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The Balanced Unicast and Multicast Capacity
Regions of Large Wireless Networks

Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract

We consider the question of determining the scaling of then
2-dimensional balanced unicast and then2n-

dimensional balanced multicast capacity regions of a wireless network withn nodes placed uniformly at random in
a square region of arean and communicating over Gaussian fading channels. We identify this scaling of both the
balanced unicast and multicast capacity regions in terms ofΘ(n), out of 2n total possible, cuts. These cuts only
depend on the geometry of the locations of the source nodes and their destination nodes and the traffic demands
between them, and thus can be readily evaluated. Our resultsare constructive and provide optimal (in the scaling
sense) communication schemes.

I. INTRODUCTION

Characterizing the capacity region of wireless networks isa long standing open problem in information
theory. The exact capacity region is, in fact, not known for even simple networks like a three node relay
channel or a four node interference channel. In this paper, we consider the question of approximately
determining the unicast and multicast capacity regions of wireless networks by identifying their scaling
in terms of the numbern of nodes in the network.

A. Related Work

In the last decade, exciting progress has been made towards approximating the capacity region of
wireless networks. We shall mention a small subset of work related to this paper.

We first consider unicast traffic. The unicast capacity region of a wireless network withn nodes is the
set of all simultaneously achievable rates between all possible n2 source-destination pairs. Since finding
this unicast capacity region of a wireless network exactly seems to be intractable, Gupta and Kumar
proposed a simpler but insightful question in [1]. First, instead of asking for the entiren2-dimensional
unicast capacity region of a wireless network withn nodes, attention was restricted to the scenario where
each node is source exactly once and chooses its destinationuniformly at random from among all the other
nodes. All thesen source-destination pairs communicate at the same rate, andthe interest is in finding
the maximal achievable such rate. Second, instead of insisting on finding this maximal rate exactly, they
focused on its asymptotic behavior as the number of nodesn grows to infinity.

This setup has indeed turned out to be more amenable to analysis. In [1], it was shown that under
random placement of nodes in a given region and under certainmodels of communication motivated by
current technology (calledprotocol channel modelin the following), the per-node rate for random source-
destination pairing with uniform traffic can scale at most asO(n−1/2) and this can be achieved (within
poly-logarithmic factor inn) by a simple scheme based on multi-hop communication. Many works since
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then have broadened the channel and communication models under which similar results can be proved
(see, for example, [2]–[13]). In particular, under theGaussian fading channel modelwith a power-loss of
r−α for signals sent over a distance ofr, it was shown in [12] that in extended wireless networks (i.e., n
nodes are located in a region of areaΘ(n)) the largest uniformly achievable per-node rate under random
source-destination pairing scales essentially likeΘ

(
n1−min{3,α}/2

)
.

Analyzing such random source-destination pairing with uniform traffic yields information about then2-
dimensional unicast capacity region along one dimension. Hence, the results in [1] and in [12] mentioned
above provide a complete characterization of the scaling ofthis one-dimensional slice of the capacity
region for the protocol and Gaussian fading channel models,respectively. It is therefore natural to ask
if the scaling of the entiren2-dimensional unicast capacity region can be characterized. To this end, we
describe two related approaches taken in recent works.

One approach, taken by Madan, Shah, and Lévêque [14], builds upon the celebrated works of Leighton
and Rao [15] and Linial, London, and Rabinovich [16] on the approximate characterization of the unicast
capacity region of capacitated wireline networks. For suchwireline networks, the scaling of the unicast
capacity region is determined (within alog(n) factor) by the minimum weighted cut of the network graph.
As shown in [14], this naturally extends to wireless networks under the protocol channel model, providing
an approximation of the unicast capacity region in this case.

Another approach, first introduced by Gupta and Kumar [1], utilizes geometric properties of the wireless
network. Specifically, the notion of thetransport capacityof a network, which is the rate-distance product
summed over all source-destination pairs, was introduced in [1]. It was shown that in an extended wireless
network withn nodes and under the protocol channel model, the transport capacity can scale at most as
Θ(n). This bound on the transport capacity provides a hyper-plane which has the capacity region and
origin on the same side. Through a repeated application of this transport capacity bound at different scales
[17], [18] obtained an implicit characterization of the unicast capacity region under the protocol channel
model.

For the Gaussian fading channel model, asymptotic upper bounds for the transport capacity were
obtained in [2], [3], and for more general distance weightedsum rates in [19].

So far, we have only considered unicast traffic. We now turn tomulticast traffic. The multicast capacity
region of a wireless network withn nodes is the set of all simultaneously achievable rates between all
possiblen2n source–multicast-group pairs. Instead of considering this multicast capacity region directly,
various authors have analyzed the scaling of restricted traffic patterns under a protocol channel model
assumption (see [20]–[24], among others). For example, in [20], Li, Tang, and Frieder obtained a scaling
characterization under a protocol channel model and randomnode placement for multicast traffic when
each node chooses a certain number of its destinations uniformly at random. Independently, in [21],
Shakkottai, Liu, and Srikant considered a similar setup andalso obtained the precise scaling when sources
and their multicast destinations are chosen at random. Bothof these results are non information-theoretic
(in that they assume a protocol channel model). Furthermore, they provide information about the scaling
of then2n-dimensional multicast capacity region only along one particular dimension.

B. Our Contributions

Despite the long list of results, the question of approximately characterizing the unicast capacity region
under the Gaussian fading channel model remains far from being resolved. In fact, for Gaussian fading
channels, the only traffic pattern that is well understood israndom source-destination pairing with uniform
rate. This is limiting in several aspects. First, by choosing for each source a destination at random,
most source-destination pairs will be at a distance of the diameter of the network with high probability,
i.e., at distanceΘ(

√
n) for an extended network. However, in many wireless networkssome degree of

locality of source-destination pairs can be expected. Second, all source-destination pairs are assumed to
be communicating at uniform rate. Again, in many settings wewould expect nodes to be generating
traffic at widely varying rates. Third, each node is source exactly once, and destination on average once.
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However, in many scenarios the same source node (e.g., a server) might transmit data to many different
destination nodes, or the same destination node might request data from many different source nodes. All
these heterogeneities in the traffic demands can result in different scaling behavior of the performance of
the wireless network than what is obtained for random source-destination pairing with uniform rate.

As is pointed out in the last section, even less is known aboutthe multicast capacity region under
Gaussian fading. In fact, the only available results are forthe protocol channel model, and even there
only for special traffic patterns resulting from randomly choosing sources and their multicast groups and
assuming uniform rate. To the best of our knowledge, no information-theoretic results (i.e., assuming
Gaussian fading channels) are available even for special traffic patterns.

We address these issues by analyzing the scaling of a broad class of traffic, termedbalanced trafficin
the following, in a wireless network ofn randomly placed nodes under a Gaussian fading channel model.
The notion of balanced traffic is a natural generalization ofsymmetric traffic, in which the data to be
transmitted from a nodeu to a nodev is equal to the amount of data to be transmitted fromv to u. We
analyze the scaling of the set of achievable balanced unicast traffic (thebalanced unicast capacity region)
and achievable balanced multicast traffic (thebalanced multicast capacity region). The balanced unicast
capacity region provides information aboutn2 − n of the n2 dimensions of the unicast capacity region;
the balanced multicast capacity region provides information aboutn2n − n of then2n dimensions of the
multicast capacity region.

As a first set of results of this paper, we present an approximate characterization of the balanced
unicast and multicast capacity regions. We show that both regions can be approximated by a polytope
with less than2n faces, each corresponding to a distinct cut (i.e., a subset of nodes) in the wireless
network. This polyhedral characterization provides a succinct approximate description of the balanced
unicast and multicast capacity regions even for large values of n. Moreover, it shows that only2n out of
2n possible cuts in the wireless network are asymptotically relevant and reveals the geometric structure
of these relevant cuts.

Second, we establish the approximate equivalence of the wireless network and a wireline tree graph,
in the sense that balanced traffic can be transmitted reliably over the wireless network if and only if
approximately the same traffic can be routed over the tree graph. This equivalence is the key component
in the derivation of the approximation result for the balanced unicast and multicast capacity regions and
provides insight into the structure of large wireless networks.

Third, we propose a novel three-layer communication architecture that achieves (in the scaling sense)
the entire balanced unicast and multicast capacity regions. The top layer of this scheme treats the wireless
network as the aforementioned tree graph and routes messages between sources and their destinations—
dealing with heterogeneous traffic demands. The middle layer of this scheme provides this tree abstraction
to the top layer by appropriately distributing and concentrating traffic over the wireless network—choosing
the level of cooperation in the network. The bottom layer implements this distribution and concentration
of messages in the wireless network—dealing with interference and noise. The approximate optimality
of this three-layer architecture implies that a separationbased approach, in which routing is performed
independently of the physical layer, is order-optimal. In other words, techniques such as network coding
can provide at most a small (in the scaling sense) multiplicative gain for transmission of balanced unicast
or multicast traffic in wireless networks.

C. Organization

The remainder of this paper is organized as follows. SectionII introduces the network model and
notation. Section III presents our main results. We illustrate the strength of these results in Section IV
by analyzing various example scenarios with heterogeneousunicast and multicast traffic patterns. Section
V provides a high level description of the proposed communication schemes. Sections VI-VIII contain
proofs. Finally, Sections IX and X contain discussions and concluding remarks.
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II. M ODELS AND NOTATION

In this section, we discuss network and traffic models, and weintroduce some notational conventions.

A. Network Model

Consider the square region
A(n) , [0,

√
n]2

and letV (n) ⊂ A(n) be a set of|V (n)| = n nodes onA(n). Each such node represents a wireless device,
and then nodes together form a wireless network. This setting withn nodes on a square of arean is
referred to as anextended network. Throughout this paper, we consider this extended network setting.
However, all results carry over fordense networks, wheren nodes are placed on a square of unit area
(see Section IX-E for the details).

We use the same channel model as in [12]. Namely, the receivedsignal at nodev and timet is

yv[t] ,
∑

u∈V (n)\{v}

hu,v[t]xu[t] + zv[t]

for all v ∈ V (n), t ∈ N, where the{xu[t]}u,t are the signals sent by the nodes inV (n). We impose
an average power constraint of1 on the signal{xu[t]}t for every nodeu ∈ V (n). The additive noise
terms{zv[t]}v,t are independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian
random variables with mean0 and variance1, and

hu,v[t] , r−α/2
u,v exp(

√
−1θu,v[t]),

for path-loss exponentα > 2, and whereru,v is the Euclidean distance betweenu andv. As a function of
u, v ∈ V (n), we assume that{θu,v[t]}u,v are i.i.d.1 with uniform distribution on[0, 2π). As a function oft,
we either assume that{θu,v[t]}t is stationary and ergodic, which is calledfast fadingin the following, or
we assume{θu,v[t]}t is constant, which is calledslow fadingin the following. In either case, we assume
full channel state information (CSI) is available at all nodes, i.e., each node knows all{hu,v[t]}u,v at
time t. This full CSI assumption is rather strong, and so it is worthcommenting on. All the converse
results presented are proved under the full CSI assumption and are hence also valid under more realistic
assumptions on the availability of CSI. Moreover, it can be shown that for achievability only2-bit quantized
CSI is necessary for path-loss exponentα ∈ (2, 3] and no CSI is necessary forα > 3 to achieve the same
scaling behavior.

B. Traffic Model

A unicast traffic matrixλUC ∈ R
n×n
+ associates with each pairu, w ∈ V (n) the rateλUC

u,w at which node
u wants to communicate to nodew. We assume that messages for distinct source-destination pairs (u, w)
are independent. However, we allow the same nodeu to be source for multiple destinations, and the same
nodew to be destination for multiple sources. In other words, we consider general unicast traffic. The
unicast capacity regionΛUC(n) ⊂ R

n×n
+ of the wireless network is the collection of achievable unicast

traffic matrices, i.e.,λUC ∈ ΛUC(n) if and only if every source-destination pair(u, w) ∈ V (n)×V (n) can
reliably communicate independent messages at rateλUC

u,w.
A multicast traffic matrixλMC ∈ R

n×2n

+ associates with each pairu ∈ V (n),W ⊂ V (n) the rateλMC
u,W

at which nodeu wants to multicast a message to the nodes inW . In other words, all nodes inW want
to obtain the same message fromu. We assume that messages for distinct source–multicast-group pairs

1It is worth pointing out that recent results [25] suggest that under certain assumptions on scattering elements, forα ∈ (2, 3) and very
large values ofn, the i.i.d. phase assumption does not accurately reflect thephysical behavior of the wireless channel. However, in follow-up
work [26] the authors show that under different assumptionson the scatterers this assumption is still justified in theα ∈ (2, 3) regime even
for very large values ofn. This indicates that the issue of channel modeling for largenetworks in the low path-loss regime is somewhat
delicate and requires further investigation.
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(u,W ) are independent. However, we allow the same nodeu to be source for several multicast-groups,
and the same setW of nodes to be multicast destination for multiple sources. In other words, we consider
general multicast traffic. Themulticast capacity regionΛMC(n) ⊂ R

n×2n

+ is the collection of achievable
multicast traffic matrices, i.e,.λMC ∈ ΛMC(n) if and only if every source–multicast-group pair(u,W ) can
reliably communicate independent messages at rateλMC

u,W .
The following example illustrates the concept of unicast and multicast traffic matrices.

Example 1. Assumen = 4, and label the nodes as{ui}4i=1 = V (n). Assume further nodeu1 needs to
transmit a messagem1,2 to nodeu2 at rate1 bit per channel use, and an independent messagem1,3 to
nodeu3 at rate2 bits per channel use. Nodeu2 needs to transmit a messagem2,3 to nodeu3 at rate4 bits
per channel use. All the messagesm1,2, m1,3, m2,3 are independent. This traffic pattern can be described
by a unicast traffic matrixλUC ∈ R

4×4
+ with λUC

u1,u2
= 1, λUC

u1,u3
= 2, λUC

u2,u3
= 4, andλUC

u,w = 0 otherwise.
Note that in this example nodeu1 is source for two (independent) messages, and nodeu3 is destination
for two (again independent) messages. Nodeu4 in this example is neither source nor destination for any
message and can be understood as a helper node.

