z hao[t]zult] + 2o t]

ueV(n)\{v}

for all v € V(n),t € N, where the{z,[t|}.: are the signals sent by the nodesliiin). We impose
an average power constraint ofon the signal{z,[t]}: for every nodeu € V(n). The additive noise
terms{z,[t]},. are independent and identically distributed (i.i.d.) giecly symmetric complex Gaussian
random variables with meai and variance, and

P ot] £ 7’“—’3/2 exp(vV —10,,[t]),

for path-loss exponent > 2, and where-, , is the Euclidean distance betweerandv. As a function of
u,v € V(n), we assume thatd,, ,[t]}.. are i.i.d with uniform distribution on0, 27). As a function oft,

we either assume thd¥, ,[t]}; is stationary and ergodic, which is calléakt fadingin the following, or
we assumed, ,[t|}: is constant, which is calledlow fadingin the following. In either case, we assume
full channel state information (CSI) is available at all eedi.e., each node knows dlh, ,[t]},. at
time ¢. This full CSI assumption is rather strong, and so it is warttmmenting on. All the converse
results presented are proved under the full CSI assumptidraee hence also valid under more realistic
assumptions on the availability of CSI. Moreover, it can beven that for achievability onlg-bit quantized
CSl is necessary for path-loss exponert (2, 3] and no CSl is necessary far> 3 to achieve the same
scaling behavior.

B. Traffic Model

A unicast traffic matrix\"© € R’*" associates with each pairw € V(n) the rateA}$, at which node
u wants to communicate to node We assume that messages for distinct source-destinaios(p, w)
are independent. However, we allow the same notle be source for multiple destinations, and the same
nodew to be destination for multiple sources. In other words, wastter general unicast traffic. The
unicast capacity regiom\"“(n) c R’7*" of the wireless network is the collection of achievable astc
traffic matrices, i.e.A\Y¢ € AYS(n) if and only if every source-destination pdir, w) € V(n) x V(n) can
reliably communicate independent messages atXgfe

A multicast traffic matrix\¥© € R**" associates with each pairc V(n), W C V(n) the rateAMf,
at which nodeu wants to multicast a message to the node8$linin other words, all nodes i/ want
to obtain the same message framWe assume that messages for distinct source—multicaapgrairs

It is worth pointing out that recent results [25] suggestt tivader certain assumptions on scattering elementsqfar (2, 3) and very
large values of, the i.i.d. phase assumption does not accurately reflegitiisical behavior of the wireless channel. However, inofetup
work [26] the authors show that under different assumptimmshe scatterers this assumption is still justified in éhe (2, 3) regime even
for very large values of.. This indicates that the issue of channel modeling for larg&vorks in the low path-loss regime is somewhat
delicate and requires further investigation.



(u, W) are independent. However, we allow the same neode be source for several multicast-groups,
and the same sét” of nodes to be multicast destination for multiple sourcesother words, we consider
general multicast traffic. Thenulticast capacity regiomM°(n) ¢ R2**" is the collection of achievable
multicast traffic matrices, i.eAM® € AMC(n) if and only if every source—multicast-group péir, W) can
reliably communicate independent messages atXatg.

The following example illustrates the concept of unicasd amulticast traffic matrices.

Example 1. Assumen = 4, and label the nodes dsi;};_, = V(n). Assume further node; needs to
transmit a message:; » to nodew, at ratel bit per channel use, and an independent messageto
nodeug at rate2 bits per channel use. Nodg needs to transmit a messagg ; to nodeus at rate4 bits
per channel use. All the messages,, m; 3, ms 3 are independent This traffic pattern can be described
by a unicast traffic matridU® € R** with S, =1, A, =2, A0¢ =4, and \JS = 0 otherwise.
Note that in this example node is source for two (mdependent) messages, and n@de destination
for two (again independent) messages. Nagén this example is neither source nor destination for any
message and can be understood as a helper node.

Assume now that node, needs to transmit the same messagg; 3 4, to all nodesu,, us, u, at a rate
of 1 bit per channel use, and an independent messagg, to only node2 at rate2 bits per channel
use. Node2 needs to transmit a message , 5, to bothu,,us at rate4 bits per channel use. All the
messagesn, (234}, M1 {2}, M2 (1,3} are independent. This traffic pattern can be described by lécamst
traffic matrix \MC ¢ R1>  with Mty = L MeCus) = 20 M punugy = 4 @nd Al = 0 otherwise.
Note that in this example node is source for two' (mdependent) multicast messages, and h@hd
3 are destinations for more than one message. The messags 4 is destined for all the nodes in the
network and can hence be understood as a broadcast meskagme$sagen, (2 is only destined for

one node and can hence be understood as a private message. O

In the following, we will be interested irbalancedtraffic matrices that satisfy certain symmetry
properties. Consider a symmetric unicast traffic ma#i¥ satisfying )\57 )\UC for all node pairs
u,w € V(n). The notion of a balanced traffic matrix generalizes thisaidésymmetnc traffic.

Before we provide a precise definition of balanced traffic,n@ed to introduce some notation. Partition
A(n) into several square-grids. Theth square-grid dividesA(n) into 4° squares, each of sidelength
2-\/n, denoted by{A,,;(n)}%,. Let V,;(n) C V(n) be the nodes iml,;(n) (see Figuréll). The square
grids in levels? € {1,..., L(n)} with

L log(n) (1 — log™/2(n)),

L(n) & 5

will be of particular importance. Note thdt(n) is chosen such that

4Ly, — plog /2 ()

)

and hence

lim }AL(N )i }— lim 4~ *"n = .
n—o0o n—oo

while at the same time
|ALmyi(n)| = 47 < e,

asn — oo. In other words, the area of the regidn,,,;(n) at levell = L(n) grows to infinity as» — oo,
but much slower tham.
A unicast traffic matrix\U¢ is ~v-balancedif

Yoo S <y DY Y s, (1)

“éVe,z(”) U)GVe,i(”) uevl z(n) wéV( z(n)

2All logarithms are with respect to bage



Fig. 1. Square-grids witlh < ¢ < 2. The grid at level¢ = 0 is the areaA(n) itself. The grid at levell = 1 is indicated by the dashed
lines. The grid at level = 2 by the dashed and the dotted lines. Assume for the sake ofpedtrat the subsquares are numbered from
left to right and then from bottom to top (the precise ordenombering is immaterial). Thel, 1 (n) are all the noded’ (n), Vi 1(n) are

the nine nodes in the lower left corner (separated by dashed)] andVz,1(n) are the three nodes in the lower left corner (separated by
dotted lines).

forall ¢ € {1,...,L(n)} andi € {1,...4°}. In other words, for a balanced unicast traffic matrix the
amount of traffic to the nodéds, ;(n) is not much larger than the amount of traffic from them. Inipatar,

all symmetric traffic matrices, i.e., satisfying, = A\, arel-balanced. Denote b#"“(n) C R*" the
collection of ally(n)-balanced unicast traffic matrices for some fixga) = n°™). In the following, we
refer to traffic matrices\"© € BY“(n) simply as balanced traffic matrices. Thalanced unicast capacity
region ABY¢(n) C R*" of the wireless network is the collection of balanced urtitesffic matrices that
are achievable, i.e.,

ABYC(n) £ AYC(n) N BYC(n).

Note that [(1) imposes at most linear inequality constraints, and hend&®(n) and ABY“(n) coincide
along at least?> — n of n? total dimensions.
A multicast traffic matrix\M is ~v-balancedif

DD DR A= T S WPV ey
ugVyi(n) WCV(n ueVy i(n) WcCV(n):
WﬂVu( )sﬁ@ WAV,i(n)#0

forall¢ € {1,...,L(n)},i € {1,...4°}. Thus, fory-balanced multicast traffic, the amount of traffic to the
nodesV ;(n) is not much larger than the amount of traffic from them. Thith&s natural generalization of
the notion ofy-balanced unicast traffic to the multicast case. Denot&Wy(n) C R**" the collection
of all y(n)-balanced multicast traffic matrices for some fixgeh) = n°(\). As before, we will refer to a
multicast traffic matrix\M© € BMC(n) simply as balanced multicast traffic matrix. Thalanced multicast
capacity regionABMC(n) c R’}f?” of the wireless network is the collection of balanced makictraffic
matrices that are achievable, i.e.,

ABMC(n) & AMC(n) N BMC(n).

Equation [[2) imposes at most linear inequality constraints, and hena&©(n) and ABM©(n) coincide
along at leasi2™ — n of n2" total dimensions.

C. Notational Conventions

Throughout,{ K;};, K, K, ..., indicate strictly positive finite constants independof n and ¢. To
simplify notation, we assume, when necessary, that larglen@embers are integers and omit and |- |



operators. For the same reason, we also suppress depedenagthin proofs whenever this dependence
is clear from the context.

Il. M AIN RESULTS

In this section, we present the main results of this papeg&dction I[[-A, we provide an approximate
(i.e., scaling) characterization of the entire balancettast capacity regiom®¢(n) of the wireless
network, and in Section IlI-B, we provide a scaling chardztgion of the entire balanced multicast
capacity regiomBMC(n). In Sectio 1II-C, we discuss implications of these resaltsthe behavior of the
unicast and multicast capacity regions for large values.dh SectiorIl[-D, we consider computational
aspects.

A. Balanced Unicast Capacity Region
Here we present a scaling characterization of the compltEnbed unicast capacity regid¥Vc(n).

Define
KUC(TL) A {)\uc e R™™ . Z Z )\uc < (4~'n)> min{3,a}/2
u€Vy,i(n) wgVi;(n)
Ve {l,...,L(n)},ie{1,... 4%, (3)
> + A < 1vue Vin)},
w#u
and set

ABYC(n) £ AYC(n) N BYC(n).

ABUC(n) is the collection of all balanced unicast traffic matrieé$ such that for various cuts c V (n)
in the network, the total traffic demand (in either one or bditlections)

hBP IRt

ueS w¢S

> Y0 )

ueS w¢sS
across the cut is not too big. Note that the number of cutswe need to consider is actually quite
small. In fact, there are at mostcuts of the formS = V;;(n) for £ € {1,..., L(n)}, and there are:
cuts of the formS = {u} for u € V(n). HenceABYC(n) is described by at most cuts.

The next theorem shows thaYS(n) is approximately (in the scaling sense) equal to the bathnce
unicast capacity region®¢(n) of the wireless network.

Theorem 1. Under either fast or slow fading, for any > 2, there exist
by(n) > n—°W,
ba(n) = O(log’(n)),

such that R R
by (n)ABUC(n) C ABUC(n) C bg(n)ABUC(n),

with probability 1 — o(1) asn — cc.

