
1

Algebraic Soft-Decision Decoding
of Hermitian Codes

Kwankyu Lee and Michael E. O’Sullivan

Abstract

An algebraic soft-decision decoder for Hermitian codes is presented. We apply Koetter and Vardy’s soft-decision
decoding framework, now well established for Reed-Solomon codes, to Hermitian codes. First we provide an
algebraic foundation for soft-decision decoding. Then we present an interpolation algorithm finding the Q-polynomial
that plays a key role in the decoding. With some simulation results, we compare performances of the algebraic soft-
decision decoders for Hermitian codes and Reed-Solomon codes, favorable to the former.

Index Terms

Hermitian codes, algebraic soft-decision decoding, interpolation algorithm, Gröbner bases.

I. INTRODUCTION

Sudan and Guruswami’s list decoding of Reed-Solomon codes [1], [2] has developed into algebraic soft-decision
decoding by Koetter and Vardy [3]. As Reed-Solomon codes are widely used in coding applications, algebraic
soft-decision decoding is regarded as one of the most important developments for Reed-Solomon codes. Hence
there have been many subsequent works to make the decoding method efficient and practical [4], [5], [6], [7], [8],
[9]. Engineers have proposed fast electronic circuits implementing the algebraic soft-decision decoder [10], [11],
[12]. One may say that the algebraic soft-decision decoding of Reed-Solomon codes is now in a mature state for
deployment in applications [13].

Reed-Solomon codes are the simplest algebraic geometry codes [14]. Therefore it is natural that the list decoding
of Reed-Solomon codes was soon extended to algebraic geometry codes by Shokrollahi and Wasserman [15] and
Guruswami and Sudan [2]. However, it seems that no algebraic geometry codes other than Reed-Solomon codes
have been considered for algebraic soft-decision decoding. One reason for this unbalanced situation is presumably
that the complexity of an algebraic soft-decision decoder for algebraic geometry codes would be prohibitively
huge as the complexity for Reed-Solomon codes is already very large. However, algebraic geometry codes have
the advantage that they are longer than Reed-Solomon codes over the alphabet of the same size, promising better
performance. We may also expect that once we have an explicit formulation of algebraic soft-decision decoding
for algebraic geometry codes, some clever ways to reduce the complexity to a practical level may be found, as has
happened for Reed-Solomon codes [4].

In this work, we present an algebraic soft-decision decoder for Hermitian codes. Hermitian codes are one of the
best studied algebraic geometry codes, and they are often regarded as the first candidate among algebraic geometry
codes that could compete with Reed-Solomon codes. To formulate an algebraic soft-decision decoder for Hermitian
codes, we basically follow the path set out by Koetter and Vardy for Reed-Solomon codes. Thus there are three
main steps of the decoding: the multiplicity assignment step, the interpolation step, and the root-finding step. For
the multiplicity assignment step and the root-finding step, we may use algorithms in [3] and [16], respectively.
Here we focus on the interpolation step, the goal of which is to construct the Q-polynomial whose roots give the
candidate codewords. As for mathematical contents, this work is an extension of our previous [17] and [18]. The
core contribution of the present work is an algorithm constructing a set of generators of a certain module from
which we extract the Q-polynomial using the Gröbner conversion algorithm given in [17].

K. Lee is with the Department of Mathematics, Chosun University, Gwangju 501-759, Korea (e-mail: kwankyu@chosun.ac.kr).
M. E. O’Sullivan is with the Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720, USA

(e-mail: mosulliv@math.sdsu.edu).
This work was supported by research funds from Chosun University, 2008.

ar
X

iv
:0

80
7.

49
95

v1
 [

cs
.I

T
]

 3
1

Ju
l 2

00
8

2

In Section 2, we review the definitions of basic concepts and the properties of Hermitian curves and codes. We
refer to [19] and [14] for the basic theory of algebraic curves and algebraic geometry codes, and [20] and [21]
for Gröbner bases and commutative algebra. In Section 3, we formulate the algebraic soft-decision decoding of
Hermitian codes. We present our interpolation algorithm in Section 4 and a complexity analysis of the decoding
algorithm in Section 5. In Section 6, we provide some simulation results of the algebraic soft-decision decoder. As
this work is an extension of [17], we omitted some proofs that can be found in that work but allowed some similar
materials included here for exposition purposes.

II. PRELIMINARIES

A. Hermitian curves

Let q be a prime power, and let F denote a finite field with q2 elements. The Hermitian curve H ⊂ A2
F is the

affine plane curve defined by the absolutely irreducible polynomial Y q + Y −Xq+1 over F. The coordinate ring
of H is the integral domain

R = F[X,Y]/〈Y q + Y −Xq+1〉 = F[x, y],

with x and y denoting the residue classes of X and Y , respectively. Note that every element of R can be written
uniquely as a polynomial of x and y with y-degree less than q, as we have yq + y− xq+1 = 0. So R is also a free
module of rank q over F[x]. The function field K(H) is the quotient field of R.

For each α ∈ F, there are exactly q elements β ∈ F such that TrF/Fq(β) = βq + β = αq+1. Therefore there
are q3 rational points P1, P2, . . . , Pn of H with n = q3, which can be grouped into q2 classes of q points with
the same x-coordinates. A rational point P of H is associated with a maximal ideal mP = {f ∈ R | f(P) = 0},
and the local ring OP of H at P is the localization of R at mP . For a nonzero f ∈ R, the valuation vP (f) is the
largest integer r such that f ∈ mr

P .
The projective closure of H is a smooth curve with a unique rational point P∞ at infinity. The functions x and

y on H have poles at P∞ of orders q and q + 1, respectively, that is, vP∞(x) = −q and vP∞(y) = −q − 1. The
genus of H is given by g = q(q− 1)/2. It is well known that the number of rational points of the curve H attains
the maximum value possible for the genus and the size of the base field.

B. Hermitian codes

For u ≥ 0, the F-linear space L(uP∞) = {f ∈ K(H) | (f) + uP∞ ≥ 0} has a basis consisting of xiyj for
0 ≤ i, 0 ≤ j ≤ q − 1, and qi+ (q + 1)j ≤ u. Therefore

R =
∞⋃
u=0

L(uP∞) =
⊕
0≤i

0≤j≤q−1

F · xiyj .

Recall that the Hamming space Fn is an F-linear space with the Hamming distance function d. For 1 ≤ i ≤ n,
let Pi = (αi, βi). The evaluation map ev : R→ Fn defined by

ϕ 7→ (ϕ(P1), ϕ(P2), . . . , ϕ(Pn))

is a linear map over F. We now fix a positive integer u. The Hermitian code Cu is defined to be the image of
L(uP∞) by the evaluation map. If u < n, then ev is injective on L(uP∞), and the dimension of Cu is equal to
dimF(L(uP∞)), which is u + 1 − g for u ≥ 2g − 1 by the Riemann-Roch theorem. Note also that the minimum
distance of Cu is at least n− u.