Assume now that nodeu1 needs to transmit the same messagem1,{2,3,4} to all nodesu2, u3, u4 at a rate
of 1 bit per channel use, and an independent messagem1,{2} to only node2 at rate2 bits per channel
use. Node2 needs to transmit a messagem2,{1,3} to both u1, u3 at rate4 bits per channel use. All the
messagesm1,{2,3,4}, m1,{2}, m2,{1,3} are independent. This traffic pattern can be described by a multicast
traffic matrix λMC ∈ R

4×16
+ with λMC

u1,{u2,u3,u4}
= 1, λMC

u1,{u2}
= 2, λMC

u2,{u1,u3}
= 4, andλMC

u,W = 0 otherwise.
Note that in this example nodeu1 is source for two (independent) multicast messages, and node 2 and
3 are destinations for more than one message. The messagem1,{2,3,4} is destined for all the nodes in the
network and can hence be understood as a broadcast message. The messagem1,{2} is only destined for
one node and can hence be understood as a private message. ♦

In the following, we will be interested inbalanced traffic matrices that satisfy certain symmetry
properties. Consider a symmetric unicast traffic matrixλUC satisfyingλUC

u,w = λUC
w,u for all node pairs

u, w ∈ V (n). The notion of a balanced traffic matrix generalizes this idea of symmetric traffic.
Before we provide a precise definition of balanced traffic, weneed to introduce some notation. Partition

A(n) into several square-grids. Theℓ-th square-grid dividesA(n) into 4ℓ squares, each of sidelength
2−ℓ

√
n, denoted by{Aℓ,i(n)}4ℓi=1. Let Vℓ,i(n) ⊂ V (n) be the nodes inAℓ,i(n) (see Figure 1). The square

grids in levelsℓ ∈ {1, . . . , L(n)} with2

L(n) ,
1

2
log(n)

(
1− log−1/2(n)

)
,

will be of particular importance. Note thatL(n) is chosen such that

4−L(n)n = nlog−1/2(n),

and hence
lim
n→∞

∣∣AL(n),i(n)
∣∣ = lim

n→∞
4−L(n)n = ∞.

while at the same time ∣∣AL(n),i(n)
∣∣ = 4−L(n)n ≤ no(1),

asn→ ∞. In other words, the area of the regionAL(n),i(n) at levelℓ = L(n) grows to infinity asn→ ∞,
but much slower thann.

A unicast traffic matrixλUC is γ-balancedif
∑

u/∈Vℓ,i(n)

∑

w∈Vℓ,i(n)

λUC
u,w ≤ γ

∑

u∈Vℓ,i(n)

∑

w/∈Vℓ,i(n)

λUC
u,w, (1)

2All logarithms are with respect to base2.
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Fig. 1. Square-grids with0 ≤ ℓ ≤ 2. The grid at levelℓ = 0 is the areaA(n) itself. The grid at levelℓ = 1 is indicated by the dashed
lines. The grid at levelℓ = 2 by the dashed and the dotted lines. Assume for the sake of example that the subsquares are numbered from
left to right and then from bottom to top (the precise order ofnumbering is immaterial). ThenV0,1(n) are all the nodesV (n), V1,1(n) are
the nine nodes in the lower left corner (separated by dashed lines), andV2,1(n) are the three nodes in the lower left corner (separated by
dotted lines).

for all ℓ ∈ {1, . . . , L(n)} and i ∈ {1, . . . 4ℓ}. In other words, for a balanced unicast traffic matrix the
amount of traffic to the nodesVℓ,i(n) is not much larger than the amount of traffic from them. In particular,
all symmetric traffic matrices, i.e., satisfyingλUC

u,w = λUC
w,u, are1-balanced. Denote byBUC(n) ⊂ R

n×n
+ the

collection of allγ(n)-balanced unicast traffic matrices for some fixedγ(n) = no(1). In the following, we
refer to traffic matricesλUC ∈ BUC(n) simply as balanced traffic matrices. Thebalanced unicast capacity
regionΛBUC(n) ⊂ R

n×n
+ of the wireless network is the collection of balanced unicast traffic matrices that

are achievable, i.e.,
ΛBUC(n) , ΛUC(n) ∩ BUC(n).

Note that (1) imposes at mostn linear inequality constraints, and henceΛUC(n) andΛBUC(n) coincide
along at leastn2 − n of n2 total dimensions.

A multicast traffic matrixλMC is γ-balancedif
∑

u/∈Vℓ,i(n)

∑

W⊂V (n):
W∩Vℓ,i(n)6=∅

λMC
u,W ≤ γ

∑

u∈Vℓ,i(n)

∑

W⊂V (n):
W\Vℓ,i(n)6=∅

λMC
u,W (2)

for all ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . 4ℓ}. Thus, forγ-balanced multicast traffic, the amount of traffic to the
nodesVℓ,i(n) is not much larger than the amount of traffic from them. This isthe natural generalization of
the notion ofγ-balanced unicast traffic to the multicast case. Denote byBMC(n) ⊂ R

n×2n

+ the collection
of all γ(n)-balanced multicast traffic matrices for some fixedγ(n) = no(1). As before, we will refer to a
multicast traffic matrixλMC ∈ BMC(n) simply as balanced multicast traffic matrix. Thebalanced multicast
capacity regionΛBMC(n) ⊂ R

n×2n

+ of the wireless network is the collection of balanced multicast traffic
matrices that are achievable, i.e.,

ΛBMC(n) , ΛMC(n) ∩ BMC(n).

Equation (2) imposes at mostn linear inequality constraints, and henceΛMC(n) andΛBMC(n) coincide
along at leastn2n − n of n2n total dimensions.

C. Notational Conventions

Throughout,{Ki}i, K, K̃, . . . , indicate strictly positive finite constants independent of n and ℓ. To
simplify notation, we assume, when necessary, that large real numbers are integers and omit⌈·⌉ and ⌊·⌋
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operators. For the same reason, we also suppress dependenceonn within proofs whenever this dependence
is clear from the context.

III. M AIN RESULTS

In this section, we present the main results of this paper. InSection III-A, we provide an approximate
(i.e., scaling) characterization of the entire balanced unicast capacity regionΛBUC(n) of the wireless
network, and in Section III-B, we provide a scaling characterization of the entire balanced multicast
capacity regionΛBMC(n). In Section III-C, we discuss implications of these resultson the behavior of the
unicast and multicast capacity regions for large values ofn. In Section III-D, we consider computational
aspects.

A. Balanced Unicast Capacity Region

Here we present a scaling characterization of the complete balanced unicast capacity regionΛBUC(n).
Define

Λ̂UC(n) ,
{
λUC ∈ R

n×n
+ :

∑

u∈Vℓ,i(n)

∑

w/∈Vℓ,i(n)

λUC
u,w ≤ (4−ℓn)2−min{3,α}/2

∀ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ},
∑

w 6=u

(λUC
u,w + λUC

w,u) ≤ 1 ∀u ∈ V (n)
}
,

(3)

and set
Λ̂BUC(n) , Λ̂UC(n) ∩ BUC(n).

Λ̂BUC(n) is the collection of all balanced unicast traffic matricesλUC such that for various cutsS ⊂ V (n)
in the network, the total traffic demand (in either one or bothdirections)

∑

u∈S

∑

w/∈S

λUC
u,w,

∑

u∈S

∑

w/∈S

(λUC
u,w + λUC

w,u),

across the cutS is not too big. Note that the number of cutsS we need to consider is actually quite
small. In fact, there are at mostn cuts of the formS = Vℓ,i(n) for ℓ ∈ {1, . . . , L(n)}, and there aren
cuts of the formS = {u} for u ∈ V (n). HenceΛ̂BUC(n) is described by at most2n cuts.

The next theorem shows that̂ΛBUC(n) is approximately (in the scaling sense) equal to the balanced
unicast capacity regionΛBUC(n) of the wireless network.

Theorem 1. Under either fast or slow fading, for anyα > 2, there exist

b1(n) ≥ n−o(1),

b2(n) = O(log6(n)),

such that
b1(n)Λ̂

BUC(n) ⊂ ΛBUC(n) ⊂ b2(n)Λ̂
BUC(n),

with probability 1− o(1) as n→ ∞.

We point out that Theorem 1 holds only with probability1− o(1) for different reasons for the fast and
slow fading cases. Under fast fading, the theorem holds onlyfor node placements that are “regular enough”.
The node placement itself is random, and we show that the required regularity property is satisfied with
high probability asn→ ∞. Under slow fading, the theorem holds under the same regularity requirements
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on the node placement, but now it also only holds with high probability for the realization of the fading
{θu,v}u,v.

Theorem 1 provides a tight scaling characterization of the entire balanced unicast capacity region
ΛBUC(n) of the wireless network as depicted in Figure 2. The approximation is within a factorn±o(1).
This factor can be further sharpened as is discussed in detail in Section IX-B.

λUC
1,2

λUC
2,1

b2(n)Λ̂BUC(n)

ΛBUC(n)

b1(n)Λ̂BUC(n)

Fig. 2. The set̂ΛBUC(n) approximates the balanced unicast capacity regionΛBUC(n) of the wireless network in the sense thatb1(n)Λ̂
BUC(n)

(with b1(n) ≥ n−o(1)) provides an inner bound toΛBUC(n) and b2(n)Λ̂
BUC(n) (with b2(n) = O

(
log6(n)

)
) provides an outer bound to

ΛBUC(n). The figure shows two dimensions (namelyλUC
1,2 andλUC

2,1) of the n2-dimensional setΛBUC(n).

We point out that for large values of path-loss exponent (α > 5) the restriction to balanced traffic can
be removed, yielding a tight scaling characterization of the entiren2-dimensional unicast capacity region
ΛUC(n). See Section IX-D for the details. Forα ∈ (2, 5], bounds on achievable rates for traffic that is not
balanced are discussed in Section IX-C.

B. Balanced Multicast Capacity Region

We now present an approximate characterization of the complete balanced multicast capacity region
ΛBMC(n).

Define

Λ̂MC(n) ,
{
λMC ∈ R

n×2n

+ :
∑

u∈Vℓ,i(n)

∑

W⊂V (n):
W\Vℓ,i(n)6=∅

λMC
u,W ≤ (4−ℓn)2−min{3,α}/2

∀ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ},
∑

W⊂V (n):
W\{u}6=∅

λMC
u,W +

∑

ũ 6=u

∑

W⊂V (n):
u∈W

λMC
ũ,W ≤ 1 ∀u ∈ V (n)

}
,

(4)

and set
Λ̂BMC(n) , Λ̂MC(n) ∩ BMC(n).

The definition ofΛ̂BMC(n) is similar to the definition of̂ΛBUC(n) in (3). Λ̂BMC(n) is the collection of
all balanced multicast traffic matricesλMC such that for various cutsS ⊂ V (n) in the network, the total
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traffic demand (in either one or both directions)
∑

u∈S

∑

W⊂V (n):
W\S 6=∅

λMC
u,W ,

∑

u∈S

∑

W⊂V (n):
W\S 6=∅

λMC
u,W +

∑

u/∈S

∑

W⊂V (n):
W∩S 6=∅

λMC
u,W ,

across the cutS is not too big. Note that, unlike in the definition ofΛ̂BUC(n), we countλu,W as crossing
the cutS if u ∈ S andW \ S 6= ∅, i.e., if there is at least one nodew in the multicast destination group
W that lies outsideS. The number of such cutsS we need to consider is at most2n, as in the unicast
case.

The next theorem shows that̂ΛBMC(n) is approximately (in the scaling sense) equal to the balanced
multicast capacity regionΛBMC(n) of the wireless network.

Theorem 2. Under either fast or slow fading, for anyα > 2, there exist

b3(n) ≥ n−o(1),

b4(n) = O(log6(n)),

such that
b3(n)Λ̂

BMC(n) ⊂ ΛBMC(n) ⊂ b4(n)Λ̂
BMC(n),

with probability 1− o(1) as n→ ∞.

As with Theorem 1, Theorem 2 holds only with probability1 − o(1) for different reasons for the
fast and slow fading cases. Theorem 2 implies that the quantity Λ̂BMC(n) determines the scaling of the
balanced multicast capacity regionΛBMC(n). The approximation is up to a factorn±o(1) as in the unicast
case, and can again be sharpened (see the discussion in Section IX-B). As in the unicast case, forα > 5
the restriction of balanced traffic can be dropped resultingin a scaling characterization of the entiren2n-
dimensional multicast capacity regionΛMC(n). The details can be found in Section IX-D. Similarly, we
can obtain bounds on achievable rates for traffic that is not balanced, as is discussed in Section IX-C.

C. Implications of Theorems 1 and 2

Theorems 1 and 2 can be applied in two ways. First, the theorems can be used to analyze the asymptotic
achievability of a sequence of traffic matrices. Consider the unicast case, and let{λUC(n)}n≥1 be a
sequence of balanced unicast traffic matrices withλUC(n) ∈ R

n×n
+ . Define

ρ⋆λUC(n) , sup{ρ : ρλUC(n) ∈ ΛBUC(n)},
ρ̂⋆λUC(n) , sup{ρ̂ : ρ̂λUC(n) ∈ Λ̂BUC(n)},

i.e., ρ⋆
λUC(n) is the largest multiplierρ such that the scaled traffic matrixρλUC(n) is contained inΛBUC(n)

(and similar forρ̂⋆
λUC(n) with respect tôΛBUC(n)). Then Theorem 1 provides asymptotic information about

the achievability of{λUC(n)}n≥1 in the sense that3

lim
n→∞

log(ρ⋆
λUC(n))

log(n)
= lim

n→∞

log(ρ̂⋆
λUC(n))

log(n)
.