We point out that Theorefd 1 holds only with probability- o(1) for different reasons for the fast and
slow fading cases. Under fast fading, the theorem holdsfonligode placements that are “regular enough”.
The node placement itself is random, and we show that thdaresfjtegularity property is satisfied with
high probability as: — oo. Under slow fading, the theorem holds under the same ratutaguirements



on the node placement, but now it also only holds with highbphility for the realization of the fading
{eu,v}u,v-

Theorem[ll provides a tight scaling characterization of theree balanced unicast capacity region
ABYC(n) of the wireless network as depicted in Figlile 2. The apprafion is within a factom*°(%),
This factor can be further sharpened as is discussed inl detdection[IX-B.

)\LlJ% A

Fig. 2. The sef\®“C(n) approximates the balanced unicast capacity regidtt (n) of the wireless network in the sense thatn) ABYC (n)
(with b1(n) > n=°™)) provides an inner bound ta®“®(n) and bz(n)AB(n) (with b2(n) = O(log®(n))) provides an outer bound to
APY(n). The figure shows two dimensions (namelys and Ay5) of the n*-dimensional set\®“(n).

We point out that for large values of path-loss exponent-(5) the restriction to balanced traffic can
be removed, yielding a tight scaling characterization ef éntiren?-dimensional unicast capacity region
AYC(n). See Section IX=D for the details. Fare (2,5], bounds on achievable rates for traffic that is not
balanced are discussed in Section IX-C.

B. Balanced Multicast Capacity Region
We now present an approximate characterization of the cetefdalanced multicast capacity region

ABMC ().
Define
ch<n) A {)\MC c szgn . Z Z )\TI\L/I%V < (4—zn)2_min{3,a}/z
uevlz() WCV(n):
WAV, i (n)#0
Vee{l,....L(n)},ie{1,... 4%, (4)
Z AEEST Y e <1vueV(n)},
WcV(n aFu WCV(n):
W\{u};ﬁw uew
and set

ABMC () £ AMC (1) N BMC(p).

The definition of ABMC(n) is similar to the definition ofABYS(n) in @). ABMC(n) is the collection of
all balanced multicast traffic matriced' such that for various cut§ C V(n) in the network, the total



traffic demand (in either one or both directions)

2 Z Mo

ueS WcV(n
W\S#@
MC MC
2 Z 2 Z A
ueS WcV(n ugS WcCV(n
W\S;éa) Wms;é(b

across the cub' is not too big. Note that, unlike in the definition ﬁPUC(n), we count\, i as crossing
the cutS if w € SandW \ S # (), i.e., if there is at least one nodein the multicast destination group
W that lies outsideS. The number of such cutS we need to consider is at moat, as in the unicast
case.

The next theorem shows thaMCc(n) is approximately (in the scaling sense) equal to the bathnce
multicast capacity region®V¢(n) of the wireless network.

Theorem 2. Under either fast or slow fading, for any > 2, there exist
bs(n) > n=°W,
bs(n) = O(log’(n)),
such that R R
bs(n)ABMC (n) € ABMC(n) C by(n)ABMC(n),
with probability 1 — o(1) asn — cc.

As with Theorem 1L, Theorernl 2 holds only with probability— o(1) for different reasons for the
fast and slow fading cases. TheorEm 2 implies that the dyah®V(n) determines the scaling of the
balanced multicast capacity regia®V'(n). The approximation is up to a factar*") as in the unicast
case, and can again be sharpened (see the discussion iong2EH). As in the unicast case, for > 5
the restriction of balanced traffic can be dropped resuiting scaling characterization of the entie”-
dimensional multicast capacity regiod'®(n). The details can be found in Sectibn IX-D. Similarly, we
can obtain bounds on achievable rates for traffic that is at#rited, as is discussed in Secfion [X-C.

C. Implications of Theorenis 1 afnd 2

Theorem$§1l and 2 can be applied in two ways. First, the theooam be used to analyze the asymptotic
achievability of a sequence of traffic matrices. Consider timicast case, and I§t\Y(n)},>; be a
sequence of balanced unicast traffic matrices with(n) € R*". Define

pruc(n) £ sup{p: pA”(n) € APYC(n)},
Pruc(n) £ sup{p : pAY(n) € A2 ()},
i.e., piuc(n) is the largest multipliep such that the scaled traffic matriic(n) is contained inA®Y¢(n)

(and similar forpy,c (n) with respect ta\BYC(n)). Then Theorerfill provides asymptotic information about
the achievability of{ AY®(n)},.; in the sense tht

I log(pﬁ\uc(n)) . log(ﬁiuc(n))

m ——)— = 1M ————.

n—oo  log(n) n—oo  log(n)

Theorem[2 can be used similarly to analyze sequences of demlamulticast traffic matrices. Several
applications of this approach are explored in Sedfioh IV.

3We assume here that the limits exist, otherwise the samenstait holds folim sup andlim inf.
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Second, Theorenis 1 ahél 2 provide information about the sbifiee balanced unicast and multicast
capacity regions\®'“(n) and A®M(n). Consider again the unicast case. We now argue that evegtthou
the approximatiomBYC(n) of ABYC(n) is only up ton*°(") scaling, its shape is largely preserved.

To illustrate this point, consider a rectangle

R(n) £ [0,71(n)] x [0,r2(n)],
and let
R(n) £ [0,71(n)] x [0, 75(n)],
where
s = bi(n)ry(n)

for someb;(n) = n*°M, be its approximation. The shape Bfn) is then determined by the ratio between
r1(n) andry(n). For example assume(n) = n’ry(n). Then

71(n) _ pftol) — pEo()!l (n)

7:2 (’fl) T2 (’fl) ’
ie.,
g (n(m)/rn) L log (B(n)/ia(n)
nh—>nolo log(n) =p= nl—>oo log(n) ’

and hence the approximatid?ﬁ(n) preserves the exponent of the ratio of sidelength&0f). In other
words, if the two sidelengths, (n) andr»(n) differ on exponential scale (i.e., by a factaf for 5 # 0)
then this shape information is preserved by the approxonati(n). R

Let us now return to the balanced unicast capacity regidtr (n) and its approximatiodBUY¢(n). We
consider several boundary points &%'C(n) and show that their behavior varies at scafefor various
values of 3. From the discussion in the previous paragraph, this wepir&at a significant part of the
shape ofABYC(n) is preserved by its approximatiotPUC(n). First, letAUS £ p(n)1 for some scalap(n)
depending only om, and wherel is then x n matrix of all ones. IfAYC € ABYC(n) then the largest
achievable value op(n) is p*(n) < n~mn{3.e}/2+e() (by applying Theoreni]1). Second, 1&¥C such
that \)C,. = AU . = p(n) for only one source-destination pgin*, w*) with u* # w* and A}$, = 0
otherwise. Then*(n), the largest achievable value pfn), satisfiesp*(n) > n=°). Hence the boundary
points of ABYC(n) vary at least fromn—mint8e}/2to() to (), and this variation on exponential scale
is preserved by\BYC(n).

Again, a similar analysis is possible also for the multicagiacity region, showing that the approximate
balanced multicast capacity regio®¥(n) preserves the shape of the balanced multicast capacityregi
ABMC(n) on exponential scale.

D. Computational Aspects

Since we are interested in large wireless networks, cortipotd aspects are of importance. In this
section, we show that the approximate characterizatit?t& (n) and ABMC(n) in Theoremdl and]?2
provide a computationally efficient approximate descoiptof the balanced unicast and multicast capacity
regionsABYC(n) and ABMC(n), respectively.

Consider first the unicast case. Note th&t°(n) is an?-dimensional set, and hence its shape could be
rather complicated. In particular, in the special casesratige capacity region is known, its description
is often in terms of cut-set bounds. Since there Zrgossible subsets of nodes, there ar2™ possible
cut-set bounds to be considered. In other words, the déiseripomplexity of ABYC(n) is likely to be
growing exponentially in.. On the other hand, as was pointed out in Sedfion 11l-A, thecdption of
ABYC(n) is in terms of only2n cuts. This implies that\BY(n) can be computed efficiently (i.e., in
polynomial time inn). Hence even though the description complexity\6F€(n) is likely to be of order
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©(2™), the description complexity of its approximatia?t?UCA(n) is only of order®(n)—an exponential
reduction. In particular, this implies that membershlff € ABYC(n) (and hence by Theorel 1 also the
approximate achievability of the balanced unicast traffatnim A\U°) can be computed in polynomial time
in the network size:. More precisely, evaluating each of tkgn) cuts takes at mosd(n?) operations,
yielding a©(n?)-time algorithm for approximate testing of membership\itP< (n).

Consider now the multicast cas&®M®(n) is an2"-dimensional set, i.e., the number of dimensions is
exponentially large im. Nevertheless, its approximatidr¥V°(n) can (as in the unicast case) be computed
by evaluating at mos2n cuts. This yields a very compact approximate represemtaifothe balanced
multicast capacity region®V¢(n) (i.e., we represent a region of exponential sizerias an intersection
of only linearly many halfspaces—one halfspace corresipgntb each cut). Moreover, it implies that
membership\" € APM(n) can be computed efficiently. More precisely, evaluatingheaicthe ©(n)
cuts takes at mosf (u, W) : AM{;, > 0}| operations. Thus membersh{y® € APM(n) (and hence by
Theoren{ 2 also the approximate achievability of the baldmualticast traffic matrix\M©) can be tested
in at mostO(n) times more operations than required to just read the propkerameters. In other words,
we have a linear time (in the length of the input) algorithm tiesting membership of a multicast traffic
matrix \MC in ABMC(n), and hence for approximate testing of membership\#C(n). However, this
algorithm is not necessarily polynomial time in since reading just the inp® € R?**" itself might
take exponential time im.

IV. EXAMPLE SCENARIOS

We next illustrate the above results by determining achikeveates in a few specific wireless network
scenarios with non-uniform traffic patterns.

Example 2. Multiple classes of source-destination pairs

There arek classes of source-destination pairs for some fikedeach source node in clasgenerates
traffic at the same ratg;(n) for a destination node that is chosen randomly within dista(n%/?), for
some fixedgs; € [0, 1]. Each node randomly picks the class it belongs to. The iaguitaffic matrix is
balanced (withy(n) = n°™)) with high probability, and applying Theorelm 1 shows thatn), the largest
achievable value of;(n), satisfies

pr(n) = nﬁi(l—d/?)ﬂw(l)7
with probability 1 — o(1) for all ¢, and where
a = min{3, a}. (5)

Hence, for a fixed number of class&S source nodes in each class can obtain rates as a functionyof o
the source-destination separation in that class.