Define

hi = −
(xq

2 − x)(yq + y − βqi − βi)
(x− αi)(y − βi)

∈ R

for 1 ≤ i ≤ n. For a vector v = (v1, v2, . . . , vn) ∈ Fn, define

hv =
n∑
i=1

vihi.

We can easily prove that hi(Pj) = 1 if j = i, and 0 otherwise. Therefore ev(hv) = v for all v ∈ Fn.

3

Example 1. Let q = 2 and F4 = {0, 1, α, α2}. We consider the Hermitian curve H defined by Y 2 + Y +X3 over
F4. There are 8 rational points on H ,

(0, 0), (0, 1), (1, α), (1, α2), (α, α), (α, α2), (α2, α), (α2, α2).

Let u = 4. The linear space L(4P∞) is spanned by the basis {1, x, y, x2}. Hermitian code C4 is a linear code
over F4 of length 8 and dimension 4. We use the following generator matrix for encoding

G =

1 0 0 1 0 1 α2 α
0 1 0 1 0 1 α α2

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .
Note that the positions 1, 2, 3, 5 form an information set of G. Our message is (1, α2, 0, α), which is encoded into
the codeword

(1, α2, 0, α)G = (1, α2, 0, α, α, 0, 0, α).

The functions hi are as follows:

h1 = (x3 + 1)y + x3 + 1,

h2 = (x3 + 1)y,

h3 = (x3 + x2 + x)y + α2x3 + α2x2 + α2x,

h4 = (x3 + x2 + x)y + αx3 + αx2 + αx,

h5 = (x3 + αx2 + α2x)y + α2x3 + x2 + αx,

h6 = (x3 + αx2 + α2x)y + αx3 + α2x2 + x,

h7 = (x3 + α2x2 + αx)y + α2x3 + αx2 + x,

h8 = (x3 + α2x2 + αx)y + αx3 + x2 + α2x.

We will continue this example throughout.

C. Local multiplicity of curves on a surface

The smooth surface V = H ×A1
F has the coordinate ring A(V) = R⊗ F[z] = R[z]. The function field K(V) is

the quotient field of A(V). A rational point S of V is a pair (Pi, γ) with 1 ≤ i ≤ n and γ ∈ F, and is associated
with a maximal ideal mS = {f ∈ A(V) | f(S) = 0}. The local ring OS of V at S is the localization of A(V) at
mS . A nonzero function f ∈ A(V) defines a curve on the surface V . The multiplicity of f at a rational point S,
denoted multS(f), is the largest integer r such that f ∈ mr

S . We note the following properties of multiplicity on
the surface V . Let P be a rational point of H .
(i) If f ∈ R, then vP (f) = mult(P,γ)(f) for every γ ∈ F.

(ii) For f ∈ R, mult(P,γ)(z − f) = 1 if f(P) = γ, and 0 otherwise.
(iii) For f, g ∈ A(V), multS(fg) = multS(f) + multS(g) for every rational point S of V .

III. ALGEBRAIC SOFT-DECISION DECODING

Suppose that some codeword of Cu was sent through a noisy channel. The output of the channel is some
probabilistic information, for each location 1 ≤ i ≤ n, of the plausibility of each γ ∈ F. The multiplicity assignment
step translates the information to a doubly indexed list

M = [miγ | 1 ≤ i ≤ n, γ ∈ F]

of nonnegative integers, where we regard miγ as assigned to the point (Pi, γ) ∈ H × A1
F. The integer value miγ

would be chosen roughly proportional to the plausibility of the symbol γ according to the channel output. We call
M the multiplicity matrix.

Corresponding to M , define

IM = {f ∈ R[z] | mult(Pi,γ)(f) ≥ miγ for 1 ≤ i ≤ n, γ ∈ F},

4

an ideal of R[z]. We call IM the interpolation ideal. Note that by definition

IM =
⋂

1≤i≤n,γ∈F
m
miγ

(Pi,γ)
.

For a vector v = (v1, v2, . . . , vn) ∈ Fn, the score of v with respect to M is defined as

scoreM (v) =
n∑
i=1

mivi

Hence scoreM (v) is also the sum of the multiplicities of the points through which the curve z − hv passes. The
task of the algebraic soft-decision decoder is to find the codeword that has the best score with respect to M . This
codeword is presumed to be the most likely to have been sent, given the channel output.

Example 2 (continued). Suppose that the codeword in the previous example is sent through a noisy channel and
received data gives rise to the matrix of the plausibilities of symbols

0.604 0.001 0.171 0.001 0.567 0.949 0.997 0.486
0.396 0.158 0.760 0.000 0.103 0.010 0.003 0.022
0.000 0.005 0.013 0.985 0.279 0.041 0.000 0.470
0.000 0.836 0.056 0.014 0.051 0.000 0.000 0.022

which is then translated to the multiplicity matrix

M =

3 0 0 0 2 4 5 2
2 0 3 0 0 0 0 0
0 0 0 5 1 0 0 2
0 4 0 0 0 0 0 0

 ,
where the rows are indexed by γ = 0, 1, α, α2 from top to bottom. Note that neither of the vectors (0, α2, 1, α, 0, 0, 0, 0)
and (0, α2, 1, α, 0, 0, 0, α) that have the best score with respect to M is a codeword of C4.

Lemma 1. Let M = [miγ] be the multiplicity matrix. Then

dimFR[z]/IM =
n∑
i=1

∑
γ∈F

(
miγ + 1

2

)
.

Proof: Since IM is a zero-dimensional ideal,

dimFR[z]/IM =
n∑
i=1

∑
γ∈F

dimFO(Pi,γ)/IMO(Pi,γ)

=
n∑
i=1

∑
γ∈F

dimF Ô(Pi,γ)/IM Ô(Pi,γ),

where Ô denotes the completion of the local ring. If t is a uniformizing parameter of Pi and s = z − γ, then
Ô(Pi,γ) is isomorphic to F[[s, t]]. So Ô(Pi,γ)/IM Ô(Pi,γ) is isomorphic to F[[s, t]]/(s, t)miγ . The conclusion follows.

Lemma 2. Let µ ∈ R with v = ev(µ). Then

dimFR[z]/(IM + 〈z − µ〉) = score(v).

Proof: As in the previous proof,

dimFR[z]/(IM + 〈z − µ〉) =
n∑
i=1

∑
γ∈F

dimF Ô(Pi,γ)/(IM + 〈z − µ〉)Ô(Pi,γ).