Theorem 2 can be used similarly to analyze sequences of balanced multicast traffic matrices. Several
applications of this approach are explored in Section IV.

3We assume here that the limits exist, otherwise the same statement holds forlim sup and lim inf.



10

Second, Theorems 1 and 2 provide information about the shapeof the balanced unicast and multicast
capacity regionsΛBUC(n) andΛBMC(n). Consider again the unicast case. We now argue that even though
the approximation̂ΛBUC(n) of ΛBUC(n) is only up ton±o(1) scaling, its shape is largely preserved.

To illustrate this point, consider a rectangle

R(n) , [0, r1(n)]× [0, r2(n)],

and let
R̂(n) , [0, r̂1(n)]× [0, r̂2(n)],

where
r̂i , bi(n)ri(n)

for somebi(n) = n±o(1), be its approximation. The shape ofR(n) is then determined by the ratio between
r1(n) andr2(n). For example, assumer1(n) = nβr2(n). Then

r̂1(n)

r̂2(n)
= nβ±o(1) = n±o(1) r1(n)

r2(n)
,

i.e.,

lim
n→∞

log
(
r1(n)/r2(n)

)

log(n)
= β = lim

n→∞

log
(
r̂1(n)/r̂2(n)

)

log(n)
,

and hence the approximation̂R(n) preserves the exponent of the ratio of sidelengths ofR(n). In other
words, if the two sidelengthsr1(n) andr2(n) differ on exponential scale (i.e., by a factornβ for β 6= 0)
then this shape information is preserved by the approximation R̂(n).

Let us now return to the balanced unicast capacity regionΛBUC(n) and its approximation̂ΛBUC(n). We
consider several boundary points ofΛBUC(n) and show that their behavior varies at scalenβ for various
values ofβ. From the discussion in the previous paragraph, this implies that a significant part of the
shape ofΛBUC(n) is preserved by its approximation̂ΛBUC(n). First, letλUC , ρ(n)1 for some scalarρ(n)
depending only onn, and where1 is then × n matrix of all ones. IfλUC ∈ ΛBUC(n) then the largest
achievable value ofρ(n) is ρ⋆(n) ≤ n−min{3,α}/2+o(1) (by applying Theorem 1). Second, letλUC such
that λUC

u⋆,w⋆ = λUC
w⋆,u⋆ = ρ(n) for only one source-destination pair(u⋆, w⋆) with u⋆ 6= w⋆ and λUC

u,w = 0
otherwise. Thenρ⋆(n), the largest achievable value ofρ(n), satisfiesρ⋆(n) ≥ n−o(1). Hence the boundary
points ofΛBUC(n) vary at least fromn−min{3,α}/2+o(1) to n−o(1), and this variation on exponential scale
is preserved bŷΛBUC(n).

Again, a similar analysis is possible also for the multicastcapacity region, showing that the approximate
balanced multicast capacity region̂ΛBMC(n) preserves the shape of the balanced multicast capacity region
ΛBMC(n) on exponential scale.

D. Computational Aspects

Since we are interested in large wireless networks, computational aspects are of importance. In this
section, we show that the approximate characterizationsΛ̂BUC(n) and Λ̂BMC(n) in Theorems 1 and 2
provide a computationally efficient approximate description of the balanced unicast and multicast capacity
regionsΛBUC(n) andΛBMC(n), respectively.

Consider first the unicast case. Note thatΛBUC(n) is an2-dimensional set, and hence its shape could be
rather complicated. In particular, in the special cases where the capacity region is known, its description
is often in terms of cut-set bounds. Since there are2n possible subsets ofn nodes, there are2n possible
cut-set bounds to be considered. In other words, the description complexity ofΛBUC(n) is likely to be
growing exponentially inn. On the other hand, as was pointed out in Section III-A, the description of
Λ̂BUC(n) is in terms of only2n cuts. This implies that̂ΛBUC(n) can be computed efficiently (i.e., in
polynomial time inn). Hence even though the description complexity ofΛBUC(n) is likely to be of order
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Θ(2n), the description complexity of its approximation̂ΛBUC(n) is only of orderΘ(n)—an exponential
reduction. In particular, this implies that membershipλUC ∈ Λ̂BUC(n) (and hence by Theorem 1 also the
approximate achievability of the balanced unicast traffic matrix λUC) can be computed in polynomial time
in the network sizen. More precisely, evaluating each of theΘ(n) cuts takes at mostΘ(n2) operations,
yielding aΘ(n3)-time algorithm for approximate testing of membership inΛBUC(n).

Consider now the multicast case.ΛBMC(n) is a n2n-dimensional set, i.e., the number of dimensions is
exponentially large inn. Nevertheless, its approximation̂ΛBMC(n) can (as in the unicast case) be computed
by evaluating at most2n cuts. This yields a very compact approximate representation of the balanced
multicast capacity regionΛBMC(n) (i.e., we represent a region of exponential size inn as an intersection
of only linearly many halfspaces—one halfspace corresponding to each cut). Moreover, it implies that
membershipλMC ∈ Λ̂BMC(n) can be computed efficiently. More precisely, evaluating each of theΘ(n)
cuts takes at most|{(u,W ) : λMC

u,W > 0}| operations. Thus membershipλMC ∈ Λ̂BMC(n) (and hence by
Theorem 2 also the approximate achievability of the balanced multicast traffic matrixλMC) can be tested
in at mostΘ(n) times more operations than required to just read the problemparameters. In other words,
we have a linear time (in the length of the input) algorithm for testing membership of a multicast traffic
matrix λMC in Λ̂BMC(n), and hence for approximate testing of membership inΛBMC(n). However, this
algorithm is not necessarily polynomial time inn, since reading just the inputλMC ∈ R

n×2n

+ itself might
take exponential time inn.

IV. EXAMPLE SCENARIOS

We next illustrate the above results by determining achievable rates in a few specific wireless network
scenarios with non-uniform traffic patterns.

Example 2. Multiple classes of source-destination pairs
There areK classes of source-destination pairs for some fixedK. Each source node in classi generates

traffic at the same rateρi(n) for a destination node that is chosen randomly within distanceΘ(nβi/2), for
some fixedβi ∈ [0, 1]. Each node randomly picks the class it belongs to. The resulting traffic matrix is
balanced (withγ(n) = no(1)) with high probability, and applying Theorem 1 shows thatρ⋆i (n), the largest
achievable value ofρi(n), satisfies

ρ⋆i (n) = nβi(1−ᾱ/2)±o(1),

with probability 1− o(1) for all i, and where

ᾱ , min{3, α}. (5)

Hence, for a fixed number of classesK, source nodes in each class can obtain rates as a function of only
the source-destination separation in that class.

Set ñi , nβi, and note that̃ni is on the order of the expected number of nodes that are closerto a
source than its destination. Then

ρ⋆i (n) = n±o(1)ñ
1−ᾱ/2
i .

Now ñ
1−ᾱ/2
i is precisely the per-node rate that is achievable for an extended network with̃ni nodes under

random source-destination pairing [12]. In other words, the local traffic pattern here allows us to obtain
a rate that is as good as the one achievable under random source-destination pairing for a much smaller
network. ♦

Example 3. Traffic variation with source-destination separation
Assume each node is source for exactly one destination, chosen uniformly at random from among all

the other nodes (as in the traditional setting). However, instead of all sources generating traffic at the
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same rate, source nodeu generates traffic at a rate that is a function of its separation from destinationw,
i.e., the traffic matrix is given byλUC

u,w = ψ(ru,w) for some functionψ. In particular, let us consider

ψ(r) , ρ(n)×
{
rβ if r ≥ 1,

1 else,

for some fixedβ ∈ R and someρ(n) depending only onn. The traditional setting corresponds toβ = 0,
in which case alln source-destination pairs communicate at uniform rate.

While such traffic is not balanced for small values ofβ, the results in Section IX-C, extending Theorem 1
to traffic that is not balanced, can be used to establish the scaling of ρ⋆(n), the largest achievable value
of ρ(n), as

ρ⋆(n) =

{
n1−(ᾱ+β)/2±o(1) if β ≥ 2− ᾱ,

n±o(1) else,

with probability 1 − o(1). For β = 0, and noting that2 − ᾱ ≤ 0, this recovers the results from [12] for
random source-destination pairing with uniform rate. ♦

Example 4. Sources with multiple destinations
All the example scenarios so far are concerned with traffic inwhich each node is source exactly once.

Here we consider more general traffic patterns. There areK classes of source nodes, for some fixed
K. Each source node in classi hasΘ(nβi) destination nodes for some fixedβi ∈ [0, 1] and generates
independent traffic at the same rateρi(n) for each of them (i.e., we still consider unicast traffic). Each of
these destination nodes is chosen uniformly at random amongthen−1 other nodes. Every node randomly
picks the class it belongs to. Noting that the resulting traffic matrix is balanced with high probability,
Theorem 1 provides the following scaling of the rates achievable by different classes:

ρ⋆i (n) = n1−βi−ᾱ/2±o(1),

with probability1−o(1) for all i. In other words, for each source node time sharing between all K classes
and then (within each class) between all itsΘ(nβi) destination nodes is order-optimal in this scenario.
However, different sources are operating simultaneously. ♦

Example 5. Broadcast
Consider a scenario with every nodeu in the network broadcasting an independent message to all other

nodes at rateρ(n)λu. In other words, we have a multicast traffic matrix of the form

λMC
u,W =

{
ρ(n)λu if W = V (n),

0 else,

for someρ(n) > 0. Applying the generalization in Section IX-C of Theorem 2 yields thatρ⋆(n), the
largest achievableρ(n), satisfies

ρ⋆(n) = n±o(1) 1∑
u∈V (n) λu

asn→ ∞. ♦

V. COMMUNICATION SCHEMES

In this section, we provide a high-level description of the communication schemes used to prove
achievability (i.e., the inner bound) in Theorems 1 and 2. InSection V-A, we present a communication
scheme for general unicast traffic, in Section V-B we show howthis scheme can be adapted for general
multicast traffic. Both schemes use as a building block a communication scheme introduced in prior
work for a particular class of traffic, calleduniform permutation traffic. In such uniform permutation
traffic, each node in the network is source and destination exactly once, and all these source-destination
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pairs communicate at equal rate. Forα ∈ (2, 3], the order-optimal scheme for such uniform permutation
traffic (calledhierarchical relaying schemein the following) enables global cooperation in the network.
For α > 3, the order-optimal scheme is multi-hop routing. We recall these two schemes for uniform
permutation traffic in Section V-C.

A. Communication Scheme for Unicast Traffic

In this section, we present a scheme to transmit general unicast traffic. This scheme has a tree structure
that makes it convenient to work with. This tree structure iscrucial in proving the compact approximation
of the balanced unicast capacity regionΛBUC(n) in Theorem 1.

The communication scheme consists of three layers: A top or routing layer, a middle or cooperation
layer, and a bottom or physical layer. The routing layer of this scheme treats the wireless network as a
tree graphG and routes messages between sources and their destinations—dealing with heterogeneous
traffic demands. The cooperation layer of this scheme provides this tree abstractionG to the top layer
by appropriately distributing and concentrating traffic over the wireless network—choosing the level of
cooperation in the network. The physical layer implements this distribution and concentration of messages
in the wireless network—dealing with interference and noise.

Seen from the routing layer, the network consists of a noiseless capacitated graphG. This graph is a
tree, whose leaf nodes are the nodesV (n) in the wireless network. The internal nodes ofG represent
larger clusters of nodes (i.e., subsets ofV (n)) in the wireless network. More precisely, each internal node
in G represents a setVℓ,i(n) for ℓ ∈ {1, . . . , L(n)} andi ∈ {1, . . . , 4ℓ}. Consider two setsVℓ,i(n), Vℓ+1,j(n)
and letν, µ be the corresponding internal nodes inG. Thenν andµ are connected by an edge inG if
Vℓ+1,j(n) ⊂ Vℓ,i(n). Similarly, for VL(n),i(n) and corresponding internal nodeν in G, a leaf nodeu in
G is connected by an edge toν if u ∈ VL(n),i(n) (recall that the leaf nodes ofG are the nodesV (n)
in the wireless network). This construction is shown in Figure 3. In the routing layer, messages are sent

Fig. 3. Construction of the tree graphG. We consider the same nodes as in Figure 1 withL(n) = 2. The leaves ofG are the nodesV (n)
of the wireless network. They are always at levelℓ = L(n) + 1 (i.e., 3 in this example). At level0 ≤ ℓ ≤ L(n) in G, there are4ℓ nodes.
The tree structure is the one induced by the grid decomposition {Vℓ,i(n)}ℓ,i as shown in Figure 1. Level0 contains the root node ofG.

from each source to its destination by routing them overG. To send information along an edge ofG, the
routing layer calls upon the cooperation layer.