Setn; £ n%, and note thafi; is on the order of the expected number of nodes that are ctosar
source than its destination. Then

pi(n) = Wi =2,

Now ﬁ}_&/z is precisely the per-node rate that is achievable for amebe# network withn; nodes under
random source-destination pairing [12]. In other wordg, libcal traffic pattern here allows us to obtain
a rate that is as good as the one achievable under randonmesestination pairing for a much smaller
network. O

Example 3. Traffic variation with source-destination separation
Assume each node is source for exactly one destinationgohasiformly at random from among all
the other nodes (as in the traditional setting). Howevesteimd of all sources generating traffic at the
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same rate, source nodegenerates traffic at a rate that is a function of its separdtmm destinationo,
i.e., the traffic matrix is given b))\gfU = 1(r,) for some functiony. In particular, let us consider

N rBifr > 1,
wmzmmx{l e

for some fixeds € R and somep(n) depending only om. The traditional setting corresponds o= 0,
in which case alln source-destination pairs communicate at uniform rate.

While such traffic is not balanced for small valuesipthe results in Sectidn IX4C, extending Theorem 1
to traffic that is not balanced, can be used to establish takngcof p*(n), the largest achievable value
of p(n), as

X nl—(@+B)/2+0(1)  jf B>2—a,
p(n) = +o(1)
n else

with probability 1 — o(1). For g = 0, and noting thak — & < 0, this recovers the results from [12] for
random source-destination pairing with uniform rate. O

Example 4. Sources with multiple destinations

All the example scenarios so far are concerned with traffiwliich each node is source exactly once.
Here we consider more general traffic patterns. Therelarelasses of source nodes, for some fixed
K. Each source node in clagshas ©(n”) destination nodes for some fixet] € [0,1] and generates
independent traffic at the same raién) for each of them (i.e., we still consider unicast traffic) cEaf
these destination nodes is chosen uniformly at random ari@ng— 1 other nodes. Every node randomly
picks the class it belongs to. Noting that the resultingfitahatrix is balanced with high probability,
Theorem 1L provides the following scaling of the rates aditi by different classes:

pl*(n) _ nl—ﬁi—&/Z:I:o(l)
with probability 1 —o(1) for all 7. In other words, for each source node time sharing betwdéei alasses
and then (within each class) between all @$n”) destination nodes is order-optimal in this scenario.
However, different sources are operating simultaneously. O

9

Example 5. Broadcast
Consider a scenario with every noden the network broadcasting an independent message tahalt ot
nodes at rate(n)\,. In other words, we have a multicast traffic matrix of the form

Wc_{mmm it W =V(n),
u,W
0 else

for somep(n) > 0. Applying the generalization in Sectidn IX-C of Theoréin 2Ids thatp*(n), the
largest achievable(n), satisfies

asn — oo. O

V. COMMUNICATION SCHEMES

In this section, we provide a high-level description of th@menunication schemes used to prove
achievability (i.e., the inner bound) in Theorefds 1 ahd 2Séttion[V-A, we present a communication
scheme for general unicast traffic, in Section V-B we show tioi& scheme can be adapted for general
multicast traffic. Both schemes use as a building block a comaoation scheme introduced in prior
work for a particular class of traffic, calledniform permutation trafficin such uniform permutation
traffic, each node in the network is source and destinati@etgxonce, and all these source-destination
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pairs communicate at equal rate. kok (2, 3], the order-optimal scheme for such uniform permutation
traffic (calledhierarchical relaying schema the following) enables global cooperation in the network
For a > 3, the order-optimal scheme is multi-hop routing. We rech#ise two schemes for uniform
permutation traffic in Section VAC.

A. Communication Scheme for Unicast Traffic

In this section, we present a scheme to transmit generahsini@affic. This scheme has a tree structure
that makes it convenient to work with. This tree structurerigial in proving the compact approximation
of the balanced unicast capacity regi6éR“©(n) in Theoren(lL.

The communication scheme consists of three layers: A topuating layer, a middle or cooperation
layer, and a bottom or physical layer. The routing layer a #stheme treats the wireless network as a
tree graphG and routes messages between sources and their destiratieabng with heterogeneous
traffic demands. The cooperation layer of this scheme pesvitiis tree abstractiof to the top layer
by appropriately distributing and concentrating traffiepthe wireless network—choosing the level of
cooperation in the network. The physical layer implemehits distribution and concentration of messages
in the wireless network—dealing with interference and eois

Seen from the routing layer, the network consists of a nessetapacitated grapgh. This graph is a
tree, whose leaf nodes are the nodé&s:) in the wireless network. The internal nodes @frepresent
larger clusters of nodes (i.e., subsetd/h)) in the wireless network. More precisely, each internalenod
in G represents a séf;(n) for £ € {1,...,L(n)} andi € {1,...,4"}. Consider two set8};(n), V41 ;(n)
and letv, i be the corresponding internal nodesGih Thenv and ;. are connected by an edge @ if
Vis,j(n) C Vii(n). Similarly, for Vi, ;(n) and corresponding internal nodein G, a leaf nodeu in
G is connected by an edge toif u € Vi, (n) (recall that the leaf nodes d are the nodes’(n)
in the wireless network). This construction is shown in F&3. In the routing layer, messages are sent

Fig. 3. Construction of the tree gragh We consider the same nodes as in Fidure 1 With) = 2. The leaves of7 are the noded’ (n)
of the wireless network. They are always at lever L(n) + 1 (i.e., 3 in this example). At leveD < £ < L(n) in G, there aret’ nodes.
The tree structure is the one induced by the grid decompasffi%,;(n)}.: as shown in FigurEl1l. Level contains the root node af.

from each source to its destination by routing them aveifo send information along an edge Gf the
routing layer calls upon the cooperation layer.

The cooperation layer implements the tree abstracfiorThis is done by ensuring that whenever a
message is located at a nodeGh it is evenly distributed over the corresponding clustetha wireless
network, i.e., every node in the cluster has access to andigbart of equal length of the message. To
send information from a child node to its parentGh(i.e., towards the root node @), the message
at the cluster in/(n) represented by the child node is distributed evenly amohgaales in the bigger
cluster inV (n) represented by the parent node. More preciselyy Ibé a child node of: in GG, and let
Vit1.i(n), Ve ;(n) be the corresponding subsets1ofr). Consider the cooperation layer being called by
the routing layer to send a message fronto its parentu over GG. In the wireless network, we assume
each node i, ;(n) has access to a distintt |V, :(n)| fraction of the message to be sent. Each node
in Vi1.4(n) splits its message part into four distinct parts of equagytlenit keeps one part for itself and
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sends the other three parts to three node®if{n) \ Vi41.:(n). After each node in/,,,,;(n) has sent
its message parts, each nodelin(n) now as access to a distinef |V, ;(n)| fraction of the message.
To send information from a parent node to a child nodé&irfi.e., away from the root node ), the
message at the cluster iri(n) represented by the parent node is concentrated on the rclosié(n)
represented by the child node. More precisely, consideséime nodes and x in G corresponding to
Vit1,i(n) andVy;(n) in V(n). Consider the cooperation layer being called by the rouléygr to send
a message from to its child v. In the wireless network, we assume each nod&;if{n) has access to
a distinct1/ |V, ;(n)| fraction of the message to be sent. Each nod&jj{n) sends its message part to
another node iV, ;(n). After each node i/ ;(n) has sent its message part, each nod&in ;(n)
now as access to a distintf |V,41,(n)| fraction of the message. To implement this distribution and
concentration of messages, the cooperation layer calla tipophysical layer.

The physical layer performs the distribution and conceianeof messages. Note that the traffic induced
by the cooperation layer in the physical layer is very reguad closely resembles a uniform permutation
traffic (in which each node in the wireless network is souned destination once and all these source-
destination pairs want to communicate at equal rate). Hamcean use either cooperative communication
(for a € (2, 3]) or multi-hop communication (forx > 3) for the transmission of this traffic. See Section
V-Clfor a detailed description of these two schemes. It is dipieration in the physical layer that determines
the edge capacities of the graphas seen from the routing layer.

The operation of this three-layer architecture is illudain the following example.

Example 6. Consider a single source-destination pairw). The corresponding operation of the three-
layer architecture is depicted in Figure 4.

Fig. 4. Example operation of the three-layer architecturden unicast traffic. The three layers depicted are (fromttopottom in the
figure) the routing layer, the cooperation layer, and thesjaa} layer.

In the routing layer, the message is routed over the treehgtapetweenu andw (indicated in black
in the figure). The middle plane in the figure shows the induoeldavior from using the second edge
along this path (indicated in solid black in the figure) in twoperation layer. The bottom plane in the
figure shows (part of) the corresponding actions inducedéphysical layer. Let us now consider the
specific operations of the three layers for the single mesbatyveen: andw. Sinced is a tree, there is
a unique path betweem andw, and the routing layer sends the message over the edgesthalergath.
Consider now the first such edge. Using this edge in the rguéiyier induces the following actions in
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the cooperation layer. The nodg having access to the entire message, splits that mesdagedistinct
parts of equal length. It keeps one part, and sends the otloeparts to the two other nodes 11 4 (n)
(i.e., lower left square at levél= 2 in the hierarchy). In other words, after the message hasrsad the
edge between and its parent node in the routing layer, all noded4n(n) in the cooperation layer have
access to a distinct/3 fraction of the original message. The edges in the routiygrldeading up the
tree (i.e., towards the root node) are implemented in th@etion layer in a similar fashion by further
distributing the message over the wireless network. By ithe the message reaches the root nodé: of
in the routing layer, the cooperation layer has distributesl message over the entire network and every
node inV(n) has access to a distintfn fraction of the original message. Communication down the
tree in the routing layer is implemented in the cooperatayet by concentrating messages over smaller
regions in the wireless network. To physically perform tHistribution and concentration of messages,
the cooperation layer calls upon the physical layer, whisesueither hierarchical relaying or multi-hop
communication. O

B. Communication Scheme for Multicast Traffic

Here we show that the same communication scheme presentad last section for general unicast
traffic can also be used to transmit general multicast trtaffgain it is the tree structure of the scheme that
is critically exploited in the proof of Theorefd 2 providing approximation for the balanced multicast
capacity regiom\BMC(n).

We will use the same three-layer architecture as for unitadfic presented in Section_VIA. To
accommodate multicast traffic, we only modify the operatéthe top or routing layer; the lower layers
operate as before.

We now outline how the routing layer needs to be adapted mnthlticast case. Consider a multicast
message that needs to be transmitted from a source maglé’(n) to its set of intended destinations
W C V(n). In the routing layer, we want to route this message froto 1/ over GG. SinceG is a tree,
the routing part is simple. In fact, betweerand everyw € W there exists a unique path @i. Consider
the union of all those paths. It is easy to see that this ursam subtree ofy. Indeed, it is the smallest
subtree ofG that covers{u} U W. Traffic is optimally routed ovet: from « to W by sending it along
the edges of this subtree.