Let t be a uniformizing parameter of Pi and s = z − γ again. We find that if µ(Pi) = γ, then Ô(Pi,γ)/(IM +
〈z − µ〉)Ô(Pi,γ) is isomorphic to F[[s, t]]/(〈s, t〉miγ + 〈s− tu〉) = F[[t]]/〈tmiγ 〉, but collapses to the zero ring
otherwise. Here u is some unit in Ô(Pi,γ). The conclusion follows.

5

For f = ψaz
a + · · ·+ ψ1z + ψ0 ∈ R[z] with ψi ∈ R, the u-weighted degree of f is defined as

degu(f) = max
0≤i≤a

(−vP∞(ψi) + ui).

For f ∈ R[z] and ϕ ∈ R, denote by f(ϕ) the element in R that is obtained by substituting z with ϕ in f . Observe
that if ϕ ∈ L(uP∞), then −vP∞(f(ϕ)) ≤ degu(f). The algebraic soft-decision decoding of Hermitian codes rests
upon the following

Proposition 3. Suppose f ∈ IM is nonzero. If a codeword c = ev(µ) of Cu with µ ∈ L(uP∞) satisfies

scoreM (c) > degu(f),

then f(µ) = 0.

Proof: Assume that f(µ) is not zero in R. Then

degu(f) ≥ −vP∞(f(µ))

= dimF(R/f(µ))

= dimF(R[z]/〈f, z − µ〉)
≥ dimF(R[z]/(IM + 〈z − µ〉) = score(c).

For the first equality, see Lemma 5 in [17]. This implies that if scoreM (c) > degu(f), we must have f(µ) = 0.
In the interpolation step, the decoder picks a polynomial f ∈ IM . Then by Proposition 3, all codewords whose

score with respect to M is big enough can be obtained from the roots of f over R. Thus the decoder can find
among the candidates the codeword that has the best score with respect to M . It should be noted that for the
best performance of algebraic soft-decision decoding, it is crucial for the decoder to find a polynomial in IM with
the smallest u-weighted degree. Having the same weighted degree, the one with smaller degree in z is preferred
because this reduces the work of the root-finding step. Here the idea of Gröbner bases is relevant.

We call the elements in the set

Ω = {xiyjzk | 0 ≤ i, 0 ≤ j ≤ q − 1, 0 ≤ k}

monomials of R[z]. Recall that every element of R[z] can be written as a unique linear combination over F of
monomials of R[z]. Note that

degu(xiyjzk) = qi+ (q + 1)j + uk.

For two monomials xi1yj1zk1 , xi2yj2zk2 in Ω, we declare

xi1yj1zk1 >u x
i2yj2zk2

if degu(xi1yj1zk1) > degu(xi2yj2zk2) or k1 > k2 when tied. It is easy to verify that >u is a total order on Ω.
Notions such as the leading term and the leading coefficient of f ∈ R[z] are defined in the usual way. For f ∈ R[z],
the z-degree of f , written z-deg(f), is the degree of f as a polynomial in z over R.

Now we define the Q-polynomial of IM as the unique, up to a constant multiple, element in IM with the smallest
leading term with respect to >u. By the definition, the Q-polynomial is an element of IM with the smallest u-
weighted degree, and moreover it has the smallest z-degree among such elements. Therefore we may say that the
Q-polynomial is an optimal choice for the interpolation step.

The last step of algebraic soft-decision decoding is to compute roots of the Q-polynomial over R or the function
field K(H). Only those roots that belong to L(uP∞) yield candidate codewords. If the list of the candidate
codewords is empty, the decoder may declare decoding failure or resort to hard-decision decoding directly from
the channel output. If there are several codewords in the list, then the decoder chooses the codeword that has the
best score, and outputs the received message by projecting the codeword on the information set.

Example 3 (continued). The Q-polynomial of IM
Q = z5 + (α2x3 + αxy + x2 + αy)z4 + (αx4y + α2x5 + x3 + xy + x2 + y + α2x+ 1)z3

+ (α2x6y + αx7 + α2x5y + α2x6 + α2x4y + α2x5 + α2x3y + x4 + x3 + αxy + α2x)z2

+ (x8y + α2x9 + αx8 + α2x7 + x6 + αx4y + x5 + αx3y + αx4 + α2x3 + α2xy + αx2 + α2y)z

+ α2x11 + x10 + x8y + αx9 + · · ·+ α2x2y + x3 + α2xy + y

(1)

6

is obtained by the interpolation algorithm in the next section. It turns out the Q-polynomial has the factorization

Q =
(
z + x2 + α2y + x

)(
z + α2x2 + αy + x+ 1

)(
z3 + (α2x3 + αxy + α2x2 + α2y + 1)z2

+ (αx4y + αx5 + αx2y + αx3 + αy + αx)z + x7 + α2x6 + x3y + x4 + αx2y + α2x3 + αxy + α2y
)
.

Therefore a root-finding algorithm will output two roots. The first root x2 + α2y + x gives the codeword

c1 = (0, α2, 1, α, 0, α2, 0, α2)

whose score is 22 while the second root α2x2 + αy + x+ 1 gives the codeword

c2 = (1, α2, 0, α, α, 0, 0, α)

whose score is 23. Therefore the decoder chooses c2, and the received message is

(1, α2, 0, α),

which is the correct sent message.

We will need upper bounds on the u-weighted degree and the z-degree of the Q-polynomial of IM . Let Q denote
the Q-polynomial of IM .

Proposition 4. If A ⊂ Ω is a finite set of monomials of R[z] such that

|A| >
n∑
i=1

∑
γ∈F

(
miγ + 1

2

)
,

then there is a set of coefficients cϕ ∈ F such that 0 6=
∑

ϕ∈A cϕϕ ∈ IM .

Proof: Lemma 1 implies that monomials in A are linearly dependent over F in R[z]/IM . On the other hand,
they are linearly independent over F in R[z].

In a table, we arrange monomials of R[z] such that the monomials in the same column have the same u-weighted
degree and the monomials in the same row have the same z-degree. Let weighted degrees increase from left to
right and z-degrees from bottom to top.

Example 4 (continued). Note that degu(xiyjzk) = 2i+ 3j + 4k. So we have the following table

3 z3 © · · ·
2 z2 © xz2 yz2 x2z2 xyz · · ·
1 z © xz yz x2z xyz x3z x2yz x4z x3yz · · ·
0 1 © x y x2 xy x3 x2y x4 x3y x5 x4y x6 x5y · · ·

0 1 2 3 4 5 6 7 8 9 10 11 12 13

The symbol © indicates that there is no monomial for the position.