The cooperation layer implements the tree abstractionG. This is done by ensuring that whenever a
message is located at a node inG, it is evenly distributed over the corresponding cluster inthe wireless
network, i.e., every node in the cluster has access to a distinct part of equal length of the message. To
send information from a child node to its parent inG (i.e., towards the root node ofG), the message
at the cluster inV (n) represented by the child node is distributed evenly among all nodes in the bigger
cluster inV (n) represented by the parent node. More precisely, letν be a child node ofµ in G, and let
Vℓ+1,i(n), Vℓ,j(n) be the corresponding subsets ofV (n). Consider the cooperation layer being called by
the routing layer to send a message fromν to its parentµ overG. In the wireless network, we assume
each node inVℓ+1,i(n) has access to a distinct1/ |Vℓ+1,i(n)| fraction of the message to be sent. Each node
in Vℓ+1,i(n) splits its message part into four distinct parts of equal length. It keeps one part for itself and
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sends the other three parts to three nodes inVℓ,j(n) \ Vℓ+1,i(n). After each node inVℓ+1,i(n) has sent
its message parts, each node inVℓ,j(n) now as access to a distinct1/ |Vℓ,j(n)| fraction of the message.
To send information from a parent node to a child node inG (i.e., away from the root node ofG), the
message at the cluster inV (n) represented by the parent node is concentrated on the cluster in V (n)
represented by the child node. More precisely, consider thesame nodesν andµ in G corresponding to
Vℓ+1,i(n) andVℓ,j(n) in V (n). Consider the cooperation layer being called by the routinglayer to send
a message fromµ to its child ν. In the wireless network, we assume each node inVℓ,j(n) has access to
a distinct1/ |Vℓ,j(n)| fraction of the message to be sent. Each node inVℓ,j(n) sends its message part to
another node inVℓ+1,i(n). After each node inVℓ,j(n) has sent its message part, each node inVℓ+1,i(n)
now as access to a distinct1/ |Vℓ+1,i(n)| fraction of the message. To implement this distribution and
concentration of messages, the cooperation layer calls upon the physical layer.

The physical layer performs the distribution and concentration of messages. Note that the traffic induced
by the cooperation layer in the physical layer is very regular, and closely resembles a uniform permutation
traffic (in which each node in the wireless network is source and destination once and all these source-
destination pairs want to communicate at equal rate). Hencewe can use either cooperative communication
(for α ∈ (2, 3]) or multi-hop communication (forα > 3) for the transmission of this traffic. See Section
V-C for a detailed description of these two schemes. It is this operation in the physical layer that determines
the edge capacities of the graphG as seen from the routing layer.

The operation of this three-layer architecture is illustrated in the following example.

Example 6. Consider a single source-destination pair(u, w). The corresponding operation of the three-
layer architecture is depicted in Figure 4.

u

w

Fig. 4. Example operation of the three-layer architecture under unicast traffic. The three layers depicted are (from topto bottom in the
figure) the routing layer, the cooperation layer, and the physical layer.

In the routing layer, the message is routed over the tree graph G betweenu andw (indicated in black
in the figure). The middle plane in the figure shows the inducedbehavior from using the second edge
along this path (indicated in solid black in the figure) in thecooperation layer. The bottom plane in the
figure shows (part of) the corresponding actions induced in the physical layer. Let us now consider the
specific operations of the three layers for the single message betweenu andw. SinceG is a tree, there is
a unique path betweenu andw, and the routing layer sends the message over the edges alongthis path.
Consider now the first such edge. Using this edge in the routing layer induces the following actions in
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the cooperation layer. The nodeu, having access to the entire message, splits that message into 3 distinct
parts of equal length. It keeps one part, and sends the other two parts to the two other nodes inV2,1(n)
(i.e., lower left square at levelℓ = 2 in the hierarchy). In other words, after the message has traversed the
edge betweenu and its parent node in the routing layer, all nodes inV2,1(n) in the cooperation layer have
access to a distinct1/3 fraction of the original message. The edges in the routing layer leading up the
tree (i.e., towards the root node) are implemented in the cooperation layer in a similar fashion by further
distributing the message over the wireless network. By the time the message reaches the root node ofG
in the routing layer, the cooperation layer has distributedthe message over the entire network and every
node inV (n) has access to a distinct1/n fraction of the original message. Communication down the
tree in the routing layer is implemented in the cooperation layer by concentrating messages over smaller
regions in the wireless network. To physically perform thisdistribution and concentration of messages,
the cooperation layer calls upon the physical layer, which uses either hierarchical relaying or multi-hop
communication. ♦

B. Communication Scheme for Multicast Traffic

Here we show that the same communication scheme presented inthe last section for general unicast
traffic can also be used to transmit general multicast traffic. Again it is the tree structure of the scheme that
is critically exploited in the proof of Theorem 2 providing an approximation for the balanced multicast
capacity regionΛBMC(n).

We will use the same three-layer architecture as for unicasttraffic presented in Section V-A. To
accommodate multicast traffic, we only modify the operationof the top or routing layer; the lower layers
operate as before.

We now outline how the routing layer needs to be adapted for the multicast case. Consider a multicast
message that needs to be transmitted from a source nodeu ∈ V (n) to its set of intended destinations
W ⊂ V (n). In the routing layer, we want to route this message fromu to W overG. SinceG is a tree,
the routing part is simple. In fact, betweenu and everyw ∈ W there exists a unique path inG. Consider
the union of all those paths. It is easy to see that this union is a subtree ofG. Indeed, it is the smallest
subtree ofG that covers{u} ∪W . Traffic is optimally routed overG from u to W by sending it along
the edges of this subtree.

The next example illustrates the operation of the routing layer under multicast traffic.

Example 7. Consider one source nodeu and the corresponding multicast groupW , {w1, w2, w3} as
shown in Figure 5.

u

w1

w2

w3

Fig. 5. Example operation of the routing layer in the three-layer architecture under multicast traffic.

In the routing layer, we find the smallest subgraphG({u} ∪ W ) covering {u} ∪ W (indicated by
black lines in Figure 5). Messages are sent from the source toits destinations by routing them along this
subgraph. In other words,G({u} ∪W ) is the multicast tree along which the message is sent fromu to
W . The cooperation layer and physical layer operate in the same way as for unicast traffic (see Figure 4
for an example). ♦
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C. Communication Schemes for Uniform Permutation Traffic

Here we recall communication schemes for uniform permutation traffic onA(n), i.e., each node is
source and destination exactly once and all thesen pairs communicate at uniform rate. As pointed out in
Sections V-A and V-B, these communication schemes are used as building blocks in the communication
architecture for general unicast and multicast traffic.

The structure of the optimal communication scheme depends drastically on the path-loss exponentα. For
α ∈ (2, 3] (small path-loss exponent), cooperative communication ona global scale is necessary to achieve
optimal performance. Forα > 3 (large path-loss exponent), local communication between neighboring
nodes is sufficient, and traffic is routed in a multi-hop fashion from the source to the destination. We
will refer to the order-optimal scheme forα ∈ (2, 3] as hierarchical relaying scheme, and to the order
optimal scheme forα > 3 as multi-hop scheme. For a uniform permutation traffic onV (n), hierarchical
relaying achieves a per-node rate ofn1−α/2−o(1); multi-hop communication achieves a per-node rate of
n−1/2−o(1). By choosing the appropriate scheme (hierarchical relaying for α ∈ (2, 3], multi-hop forα > 3),
we can thus achieve a per-node rate ofn1−min{3,α}/2−o(1). We provide a short description of the hierarchical
relaying scheme in the following. The details can be found in[13].

Considern nodes placed independently and uniformly at random onA(n). Divide A(n) into

n
1

1+log1/3(n)

squarelets of equal size. Call a squareletdense, if it contains a number of nodes proportional to its area.
For each source-destination pair, choose such a dense squarelet as arelay, over which it will transmit
information (see Figure 6).

u1

u2

u3

MAC

BC

w1

w2

w3

Fig. 6. Sketch of one level of the hierarchical relaying scheme. Here{(ui, wi)}
3
i=1 are three source-destination pairs. Groups of source-

destination pairs relay their traffic over dense squarelets(shaded), which contain a number of nodes proportional to their area. We time share
between the different relay squarelets. Within each relay squarelet the scheme is used recursively to enable joint decoding and encoding at
the relay.

Consider now one such relay squarelet and the nodes that are transmitting information over it. If we
assume for the moment that the nodes within the relay squarelets could cooperate, then between the
source nodes and the relay squarelet we would have a multipleaccess channel (MAC), where each source
node has one transmit antenna, and the relay squarelet (acting as one node) has many receive antennas.
Between the relay squarelet and the destination nodes, we would have a broadcast channel (BC), where
each destination node has one receive antenna, and the relaysquarelet (acting again as one node) has
many transmit antennas. The cooperation gain from using this kind of scheme arises from the use of
multiple antennas for this MAC and BC.
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To actually enable this kind of cooperation at the relay squarelet, local communication within the relay
squarelets is necessary. It can be shown that this local communication problem is actually the same as
the original problem, but at a smaller scale. Indeed, we are now considering a square of size

n
1−

1

1+log1/3(n)

with equal number of nodes (at least order wise). Hence we canuse the same scheme recursively to
solve this subproblem. We terminate the recursion afterlog1/3(n) iterations, at which point we use simple
time-division multiple access (TDMA) to bootstrap the scheme.

Observe that at the final level of the scheme, we have dividedA(n) into
(
n

1

1+log1/3(n)

)log1/3(n)

= n
1

1+log−1/3(n)

squarelets. A sufficient condition for the scheme to succeedis that all these squarelets are dense (i.e.,
contain a number of nodes proportional to their area). However much weaker conditions are sufficient as
well, see [13].

For any permutation traffic, the per-node rate achievable with this scheme is at leastn1−α/2−o(1) for any
α > 2 and under fast fading. Under slow fading the same per-node rate is achievable for all permutation
traffic with probability at least

1− exp
(
− 2Ω(log2/3(n))

)
.

Moreover, whenα ∈ (2, 3] and for uniform permutation traffic with a constant fractionof source-
destination pairs at distanceΘ(

√
n) (as is the case with high probability if the permutation traffic is

chosen at random), this is asymptotically the best uniformly achievable per-node rate.

VI. A UXILIARY LEMMAS

In this section, we provide auxiliary results, which will beused several times in the following. These
results are grouped into three parts. In Section VI-A, we describe regularity properties exhibited with high
probability by the random node placement. In Section VI-B, we provide auxiliary upper bounds on the
performance of any scheme in terms of cut-set bounds. Finally, in Section VI-C, we describe auxiliary
results on the performance of hierarchical relaying and multi-hop communication as described in Section
V-C.

A. Regularity Lemmas

Here we prove several regularity properties that are satisfied with high probability by a random node
placement. Formally, defineV(n) to be the collection of all node placementsV (n) that satisfy the following
conditions:

ru,v > n−1 for all u, v ∈ V (n),
∣∣Vℓ,i(n)

∣∣ ≤ log(n) for ℓ =
1

2
log(n),

∣∣Vℓ,i(n)
∣∣ ≥ 1 for ℓ =

1

2
log

( n

2 log(n)

)
,

∣∣Vℓ,i(n)
∣∣ ∈ [4−ℓ−1n, 4−ℓ+1n] for all ℓ ∈

{
1, . . . , L′(n)

}
,

where
L′(n) ,

1

2
log(n)

(
1− 1

2
log−5/6(n)

)
,

and in each casei ∈ {1, . . . , 4ℓ}. The first condition is that the minimum distance between node pairs is
not too small. The second condition is that all squares of area 1 contain at mostlog(n) nodes. The third
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condition is that all squares of area2 log(n) contain at least one node. The fourth condition is that all
squares up to level1

2
log(n)

(
1− 1

2
log−5/6(n)

)
contain a number of nodes proportional to their area. Note

that, since

L(n) =
1

2
log(n)

(
1− log−1/2(n)

)

=
1

2
log(n)

(
1− 1

2
log−5/6(n)

)
,

this holds in particular for nodes up to levelL(n). The goal of this section is to prove that

P(V (n) ∈ V(n)) = 1− o(1),

asn→ ∞.
The first lemma shows that the minimum distance in a random node placement is at leastn−1 with

high probability.

Lemma 3.
P

(
min

u∈V (n),v∈V (n)\{u}
ru,v > n−1

)
= 1− o(1),

as n→ ∞.

Proof. For u, v ∈ V , let
Bu,v , {ru,v ≤ r}

for somer (depending only onn). Fix a nodeu ∈ V , then forv 6= u

P(Bu,v|u) ≤
r2π

n

(the inequality being due to boundary effects). Moreover, the events{Bu,v}v∈V \{u} are independent
conditioned onu, and thus

P

(
∩v∈V \{u} B

c
u,v

∣∣u
)
=

∏

v∈V \{u}

P(Bc
u,v|u)

≥
(
1− r2π

n

)n

.

From this,

P

(
min

u∈V,v∈V \{u}
ru,v ≤ r

)
= P

(
∪u∈V,v∈V \{u} Bu,v

)

≤
∑

u∈V

P

(
∪v∈V \{u} Bu,v

)

=
∑

u∈V

(
1− P

(
∩v∈V \{u} B

c
u,v

))

=
∑

u∈V

(
1− E

(
P

(
∩v∈V \{u} B

c
u,v

∣∣u
)))

≤
∑

u∈V

(
1−

(
1− r2π

n

)n)

= n
(
1−

(
1− r2π

n

)n)
.
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Assumingr <
√
n/π, we have

n
(
1−

(
1− r2π

n

)n)
≤ nr2π,

and hence
P

(
min

u∈V,v∈V \{u}
ru,v ≤ r

)
≤ nr2π,

which converges to zero forr = n−1.

The next lemma asserts that ifL̃(n) is not too large then all squares{Vℓ,i(n)}ℓ,i for ℓ ∈ {1, . . . , L̃(n)}
and i ∈ {1, . . . , 4ℓ} in the grid decomposition ofV (n) contain a number of nodes that is proportional to
their area.

Lemma 4. If L̃(n) satisfies

lim
n→∞

L̃(n)

4−L̃(n)n
= 0

then

P

( L̃(n)⋂

ℓ=1

4ℓ⋂

i=1

{
|Vℓ,i(n)| ∈ [4−ℓ−1n, 4−ℓ+1n]

})
= 1− o(1)

as n→ ∞. In particular, this holds for

L̃(n) =
1

2
log(n)

(
1− 1

2
log−5/6(n)

)
,

and for L̃(n) = L(n).

Proof. Let Bu be the event that nodeu lies in Aℓ,i for fixed ℓ, i. Note that
∑

u∈V

11Bu = |Vℓ,i|

by definition, and that
P(Bu) = 4−ℓ.