The next example illustrates the operation of the routiygdainder multicast traffic.

Example 7. Consider one source nodeand the corresponding multicast grotlp £ {w;, w,, w3} as
shown in Figuré b.

w
wa
/ w3

Fig. 5. Example operation of the routing layer in the thragel architecture under multicast traffic.

In the routing layer, we find the smallest subgra@f{«} U W) covering{u} U W (indicated by
black lines in Figurél5). Messages are sent from the sourds testinations by routing them along this
subgraph. In other words;7({u} U W) is the multicast tree along which the message is sent ficim
W. The cooperation layer and physical layer operate in theesaay as for unicast traffic (see Figure 4
for an example). O
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C. Communication Schemes for Uniform Permutation Traffic

Here we recall communication schemes for uniform permuoatraffic on A(n), i.e., each node is
source and destination exactly once and all thegairs communicate at uniform rate. As pointed out in
Sectiong" V-A and"V-B, these communication schemes are usédilding blocks in the communication
architecture for general unicast and multicast traffic.

The structure of the optimal communication scheme deperadsidally on the path-loss exponentFor
a € (2, 3] (small path-loss exponent), cooperative communicatioa global scale is necessary to achieve
optimal performance. Fotv > 3 (large path-loss exponent), local communication betwesightoring
nodes is sufficient, and traffic is routed in a multi-hop fashfrom the source to the destination. We
will refer to the order-optimal scheme fer € (2, 3] as hierarchical relaying schemeand to the order
optimal scheme forv > 3 asmulti-hop schemeFor a uniform permutation traffic ol (n), hierarchical
relaying achieves a per-node rate /0f */2-°(); multi-hop communication achieves a per-node rate of
n~1/2=°() By choosing the appropriate scheme (hierarchical retpfono € (2, 3], multi-hop fora > 3),
we can thus achieve a per-node ratexbfin{3.2}/2=o(1) We provide a short description of the hierarchical
relaying scheme in the following. The details can be founfilBi.

Considern nodes placed independently and uniformly at randomA¢n). Divide A(n) into

1
n 1+log™/3(n)

squarelets of equal size. Call a squarelense if it contains a number of nodes proportional to its area.
For each source-destination pair, choose such a denseebrjuas arelay, over which it will transmit
information (see Figurgl 6).

Fig. 6. Sketch of one level of the hierarchical relaying sobheHere{(u;,w;)};_, are three source-destination pairs. Groups of source-
destination pairs relay their traffic over dense squaréitaded), which contain a number of nodes proportional & Hrea. We time share
between the different relay squarelets. Within each retpyaselet the scheme is used recursively to enable jointdiiegand encoding at
the relay.

Consider now one such relay squarelet and the nodes thataastitting information over it. If we
assume for the moment that the nodes within the relay sapiarebuld cooperate, then between the
source nodes and the relay squarelet we would have a mudiipless channel (MAC), where each source
node has one transmit antenna, and the relay squareletgagione node) has many receive antennas.
Between the relay squarelet and the destination nodes, wéwave a broadcast channel (BC), where
each destination node has one receive antenna, and theseplayelet (acting again as one node) has
many transmit antennas. The cooperation gain from usirg kimd of scheme arises from the use of
multiple antennas for this MAC and BC.
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To actually enable this kind of cooperation at the relay sejea local communication within the relay
squarelets is necessary. It can be shown that this local comeation problem is actually the same as
the original problem, but at a smaller scale. Indeed, we awe considering a square of size

o—— L
n 1+log'/3(n)

with equal number of nodes (at least order wise). Hence weusanthe same scheme recursively to
solve this subproblem. We terminate the recursion a&ﬁ/?’ iterations, at which point we use simple
time-division multiple access (TDMA) to bootstrap the smaae

Observe that at the final level of the scheme, we have divitled into

1 1/3 1
<n 1"‘10%1/3(”)) " — p14log™3(n)

squarelets. A sufficient condition for the scheme to sucdsdtiat all these squarelets are dense (i.e.,
contain a number of nodes proportional to their area). Hewewch weaker conditions are sufficient as
well, see [13].
For any permutation traffic, the per-node rate achievabik this scheme is at least —*/>=°(1) for any
a > 2 and under fast fading. Under slow fading the same per-nageigaachievable for all permutation
traffic with probability at least
1 —exp < - 29(1°g2/3("))).

Moreover, whena € (2,3] and for uniform permutation traffic with a constant fractioh source-
destination pairs at distand@(y/n) (as is the case with high probability if the permutation ficafs
chosen at random), this is asymptotically the best unifgradhievable per-node rate.

VI. AUXILIARY LEMMAS

In this section, we provide auxiliary results, which will heed several times in the following. These
results are grouped into three parts. In Sedtion VI-A, wecdles regularity properties exhibited with high
probability by the random node placement. In Secfion VI-B, provide auxiliary upper bounds on the
performance of any scheme in terms of cut-set bounds. FjnallSection[VI-C, we describe auxiliary
results on the performance of hierarchical relaying andtiisglp communication as described in Section

V-Cl

A. Regularity Lemmas

Here we prove several regularity properties that are sadisiiith high probability by a random node
placement. Formally, defing(n) to be the collection of all node placememisn) that satisfy the following
conditions:

Tuw >0 for all u,v e V(n),
Vii(n)| < log(n) for ¢ = = log(n),
Viei(n)| > 1 for ¢ = —log <210g 0 )
Vii(n)| € 4" 1n, 47041y forall ¢e {1,....L'(n)},

where 1
L'(n) & 3 log(n) (1 — log™%(n)),

and in each casec {1,...,4%}. The first condition is that the minimum distance betweenenpdirs is
not too small. The second condition is that all squares of areontain at mostog(n) nodes. The third
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condition is that all squares of ar@dog(n) contain at least one node. The fourth condition is that all
squares up to level log(n) (1 — L1log™(n)) contain a number of nodes proportional to their area. Note
that, since

1

L(n) = 3 log(n) (1 — log_1/2(n))

— %log(n)(l — Llog™/5(n)),

this holds in particular for nodes up to leve(n). The goal of this section is to prove that
P(V(n) € V(n)) =1-o(1),

asn — oQ.
The first lemma shows that the minimum distance in a randone md@cement is at least—! with
high probability.

Lemma 3.

IP’( min Tuw > n_1> =1-o0(1),
weV(n),weV (n)\{u}

asn — oo.
Proof. Foru,v € V, let
Buw = {ru, <r}
for somer (depending only om). Fix a nodeu € V, then forv # «

,,,2

]PBuU S—
(Buolu) < =

(the inequality being due to boundary effects). Moreovhg events{B, ,}.cv\(,; are independent
conditioned onu, and thus

P( NoeV\{u} BE,U‘U> = | )
veV\{u}

2 n
2(1—2) .
n

IP( min = 7Ty, < 7“) = P( Uuevvev\{u} Bu,v)

From this,

ueVoweV\{u}
< P( Uvev\{u} Bu,v>
ueV
- <1 - P( ﬁvEV\{u} BQCL,’l)))
ueV
ueV
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Assumingr < y/n/m, we have

2

n(l — (1 — E>n> < nr27r,
n

and hence
IP’( min = r,, < r) < nrim,
ueVweV\{u}
which converges to zero for=n=!. 0J
The next lemma asserts thatlifn) is not too large then all squard®’;(n)},; for ¢ € {1,...,L(n)}
andi € {1,...,4%} in the grid decomposition of (n) contain a number of nodes that is proportional to
their area.

Lemma 4. If L(n) satisfies N
L(n)

then

<~ﬁﬂ{\wz )| € 47 n, 470 ]})zl—O(l)

/=1 i=1
asn — oo. In particular, this holds for

1 _
L(n) = 3 log(n)(l — %log 5/6(n)),
and for L(n) = L(n).
Proof. Let B, be the event that node lies in A,; for fixed ¢, i. Note that

Z]LBH |‘/Zz

ueV

by definition, and that
P(B,) = 47"

Hence, using the Chernoff bound,

P(|Vi| & 47 n, 47 1n]) = P(Zlm ¢ [47 1, 4—£+1n])

ucV
< exp(—K4"n),

for some positive constanit, and we obtain, fo¥ = L(n),

4L(n)
() Vel o ]})
4L(n)
>1—2:IP> L(n‘g[ “in, 47 L+ ])
21—4“ exp(—K4~Lmp)
21—exp(KL(n)—K4_ M), (6)

for some positive constarit.. By assumption
L(n)

Y



20

and hence ~
4L(n)

( ﬂ {1Vl € 472010 4‘%’*%]}) >1—o(1),

asn — oo. Since the{4,,},; are nested as a function 6f we have

L(n) 4 4B

ﬂ m { H/gl‘ e 4_Z ln 4_£+1 } - m {|VL(n | E L(n n 4—Z(n)+1n]}’

(=1 i=1

which, combined with[{(6), proves the first part of the lemma.
For the second part, note that for

_ 1 e
L(n) = 3 log(n)(l — %log 5/6(n)),
we have
L(n) _ 1log(n)(1 — %log_5/6(n))
4=Ln)p, 2%10g1/6(n)
log(n)
= 2%log1/6(n)

_ 2loglog(n)—% log!/%(n) =0
and hence the lemma is valid in this case. The same hold&(foy = L(n) since

L(n) < %log(n)(l - %log_5/6(n)).
(|

We are now ready to prove that a random node placeriény is in V(n) with high probability as
n — oo (i.e., is fairly “regular” with high probability).

Lemma 5.
P(V(n) € V(n)) =1-o(1),
asn — oQ.

Proof. The first condition,

-1

Tuw > N for all u,v €V,

holds with probabilityl — o(1) by Lemma[8. The second and third conditions,

[Vii| < log(n) for ¢ = 3 log( )
1 n

are shown in [12, Lemma 5.1] to hold with probability- o(1). The fourth condition,
Vis| € (471, 47 1p) for all ¢ € {1, o L'(n)},

holds with probabilityl — o(1) by Lemmal#. Together, this proves the result. O
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B. Converse Lemmas
Here we prove several auxiliary converse results. The frsihha bounds the maximal achievable sum
rate for every individual node (i.e., the total traffic for ih a fixed node is either source or destination).