The table of monomials of R[z] suggests the following formula. Let G(i) = 0 if i is a Weierstrass gap at P∞,
and 1 otherwise. Note that G(i) = 1 for i ≥ 2g. The number of monomials with u-weighted degree i is

C(i) =
bi/uc∑
j=0

G(i− uj).

Let w be the smallest integer such that

N = 1 +
n∑
i=1

∑
γ∈F

(
miγ + 1

2

)
≤

w∑
i=0

C(i).

Let l = bw/uc. Then the u-weighted degrees and the z-degrees of monomials up to the N th monomial are not
greater than w and l, respectively. Now Proposition 4 implies degu(Q) ≤ w and z-deg(Q) ≤ l.

7

Example 5 (continued). G(0) = 1, G(1) = 0, and G(i) = 1 for i ≥ 2 since g = 1. So we have

i 0 1 2 3 4 5 · · · 21 22 23 24 25 · · ·
C(i) 1 0 1 1 2 1 · · · 5 6 6 7 6 · · ·∑i
j=0C(j) 1 1 2 3 5 6 · · · 66 72 78 85 91 · · ·

For our M , N = 76. Therefore w = 23, l = 5. Hence degu(Q) ≤ 23 and z-deg(Q) ≤ 5.

IV. AN INTERPOLATION ALGORITHM

Let l be a positive integer such that z-deg(Q) ≤ l. Define

R[z]l = {f ∈ R[z] | z-deg(f) ≤ l}.

Note that R[z]l is a free module over R of rank l + 1 with a free basis 1, z, . . . , zl. Define

IM,l = IM ∩R[z]l.

Clearly IM,l is a submodule of R[z]l over R.
Recall that the ring R = F[x, y] is in turn a free module over F[x] of rank q, with a free basis {1, y, . . . , yq−1}. So

we may view R[z]l as a free module of rank q(l+ 1) over F[x] with a free basis {yjzi | 0 ≤ i ≤ l, 0 ≤ j ≤ q− 1}.
The elements of Ω ∩ R[z]l will be called monomials of R[z]l. It is clear that the total order >u is precisely a
monomial order on the free module R[z]l over F[x]. We also view IM,l as a submodule of the free module R[z]l
over F[x]. It is immediate that the Q-polynomial of IM is also the element of IM,l with the smallest leading term
with respect to >u. As a consequence of the definition of Gröbner bases, Q occurs as the smallest element in any
Gröbner basis of the module IM,l over F[x] with respect to >u.

A. Generators of the module IM,l over R

We begin with

Proposition 5. Let M = [miγ] be a doubly indexed list of nonnegative integers. For each i = 1, 2, . . . , n, let
ni = maxγ∈Fmiγ , and let N = [ni]. For each i with ni > 0, let γi be such that miγi = ni. Let M ′ = [m′iγ] where
m′iγ = miγ for γ 6= γi and m′iγi = miγi − 1. Then as a module over R,

IM = (z − h)IM ′ + JN

where JN = {f ∈ R | vPi(f) ≥ ni} and h ∈ R is such that h(Pi) = γi.

Proof: By the properties (i), (ii), (iii) of local multiplicity, it is clear that (z−h)IM ′ +JN ⊂ IM . To show the
reverse inclusion, let f ∈ IM . We can write f = (z − h)g+ r for some g ∈ R[z] and r ∈ R. Let S = (Pi, γi). If t
is a uniformizing parameter of Pi, then t and z−γi form a system of parameters of OS . Recall that the completion
ÔS is isomorphic to the power series ring F[[z − γi, t]]. Now if vPi(r) = c, then in ÔS ,

f = (z − γi)g + tcu

for some unit u in ÔS . Since f ∈ 〈z − γi, t〉ni and z − γi, t are algebraically independent over F, we see that
c ≥ ni. Then as this is true for all 1 ≤ i ≤ n, it follows that r ∈ JN . Hence f − r = (z− h)g ∈ IM . Again by the
properties of local multiplicity, g ∈ IM ′ . Thus we showed the reverse inclusion.

Recall the multiplicity matrix M = [miγ]. Let lmax = maxi{
∑

γ∈Fmiγ}. Initially let m(0)
iγ = miγ and n

(0)
i =

maxγ∈F{miγ}. Proceed inductively for s = 0, 1, . . . , lmax − 1. Choose γi such that m(s)
iγi

= n
(s)
i if n(s)

i > 0. Let
h(s) ∈ R such that h(s)(Pi) = γi. Let

m
(s+1)
iγ =

{
m

(s)
iγ − 1 if γ = γi,

m
(s)
iγ if γ 6= γi,

n
(s+1)
i = max

γ∈F
m

(s+1)
iγ .

8

Now let M (s) = [m(s)
iγ] and N (s) = [n(s)

i]. Observe m(lmax)
iγ = 0 for all i, γ, and therefore IM (lmax) = R[z]. By

induction, we get

Corollary 6. For 0 ≤ l,

IM,l =
l∑

s=0

JN (s)

∏
0≤r<s

(z − h(r))

as a module over R. Here JN (s) = R and h(s) = 0 for s ≥ lmax.

B. Computing generators of the module IM,l over F[x]

We may view the ideal JN = {f ∈ R | vPi(f) ≥ ni} as a module over F[x]. Indeed JN is a free module of
rank q over F[x]. Thus we obtain

Algorithm B. The input is an n × q2 matrix M = [miγ] of nonnegative integers. The output is the generators
{gs,t | 0 ≤ s ≤ l, 0 ≤ t ≤ q − 1} of IM,l as a module over F[x]. Repeat steps B1 and B2 for s = 0, 1, . . . , l.
B1. Let ni = maxγ∈Fmiγ for 1 ≤ i ≤ n. Let L = {1 ≤ i ≤ n | ni ≥ 1}. For each i ∈ L, let γi ∈ F be such that

ni = miγi . Set
gs,t ← ηt

∏
0≤r<s

(z − h(r)), (2)

for 0 ≤ t ≤ q − 1, where {η0, η1, . . . , ηq−1} is a set of generators of JN (s) = {f ∈ R | vPi(f) ≥ ni} as a
module over F[x]. When L is empty, JN = R so ηt = yt.

B2. Set
h(s) ←

∑
i∈L

γihi

and for 1 ≤ i ≤ n, γ ∈ F, set

miγ ←

{
miγ − 1 if γ = γi,
miγ otherwise.

Notice that if we compute ηt by the method in the following subsection, gs,t has leading term ytzs with respect
to lex order x < y < z.