Hence, using the Chernoff bound,

P
(
|Vℓ,i| 6∈ [4−ℓ−1n, 4−ℓ+1n]

)
= P

(∑

u∈V

11Bu 6∈ [4−ℓ−1n, 4−ℓ+1n]
)

≤ exp(−K4−ℓn),

for some positive constantK, and we obtain, forℓ = L̃(n),

P

( 4L̃(n)⋂

i=1

{
|VL̃(n),i| ∈ [4−L̃(n)−1n, 4−L̃(n)+1n]

})

≥ 1−
4L̃(n)∑

i=1

P
(
|VL̃(n),i| 6∈ [4−L̃(n)−1n, 4−L̃(n)+1n]

)

≥ 1− 4L̃(n) exp(−K4−L̃(n)n)

≥ 1− exp(K̃L̃(n)−K4−L̃(n)n), (6)

for some positive constant̃K. By assumption

lim
n→∞

L̃(n)

4−L̃(n)n
= 0,
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and hence

P

( 4L̃(n)⋂

i=1

{
|VL̃(n),i| ∈ [4−L̃(n)−1n, 4−L̃(n)+1n]

})
≥ 1− o(1),

asn→ ∞. Since the{Aℓ,i}ℓ,i are nested as a function ofℓ, we have

L̃(n)⋂

ℓ=1

4ℓ⋂

i=1

{
|Vℓ,i| ∈ [4−ℓ−1n, 4−ℓ+1n]

}
=

4L̃(n)⋂

i=1

{
|VL̃(n),i| ∈ [4−L̃(n)−1n, 4−L̃(n)+1n]

}
,

which, combined with (6), proves the first part of the lemma.
For the second part, note that for

L̃(n) =
1

2
log(n)

(
1− 1

2
log−5/6(n)

)
,

we have

L̃(n)

4−L̃(n)n
=

1
2
log(n)

(
1− 1

2
log−5/6(n)

)

2
1
2
log1/6(n)

≤ log(n)

2
1
2
log1/6(n)

= 2log log(n)−
1
2
log1/6(n) → 0,

and hence the lemma is valid in this case. The same holds forL̃(n) = L(n) since

L(n) ≤ 1

2
log(n)

(
1− 1

2
log−5/6(n)

)
.

We are now ready to prove that a random node placementV (n) is in V(n) with high probability as
n→ ∞ (i.e., is fairly “regular” with high probability).

Lemma 5.
P(V (n) ∈ V(n)) = 1− o(1),

as n→ ∞.

Proof. The first condition,

ru,v > n−1 for all u, v ∈ V ,

holds with probability1− o(1) by Lemma 3. The second and third conditions,

∣∣Vℓ,i
∣∣ ≤ log(n) for ℓ =

1

2
log(n),

∣∣Vℓ,i
∣∣ ≥ 1 for ℓ =

1

2
log

( n

2 log(n)

)
,

are shown in [12, Lemma 5.1] to hold with probability1− o(1). The fourth condition,
∣∣Vℓ,i

∣∣ ∈ [4−ℓ−1n, 4−ℓ+1n] for all ℓ ∈
{
1, . . . , L′(n)

}
,

holds with probability1− o(1) by Lemma 4. Together, this proves the result.
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B. Converse Lemmas

Here we prove several auxiliary converse results. The first lemma bounds the maximal achievable sum
rate for every individual node (i.e., the total traffic for which a fixed node is either source or destination).

Lemma 6. Under either fast or slow fading, for anyα > 2, there existsb(n) = O(log(n)) such that for
all V (n) ∈ V(n), λUC ∈ ΛUC(n), u ∈ V (n),

∑

w∈V (n)\{u}

λUC
u,w ≤ b(n), (7)

∑

w∈V (n)\{u}

λUC
w,u ≤ b(n). (8)

Proof. The argument follows the one in [12, Theorem 3.1]. Denote byC(S1, S2) the multiple-input
multiple-output (MIMO) capacity between nodes inS1 and nodes inS2, for S1, S2 ⊂ V . Consider first
(7). By the cut-set bound [27, Theorem 14.10.1],

∑

w 6=u

λUC
u,w ≤ C({u}, {u}c).

C({u}, {u}c) is the capacity betweenu and the nodes in{u}c, i.e.,

C({u}, {u}c) = log
(
1 +

∑
v 6=u |hu,v|

2
)

≤ log(1 + (n− 1)nα)

≤ K log(n),

with
K , 2 + α,

and where for the first inequality we have used that sinceV ∈ V, we haveru,v ≥ n−1 for all u, v ∈ V .
Similarly, for (8), ∑

w 6=u

λUC
w,u ≤ C({u}c, {u}),

and

C({u}c, {u}) ≤ log
(
1 + (n− 1)

∑
v 6=u |hv,u|

2
)

≤ log(1 + (n− 1)2nα)

≤ K log(n).

The next lemma bounds the maximal achievable sum rate acrossthe boundary out of the subsquares
Vℓ,i(n) for ℓ ∈ {1, . . . , L(n)}, and i ∈ {1, . . . , 4ℓ}.

Lemma 7. Under either fast or slow fading, for anyα > 2, there existsb(n) = O
(
log6(n)

)
such that

for all V (n) ∈ V(n), λUC ∈ ΛUC(n), ℓ ∈ {1, . . . , L(n)}, and i ∈ {1, . . . , 4ℓ}, we have
∑

u∈Vℓ,i(n)

∑

w/∈Vℓ,i(n)

λUC
u,w ≤ b(n)(4−ℓn)2−min{3,α}/2.

Proof. As before, denote byC(S1, S2) the MIMO capacity between nodes inS1 and nodes inS2. By the
cut-set bound [27, Theorem 14.10.1],

∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w ≤ C(Vℓ,i, V

c
ℓ,i). (9)
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Let
HS1,S2 , [hu,v]u∈S1,v∈S2

be the matrix of channel gains between the nodes inS1 andS2. Under fast fading

C(S1, S2) , max
Q(H)≥0:

E(qu,u)≤P ∀u∈S1

E

(
log det

(
I +H

†
S1,S2

Q(H)HS1,S2

))
,

and under slow fading

C(S1, S2) , max
Q≥0:

qu,u≤P ∀u∈S1

log det
(
I +H

†
S1,S2

QHS1,S2

)
.

Denote by∂(V c
ℓ,i) the nodes inV c

ℓ,i that are within distance one of the boundary betweenAc
ℓ,i andAℓ,i.

Using the generalized Hadamard inequality yields that under either fast or slow fading

C(Vℓ,i, V
c
ℓ,i) ≤ C(Vℓ,i, ∂(V

c
ℓ,i)) + C(Vℓ,i, V

c
ℓ,i \ ∂(V c

ℓ,i)). (10)

We start by analyzing the first term in the sum in (10). Applying Hadamard’s inequality again yields

C(Vℓ,i, ∂(V
c
ℓ,i)) ≤

∑

v∈∂(V c
ℓ,i)

C(Vℓ,i, {v}).

SinceV ∈ V, we have ∣∣∂(V c
ℓ,i)

∣∣ ≤ 5 log(n)(4−ℓn)1/2.

By the same analysis as in Lemma 6, we obtain

C(Vℓ,i, {v}) ≤ C({v}c, {v}) ≤ K

5
log(n)

for some constantK (independent ofv). Therefore

C(Vℓ,i, ∂(V
c
ℓ,i)) ≤ 5 log(n)(4−ℓn)1/2

K

5
log(n)

≤ K log2(n)(4−ℓn)1/2. (11)

We now analyze the second term in the sum in (10). The arguments of [13, Lemma 12] (building
on [12, Theorem 5.2]) show that under either fast or slow fading there existsK̃ > 0 such that for any
V ∈ V, ℓ ∈ {0, . . . , L(n)},

C(Vℓ,i, V
c
ℓ,i \ ∂(V c

ℓ,i)) ≤ K̃ log3(n)
∑

u∈Vℓ,i

∑

v∈V c
ℓ,i\∂(V

c
ℓ,i)

r−α
u,v . (12)

Moreover, using the same arguments as in [12, Theorem 5.2] shows that there exists a constantK ′ > 0
such that for adjacent squares (i.e., sharing a side)Aℓ,i, Aℓ,j,

∑

u∈Vℓ,i

∑

v∈Vℓ,j\∂(V
c
ℓ,i)

r−α
u,v ≤ K ′ log3(n)(4−ℓn)2−min{3,α}/2. (13)

Consider now two diagonal squares (i.e., sharing a corner point) Aℓ,i, Aℓ,j. Using a similar argument and
suitably redefiningK ′ shows that (13) holds for diagonal squares as well.

Using this, we now compute the summation in (12). Consider “rings” of squares aroundAℓ,i. The first
such “ring” contains the (at most)8 squares neighboringAℓ,i. The next “ring” contains at most16 squares.
In general, “ring”k contains at most8k squares. Let

{Aℓ,j}j∈Ik
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be the squares in “ring”k. Then
∑

u∈Vℓ,i

∑

v∈V c
ℓ,i\∂(V

c
ℓ,i)

r−α
u,v =

∑

k≥1

∑

j∈Ik

∑

u∈Vℓ,i

∑

v∈Vℓ,j\∂(V
c
ℓ,i)

r−α
u,v . (14)

By (13), ∑

j∈I1

∑

u∈Vℓ,i

∑

v∈Vℓ,j\∂(V
c
ℓ,i)

r−α
u,v ≤ 8K ′ log3(n)(4−ℓn)2−min{3,α}/2. (15)

Now note that fork > 1 and j ∈ Ik, nodesu ∈ Vℓ,i and v ∈ Vℓ,j are at least at distanceru,v ≥
(k − 1)(2−ℓ

√
n). Moreover, sinceV ∈ V, each{Vℓ,j}ℓ,j has cardinality at most4−ℓ+1n. Thus

∑

k>1

∑

j∈Ik

∑

u∈Vℓ,i

∑

v∈Vℓ,j\∂(V
c
ℓ,i)

r−α
u,v ≤

∑

k>1

8k
(
4−ℓ+1n

)2(
(k − 1)(2−ℓ

√
n)
)−α

= 128
(
4−ℓn

)2−α/2
∑

k>1

k(k − 1)−α

= K ′′
(
4−ℓn

)2−α/2
, (16)

for someK ′′ > 0, and where we have used thatα > 2. Substituting (15) and (16) into (14) yields
∑

u∈Vℓ,i

∑

v∈V c
ℓ,i\∂(V

c
ℓ,i)

r−α
u,v ≤ 8K ′ log3(n)(4−ℓn)2−min{3,α}/2 +K ′′

(
4−ℓn

)2−α/2
,

and hence by (12)

C(Vℓ,i, V
c
ℓ,i \ ∂(V c

ℓ,i)) ≤ K̃ log3(n)
(
8K ′ log3(n)(4−ℓn)2−min{3,α}/2 +K ′′

(
4−ℓn

)2−α/2
)
. (17)

Combining (9), (10), (11), and (17) shows that
∑

u∈Vℓ,i

∑

v/∈Vℓ,i

λUC
u,v ≤ b(n)(4−ℓn)2−min{3,α}/2.

for everyℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}, and under either fast or slow fading.

The following lemma bounds the maximal achievable sum rate across the boundary into the subsquares
Vℓ,i(n) for ℓ ∈ {1, . . . , L(n)}, and i ∈ {1, . . . , 4ℓ}. Note that this lemma is only valid forα > 5.

Lemma 8. Under either fast or slow fading, for anyα > 5, there existsb(n) = O
(
log3(n)

)
such that

for all V (n) ∈ V(n), λUC ∈ ΛUC(n), ℓ ∈ {1, . . . , L(n)}, and i ∈ {1, . . . , 4ℓ}, we have
∑

u/∈Vℓ,i(n)

∑

w∈Vℓ,i(n)

λUC
u,w ≤ b(n)(4−ℓn)1/2.

Proof. By the cut-set bound [27, Theorem 14.10.1],
∑

u/∈Vℓ,i

∑

w∈Vℓ,i

λUC
u,w ≤ C(V c

ℓ,i, Vℓ,i). (18)

Denote by∂Vℓ,i the nodes inVℓ,i that are within distance one of the boundary betweenAc
ℓ,i andAℓ,i.

Applying the generalized Hadamard inequality as in Lemma 7,we have under either fast or slow fading

C(V c
ℓ,i, Vℓ,i) ≤ C(V c

ℓ,i, ∂Vℓ,i) + C(V c
ℓ,i, Vℓ,i \ ∂Vℓ,i)

≤ K log2(n)(4−ℓn)1/2 + C(V c
ℓ,i, Vℓ,i \ ∂Vℓ,i),

(19)

for some positive constantK.
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For the second term in (19), we have by slightly adapting the upper bound from Theorem 2.1 in [3]:

C(V c
ℓ,i, Vℓ,i \ ∂Vℓ,i) ≤

∑

v∈Vℓ,i\∂Vℓ,i

( ∑

u∈V c
ℓ,i

r−α/2
u,v

)2

.

Now, considerv ∈ Vℓ,i \ ∂Vℓ,i and letdv be the distance ofv from the closest node inV c
ℓ,i. UsingV ∈ V

andα > 5, ∑

u∈V c
ℓ,i

r−α/2
u,v ≤ K̃ log(n)d2−α/2

v ,

for some positive constant̃K, and hence

C(V c
ℓ,i, Vℓ,i \ ∂Vℓ,i) ≤

∑

v∈Vℓ,i\∂Vℓ,i

K̃2 log2(n)d4−α
v

≤ K ′ log3(n)(4−ℓn)1/2,

for some positive constantK ′. Combined with (19) and (18), this proves Lemma 8.