Lemma 6. Under either fast or slow fading, for any > 2, there exist3(n) = O(log(n)) such that for
all V(n) € V(n), \YC € AYC(n), u € V(n),

> NS <), (7)
weV (n)\{u}

Z Ao < b(n). (8)
weV (n)\{u}

Proof. The argument follows the one in [12, Theorem 3.1]. Denote(hy;, Ss) the multiple-input
multiple-output (MIMO) capacity between nodes $h and nodes inS,, for S;, Sy C V. Consider first
(@). By the cut-set bound [27, Theorem 14.10.1],

> A% < C{ud, {u}?).
wH#u
C({u}, {u}®) is the capacity between and the nodes ifu}°, i.e

C({u}, {u}) =log (14 0 Il
<log(l+ (n—1)n%)
< K'log(n),
with
K22+ a,

and where for the first inequality we have used that sivice V, we haver, , > n~! for all u,v € V.

Similarly, for (8),
SO < C{ul, {u),
wH#u
and
C({u}e, {u}) < log (1+ (0 = )X,z lhual” )
<log(1+ (n —1)*n%)
< K'log(n).
(|

The next lemma bounds the maximal achievable sum rate atitedsoundary out of the subsquares
Vii(n) for £ € {1,...,L(n)}, andi € {1,...,4%}.

Lemma 7. Under either fast or slow fading, for any > 2, there exist$(n) = O(log’(n)) such that
for all V(n) € V(n), AU € AYC(n), £ € {1,...,L(n)}, andi € {1,...,4}, we have

Z Z )\UC S b 4 Zn)Q—min{S,a}/Z‘
uEVgl(n) IU%VZ,L( )

Proof. As before, denote by'(S;, S;) the MIMO capacity between nodes i) and nodes ir5,. By the
cut-set bound [27, Theorem 14.10.1],

ST NS < OV, V). 9)

u€Vy; wgVe;
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Let
A
HS1 Sy — [hu,v] uEST,vES

be the matrix of channel gains between the nodeS;imand S,. Under fast fading

0(51752) £ Q{%&;@(O: E(logdet (I+H;17S2Q(H)H31752)),
E(qu,u)<P YueS:

and under slow fading

C(S1,%) & max  logdet (I + HY, ,QHs, s,)-
Qu, u<P_V.u€S1

Denote byd(V;;;) the nodes inV; that are within distance one of the boundary betweg¢n and A, ;.
Using the generallzed Hadamard inequality yields that uedteer fast or slow fading

CVe, Vi) < C(Vai, 0(Vi)) + C(Ve, Vi \ O(V5)).- (10)
We start by analyzing the first term in the sum[in](10). ApplylHadamard’s inequality again yields
C(w7i78 ‘/Zz Z C ‘/Zzu {U})

vea( Ti)

SinceV €V, we have
0(V5)| < 5log(n) (4~ n)"">.

By the same analysis as in Lemia 6, we obtain

C(Vei {v}) < C({v}* {v}) <

for some constani’ (independent of)). Therefore

K
g og(n)

O (Ve (V) < 5log(m)(4~n) % Toa(n)
< K log*(n) (4~ n)Y/2. (11)

We now analyze the second term in the suml[in (10). The argwrenfl3, Lemma 12] (building
on [12, Theorem 5.2]) show that under either fast or slowrfgdhere existgX > 0 such that for any
Veve{o,...,Ln)},

C(Vea, VENO(VE)) < Klog?(n) > Y s, (12)

u€Vy,i veVENA(VE,)

Moreover, using the same arguments as in [12, Theorem 5@®yssthat there exists a constafit > 0
such that for adjacent squares (i.e., sharing a side)A, ;,

S Yy < K'logh(n) (47 n) el (13)

u€Vy; veVy \O(V,)

Consider now two diagonal squares (i.e., sharing a corniet)pd,;, A, ;. Using a similar argument and
suitably redefiningk” shows that[(1]3) holds for diagonal squares as well.

Using this, we now compute the summation[inl(12). Consideig” of squares around, ;. The first
such “ring” contains the (at mos§)squares neighboring, ;. The next “ring” contains at most squares.
In general, “ring”k contains at mos8k squares. Let

{Aé,j}jelk
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be the squares in “ringk. Then

Yoo =YY > s, (14)

u€Vy,i veVENI(VE,) k>1 jEl, ueVe,i veVy \O(VE,)

By (13), .
DY > b S 8K logd(n)(m)P B2, (15)

JEN ueVe; veVy \O(VE,)

Now note that fork > 1 and j € I, nodesu € V,; andv € V,; are at least at distance,, >
(k —1)(27%/n). Moreover, sincé/ € V, each{V,},; has cardinality at most~—“*1n. Thus

.02 X muS) sk ) (k- DETVe) T

k>1 j€I} ueVgLUEVeJ\B ) k>1

= 128(4~n) " k(k — 1)

k>1
— K"(47'n)" ", (16)
for someK” > 0, and where we have used that> 2. Substituting[(Ib) and_(16) int@_(1L4) yields
Z Z ;10; < 8K’ logs(n)(4—en)2—min{3,a}/2 + K" (4—én)2—a/2’
uEVy i veVENI(VE,)

and hence by[(12)
C(Viis Vi \ OWVE)) < K log?(n) (8K log? (n) (47 n)? i Bel/2 4 7 (47n) ™). a7)
Combining [9), [(ID),[(11), and_(1.7) shows that
DD T NS < b(n)(4 )P min{el/2,

ueVy ; v¢Vy ;
for everyl € {1,...,L(n)},i € {1,...,4%}, and under either fast or slow fading. O

The following lemma bounds the maximal achievable sum raetess the boundary into the subsquares
Vii(n) for ¢ € {1,...,L(n)}, andi € {1,...,4}. Note that this lemma is only valid far > 5.

Lemma 8. Under either fast or slow fading, for any > 5, there exist9(n) = O(log(n)) such that
for all V(n) € V(n), \Y¢ € AYS(n), £ € {1,...,L(n)}, andi € {1,...,4"}, we have

Z Z )\uc < b(n 4—%)1/2‘
ugVy,i(n) weVyq(n)
Proof. By the cut-set bound [27, Theorem 14.10.1],
Do D NS < OVEL Vi) (18)
ugVy ; weVy

Denote byoV,; the nodes inV;; that are within distance one of the boundary betweﬁrg and A;.

Applying the generalized Hadamard inequality as in Leniine& have under either fast or slow fading
< Klog*(n)(4™n)"/2 + O(Vi5y, Vi \ Vi),

for some positive constart’.
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For the second term in_(19), we have by slightly adapting thyeen bound from Theorem 2.1 in [3]:
2
CVEVe\ Vi) < D ( S r;;m) .

vewvi\a‘/g,i UEVZCL

Now, consider € V;; \ dV;; and letd, be the distance of from the closest node ifr7;. UsingV € V
anda > 5, B
> s < Klog(n)d2*/?,

ueVy;
for some positive constant’, and hence

CVE Ve \ Vi) < > K?log*(n)dy ™
veVy i \oVy;
< K'log®(n)(4~"n)"/?,

for some positive constart’. Combined with[(IP) and_(18), this proves Lemhmia 8. O

C. Achievability Lemmas

In this section, we prove auxiliary achievability resuRecall that a permutation traffic is a traffic pattern
in which each node is source and destination exactly onck.ti@a corresponding source-destination
pairingIl C V(n) x V(n) a permutation pairing The lemma below analyzes the performance achievable
with either hierarchical relaying (forv € (2,3]) or multi-hop communication (forx > 3) applied
simultaneously to transmit permutation traffic in severajaint regions in the network. See Section
for a description of these communication schemes.

Lemma 9. Under fast fading, for anyr > 2, there existsh(n) > n=°) such that for allV'(n) € V(n),
0 €{0,...,L(n)}, i €{1,...,4}, and permutation source-destination pairifig on V, ;(n), there exists
AUC e AYC(n) such that
min ~ min  AYS > p(n)(4n) T min{Bal/2,
ie{l,...,4} (u,w)ell;
The same statement holds with probability- o(1) asn — oo in the slow fading case.

Consider the source-destination pairifig= U;II; with {IL,}; as in Lemmd19. This is a permuta-
tion pairing, since eachl; is a permutation pairing ofv;;(n) and since the{V;;(n)}; are disjoint.
Lemmal9 states that every source-destination paifl iban communicate at a per-node rate of at least
n~oW (4=¢n)-min{3.0}/2 Note that, due to the locality of the traffic pattern, thisidae considerably
better than the;!~™in{3.23/2=2() per-node rate achieved by standard hierarchical relayingalti-hop
communication.

Proof. We shall use either hierarchical relaying (ferc (2, 3]) or multi-hop (fora. > 3) to communicate
within each squaré/,;. We operate every fourth of thg,; simultaneously, and show that the added
interference due to this spatial re-use results only in atzon factor loss in rate.

Consider firsto € (2, 3] and fast fading. The squares ; at level/ have an area of

A
ne 24 .

In order to be able to use hierarchical relaying within eatthe { A,,};, it is sufficient to show that we
can partition eachd,; into

-
ngl+log*1/3(w)
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squarelets, each of which contains a number of nodes propalto the area (see Section V-C). In other
words, we partitionA into squarelets of size
1 10g71/f5(7L)

1—
I+log=1/3(ny) 1+log—1/3(n)
¢ 2 N ()

1 log’l/?’(n)
Z Ny

_ otlog!/%(n)

Z n4—% log(n) (1—% logfs/("(n))

Y

where we have assumed, without loss of generality, that2. SinceV € V, all these squarelets contain
a number of nodes proportional to their area, and hence liows that all

are simultaneously regular enough for hierarchical relgyo be successful under fast fading. This achieves
a per-node rate of
)\52} > n—o(l)(4—£n>1—a/2 (20)

for any (u,w) € I1; (see Section V=C, or [13, Theorem 1]).
We now show that[(20) holds with high probability also undiemsfading. ForV € V hierarchical
relaying is successful under slow fading for all permutaticaffic onV with probability at least

1_@®<_2m%wm0

for some constank’ (see again Sectidn VIC). Hence, hierarchical relaying ceassful for all permutation
traffic on V;; with probability at least

1-— exp ( - 2K10g2/3(4*ln)> Z 1— exp ( - 2K10g2/3(4,L(n)n)>
=1- exp ( _ 2Klog1/3(n)> .

And hence hierarchical relaying is successful under slodinta for all ¢ € {1,...,L(n)} and all
permutation traffic on everyV;,;}%, with probability at least

1 — L(n)4"™ exp ( — 2K1°g1/3(")> >1—nexp < — 2K1°g1/3(”)>
>1—o(1)

asn — o0.

We now argue that the additional interference from spagalige results only in a constant loss in
rate. This follows from the same arguments as in the proofl8f [Theorem 1] (with the appropriate
modifications for slow fading as described there). Inteiyy this is the case since the interference from a
square at distanceis attenuated by a factor®, which, sincen > 2, is summable. Hence the combined
interference has power on the order of the receiver noisaltneg in only a constant factor loss in rate.