Example 6 (continued). We continue from Example 2. We show the first few steps to compute a set of generators
of IM,l with l = 5 using Algorithm B. Initially s = 0. Then

n1 = 3, n2 = 4, n3 = 3, n4 = 5, n5 = 2, n6 = 4, n7 = 5, n8 = 2.

As we compute in Example 7,

JN (0) = 〈x18 + αx17 + α2x16 + x6 + αx5 + α2x4, (x10 + x9 + x4 + x3)y + α2x17 + x16 + · · ·+ x3〉

as a module over F[x]. So we set

g0,0 = x18 + αx17 + α2x16 + x6 + αx5 + α2x4,

g0,1 = (x10 + x9 + x4 + x3)y + α2x17 + x16 + · · ·+ x3.

In step B2, we compute (setting γ8 = 0 arbitrarily)

h(0) = 0h1 + α2h2 + 1h3 + αh4 + 0h5 + 0h6 + 0h7 + 0h8

= α2x2y + α2xy + α2y.

Now the matrix of miγ is
2 0 0 0 1 3 4 1
2 0 2 0 0 0 0 0
0 0 0 4 1 0 0 2
0 3 0 0 0 0 0 0

 .

9

Going on to s = 1, we have

n1 = 2, n2 = 3, n3 = 2, n4 = 4, n5 = 1, n6 = 3, n7 = 4, n8 = 2.

Then

JN (1) = 〈x14 + αx13 + α2x12 + · · ·+ αx4 + α2x3, αx13 + α2x12 + α2x11 + · · ·+ αx3 + α2x2〉

as a module over F[x]. Hence

g1,0 = (x14 + αx13 + α2x12 + · · ·+ αx4 + α2x3)z + (α2x16 + αx15 + α2x4 + αx3)y

g1,1 = (x7 + αx6 + α2x5 + x4 + αx3 + α2x2)yz

+ (αx13 + α2x12 + α2x11 + · · ·+ αx3 + α2x2)z

+ (x15 + α2x14 + x13 + x10 + x9 + α2x8 + x7 + x4)y

+ α2x12 + αx11 + α2x6 + αx5

Now h(1) = αx3y + αx2y + α2x3 + αx2 + α2y + x and the matrix of miγ is
1 0 0 0 0 2 3 1
2 0 1 0 0 0 0 0
0 0 0 3 1 0 0 1
0 2 0 0 0 0 0 0

 .
Proceeding this way until s = 5, we obtain a set of generators of the module IM,l. We arrange the coefficients
(polynomials in x) of the generators in the following matrix

x18 + · · · 0 0 0 · · · 0 0 0 0
α2x17 + · · · x10 + · · · 0 0 · · · 0 0 0 0

0 α2x16 + · · · x14 + · · · 0 · · · 0 0 0 0
α2x12 + · · · x15 + · · · αx13 + · · · x7 + · · · · · · 0 0 0 0
x18 + · · · α2x15 + · · · α2x13 + · · · αx13 + · · · · · · 0 0 0 0
αx17 + · · · x14 + · · · x12 + · · · α2x12 + · · · · · · 0 0 0 0
αx17 + · · · α2x17 + · · · x15 + · · · α2x12 + · · · · · · 0 0 0 0
αx16 + · · · αx16 + · · · α2x14 + · · · α2x11 + · · · · · · 0 0 0 0
αx20 + · · · α2x17 + · · · αx15 + · · · α2x15 + · · · · · · x3 + · · · 0 0 0
x18 + · · · αx17 + · · · α2x15 + · · · αx13 + · · · · · · α2x 1 0 0
x20 + · · · x20 + · · · αx18 + · · · αx15 + · · · · · · x3 + · · · x3 + αx 1 0
x23 + · · · x19 + · · · αx18 + · · · αx18 + · · · · · · x6 + αx4 αx2 + x 0 1

(3)

where the rows are g0,0, g0,1, g1,0, g1,1, . . . , g5,0, g5,1 in this order, and the columns are coefficients of 1, y, z, yz,
z2, yz2, . . . , z5, yz5 in this order.

C. Computing generators of JN
We now tackle the task of computing a set of generators of JN as a module over F[x]. For this, we switch to

a different indexing of the rational points of H by grouping the q3 rational points into q2 classes with the same
x-coordinates. Thus the rational points are Pa,b = (αa, βa,b) for 1 ≤ a ≤ q2 and 1 ≤ b ≤ q. Let µa,b = ni if Pa,b
is the point Pi. Also assume that for each 1 ≤ a ≤ q2, we have arranged the index b such that µa,b are put in
decreasing order,

µa,1 ≥ µa,2 ≥ · · · ≥ µa,q.

With the new notations,

JN = {f ∈ R | vPa,b(f) ≥ µa,b for 1 ≤ a ≤ q2 and 1 ≤ b ≤ q}.

Proposition 7. For 1 ≤ b < c ≤ q, suppose that fb,c ∈ F[x] satisfy

vPa,b(y − fb,c) ≥ µa,b − µa,c

10

for all 1 ≤ a ≤ q2. Define for c = 1, 2, . . . , q,

gc =
∏

1≤a≤q2
(x− αa)µa,c

∏
1≤b<c

(y − fb,c). (4)

Then JN = 〈g1, g2, . . . , gq〉 as a module over F[x].

Proof: Let 1 ≤ c ≤ q. Then for 1 ≤ a ≤ q2 and 1 ≤ b ≤ q,

vPa,b(gc) = µa,cvPa,b(x− αa) +
∑

1≤b′<c
vPa,b(y − fb′,c)

≥ µa,c + vPa,b(y − fb,c) ≥ µa,b.

Therefore gc ∈ JN . Recall that we may view R as a free module of rank q over F[x]. Let J be the submodule of
R generated by g1, g2, . . . , gq over F[x]. Then R/J is isomorphic to⊕

1≤c≤q
F[x]/〈

∏
1≤a≤q2

(x− αa)µa,c〉.

Therefore
dimFR/J =

∑
1≤c≤q

dimF F[x]/〈
∏

1≤a≤q2
(x− αa)µa,c〉 =

∑
1≤c≤q

∑
1≤a≤q2

µa,c.

On the other hand, as JN =
⋂
Pa,b

m
µa,b
Pa,b

by its definition, we have

dimFR/JN =
∑
Pa,b

dimFOPa,b/m
µa,b
Pa,b

=
∑

1≤a≤q2,1≤b≤q
µa,b.

Hence dimFR/J = dimFR/JN . Together with J ⊂ JN , this implies that J = JN .