C. Achievability Lemmas

In this section, we prove auxiliary achievability results.Recall that a permutation traffic is a traffic pattern
in which each node is source and destination exactly once. Call the corresponding source-destination
pairingΠ ⊂ V (n)×V (n) a permutation pairing. The lemma below analyzes the performance achievable
with either hierarchical relaying (forα ∈ (2, 3]) or multi-hop communication (forα > 3) applied
simultaneously to transmit permutation traffic in several disjoint regions in the network. See Section
V-C for a description of these communication schemes.

Lemma 9. Under fast fading, for anyα > 2, there existsb(n) ≥ n−o(1) such that for allV (n) ∈ V(n),
ℓ ∈ {0, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}, and permutation source-destination pairingΠi on Vℓ,i(n), there exists
λUC ∈ ΛUC(n) such that

min
i∈{1,...,4ℓ}

min
(u,w)∈Πi

λUC
u,w ≥ b(n)(4−ℓn)1−min{3,α}/2.

The same statement holds with probability1− o(1) as n→ ∞ in the slow fading case.

Consider the source-destination pairingΠ , ∪iΠi with {Πi}i as in Lemma 9. This is a permuta-
tion pairing, since eachΠi is a permutation pairing onVℓ,i(n) and since the{Vℓ,i(n)}i are disjoint.
Lemma 9 states that every source-destination pair inΠ can communicate at a per-node rate of at least
n−o(1)(4−ℓn)1−min{3,α}/2. Note that, due to the locality of the traffic pattern, this can be considerably
better than then1−min{3,α}/2−o(1) per-node rate achieved by standard hierarchical relaying or multi-hop
communication.

Proof. We shall use either hierarchical relaying (forα ∈ (2, 3]) or multi-hop (forα > 3) to communicate
within each squareVℓ,i. We operate every fourth of theVℓ,i simultaneously, and show that the added
interference due to this spatial re-use results only in a constant factor loss in rate.

Consider firstα ∈ (2, 3] and fast fading. The squaresAℓ,i at levelℓ have an area of

nℓ , 4−ℓn.

In order to be able to use hierarchical relaying within each of the {Aℓ,i}i, it is sufficient to show that we
can partition eachAℓ,i into

n
1

1+log−1/3(nℓ)

ℓ
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squarelets, each of which contains a number of nodes proportional to the area (see Section V-C). In other
words, we partitionA into squarelets of size

n
1− 1

1+log−1/3(nℓ)

ℓ ≥ n
log−1/3(n)

1+log−1/3(n)

L(n)

≥ n
1
2
log−1/3(n)

L(n)

= 2
1
2
log1/6(n)

≥ n4−
1
2
log(n)

(
1−

1
2
log−5/6(n)

)
,

where we have assumed, without loss of generality, thatn ≥ 2. SinceV ∈ V, all these squarelets contain
a number of nodes proportional to their area, and hence this shows that all

{Ai,ℓ}ℓ∈{0,...,L(n)},i∈{1,...,4ℓ}
are simultaneously regular enough for hierarchical relaying to be successful under fast fading. This achieves
a per-node rate of

λUC
u,w ≥ n−o(1)(4−ℓn)1−α/2 (20)

for any (u, w) ∈ Πi (see Section V-C, or [13, Theorem 1]).
We now show that (20) holds with high probability also under slow fading. ForV ∈ V hierarchical

relaying is successful under slow fading for all permutation traffic onV with probability at least

1− exp
(
− 2K log2/3(n)

)

for some constantK (see again Section V-C). Hence, hierarchical relaying is successful for all permutation
traffic on Vℓ,i with probability at least

1− exp
(
− 2K log2/3(4−ℓn)

)
≥ 1− exp

(
− 2K log2/3(4−L(n)n)

)

= 1− exp
(
− 2K log1/3(n)

)
.

And hence hierarchical relaying is successful under slow fading for all ℓ ∈ {1, . . . , L(n)} and all
permutation traffic on every{Vℓ,i}4ℓi=1 with probability at least

1− L(n)4L(n) exp
(
− 2K log1/3(n)

)
≥ 1− n2 exp

(
− 2K log1/3(n)

)

≥ 1− o(1)

asn→ ∞.
We now argue that the additional interference from spatial re-use results only in a constant loss in

rate. This follows from the same arguments as in the proof of [13, Theorem 1] (with the appropriate
modifications for slow fading as described there). Intuitively, this is the case since the interference from a
square at distancer is attenuated by a factorr−α, which, sinceα > 2, is summable. Hence the combined
interference has power on the order of the receiver noise, resulting in only a constant factor loss in rate.

For α > 3, the argument is similar—instead of hierarchical relayingwe now use multi-hop communi-
cation. ForV ∈ V and under either fast or slow fading, this achieves a per-node rate of

λUC
u,w ≥ n−o(1)(4−ℓn)−1/2 (21)

for any (u, w) ∈ Πi. Combining (20) and (21) yields the lemma.
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VII. PROOF OFTHEOREM 1

The proof of Theorem 1 relies on the construction of a capacitated (noiseless, wireline) graphG and
linking its performance under routing to the performance ofthe wireless network. This graphG = (VG, EG)
is constructed as follows.G is a full tree (i.e., all its leaf nodes are on the same level).G hasn leaves,
each of them representing an element ofV (n). To simplify notation, we assume thatV (n) ⊂ VG, so that
the leaves ofG are exactly the elements ofV (n) ⊂ VG. Whenever the distinction is relevant, we use
u, v for nodes inV (n) ⊂ VG andµ, ν for nodes inVG \ V (n) in the following. The internal nodes ofG
correspond toVℓ,i(n) for all ℓ ∈ {0, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}, with hierarchy induced by the one on
A(n). In particular, letµ andν be internal nodes inVG and letVℓ,i(n) andVℓ+1,j(n) be the corresponding
subsets ofV (n). Thenν is a child node ofµ if Vℓ+1,j(n) ⊂ Vℓ,i(n).

In the following, we will assumeV ∈ V, which holds with probability1−o(1) asn→ ∞ by Lemma 5.
With this assumption, nodes inVG at levelℓ < L(n) have4 children each, nodes inVG at levelℓ = L(n)
have between4−L(n)−1n and4−L(n)+1n children, and nodes inVG at levelℓ = L(n) + 1 are the leaves of
the tree (see Figure 7 below and Figure 3 in Section V-A).

ℓ = L(n) + 1

ℓ = L(n)

...

ℓ = 1

ℓ = 0

Fig. 7. Communication graphG constructed in the proof of Theorem 1. Nodes on levelsℓ ∈ {0, . . . , L(n) − 1} have four children each,
nodes on levelℓ = L(n) haveΘ

(
nlog−1/2(n)

)
children each. The total number of leaf nodes isn, one representing each node in the wireless

networkV (n). An internal node inG at levelℓ ∈ {0, . . . , L(n)} represents the collection of nodes inVℓ,i(n) for somei.

For µ ∈ VG, denote byL(µ) the leaf nodes of the subtree ofG rooted atµ. Note that, by construction
of the graphG, L(µ) = Vℓ,i(n) for someℓ and i. To understand the relation betweenVG andV (n), we
define therepresentativeR : VG → 2V (n) of µ as follows. For a leaf nodeu ∈ V (n) ⊂ VG of G, let

R(u) , {u}.
For µ ∈ VG at levelL(n), chooseR(µ) ⊂ L(µ) ⊂ V (n) such that

|R(µ)| = 4−L(n)−1n.

This is possible sinceV (n) ∈ V(n) by assumption. Finally, forµ ∈ VG at level ℓ < L(n), and with
children{νi}4j=1, let

R(µ) ,

4⋃

j=1

R(νj).

We now define an edge capacitycµ,ν for each edge(µ, ν) ∈ EG. If µ is a leaf ofG and ν its parent,
set

cµ,ν = cν,µ , 1. (22)

If µ is an internal node at levelℓ in G andν its parent, then set

cµ,ν = cν,µ , (4−ℓn)2−min{3,α}/2. (23)

Having chosen edge capacities onG, we can now define the setΛUC
G (n) ⊂ R

n×n
+ of feasible unicast

traffic matrices between leaf nodes ofG. In other words,λUC ∈ ΛUC
G (n) if messages at the leaf nodes of
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G can be routed to their destinations (which are also leaf nodes) overG at ratesλUC while respecting the
capacity constraints on the edges ofG. Define

ΛBUC
G (n) , ΛUC

G (n) ∩ BUC(n).

We first prove the achievability part of Theorem 1. The next lemma shows that if traffic can be routed
over the treeG then approximately the same traffic can be transmitted reliably over the wireless network.

Lemma 10. Under fast fading, for anyα > 2, there existsb(n) ≥ n−o(1) such that for anyV (n) ∈ V(n),
b(n)ΛUC

G (n) ⊂ ΛUC(n).

The same statement holds for slow fading with probability1− o(1) as n→ ∞.

Proof. AssumeλUC ∈ ΛUC
G , i.e., traffic can be routed between the leaf nodes ofG at a rateλUC, we need

to show thatn−o(1)λUC ∈ ΛUC (i.e., almost the same flow can be reliably transmitted over the wireless
network). We use the three-layer communication architecture introduced in Section V-A to establish this
result.

Recall the three layers of this architecture: the routing, cooperation, and physical layers. The layers of
this communication scheme operate as follows. In the routing layer, we treat the wireless network as the
graphG and route the messages between nodes over the edges ofG. The cooperation layer provides this
tree abstraction to the routing layer by distributing and concentrating messages over subsets of the wireless
networks. The physical layer implements this distributionand concentration of messages by dealing with
interference and noise.

Consider first the routing layer, and assume that the tree abstractionG can be implemented in the
wireless network with only an−o(1) factor loss. SinceλUC ∈ ΛUC

G by assumption, we then know that the
routing layer will be able to reliably transmit messages at ratesn−o(1)λUC over the wireless network. We
now show that the tree abstraction can indeed be implementedwith a factorn−o(1) loss in the wireless
network.

This tree abstraction is provided to the routing layer by thecooperation layer. We will show that the
operation of the cooperation layer satisfies the following invariance property: If a message is located at a
nodeµ ∈ G in the routing layer, then the same message is evenly distributed over all nodes inR(µ) in
the wireless network. In other words, all nodesu ∈ R(µ) ⊂ V contain a distinct part of length1/ |R(µ)|
of the message.

Consider first a leaf nodeu ∈ V ⊂ VG in G, and assume the routing layer calls upon the cooperation
layer to send a message to its parentν ∈ VG in G. Note first thatu is also an element ofV , and it has
access to the entire message to be sent overG. Since for leaf nodesR(u) = {u}, this shows that the
invariance property is satisfied atu. The message is split atu into |R(ν)| parts of equal length, and one
part is sent to each node inR(ν) over the wireless network. In other words, we distribute themessage
over the wireless network by a factor of|R(ν)|. Hence the invariance property is also satisfied atν.

Consider now an internal nodeµ ∈ VG, and assume the routing layer calls upon the cooperation layer to
send a message to its parent nodeν ∈ VG. Note that since all traffic inG originates at the leaf nodes ofG
(which are the actual nodes in the wireless network), a message atµ had to traverse all levels belowµ in
the treeG. We assume that the invariance property holds up to levelµ in the tree, and show that it is then
also satisfied at levelν. By the induction hypothesis, each nodeu ∈ R(µ) has access to a distinct part of
length1/ |R(µ)|. Each such nodeu splits its message part into four distinct parts of equal length. Node
u keeps one part for itself, and sends the other three parts to nodes inR(ν). Since|R(ν)| = 4 |R(µ)|,
this can be performed such that each node inR(ν) obtains exactly one message part. In other words, we
distribute the message by a factor four over the wireless network, and the invariance property is satisfied
at ν ∈ VG.

Operation along edges down the tree (i.e., towards the leaf nodes) is similar, but instead of distributing
messages, we now concentrate them over the wireless network. To route a message from a nodeµ ∈ VG
with internal children{νj}4j=1 to one of them (sayν1) in the routing layer, the cooperation layer sends



28

the message parts from each{R(νj)}4j=2 to a corresponding node inR(ν1) and combines them there. In
other words, we concentrate the message by a factor four overthe wireless network.

To route a message to a leaf nodeu ∈ V ⊂ VG from its parentν in G in the routing layer, the cooperation
layer sends the corresponding message parts at each nodeR(ν) to u over the wireless network. Thus, again
we concentrate the message over the network, but this time bya factor of|R(ν)|. Both these operations
along edges down the tree preserve the invariance property.This shows that the invariance property is
preserved by all operations induced by the routing layer in the cooperation layer.

Finally, to actually implement this distribution and concentration of messages, the cooperation layer
calls upon the physical layer. Note that at the routing layer, all edges of the tree can be routed over simul-
taneously. Therefore, the cooperation layer can potentially call the physical layer to perform distribution
and concentration of messages over all sets{R(µ)}µ∈VG

simultaneously. The function of the physical
layer is to schedule all these operations and to deal with theresulting interference as well as with channel
noise.