For o > 3, the argument is similar—instead of hierarchical relayimg now use multi-hop communi-
cation. ForV € V and under either fast or slow fading, this achieves a peenate of

)\g% > n_o(l)(4_én)_l/2 (21)
for any (u, w) € II;. Combining [20) and(21) yields the lemma. O
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VIl. PROOF OFTHEOREM[

The proof of Theorenh]1 relies on the construction of a captadt (noiseless, wireline) gragh and
linking its performance under routing to the performancthefwireless network. This gragh = (V, E¢)
is constructed as follows~ is a full tree (i.e., all its leaf nodes are on the same lev&lhasn leaves,
each of them representing an element/df.). To simplify notation, we assume that(n) C V4, so that
the leaves ofG are exactly the elements 6f(n) C Vi;. Whenever the distinction is relevant, we use
u,v for nodes inV(n) C Vi; and u, v for nodes inV; \ V(n) in the following. The internal nodes @
correspond tdv,;(n) for all ¢ € {0,...,L(n)}, i € {1,...,4}, with hierarchy induced by the one on
A(n). In particular, let, andv be internal nodes i, and letV;(n) andV;, ;(n) be the corresponding
subsets oft’(n). Thenv is a child node ofu if V,iy ;j(n) C V,;(n).

In the following, we will assumé&” € V, which holds with probabilityt —o(1) asn — oo by Lemmdb.
With this assumption, nodes i, at level? < L(n) have4 children each, nodes iV, at level/ = L(n)
have betweed“("~1n and4~-%("+1y children, and nodes ifr; at level/ = L(n) + 1 are the leaves of
the tree (see Figufd 7 below and Figlite 3 in Sedfionl V-A).

¢=L(n)+1

Fig. 7. Communication grapti’ constructed in the proof of Theordmh 1. Nodes on leveis{0, ..., L(n) — 1} have four children each,
—-1/2

nodes on level = L(n) have@(nlog / ‘”)) children each. The total number of leaf nodes j®ne representing each node in the wireless

network V' (n). An internal node inG at level? € {0,..., L(n)} represents the collection of nodes¥;(n) for somes.

For 1 € Vi, denote byL(u) the leaf nodes of the subtree @frooted atu. Note that, by construction
of the graphG, £(i) = V;,(n) for somef andi. To understand the relation betwe&n and V' (n), we
define therepresentativer : V; — 2V of i as follows. For a leaf node € V(n) C V;; of G, let

R(u) £ {u}.
For 1 € Vi; at level L(n), chooseR(u) C L(u) C V(n) such that
[R(p)] = 475",

This is possible sincé’(n) € V(n) by assumption. Finally, fop. € Vi at level ¢ < L(n), and with

children {v;};_,, let

R(w) = [JR(;).

We now define an edge capacity, for each edgeu,v) € Eq. If 11 is a leaf ofG and v its parent,
set

Cuw = Cup 2. (22)
If 1 is an internal node at levélin G andv its parent, then set
Cow = Cuop AL (4—£n>2—min{3,a}/2. (23)

Having chosen edge capacities 6 we can now define the sét’“(n) C R.*" of feasible unicast
traffic matrices between leaf nodes @f In other words \Y© € AZS(n) if messages at the leaf nodes of
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G can be routed to their destinations (which are also leaf sjooeerG at rates\UC while respecting the
capacity constraints on the edges(f Define

ABYC(n) & AZE(n) N BYS(n).

We first prove the achievability part of Theoréin 1. The nertriga shows that if traffic can be routed
over the treer then approximately the same traffic can be transmittedbigliaver the wireless network.

Lemma 10. Under fast fading, for anyx > 2, there exist$(n) > n~°(1) such that for any/ (n) € V(n),
b(n)Age(n) C AYC(n).
The same statement holds for slow fading with probabllity o(1) asn — oo.

Proof. Assume)\Y® € AZS, i.e., traffic can be routed between the leaf node& aft a rateA", we need
to show thatn=°M\YC ¢ AYC (i.e., almost the same flow can be reliably transmitted olkerwireless
network). We use the three-layer communication architectotroduced in Section VA to establish this
result.

Recall the three layers of this architecture: the routimmpperation, and physical layers. The layers of
this communication scheme operate as follows. In the rgutiger, we treat the wireless network as the
graphG and route the messages between nodes over the edgesltie cooperation layer provides this
tree abstraction to the routing layer by distributing andeamtrating messages over subsets of the wireless
networks. The physical layer implements this distributgsmd concentration of messages by dealing with
interference and noise.

Consider first the routing layer, and assume that the tretraaion G can be implemented in the
wireless network with only a—°® factor loss. Since\"® € AYC by assumption, we then know that the
routing layer will be able to reliably transmit messagesaaesn°") A\UC over the wireless network. We
now show that the tree abstraction can indeed be implemenitbda factorn—(") loss in the wireless
network.

This tree abstraction is provided to the routing layer by ¢beperation layer. We will show that the
operation of the cooperation layer satisfies the followimgariance property: If a message is located at a
noden € G in the routing layer, then the same message is evenly distdbover all nodes iR () in
the wireless network. In other words, all nodes R(u) C V' contain a distinct part of length/ |R ()|
of the message.

Consider first a leaf node € V' C V; in GG, and assume the routing layer calls upon the cooperation
layer to send a message to its parert Vi in G. Note first thatu is also an element of, and it has
access to the entire message to be sent 6vegince for leaf nodeR(u) = {u}, this shows that the
invariance property is satisfied at The message is split atinto |R(v)| parts of equal length, and one
part is sent to each node R(v) over the wireless network. In other words, we distribute riiessage
over the wireless network by a factor g®(v)|. Hence the invariance property is also satisfied.at

Consider now an internal nogec Vi, and assume the routing layer calls upon the cooperatiar tay
send a message to its parent nede V. Note that since all traffic iz originates at the leaf nodes 6f
(which are the actual nodes in the wireless network), a ngesat: had to traverse all levels belowin
the treeGG. We assume that the invariance property holds up to levelthe tree, and show that it is then
also satisfied at level. By the induction hypothesis, each node R (1) has access to a distinct part of
length1/|R(u)|. Each such node splits its message part into four distinct parts of equagifienNode
u keeps one part for itself, and sends the other three partedesninR(v). Since|R(v)| = 4 |R(u)],
this can be performed such that each nod®imw) obtains exactly one message part. In other words, we
distribute the message by a factor four over the wirelessorét and the invariance property is satisfied
atv e V.

Operation along edges down the tree (i.e., towards the le@é¢s) is similar, but instead of distributing
messages, we now concentrate them over the wireless nethmrioute a message from a nodes V
with internal children{yj}jf:1 to one of them (say;) in the routing layer, the cooperation layer sends
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the message parts from eafR(v;)}_, to a corresponding node iR(v;) and combines them there. In
other words, we concentrate the message by a factor fourtbgewireless network.

To route a message to a leaf nade V' C V; from its parent in G in the routing layer, the cooperation
layer sends the corresponding message parts at eachidiogléo u over the wireless network. Thus, again
we concentrate the message over the network, but this tiree fagtor of|/R(v)|. Both these operations
along edges down the tree preserve the invariance propérty.shows that the invariance property is
preserved by all operations induced by the routing layehedooperation layer.

Finally, to actually implement this distribution and cont@ation of messages, the cooperation layer
calls upon the physical layer. Note that at the routing lagitredges of the tree can be routed over simul-
taneously. Therefore, the cooperation layer can poténiall the physical layer to perform distribution
and concentration of messages over all 6%)},cv,, Simultaneously. The function of the physical
layer is to schedule all these operations and to deal withdbelting interference as well as with channel
noise.

This scheduling is done as follows. First, the physical tayee shares between communication up the
tree and communication down the tree (i.e., between digtob and concentration of messages). This
results in a loss of a factdr/2 in rate. The physical layer further time shares betweenhalllf(n) + 1
internal levels of the tree, resulting in a furthgh factor loss in rate. Hence, the total rate loss by
this time sharing is

1
—_. 24
2(L(n) +1) (24)
Consider now the operations within some leved 1,..., L(n) in the tree (i.e., for edgéu, ) on this

level, neithery nor v is a leaf node). We show that the rate at which the physicarlaypplements the
edge (u,v) is equal ton=°We,,, i.e., only a small factor less than the capacity of the efjge’) in
the treeG. Note first that the distribution or concentration of traificluced by the cooperation layer to
implement one edge at level/ (i.e., between node levelsand ¢ — 1) is restricted toV,_,; for some

i =i(e). We can thus partition the edges at levehto { E7,}7_, such that the four sets

U Vi—t1ite)

J
ecly,

of nodes are disjoint. Time sharing between these four detdsyan additional loss of a factdr/4 in
rate. Fix one such value of, and consider the operations induced by the cooperatiogr limythe set
corresponding tg. We consider communication up the tree (i.e., distribubbrmessages), the analysis
for communication down the tree is similar. For a particwddge (11, v) € EZ, with v the parent ofy,
each node: € R(u) has split its message part into four parts, three of whicld nede sent to the nodes
in R(v) \ R(x). Moreover, this assignment of destination node®ifv) \ R(u) to u is performed such
that no node iR (v) \ R(u) is destination more than once. In other word, each nodg(jm) is source
exactly three times and each nodeRiv) \ R(u) is destination exactly once. This can be written as three
source-destination pawmg{sﬂ’“ }k 1 onV_ Li(uw)- Moreover, each sucH’fu ,) can be understood as a
subset of a permutation source destlnatlon pairing. We 8hrare between the three values:dyielding
an additional loss of a factor/3 in rate). Now, for each value of, Lemmal® shows that by using
either hierarchical relaying (far € (2, 3]) or multi-hop communication foro{ > 3), we can communicate
according tO{Hf(e)}eeEg at a per-node rate of

n—o(l) (4—€—ln> 1—min{3,a}/2

under fast fading, and with probabifftyt — o(1) also under slow fading. SincR(y) contains4=*"!n
nodes, and accounting for the lo§sl(24) for time sharing eetwthe levels irG and the additional loss

“Note that Lemma&l9 actually shows that all permutation trdtiicevery value of¢ can be transmitted with high probability under slow
fading. In other words, with high probability all levels 6f can be implemented successfully under slow fading.
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of factors1/4 and1/3 for time sharing between and %, the physical layer implements an edge capacity
for e at level/ of

1 1 . 1 X —Z—ln . n—o(l) (4—Z—ln)1—min{3,a}/2 _ n—o(l) (4—Zn)2—min{3,a}/2 _ n—o(l)ce.