Example 7 (continued). We compute generators g1, g2 of JN (0) . We arrange the points as

P1,1 = P2, P1,2 = P1,

P2,1 = P4, P2,2 = P3,

P3,1 = P6, P3,2 = P5,

P4,1 = P7, P4,2 = P8,

so that µa,b are in decreasing order,

µ1,1 = 4, µ1,2 = 3,

µ2,1 = 5, µ2,2 = 3,

µ3,1 = 4, µ3,2 = 2,

µ4,1 = 5, µ4,2 = 2.

We will see in the next subsection that

f1,2 = α2x7 + αx6 + αx4 + x3 + α2x2 + y + α2x+ 1

satisfies

vP1,1(y − f1,2) ≥ 1,

vP2,1(y − f1,2) ≥ 2,

vP3,1(y − f1,2) ≥ 2,

vP4,1(y − f1,2) ≥ 3.

Therefore

g1 = (x− 0)4(x− 1)5(x− α)4(x− α2)5 = x18 + αx17 + α2x16 + x6 + αx5 + α2x4,

g2 = (x− 0)3(x− 1)3(x− α)2(x− α2)2(y − f1,2)

11

= (x10 + x9 + x4 + x3)y + α2x17 + x16 + αx15 + αx14 + α2x13 + αx12 + α2x11

+ α2x10 + α2x9 + αx8 + α2x7 + αx6 + αx4 + x3

generates JN (0) as a module over F[x].

D. Computing y − fb,c
As y = xq+1−yq, we see that y =

∑∞
i=0(−1)ix(q+1)qi in the completion of the local ring at (0, 0). On the other

hand, if (α, β) is a rational point of H , then x 7→ x− α, y 7→ y − αq(x− α)− β defines an automorphism of H
taking (α, β) to (0, 0). Hence at (α, β), we have

y = β + αq(x− α) +
∞∑
i=0

(−1)i(x− α)(q+1)qi . (5)

Now we consider the following problem. Suppose that Qi = (αi, βi), 1 ≤ i ≤ r are rational points on H with
distinct αi. Given some positive integers µi for 1 ≤ i ≤ r. We want to construct y − f with f ∈ F[x] such that
vQi(y − f) ≥ µi for 1 ≤ i ≤ r. There are at least two ways to do this.

First method: For 1 ≤ i ≤ r, let wi be the truncation of the series expansion (5) of y at (αi, βi) modulo
(x− α)µi , and let si, ti ∈ F[x] be defined by

si =
r∏
j=1
j 6=i

(x− αj)µj and siti ≡ 1 mod (x− αi)µi .

Then y −
∑r

i=1wisiti satisfies the required conditions by the Chinese remainder theorem.
Second method: A somewhat more explicit way is as follows. If f(x) =

∑N−1
i=0 aix

i ∈ F[x], then the condition
vP (y − f) ≥ µ is equivalent to the following linear conditions on the coefficients ai,

N−1∑
i=0

(
i

j

)
αi−jai = cj

for j = 0, 1, . . . , µ − 1, where cj = 0 except c0 = β, c1 = αq, c(q+1)qi = (−1)i for i ≥ 0. Now let N =
µ1 + µ2 + · · · + µr. Then the required f can be determined by solving the linear system vA = C for the vector
v = (a0, a1, a2, . . . , aN−1) where C is a certain vector of length N and A is a square matrix of size N obtained
by the horizontal join of N × µk matrices

Ak =
[(

i

j

)
αi−jk

]
0≤i≤N−1,0≤j≤µk−1

for 1 ≤ k ≤ r. The matrix A is called a confluent Vandermonde matrix in the literature, and is known to be invertible
(actually the determinant is

∏
i,j(αi − αj)µiµj [22], [23]). Therefore the linear system has a unique solution.

Example 8 (continued). Let us compute f1,2 in the previous example by the second method. Here N = 1+2+2+3 =
8. If f1,2(x) =

∑7
i=0 aix

i, then (a0, a1, . . . , a7)A = C where

A =

1 1 0 1 0 1 0 0
0 1 1 α 1 α2 1 0
0 1 0 α2 0 α 0 1
0 1 1 1 α2 1 α α2

0 1 0 α 0 α2 0 0
0 1 1 α2 α α α2 0
0 1 0 1 0 1 0 α2

0 1 1 α 1 α2 1 α

and C = (1, α2, 1, α2, α2, α, α, 0). The solution of this linear system was given in the previous subsection.

12

E. Converting to a Gröbner basis to pick up the Q-polynomial

For this task, we use the Gröbner conversion algorithm in [17] that converts a set of generators of a submodule
of F[x]N to a module Gröbner basis with respect to a special weighted monomial order. We review the algorithm
below.

Let T = {(i, j) | 0 ≤ i ≤ l, 0 ≤ j ≤ q− 1}. Tuples in T are ordered lexicographically such that (0, 0) is the first
tuple in T and the successor of (i, j) is (i, j + 1) if j < q − 1 or (i+ 1, 0) if j = q − 1. Thus {yjzi | (i, j) ∈ T}
is a basis for R[z]l as an F[x]-module and the weight of the basis element yjzi is ui + (q + 1)j. The index of
f ∈ R[z]l is defined to be the largest tuple (i, j) such that the coefficient of yjzi is nonzero. In particular, if the
leading term of f ∈ R[z]l is xiyjzk with respect to >u, then ind(lt(f)) = (k, j). Note that ind(gi,j) = (i, j) for
the generators gi,j of IM,l computed by Algorithm B.

Algorithm I. The algorithm finds the element of IM,l with the smallest leading term. Initially set gi,j to be the
initial set of generators of the module IM,l computed by Algorithm B. Let

gi,j =
∑

(i′,j′)∈T

ai,j,i′,j′y
j′zi

′

during the execution of the algorithm. For r = (r1, r2) and s = (s1, s2) in T , we abbreviate ar,s = ar1,r2,s1,s2 .
I1. Set r ← (0, 0).
I2. Set r to the successor of r. If r ∈ T , then proceed; otherwise go to step I6.
I3. Set s← ind(lt(gr)). If s = r, then go to step I2.
I4. Set d← deg(ar,s)− deg(as,s) and c← lc(ar,s)lc(as,s)−1.
I5. If d ≥ 0, then set

gr ← gr − cxdgs.

If d < 0, then set, storing gs in a temporary variable,

gs ← gr, gr ← x−dgr − cgs.

Go back to step I3.
I6. Output gi,j with the smallest leading term, and the algorithm terminates.