This scheduling is done as follows. First, the physical layer time shares between communication up the
tree and communication down the tree (i.e., between distribution and concentration of messages). This
results in a loss of a factor1/2 in rate. The physical layer further time shares between all theL(n) + 1
internal levels of the tree, resulting in a further1

L(n)+1
factor loss in rate. Hence, the total rate loss by

this time sharing is
1

2(L(n) + 1)
. (24)

Consider now the operations within some levelℓ ∈ 1, . . . , L(n) in the tree (i.e., for edge(µ, ν) on this
level, neitherµ nor ν is a leaf node). We show that the rate at which the physical layer implements the
edge(µ, ν) is equal ton−o(1)cµ,ν , i.e., only a small factor less than the capacity of the edge(µ, ν) in
the treeG. Note first that the distribution or concentration of trafficinduced by the cooperation layer to
implement one edgee at level ℓ (i.e., between node levelsℓ and ℓ − 1) is restricted toVℓ−1,i for some
i = i(e). We can thus partition the edges at levelℓ into {Ej

G}4j=1 such that the four sets
⋃

e∈Ej
G

Vℓ−1,i(e)

of nodes are disjoint. Time sharing between these four sets yields an additional loss of a factor1/4 in
rate. Fix one such value ofj, and consider the operations induced by the cooperation layer in the set
corresponding toj. We consider communication up the tree (i.e., distributionof messages), the analysis
for communication down the tree is similar. For a particularedge(µ, ν) ∈ Ej

G with ν the parent ofµ,
each nodeu ∈ R(µ) has split its message part into four parts, three of which need to be sent to the nodes
in R(ν) \ R(µ). Moreover, this assignment of destination nodes inR(ν) \ R(µ) to u is performed such
that no node inR(ν) \ R(µ) is destination more than once. In other word, each node inR(µ) is source
exactly three times and each node inR(ν)\R(µ) is destination exactly once. This can be written as three
source-destination pairings{Πk

i(µ,ν)}3k=1, onVℓ−1,i(µ,ν). Moreover, each suchΠk
i(µ,ν) can be understood as a

subset of a permutation source-destination pairing. We time share between the three values ofk (yielding
an additional loss of a factor1/3 in rate). Now, for each value ofk, Lemma 9 shows that by using
either hierarchical relaying (forα ∈ (2, 3]) or multi-hop communication for (α > 3), we can communicate
according to{Πk

i(e)}e∈Ej
G

at a per-node rate of

n−o(1)(4−ℓ−1n)1−min{3,α}/2

under fast fading, and with probability4 1 − o(1) also under slow fading. SinceR(µ) contains4−ℓ−1n
nodes, and accounting for the loss (24) for time sharing between the levels inG and the additional loss

4Note that Lemma 9 actually shows that all permutation trafficfor every value ofℓ can be transmitted with high probability under slow
fading. In other words, with high probability all levels ofG can be implemented successfully under slow fading.
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of factors1/4 and1/3 for time sharing betweenj andk, the physical layer implements an edge capacity
for e at levelℓ of

1

2(L(n) + 1)
· 1
4
· 1
3
· 4−ℓ−1n · n−o(1)(4−ℓ−1n)1−min{3,α}/2 = n−o(1)(4−ℓn)2−min{3,α}/2 = n−o(1)ce.

Consider now the operations within levelℓ = L(n) + 1 in the tree (i.e., for edge(u, ν) on this level,
u is a leaf node). We show that the rate at which the physical layer implements the edge(u, ν) is equal
to n−o(1)cu,ν . We again consider only communication up the tree (i.e., distribution of messages in the
cooperation layer), communication down the tree is performed in a similar manner. The traffic induced
by the cooperation layer at levelL(n) + 1 is within the setsVL(n),i for i = {1, . . . , 4L(n)}. Consider now
communication within oneVL(n),i, and assume without loss of generality that in the routing layer every
nodeu ∈ VL(n),i needs to send traffic along the edge(u, ν). In the physical layer, we need to distribute a
1/ |R(ν)| fraction of this traffic from each nodeu ∈ VL(n),i to every node inR(ν) ⊂ VL(n),i. This can be
expressed as

∣∣VL(n),i
∣∣ source-destination pairings, and we time share between them. Accounting for the

fact that only1/ |R(ν)| of traffic needs to be sent according to each pairing and sinceV ∈ V, this results
in a time sharing loss of at most a factor

|R(ν)|∣∣VL(n),i
∣∣ ≤

1

16
.

Now, using Lemma 9, all these source-destination pairings in all subsquares{VL(n),i} can be implemented
simultaneously at a per node rate of

n−o(1)(4−L(n)n)1−min{3,α}/2 ≥ n−o(1)(nlog−1/2(n))−1/2 ≥ n−o(1).

Accounting for the loss (24) for time sharing between the levels inG, the additional factor1/16 loss for
time sharing within eachVL(n),i, the physical layer implements an edge capacity fore at levelℓ = L(n)+1
of

1

2(L(n) + 1)
· 1

16
· n−o(1) = n−o(1) = n−o(1)ce,

under either fast or slow fading.
Together, this shows that the physical and cooperation layers provide the tree abstractionG to the

routing layer with edge capacities of only a factorn−o(1) loss. Hence, if messages can be routed at rates
λUC between the leaf nodes ofG, then messages can be reliably transmitted over the wireless network at
ratesn−o(1)λUC. Hence

λUC ∈ ΛUC
G ⇒ n−o(1)λUC ∈ ΛUC.

Noting that then−o(1) factor is uniform inλUC, this shows that

n−o(1)ΛUC
G ⊂ ΛUC.

We have seen that the unicast capacity regionΛUC
G (n) of the graphG under routing is (appropriately

scaled) an inner bound to the unicast capacity regionΛUC(n) of the wireless network. Taking the intersec-
tion with the set of balanced traffic matricesBUC(n) yields that the same holds forΛBUC

G (n) andΛBUC(n).
The next lemma shows that(γ(n) + 1)ΛBUC

G (n) (with γ(n) = no(1) as in the definition ofBUC(n) in (1))
is an outer bound to the approximate unicast capacity regionΛ̂BUC(n) of the wireless network as defined
in (3) Combining Lemmas 5, 10, and 11 below, yields that with high probability

n−o(1)Λ̂BUC(n) ⊂ n−o(1)ΛBUC
G (n) ⊂ ΛBUC(n),

proving the achievability part of Theorem 1.
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Lemma 11. For anyα > 2 and anyV (n) ∈ V(n),
Λ̂BUC(n) ⊂ (γ(n) + 1)ΛBUC

G (n),

whereγ(n) = no(1) is the factor in the definition ofBUC(n) in (1).

Proof. We first relate the total traffic across an edgee in the graphG to the total traffic across a cutVℓ,i
for someℓ and i.

Consider an edgee = (µ, ν) ∈ EG, and assume first thate connects nodes at levelℓ and ℓ − 1 in the
tree withℓ ≥ L(n). We slight abuse of notation, set

ce , cµ,ν .

Note first that by (23) we have
ce = (4−ℓn)2−min{3,α}/2. (25)

Moreover, sinceG is a tree, removing the edgee from EG separates the tree into two connected
components, sayS1, S2 ⊂ VG. Consider now the leaf nodes inS1. By the construction of the tree structure
of G, these leaf nodes are either equal toVℓ,i or V c

ℓ,i for somei ∈ {1, . . . , 4ℓ}. Assume without loss of
generality that they are equal toVℓ,i. ThenV c

ℓ,i are the leaf nodes inS2. Now since traffic is only assumed
to be between leaf nodes ofG, the total traffic demand betweenS1 andS2 is equal to

∑

u∈Vℓ,i

∑

w/∈V c
ℓ,i

(λUC
u,w + λUC

w,u). (26)

By the tree structure ofG, all this traffic has to be routed over edgee.
Consider now an edgee connecting a node at levelL(n) + 1 andL(n), i.e., a leaf nodeu to its parent

ν. Then, by (22),
ce = 1. (27)

The total traffic crossing the edgee is equal to
∑

w 6=u

(λUC
u,w + λUC

w,u). (28)

We now show that
Λ̂BUC ⊂ (γ(n) + 1)ΛBUC

G . (29)

AssumeλUC ∈ Λ̂BUC, then ∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w ≤ (4−ℓn)2−min{3,α}

for all ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}, and
∑

w 6=u

(λUC
u,w + λUC

w,u) ≤ 1

for all u ∈ V . SinceλUC is balanced, this implies that

1

γ(n) + 1

∑

u∈Vℓ,i

∑

w/∈Vℓ,i

(λUC
u,w + λUC

w,u) ≤ (4−ℓn)2−min{3,α}

for ℓ ≤ L(n). By (25), (26), (27), (28), we obtain that the traffic demand across each edgee of the graph
G is less thanγ(n) + 1 times its capacityce. Therefore, using thatG is a tree, 1

γ(n)+1
λUC can be routed

overG, i.e., λUC ∈ (γ(n) + 1)ΛBUC
G . This proves (29).
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We now turn to the converse part of Theorem 1. The next lemma shows thatΛ̂UC(n) (appropriately
scaled) is an outer bound to the unicast capacity regionΛUC(n) of the wireless network. Taking the
intersection with the collection of balanced traffic matricesBUC(n) and combining with Lemma 5, this
shows that with high probability

ΛBUC(n) ⊂ O(log6(n))Λ̂BUC(n),

proving the converse part of Theorem 1.

Lemma 12. Under either fast or slow fading, for anyα > 2, there existsb(n) = O(log6(n)) such that
for any V (n) ∈ V(n),

ΛUC(n) ⊂ b(n)Λ̂UC(n).

Proof. AssumeλUC ∈ ΛUC. By Lemma 7, we have for anyℓ ∈ {1, . . . , L(n)} and i ∈ {1, . . . , 4ℓ},
∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w ≤ K log6(n)(4−ℓn)2−min{3,α}/2 (30)

for some constantK not depending onλUC.
Consider nowu ∈ V . Lemma 6 shows that

∑

w 6=u

λUC
u,w ≤ K̃ log(n),

∑

w 6=u

λUC
w,u ≤ K̃ log(n),

with constantK̃ not depending onλUC, and therefore,
∑

w 6=u

(λUC
u,w + λUC

w,u) ≤ 2K̃ log(n). (31)

Combining (30) and (31) proves that there existsb(n) = O(log6(n)) such thatλUC ∈ ΛUC implies
λUC ∈ b(n)Λ̂UC, proving the lemma.

VIII. PROOF OFTHEOREM 2

Consider again the tree graphG = (VG, EG) with leaf nodesV (n) ⊂ VG constructed in Section VII. As
before, we consider traffic between leaf nodes ofG. In particular, any multicast traffic matrixλMC ∈ R

n×2n

+

for the wireless network is also a multicast traffic matrix for the graphG. Denote byΛMC
G (n) ⊂ R

n×2n

+

the set of feasible (under routing) multicast traffic matrices between leaf nodes ofG, and set

ΛBMC
G (n) , ΛMC(n) ∩ BMC(n).

The next lemma shows that if multicast traffic can be routed over G then approximately the same
multicast traffic can be transmitted reliably over the wireless network. Taking the intersection withBMC(n)
implies that the same result holds also for balanced traffic.

Lemma 13. Under fast fading, for anyα > 2, there existsb(n) ≥ n−o(1) such that for allV (n) ∈ V(n),
b(n)ΛMC

G (n) ⊂ ΛMC(n).

The same statement holds under slow fading with probability1− o(1) as n→ ∞.

Proof. The proof follows using the same construction as in Lemma 10.

We now show that, sinceG is a tree graph,̂ΛBMC(n) is an inner bound (up to a factorγ(n) + 1) to the
the multicast capacity regionΛBMC

G (n). The fact thatG is a tree is critical for this result to hold.
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Lemma 14. For anyα > 2,
Λ̂BMC(n) ⊂ (γ(n) + 1)ΛBMC

G (n).

whereγ(n) = no(1) is the factor in the definition ofBMC(n) in (2).

Proof. AssumeλMC ∈ BMC \ ΛBMC
G . SinceG is a tree, there is only one way to route multicast traffic

from u to W , namely along the subtreeG({u} ∪W ) induced by{u} ∪W (i.e., the smallest subtree of
G that covers{u} ∪W ). Hence for any edgee ∈ EG, the trafficdλMC(e) that needs to be routed overe
is equal to

dλMC(e) =
∑

u∈V,W⊂V :
e∈EG({u}∪W )

λMC
u,W .

Now, sinceλMC ∈ BMC \ ΛBMC
G , there existse ∈ EG such that

dλMC(e) > ce. (32)

Let ℓ be the level of this edgee in G. We have

ce =

{(
4−ℓn

)2−min{3,α}/2
if ℓ ≤ L(n),

1 else.
(33)

Assume first thatℓ ≤ L(n) and leti be such that the removal of the edgee in G disconnects the leave
nodes inVℓ,i from the ones inV c

ℓ,i. Then we have

dλMC(e) =
∑

u∈Vℓ,i

∑

W⊂V :
W\Vℓ,i 6=∅

λMC
u,W +

∑

u/∈Vℓ,i(n)

∑

W⊂V :
W∩Vℓ,i 6=∅

λMC
u,W . (34)

Assume then thatℓ = L(n) + 1, and assumee separates the leaf nodeu from {u}c in G. Then

dλMC(e) =
∑

W⊂V :
W\{u}6=∅

λMC
u,W +

∑

ũ 6=u

∑

W⊂V :
u∈W

λMC
ũ,W .

If ℓ = L(n) + 1, then (32), (33), and (34) imply thatλMC /∈ Λ̂BMC and thereforeλMC /∈ 1
γ(n)+1

Λ̂BMC. If
ℓ ≤ L(n) then, sinceλMC is γ(n)-balanced, we have

∑

u∈Vℓ,i

∑

W⊂V :
W\Vℓ,i 6=∅

λMC
u,W +

∑

u/∈Vℓ,i(n)

∑

W⊂V :
W∩Vℓ,i 6=∅

λMC
u,W ≤ (γ(n) + 1)

∑

u∈Vℓ,i

∑

W⊂V :
W\Vℓ,i 6=∅

λMC
u,W . (35)

Combining (32), (33), (34), and (35) shows thatλMC /∈ 1
γ(n)+1

Λ̂BMC for ℓ ≤ L(n) as well.

Hence, we have shown thatλMC ∈ BMC \ ΛBMC
G impliesλMC /∈ 1

γ(n)+1
Λ̂BMC, proving the lemma.

Combining Lemmas 13, and 14, and 5 shows that, with probability 1− o(1) asn→ ∞,

n−o(1)Λ̂BMC(n) ⊂ n−o(1)ΛBMC
G (n) ⊂ ΛBMC(n),

proving the inner bound in Theorem 2.
We now turn to the proof of the outer bound toΛMC(n). The next lemma combined with Lemma 5,

and taking the intersection withBMC(n), proves the outer bound in Theorem 2.