Consider now the operations within level= L(n) + 1 in the tree (i.e., for edgéu, v) on this level,
u is a leaf node). We show that the rate at which the physicarlapplements the edge, v) is equal
to n=°We, . We again consider only communication up the tree (i.etriligion of messages in the
cooperation layer), communication down the tree is peréalim a similar manner. The traffic induced
by the cooperation layer at levél(n) + 1 is within the sets/z,,; for i = {1,..., 4}, Consider now
communication within oné’;,;, and assume without loss of generality that in the routirygravery
nodeu € Vi, needs to send traffic along the edge ). In the physical layer, we need to distribute a
1/|R(v)| fraction of this traffic from each node € V,,); to every node iR (v) C Vi) ,;. This can be
expressed a$VL(n)7i\ source-destination pairings, and we time share between.tAecounting for the
fact that onlyl/ |R(v)| of traffic needs to be sent according to each pairing and diheeV, this results
in a time sharing loss of at most a factor

R _ 1

Now, using Lemmalo9, all these source-destination pairingglisubsquare§Vy,,;} can be implemented
simultaneously at a per node rate of

n—o(l) (4—L(n)n)1—min{3,a}/2 > n—o(l)(nlog71/2(n))—1/2 > n—o(l)‘

Accounting for the los<(24) for time sharing between theeleyn G, the additional factoi /16 loss for
time sharing within eaclr,,,) ;, the physical layer implements an edge capacityfat level! = L(n)+1
of

L ey o) e,

2(L(n) +1) 16 “
under either fast or slow fading.

Together, this shows that the physical and cooperationrdageovide the tree abstractiad to the
routing layer with edge capacities of only a factor’”) loss. Hence, if messages can be routed at rates
A\YUC between the leaf nodes 6f, then messages can be reliably transmitted over the wirelesvork at
ratesn—°M \YC, Hence

)\UC c ALéC = n—o(l))\UC c AUC.

Noting that then =) factor is uniform inAYC, this shows that
n"WALE C AVC.
[

We have seen that the unicast capacity regigfi(n) of the graphG under routing is (appropriately
scaled) an inner bound to the unicast capacity regin(n) of the wireless network. Taking the intersec-
tion with the set of balanced traffic matric88(n) yields that the same holds fa2”°(n) and ABYC(n).
The next lemma shows théd/(n) + 1)AZ’°(n) (with v(n) = n°") as in the definition of3Y°(n) in (X))
is an outer bound to the approximate unicast capacity re§ff (n) of the wireless network as defined
in 3) Combining Lemmakl%, 10, and]11 below, yields that witihhprobability

n_"(l)/A\BUC(n) C n_"(l)A(B;UC(n) C ABuc(n)7

proving the achievability part of Theore 1.
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Lemma 11. For any « > 2 and anyV(n) € V(n),
RABYC(n) C (v(n) + DAZ(n),
where~(n) = n°" is the factor in the definition oBYC(n) in (D).

Proof. We first relate the total traffic across an edgim the graphG to the total traffic across a clf;
for some/ andi.

Consider an edge = (u,v) € Eg, and assume first thatconnects nodes at levéland/ — 1 in the
tree with? > L(n). We slight abuse of notation, set

A
Ce = Cpp-

Note first that by[(ZI3) we have .
Co = (4—Zn)2—m1n{3,a}/2. (25)

Moreover, sinceG is a tree, removing the edge from E; separates the tree into two connected
components, sa§;, Sy C V. Consider now the leaf nodes i. By the construction of the tree structure
of G, these leaf nodes are either equallig or V¢, for somei € {1,...,4‘}. Assume without loss of
generality that they are equal 1¢;. ThenV; are the leaf nodes iff,. Now since traffic is only assumed
to be between leaf nodes 6f, the total traffic demand between, and S, is equal to

DD TS A5 (26)
ueVy ; wgéV[c

By the tree structure of7, all this traffic has to be routed over edge
Consider now an edge connecting a node at levél(n) + 1 and L(n), i.e., a leaf node: to its parent

v. Then, by [(2R),

ce = 1. (27)
The total traffic crossing the edgeis equal to
DS+ AN, (28)
w#u
We now show that R
ABYC  (y(n) + 1)AZC. (29)
AssumeAUS € ABUC| then
Z Z )\UC S 4 n 2 min{3,a}
uevl,z wéVe i

forall ¢ € {1,...,L(n)},i€{1,...,4%}, and
Y oNS A <1
w#u
for all u € V. Since\Y is balanced, this implies that
Z Z )\UC )\UC < (4—£n>2—min{3,a}
uew i wEVe;

for ¢ < L(n). By (28), (26), [(2V),[(Z8), we obtain that the traffic demawdoas each edge of the graph
G is less thany(n) + 1 times its capacity:.. Therefore, using thaf’ is a tree,- )\UC can be routed

overG, i.e., A\ € (y(n) + 1)ABYC. This proves[(29). O
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We now turn to the converse part of TheorEim 1. The next lemmoavshhatAUC(n) (appropriately
scaled) is an outer bound to the unicast capacity regidf(n) of the wireless network. Taking the
intersection with the collection of balanced traffic maggdVC(n) and combining with Lemmal 5, this
shows that with high probability

APYC(n) C O(log®(n))AB*(n),
proving the converse part of Theorém 1.

Lemma 12. Under either fast or slow fading, for any > 2, there existsh(n) = O(log®(n)) such that
for any V(n) € V(n),

AYC(n) C b(n)AYC(n).
Proof. Assume)\Uc € AYC. By LemmalY, we have for ange {1,...,L(n)} andi € {1,...,4},
Z Z )\UC < KlOg ( )(4—Zn)2—min{3,a}/2 (30)

ueVy; wgVy,

for some constank” not depending on\“C.
Consider nowu € V. Lemmal6 shows that

> NS < Klog(n),
w#u
D A < Klog(n),
wH#u

with constantkx not depending on\Y¢, and therefore,

DS + AN < 2K log(n). (31)

wH#u
Combining [30) and[(31) proves that there exists) = O(log®(n)) such thatA\U® ¢ AYC implies
AUC € b(n)AYC, proving the lemma. O

VIIl. PROOF OFTHEOREM[2

Consider again the tree grapgh= (V, E) with leaf nodes/ (n) C Vi constructed in Sectidn ' VIl. As
before, we consider traffic between leaf nodes/ofn particular, any multicast traffic matrix'c € R”**"
for the wireless network is also a multicast traffic matrix tbe graphG. Denote byAMC(n) c R’
the set of feasible (under routing) multicast traffic masidetween leaf nodes 6f, and set

ABMC(n) & AMC(n) N BMC(n).

The next lemma shows that if multicast traffic can be routedra@v then approximately the same
multicast traffic can be transmitted reliably over the wéss network. Taking the intersection wif© (n)
implies that the same result holds also for balanced traffic.

Lemma 13. Under fast fading, for anyx > 2, there exist$(n) > n=°") such that for allV'(n) € V(n),
b(n)AMC(n) ¢ AMC(n).

The same statement holds under slow fading with probaHbilityo(1) asn — oo.

Proof. The proof follows using the same construction as in Lerima 10. O

We now show that, sinc€' is a tree graphf\BMC(n) is an inner bound (up to a factefn) + 1) to the
the multicast capacity region2MC(n). The fact that’ is a tree is critical for this result to hold.
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Lemma 14. For anya > 2, N
APYC(n) C (v(n) + DAG" ().
where~(n) = n°Y is the factor in the definition oBY(n) in ).

Proof. AssumeAMC € BMC\ ABMC. SinceG is a tree, there is only one way to route multicast traffic
from u to W, namely along the subtre&({u} U W) induced by{u} U (i.e., the smallest subtree of
G that covers{u} U W). Hence for any edge € E, the trafficd,uc(e) that needs to be routed over

is equal to
dwe(e) = Y NG,

ueV,WCV:
e€EEq({uyuw)

Now, sinceAM® € BMC\ ABMC there exists: € F such that
dymc (6) > Ce. (32)
Let 7 be the level of this edge in G. We have
_¢ \2-min{3,a}/2 . <
‘o = (47n) if ¢ <L(n), (33)
1 else

Assume first that < L(n) and leti be such that the removal of the edgé G disconnects the leave
nodes inV;; from the ones in/7;. Then we have

dwe(e) =Y > NG+ > > NG (34)

weVy;, WCV: ugVyi(n) WCV:
WAV, #0 WAV

Assume then that = L(n) + 1, and assume separates the leaf nodefrom {u}° in G. Then

dywe (e Z WY TS

u#u WCV:
W\{u};é(l) ueW

If ¢ = L(n)+ 1, then [32), [3B), and(34) imply that® ¢ ABMC and therefore\MC ¢ = AB""C If
¢ < L(n) then, since\M® is ~v(n)-balanced, we have

DD DR V- N NP WA CTC) = S I Y NP W (35)
ueVy; WCV: ugVyi(n) WCV: weVi; WCV:
WAV, 7#0 WV, #0 WAV, i #0
Combining [32), [(3B),[{34), and(B5) shows thdt® ¢ o) +1ABMC for ¢ < L(n) as well.
Hence, we have shown that'® € BMC\ ABMC implies \MC ¢ ) HABMC proving the lemma. [
Combining Lemmag 13, arid]14, ahd 5 shows that, with prolbili- o(1) asn — oo,
- (I)KBMC(n) C n—o(l)AgMC(n) C ABMC(n)’

proving the inner bound in Theorem 2.
We now turn to the proof of the outer bound A(n). The next lemma combined with Lemrha 5,
and taking the intersection witBV(n), proves the outer bound in Theorém 2.

Lemma 15. Under fast fading, for anyr > 2, there exists$(n) = O(log®(n)) such that for allV'(n) €
V(n),

AMC(n) c b(n)AMC(n).

The same statement holds under slow fading with probalilityo(1) asn — cc.
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Proof. We say that a unicast traffic matri’© is compatiblewith a multicast traffic matrixAM® if there
exists a mapping : V(n) x 2V — V(n) such thatf(u, W) € W U {u}, for all (u, W), and
MW= >N
WCV(n):
fw,W)=w
for all (u,w). In words, \MC is compatible with\Y® if we can create the unicast traffic mattiX“ from
AME by simply discarding the traffic for the pair, W) at all the nodesV \ {f(u, W)}.