Example 9 (continued). Algorithm I converts the initial basis given in (3) to a Gröbner basis with respect to the
order >u. The computed Gröbner basis is

αx10 + · · · α2x8 + · · · αx7 + · · · x5 + · · · · · · 0 0 0 0
x10 + · · · αx9 + · · · αx8 + · · · αx6 + · · · · · · 0 0 0 0
αx10 + · · · αx8 + · · · α2x8 + · · · x6 + · · · · · · 0 0 0 0
x8 + · · · α2x8 + · · · x7 + · · · x6 + · · · · · · 0 0 0 0
x9 + · · · x7 + · · · x6 + · · · x5 + · · · · · · 0 0 0 0
x9 + · · · α2x8 + · · · αx7 + · · · αx6 + · · · · · · 0 0 0 0
αx8 + · · · αx6 + αx3 α2x7 + · · · α2x5 + · · · · · · 0 0 0 0
x8 + · · · x6 + · · · α2x5 + · · · α2x5 + · · · · · · 1 0 0 0
α2x9 + · · · α2x7 + · · · x7 + · · · αx5 + · · · · · · x 0 0 0
x9 + · · · αx7 + · · · αx7 + · · · x6 + · · · · · · 0 1 0 0
αx10 + · · · αx8 + · · · x8 + · · · αx6 + · · · · · · α2x2 + α2x α2 1 0
α2x11 + · · · x10 + · · · αx9 + · · · x8 + · · · · · · α2x3 x2 + · · · 0 1

.

The twelve rows represent the polynomials in the Gröbner basis of the module IM,l over F[x]. Comparing the weights
of the leading coefficients of the polynomials, which lie on the diagonal, we find that the polynomial represented
by the eleventh row is the required Q-polynomial of the ideal IM , given explicitly in Example 3 equation (1).

13

V. COMPLEXITY ANALYSIS

Elements of R can be written uniquely as polynomials in y of degree less than q with coefficients in F[x]. We
assume that for computations in R, we use this representation of elements of R. Also we think of degx(f) and
degy(f) for f ∈ R in this representation. Note that a straightforward way of multiplying two elements f, g of R
takes O(q2ab) multiplications on F and that degx(fg) ≤ a+ b+ q + 1 if a = degx(f) and b = degx(g).

First we consider computing f ∈ F[x] satisfying vPi(y − f) ≥ µi for 1 ≤ i ≤ r as in Section IV-D. This
computation takes O(N3) multiplications on F where N = µ1 + µ2 + · · ·+ µr, if we use Gaussian elimination to
solve the linear system. Note also degx(f) ≤ N − 1.

Next we consider computing gc according to Proposition 7 in Section IV-C. The first product π1 on the right
side of (4) has at most lq2 linear factors. Hence π1 can be computed with O(l2q4) multiplications on F. Note
degx(π1) ≤ lq2. On the other hand, as degx(fb,c) < lq2, the second product π2 can be computed with O(c2l2q4)
multiplications on F. Note degy(π2) ≤ c − 1 and degx(π2) ≤ (c − 1)lq2. Then π1 and π2 can be multiplied
with O(c2l2q4) multiplications on F. Hence, in total, computing gc takes O(c2l2q4) multiplications on F. Note
degx(gc) ≤ clq2 and degy(gc) ≤ c− 1.

Now we consider computations in steps B2 and B3 of Algorithm B in Section IV-A. Fix s. Computing ηt
(= gt+1), as shown above, takes O((t + 1)2l2q4) multiplications on F for each t = 0, 1, . . . , q − 1. Computing
h(s) can be done with O(nq2) multiplications on F. Note degx(h(s)) ≤ q2 − 1. Let π(s) denote the product of
the right side in (2). It is easy to verify degz(π(s)) = s and degx(π(s)) ≤ s(q2 − 1) + (s − 1)(q + 1) if s ≥ 1.
So computing gs,t = ηtπ

(s) takes O(s2tlq6) multiplications on F. Note degx(gs,t) ≤ tlq2 + s(q2 + q). Computing
π(s+1) = π(s)(z − h(s)) takes O(s2q6) multiplications on F.

Summing up, an execution of Algorithm B takes

l∑
s=0

(
O(nq2) +O(s2q6) +

q−1∑
t=0

O((t+ 1)2l2q4) +
q−1∑
t=0

O(s2tlq6)

)

=
l∑

s=0

(
O(s2q6) +O(l2q7) +O(s2lq8)

)
= O(l3q6) +O(l3q7) +O(l4q8)

= O(l4q8)

multiplications on F. Lastly noting degu(gs,t) = O(lq4) and using a result in [17], we see that an execution of
Algorithm I takes O(l5q10) multiplications on F. Therefore the algebraic soft-decision decoder of Hermitian codes
can be implemented in a way that takes O(l5q10) = O(l5n3+1/3) multiplications on F.

VI. SIMULATION RESULTS

We implemented the algebraic soft-decision decoder (SDD) for Hermitian codes in software. In this section,
we present some simulation results that show the performance of the algebraic soft-decision decode for half-rate
Hermitian codes.

First we describe the general setup of our simulations. We assume the AWGN channel. For QPSK and QAM
modulations, the signal points correspond one-to-one with the symbols in the finite field over which the code is
defined, and the posterior probabilities of the symbols are simply set to those of the corresponding signal points. For
BPSK, each of the symbols correspond with a bit sequence, and the posterior probabilities of the symbols are set
to the products of the posterior probabilities of the bits. Koetter and Vardy’s multiplicity assignment algorithm [3]
is used to translate the posterior probabilities to the values of the multiplicity matrix. The multiplicity assignment
algorithm accepts a parameter L that limits the z-degree of the Q-polynomial, thereby the list size of the candidate
codewords to at most L. From the multiplicity matrix, our interpolation algorithm finds the Q-polynomial. Then
Wu and Siegel’s root-finding algorithm [16] is used to compute the roots of the Q-polynomial. The list of candidate
codewords is then formed from the roots. If the list is empty, then the decoder simply output the message part
of the received vector determined by hard-decision directly from the posterior probabilities of the symbols. If the
list is not empty, the decoder outputs the message from the codeword that has the best score with respect to the
multiplicity matrix.

14

2 3 4 5 6 7 8 9 10

100

10−1

10−2

10−3

10−4

10−5

10−6

BER of Uncoded QPSK
FER of Hermitian [8,4] algebraic SDD for L = 5
BER of Hermitian [8,4] algebraic SDD for L = 5

Eb/N0 in dB

E
rr

or
R

at
e

Fig. 1. Performance of algebraic SDD of [8, 4] Hermitian code over F4 with QPSK modulation.

A. [8, 4] Hermitian code with QPSK

The smallest field over which Hermitian codes are defined is F4 and the length of these codes is 8. The length
is extremely small, and it is perhaps unrealistic to expect the codes to be used in practice. However the codes are
amenable for simulations with somewhat larger L. Figure 1 show the performance of the half-rate [8, 4] Hermitian
code with QPSK. The example used in previous sections was sampled from this simulation with SNR 2 and L = 5.