Lemma 15. Under fast fading, for anyα > 2, there existsb(n) = O(log6(n)) such that for allV (n) ∈
V(n),

ΛMC(n) ⊂ b(n)Λ̂MC(n).

The same statement holds under slow fading with probability1− o(1) as n→ ∞.
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Proof. We say that a unicast traffic matrixλUC is compatiblewith a multicast traffic matrixλMC if there
exists a mappingf : V (n)× 2V (n) → V (n) such thatf(u,W ) ∈ W ∪ {u}, for all (u,W ), and

λUC
u,w =

∑

W⊂V (n):
f(u,W )=w

λMC
u,W

for all (u, w). In words,λMC is compatible withλUC if we can create the unicast traffic matrixλUC from
λMC by simply discarding the traffic for the pair(u,W ) at all the nodesW \ {f(u,W )}.

Note that ifλMC ∈ ΛBMC and if λUC is compatible withλMC thenλUC ∈ ΛUC. Indeed, we can reliably
transmit at rateλUC by using the communication scheme forλMC and discarding all the unwanted messages
delivered by this scheme. Now consider a cutVℓ,i with ℓ ≤ L(n) in the wireless network, and choose a
mappingf : V (n)× 2V (n) → V (n) such that

∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w =

∑

u∈Vℓ,i

∑

W⊂V :
W\Vℓ,i 6=∅

λMC
u,W .

SinceλUC ∈ ΛUC, we can apply Lemma 7 to obtain
∑

u∈Vℓ,i

∑

W⊂V :
W\Vℓ,i 6=∅

λMC
u,W =

∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w ≤ b(n)

(
4−ℓn

)2−min{3,α}/2
,

with b(n) = O(log6(n)). Repeating the same argument for cuts of the form{u} and {u}c and using
Lemma 6, shows thatλMC ∈ b(n)Λ̂MC. Noting that theb(n) term is uniform inλMC yields that

ΛMC ⊂ b(n)Λ̂MC,

concluding the proof of the lemma.

IX. D ISCUSSION

We discuss several aspects and extensions of the three-layer architecture introduced in Section V-C and
used in the achievability parts of Theorems 1 and 2. In Section IX-A, we comment on the various tree
structures used in the three-layer architecture. In Section IX-B we show that for certain values ofα the
bounds in the theorems can be significantly sharpened. In Section IX-C, we discuss bounds for traffic
that is not balanced. In Section IX-D, we show that for large values of path-loss exponent (α > 5) these
bounds are tight. Hence in the large path-loss regime the requirement of balanced traffic is not necessary,
and we obtain a scaling characterization of the entire unicast and multicast capacity regions. In Section
IX-E, we point out how the results discussed so far can be usedto obtain the scaling of the unicast and
multicast capacity regions of dense networks (wheren nodes are randomly placed on a square of unit
area).

A. Tree Structures

There are two distinct tree structures that are used in the construction of the three-layer communication
scheme proposed in this paper—one explicit and one implicit. These two tree structures appear in different
layers of the communication scheme and serve different purposes.

The first (explicit) tree structure is given by the treeG utilized in the routing layer and implemented
in the cooperation layer. The main purpose of this tree structure is to perform localized load balancing.
In fact, the distribution and concentration of traffic is used to avoid unnecessary bottlenecks. Note that
the treeG is used by the scheme for any value ofα.

The second (implicit) tree structure occurs in the physicallayer. This tree structure appears only forα ∈
(2, 3]. In this regime, the physical layer uses the hierarchical relaying scheme. It is the hierarchical structure
of this scheme that can equivalently be understood as a tree.The purpose of this second tree structure is
to enable distributed multiple-antenna communication, i.e., to perform cooperative communication.
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B. Second-Order Asymptotics

The scaling results in Theorems 1 and 2 are up to a factorn±o(1) and hence preserve information at
scalenβ for constantβ (see also the discussion in Section III-C). Here we examine in more detail the
behavior of thisn±o(1) factor and show that in certain situations it can be significantly sharpened.

Note first that the outer bound in Theorems 1 and 2 hold up to a factorO(log6(n)), i.e., poly-logarithmic
in n. However, the inner bound holds only up to the aforementioned n−o(1) factor. A closer look at the
proofs of the two theorems reveals that the precise inner bound is of order

γ−1(n)n−O
(
log−1/3(n)

)
,

whereγ(n) is the factor in the definition ofBUC(n) andBMC(n) (see (1) and (2)). With a more careful
analysis (see [13] for the details), this can be sharpened toessentially

γ−1(n)n−O
(
log−1/2(n)

)
.

The exponentlog−1/2(n) in the inner bound has two causes. The first is the use of hierarchical relaying
(for α ∈ (2, 3]). The second is the operation of the physical layer at levelL(n) + 1 of the tree (i.e., to
implement communication between the leaf nodes ofG and their parents). Indeed at that level, we are
operating on a square of area

4−L(n)n = nlog−1/2(n),

and the loss is essentially inversely proportional to that area. Now, the reason whyL(n) can not be
chosen to be larger (to make this loss smaller), is because hierarchical relaying requires a certain amount
of regularity in the node placement, which can only be guaranteed for large enough areas.

This suggests that for theα > 3 regime, where multi-hop communication is used at the physical layer
instead of hierarchical relaying, we might be able to significantly improve the inner bound. To this end, we
have to choose more levels in the treeG, such that at the last level before the tree nodes, we are operating
on a square that has an area of orderlog(n). Changing the three-layer architecture in this manner, and
choosingγ(n) appropriately, forα > 3 the inner bound can be improved toΩ(log−2(n)) in n. Combined
with the poly-logarithmic outer bound, this yields aO(log8(n)) approximation of the balanced unicast
and multicast capacity regions forα > 3.

C. Non-Balanced Traffic

Theorems 1 and 2 describe the scaling of the balanced unicastand multicast capacity regionsΛBUC(n)
andΛBMC(n), respectively. As we have argued, the balanced unicast region ΛBUC(n) coincides with the
unicast capacity regionΛUC(n) along at leastn2−n out ofn2 total dimensions, and the balanced multicast
regionΛBMC(n) coincides with the multicast capacity regionΛUC(n) along at leastn2n − n out of n2n

total dimensions. However, the proofs of these results provide also bounds for traffic that is not balanced,
i.e., for the remaining2n dimensions.

Define the following two regions:

Λ̂UC
1 (n) ,

{
λUC ∈ R

n×n
+ :

∑

u∈Vℓ,i(n)

∑

w/∈Vℓ,i(n)

(λUC
u,w + λUC

w,u) ≤ (4−ℓn)2−min{3,α}/2

∀ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ},
∑

w 6=u

(λUC
u,w + λUC

w,u) ≤ 1 ∀u ∈ V (n)
}
,
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and

Λ̂MC
1 (n) ,

{
λMC ∈ R

n×2n

+ :
∑

u∈Vℓ,i(n)

∑

W⊂V (n):
W\Vℓ,i(n)6=∅

λMC
u,W +

∑

u/∈Vℓ,i(n)

∑

W⊂V (n):
W∩Vℓ,i(n)6=∅

λMC
u,W ≤ (4−ℓn)2−min{3,α}/2

∀ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ},
∑

W⊂V (n):
W\{u}6=∅

λMC
u,W +

∑

ũ6=u

∑

W⊂V (n):
u∈W

λMC
ũ,W ≤ 1 ∀u ∈ V (n)

}
.

Λ̂UC(n) and Λ̂UC
1 (n) differ in that for ℓ ∈ {1, . . . , L(n)}, Λ̂UC(n) only bounds traffic flow out ofVℓ,i(n),

whereaŝΛUC
1 (n) bounds traffic in both directions acrossVℓ,i(n) (and similar forΛ̂MC(n) and Λ̂MC

1 (n)).
The analysis in Sections VII and VIII shows that

n−o(1)Λ̂UC
1 (n) ⊂ ΛUC(n) ⊂ O(log6(n))Λ̂UC(n),

n−o(1)Λ̂MC
1 (n) ⊂ ΛMC(n) ⊂ O(log6(n))Λ̂MC(n),

with probability 1 − o(1) as n → ∞. In other words, we obtain an inner and an outer bound on the
capacity regionsΛUC(n) andΛMC(n). These bounds coincide in the scaling sense for balanced traffic, for
which we recover Theorems 1 and 2.

D. Large Path-Loss Exponent Regime

The discussion in Section IX-C reveals that in order to obtain scaling information for traffic that is
not balanced, a stronger version of the converse results in Lemma 7 is needed. In particular, Lemma 7
bounds the sum-rate ∑

u∈Vℓ,i(n)

∑

w/∈Vℓ,i(n)

λUC
u,w

for λUC ∈ ΛUC(n). The required stronger version of the lemma would also need to bound sum rates in
the other direction, i.e., ∑

u/∈Vℓ,i(n)

∑

w∈Vℓ,i(n)

λUC
u,w.

For large path-loss exponentsα > 5, such a stronger version of Lemma 7 holds (see Lemma 8). With
this, we obtain that forα > 5,

n−o(1)Λ̂UC
1 (n) ⊂ ΛUC(n) ⊂ O(log6(n))Λ̂UC

1 (n),

n−o(1)Λ̂MC
1 (n) ⊂ ΛMC(n) ⊂ O(log6(n))Λ̂MC

1 (n),

with probability1−o(1) asn→ ∞. In other words, in the high path-loss exponent regimeα > 5, Λ̂UC
1 (n)

and Λ̂MC
1 (n) characterize the scaling of the entire unicast and multicast capacity regions, respectively.

E. Dense Networks

So far, we have only discussedextendednetworks, i.e.,n nodes are located on a square of arean. We
now briefly sketch how these results can be recast fordensenetworks, in whichn nodes are located on
a square of unit area.

Note first that by rescaling power by a factorn−α̃/2, a dense network with any path-loss exponentα can
essentially be transformed into an equivalent extended network with path-loss exponent̃α. In particular,
any scheme for extended networks with path-loss exponentα̃ yields a scheme with same performance
for dense networks with any path-loss exponentα (see also [12, Section V.A]). To optimize the resulting
scheme for the dense network, we start with the scheme for extended networks corresponding toα̃ close to
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2. Hence an inner bound for the unicast and multicast capacityregions for dense networks with path-loss
exponentα can be obtained from the ones for extended networks by takinga limit as α̃→ 2. Moreover,
an application of Lemma 6 yields a matching (in the scaling sense) outer bound.

The resulting approximate balanced capacity regionsΛ̂BUC(n) and Λ̂BMC(n) have particularly simple
shapes in this limit. In fact, the only constraints in (3) and(4) that can be tight are at levelℓ = log(n).
Moreover, as in Section IX-D, it can be shown that the restriction of balanced traffic is not necessary for
dense networks. This results in the following approximate capacity regions for dense networks:

Λ̂UC(n) ,
{
λUC ∈ R

n×n
+ :

∑

w 6=u

(λUC
u,w + λUC

w,u) ≤ 1, ∀ u ∈ V (n)
}

for unicast, and

Λ̂MC(n) ,
{
λMC ∈ R

n×2n

+ :
∑

W⊂V (n):
W\{u}6=∅

λMC
u,W +

∑

ũ 6=u

∑

W⊂V (n):
u∈W

λMC
ũ,W ≤ 1, ∀u ∈ V (n)

}

for multicast. We obtain that for dense networks, for anyα > 2,

n−o(1)Λ̂UC(n) ⊂ ΛUC(n) ⊂ O(log6(n))Λ̂UC(n),

n−o(1)Λ̂MC(n) ⊂ ΛMC(n) ⊂ O(log6(n))Λ̂MC(n),

with probability 1− o(1) asn→ ∞.

X. CONCLUSIONS

In this paper, we have obtained an explicit information-theoretic characterization of the scaling of the
n2-dimensional balanced unicast andn2n-dimensional balanced multicast capacity regions of a wireless
network withn randomly placed nodes and assuming a Gaussian fading channel model. These regions
span at leastn2 − n andn2n − n dimensions ofRn×n

+ andRn×2n

+ , respectively, and hence determine the
scaling of the unicast capacity region along at leastn2 − n out of n2 dimensions and the scaling of the
multicast capacity region along at leastn2n − n out of n2n dimensions. The characterization is in terms
of 2n weighted cuts, which are based on the geometry of the locations of the source nodes and their
destination nodes and on the traffic demands between them, and thus can be readily evaluated.

This characterization is obtained by establishing that theunicast and multicast capacity regions of a
capacitated (wireline, noiseless) tree graph under routing have essentially the same scaling as that of the
original network. The leaf nodes of this tree graph correspond to the nodes in the wireless network, and
internal nodes of the tree graph correspond to hierarchically growing sets of nodes.

This equivalence suggests a three-layer communication architecture for achieving the entire balanced
unicast and multicast capacity regions (in the scaling sense). The top or routing layer establishes paths
from each of the source nodes to its destination (for unicast) or set of destinations (for multicast) over
the tree graph. The middle or cooperation layer provides this tree abstraction to the routing layer by
distributing the traffic among the corresponding set of nodes as a message travels up the tree graph, and
by concentrating the traffic on to the corresponding set of nodes as a message travels down the tree. The
bottom or physical layer implements this distribution and concentration of traffic over the wireless network.
This implementation depends on the path-loss exponent: Forlow path loss,α ∈ (2, 3], hierarchical relaying
is used, while for high path loss (α > 3), multi-hop communication is used.

This scheme also establishes that a separation based approach, in which the routing layer works
essentially independently of the physical layer, can achieve nearly the entire balanced unicast and multicast
capacity regions in the scaling sense. Thus, for balanced traffic, such techniques as network coding can
provide at most a small increase in the scaling.
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