Note that if \M© € ABMC and if A\YC is compatible with\M® then A\Y© € AYC. Indeed, we can reliably
transmit at rate\"* by using the communication scheme 3¢ and discarding all the unwanted messages
delivered by this scheme Now consider a &t with ¢ < L(n) in the wireless network, and choose a
mappingf : V(n) x 2V — V(n) such that

DoNL=D Y N
ueVy ; weVy ueVy; WCV:
' WAV, #0

Since \YC ¢ AYC, we can apply Lemmil 7 to obtain

Z Z )\TI\L/[C Z Z )\uc < b(n 4 gn)2—min{:),,a}/27

ueVy ; WV{/\%‘Z/#@ ueVy i wgVy
with b(n) = O(log®(n)). Repeating the same argument for cuts of the fdm) and {u}“ and using
Lemmal®, shows that™C < b(n)AMC. Noting that theb(n) term is uniform in\MC yields that

AMC < b(n)AMC,
concluding the proof of the lemma. O

IX. DISCUSSION

We discuss several aspects and extensions of the threediayetecture introduced in Sectibn V-C and
used in the achievability parts of Theorefs 1 ahd 2. In SedA] we comment on the various tree
structures used in the three-layer architecture. In Se{XeBlwe show that for certain values af the
bounds in the theorems can be significantly sharpened. Iho8éiX-Cl] we discuss bounds for traffic
that is not balanced. In Section IX-D, we show that for largkugs of path-loss exponent ¢ 5) these
bounds are tight. Hence in the large path-loss regime th@resgent of balanced traffic is not necessary,
and we obtain a scaling characterization of the entire ghiaad multicast capacity regions. In Section
[X-E] we point out how the results discussed so far can be ts@dhtain the scaling of the unicast and
multicast capacity regions of dense networks (whereodes are randomly placed on a square of unit
area).

A. Tree Structures

There are two distinct tree structures that are used in thetagction of the three-layer communication
scheme proposed in this paper—one explicit and one implibise two tree structures appear in different
layers of the communication scheme and serve differentqeeg

The first (explicit) tree structure is given by the tréeutilized in the routing layer and implemented
in the cooperation layer. The main purpose of this tree &irads to perform localized load balancing.
In fact, the distribution and concentration of traffic is dde avoid unnecessary bottlenecks. Note that
the treeG is used by the scheme for any valuecof

The second (implicit) tree structure occurs in the phydegtr. This tree structure appears only foe
(2, 3]. In this regime, the physical layer uses the hierarchidalyieg scheme. It is the hierarchical structure
of this scheme that can equivalently be understood as aTheepurpose of this second tree structure is
to enable distributed multiple-antenna communicatian, to perform cooperative communication.
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B. Second-Order Asymptotics

The scaling results in Theorerhis 1 ddd 2 are up to a factéf) and hence preserve information at
scalen’ for constantﬁ (see also the discussion in Sectlon TlI-C). Here we examinmaore detail the
behavior of thisn*() factor and show that in certain situations it can be signifigasharpened.

Note first that the outer bound in Theorelms 1 &hd 2 hold up tatarfé (log®(n)), i.e., poly-logarithmic
in n. However, the inner bound holds only up to the aforementone’!) factor. A closer look at the
proofs of the two theorems reveals that the precise innendbdasi of order

v—l(n)n—O(logfl/S(n)) ’
where~(n) is the factor in the definition o8YC(n) and BMC(n) (see [[1) and{2)). With a more careful
analysis (see [13] for the details), this can be sharpenegentially

S o ()

The exponentog‘l/Q(n) in the inner bound has two causes. The first is the use of blacal relaying
(for a € (2,3]). The second is the operation of the physical layer at lé\el) + 1 of the tree (i.e., to
implement communication between the leaf nodeg7ofnd their parents). Indeed at that level, we are

operating on a square of area
—L log—1/2
4, — plog™ ().

and the loss is essentially inversely proportional to thagaNow, the reason why.(n) can not be
chosen to be larger (to make this loss smaller), is becawsarbhical relaying requires a certain amount
of regularity in the node placement, which can only be gumeuohfor large enough areas.

This suggests that for the > 3 regime, where multi-hop communication is used at the playsayer
instead of hierarchical relaying, we might be able to sigaiftly improve the inner bound. To this end, we
have to choose more levels in the ti@esuch that at the last level before the tree nodes, we aratmgr
on a square that has an area of ortiefn). Changing the three-layer architecture in this manner, and
choosingy(n) appropriately, forx > 3 the inner bound can be improved fflog*(n)) in n. Combined
with the poly-logarithmic outer bound, this yields@(log®(n)) approximation of the balanced unicast
and multicast capacity regions for> 3.

C. Non-Balanced Traffic

Theorem$l andl 2 describe the scaling of the balanced urindsinulticast capacity regions®Vc (n)
and ABMC(n), respectively. As we have argued, the balanced unicastredi’“(n) coincides with the
unicast capacity regionVc(n) along at least? —n out of n? total dimensions, and the balanced multicast
region ABMC(n) coincides with the multicast capacity regidi¥“(n) along at least2" — n out of n2"
total dimensions. However, the proofs of these resultsideoalso bounds for traffic that is not balanced,
i.e., for the remainin@n dimensions.

Define the following two regions:

K?c(n) A {)\uc e R Z Z )\uc i )\uc < (47 tp)2min{3a}/2

u€Vy i(n) wgVe ;(n)

Vee{l,...,L(n)},ie{1,...,4%,
SO +A%) <1 Vue V(n)},

wH#u
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and

KIfIC(n) A {)\MC ER’}FXQR' Z Z )\MC i Z Z )\y% < (4—£n>2—min{3,a}/2

ueVy z(n) WCV(n): U%W i(n) WCV(n):
WA\V,i ()70 WNVe,i(n)#0
Vee{l,....L(n)},ie{1,... 4%,
Z AMe +Z Z Ve <1vueV(n)}.
WcV(n uF#u WCV(n
W\{u}?f@ wen”

AYC(n) and AYC(n) differ in that for¢ € {1,...,L(n)}, AY(n) only bounds traffic flow out of/;(n),
whereasAYC(n) bounds traffic in both directions acro$s;(n) (and similar forAMC(n) and AMC(n)).
The analysis in Sectioris VIl and VIl shows that
WRYC(n) € AYC(n) € O(log"(n))AY(n),
n=*WAYC(n) € AM(n) C O(log®(n))AM(n),
with probability 1 — o(1) asn — oo. In other words, we obtain an inner and an outer bound on the

capacity regions\Y“(n) and AM©(n). These bounds coincide in the scaling sense for balancfid,tfar
which we recover Theoreni$ 1 ahH 2.

D. Large Path-Loss Exponent Regime

The discussion in Sectidn IX1C reveals that in order to ebtaling information for traffic that is
not balanced, a stronger version of the converse resultemnha¥ is needed. In particular, Lemfda 7

bounds the sum-rate
) Z N

ue‘/ZL(n) wéw i
for \Y¢ € AYS(n). The required stronger version of the lemma would also neeabtind sum rates in

the other direction, i.e.,
> DL M
ugVp i(n) weVy ;(n)

For large path-loss exponents> 5, such a stronger version of Lemih 7 holds (see Lenma 8). With
this, we obtain that fory > 5,

~oRYC(n) € AY(n) € O(log®(n))AYC(n),
n_o(l)/A\'f'C(n) c AMC(n) C O(logﬁ(n))j\';"c(”%

with probability1—o(1) asn — oo. In other words, in the high path-loss exponent regime 5, AYC(n)
and AY€(n) characterize the scaling of the entire unicast and mutticasacity regions, respectively.

E. Dense Networks

So far, we have only discussedtendechetworks, i.e.n nodes are located on a square of ate&\Ve
now briefly sketch how these results can be recasti&rsenetworks, in whichn nodes are located on
a square of unit area.

Note first that by rescaling power by a factor®/?, a dense network with any path-loss exponewtn
essentially be transformed into an equivalent extendegorktwith path-loss exponerit. In particular,
any scheme for extended networks with path-loss expodeyields a scheme with same performance
for dense networks with any path-loss exponer(see also [12, Section V.A]). To optimize the resulting
scheme for the dense network, we start with the scheme fendgtl networks correspondingdcalose to
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2. Hence an inner bound for the unicast and multicast capeaegfipns for dense networks with path-loss
exponenta can be obtained from the ones for extended networks by takilmit asa — 2. Moreover,
an application of Lemmal 6 yields a matching (in the scalingseg outer bound.

The resulting approximate balanced capacity regioR<c(n) and ABMC(n) have particularly simple
shapes in this limit. In fact, the only constraints i (3) gl that can be tight are at levél= log(n).
Moreover, as in Section IXdD, it can be shown that the restmcof balanced traffic is not necessary for
dense networks. This results in the following approximatpacity regions for dense networks:

ALC(p) & {)\UC e R™™ . Z()\g% + )\fucu) <1l,Vue V(n)}
wH#u
for unicast, and

KMC(n)é{AMCGRW": SONS Y Z A <1, vueV(n)}

WcV(n): uF#u WCV(n
WA\ {u}#0 ueW

for multicast. We obtain that for dense networks, for any 2,
WA (n) € AY(n) € O(log®(n))
n"MAMC(n) c AMC(n) C O(log®(n))

with probability 1 — o(1) asn — oc.

(n),

Ave
A (),

X. CONCLUSIONS

In this paper, we have obtained an explicit informationstie¢ic characterization of the scaling of the
n2-dimensional balanced unicast an@”-dimensional balanced multicast capacity regions of alesse
network withn randomly placed nodes and assuming a Gaussian fading dhaodel. These regions
span at least? — n andn2" — n dimensions ofR*" andR".**", respectively, and hence determine the
scaling of the unicast capacity region along at least- n out of n? dimensions and the scaling of the
multicast capacity region along at least” — n out of n2™ dimensions. The characterization is in terms
of 2n weighted cuts, which are based on the geometry of the lotatod the source nodes and their
destination nodes and on the traffic demands between thedrthas can be readily evaluated.

This characterization is obtained by establishing thatuhieast and multicast capacity regions of a
capacitated (wireline, noiseless) tree graph under rgutave essentially the same scaling as that of the
original network. The leaf nodes of this tree graph correspm the nodes in the wireless network, and
internal nodes of the tree graph correspond to hierardhigabwing sets of nodes.

This equivalence suggests a three-layer communicatidmtacture for achieving the entire balanced
unicast and multicast capacity regions (in the scaling eenkhe top or routing layer establishes paths
from each of the source nodes to its destination (for unicasset of destinations (for multicast) over
the tree graph. The middle or cooperation layer provides tlge abstraction to the routing layer by
distributing the traffic among the corresponding set of iso@e a message travels up the tree graph, and
by concentrating the traffic on to the corresponding set alescas a message travels down the tree. The
bottom or physical layer implements this distribution and@entration of traffic over the wireless network.
This implementation depends on the path-loss exponentoftopath lossq € (2, 3], hierarchical relaying
is used, while for high path loss (> 3), multi-hop communication is used.

This scheme also establishes that a separation based @ppinawhich the routing layer works
essentially independently of the physical layer, can aehiearly the entire balanced unicast and multicast
capacity regions in the scaling sense. Thus, for balanadfictrsuch techniques as network coding can
provide at most a small increase in the scaling.
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