B. [64, 32] Hermitian code with BPSK

Figures 2 and 3 show the performance of [64, 32] Hermitian code with BPSK modulation. For comparison, the
figures also show the performance of the half-rate [16, 8] Reed-Solomon code. Observe that the performance curve
of Hermitian code more steeply decrease than that of Reed-Solomon code, and from around 5 dB, the Hermitian
code outperforms the Reed-Solomon code.

C. [64, 32] Hermitian code with 16-QAM

Figures 4 and 5 also show that the Hermitian code outperforms the Reed-Solomon code with 16-QAM modulation,
from around 8 dB onward.

VII. CONCLUSION

We presented an algebraic soft-decision decoder for Hermitian codes. Software simulations show that Hermitian
codes perform better than Reed-Solomon codes for algebraic soft-decision decoding, as expected. However, for
the decoder to be really practical, reduction of the computational complexity remains an important problem. One
promising avenue is to generalize the idea of complexity reduction for Reed-Solomon codes in [9]. Designing
efficient electric circuits implementing the decoder is of course an issue to explore.

The extent of our computer simulations of the decoding algorithm was limited by our computing resources. It
would be good to have analytic results about the performance of the decoding algorithm. There have been several
analytic performance analyses for the algebraic soft-decision decoding of Reed-Solomon codes [8]. Similar analyses
may be done for Hermitian codes.

Our description of the decoding algorithm is interwoven with the particular structure of Hermitian codes. However,
the underlying principle of the decoding algorithm seems to apply to a wider class of algebraic geometry codes.
In particular, plane algebraic curves with one point at infinity are immediate candidates. We leave an adequate
treatment of this subject as a remaining work.

15

0 1 2 3 4 5 6 7 8 9 10

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Uncoded BPSK
RS [16,8] algebraic SDD for L = 1, 2, 3
Hermitian [64,32] algebraic SDD for L = 1, 2, 3

Eb/N0 in dB

B
it

E
rr

or
R

at
e

Fig. 2. Bit Error Performance of algebraic SDD of [64, 32] Hermitian code over F16 with BPSK modulation.

0 1 2 3 4 5 6 7 8 9 10

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

RS [16,8] algebraic SDD for L = 1, 2, 3
Hermitian [64,32] algebraic SDD for L = 1, 2, 3

Eb/N0 in dB

Fr
am

e
E

rr
or

R
at

e

Fig. 3. Frame Error Performance of algebraic SDD of [64, 32] Hermitian code over F16 with BPSK modulation.

REFERENCES

[1] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-correction bound,” J. Complexity, vol. 13, no. 1, pp. 180–193, 1997.
[2] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45,

no. 6, pp. 1757–1767, 1999.
[3] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp.

2809–2825, 2003.
[4] ——, “A complexity reducing transformation in algebraic list decoding of Reed-Solomon codes,” in Proc. IEEE Symp. Information

Theory Workshop, Paris, France, Apr. 2003, pp. 10–13.
[5] V. Olshevsky and M. A. Shokrollahi, “A displacement approach to decoding algebraic codes,” in Fast algorithms for structured matrices:

theory and applications, ser. Contemp. Math. Amer. Math. Soc., 2003, vol. 323, pp. 265–292.

16

2 3 4 5 6 7 8 9 10 11 12 13 14

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Uncoded 16-QAM
RS [16,8] algebraic SDD for L = 1, 2, 3
Hermitian [64,32] algebraic SDD for L = 1, 2, 3

Eb/N0 in dB

B
it

E
rr

or
R

at
e

Fig. 4. Bit Error Performance of algebraic SDD of [64, 32] Hermitian code with 16-QAM modulation.

2 3 4 5 6 7 8 9 10 11 12 13 14

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

RS [16,8] algebraic SDD for L = 1, 2, 3
Hermitian [64,32] algebraic SDD for L = 1, 2, 3

Eb/N0 in dB

Fr
am

e
E

rr
or

R
at

e

Fig. 5. Frame Error Performance of algebraic SDD of [64, 32] Hermitian code with 16-QAM modulation.

[6] M. Kuijper and J. W. Polderman, “Reed-Solomon list decoding from a system-theoretic perspective,” IEEE Trans. Inf. Theory, vol. 50,
no. 2, pp. 259–271, 2004.

[7] M. Alekhnovich, “Linear Diophantine equations over polynomials and soft decoding of Reed-Solomon codes,” IEEE Trans. Inf. Theory,
vol. 51, no. 7, pp. 2257–2265, 2005.

[8] N. Ratnakar and R. Koetter, “Exponential error bounds for algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans. Inf.
Theory, vol. 51, no. 11, pp. 3899–3917, 2005.

[9] J. Ma and A. Vardy, “A complexity reducing transformation for the Lee-O’Sullivan interpolation algorithm,” in Proc. IEEE
Symp. Information Theory, Nice, France, Jun. 2007.

[10] A. Ahmed, R. Koetter, and N. R. Shanbha, “VLSI architectures for soft-decision decoding of Reed-Solomon codes,” in Proc. IEEE
Conf. Communications, vol. 5, Jun. 2004, pp. 2584–2590.

[11] J. Ma, A. Vardy, and Z. Wang, “Efficient fast interpolation architecture for soft-decision decoding of Reed-Solomon codes,” in Proc. IEEE

17

Symp. Circuits and Systems, Kos, Greece, May 2006, pp. 4823–4826.
[12] J. Ma, A. Vardy, Z. Wang, and Q. Chen, “Direct root computation architecture for algebraic soft-decision decoding of Reed-Solomon

codes,” in Proc. IEEE Symp. Circuits and Systems, New Orleans, LA, May 2007, pp. 1409–1412.
[13] W. J. Gross, F. R. Kschischang, R. Koetter, and G. Gulak, “Applications of algebraic soft-decision decoding of Reed-Solomon codes,”

IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 1224–1234, 2006.
[14] H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 1993.
[15] M. A. Shokrollahi and H. Wasserman, “List decoding of algebraic-geometric codes,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp.

432–437, 1999.
[16] X.-W. Wu and P. H. Siegel, “Efficient root-finding algorithm with applications to list decoding of algebraic-geometric codes,” IEEE

Trans. Inf. Theory, vol. 47, no. 6, pp. 2579–2587, 2001.
[17] K. Lee and M. E. O’Sullivan, “List decoding of Hermitian codes using Gröbner bases,” arXiv:cs/0610132, Oct. 2006.
[18] ——, “An interpolation algorithm using Gröbner bases for soft-decision decoding of Reed-Solomon codes,” in Proc. IEEE Symp. In-

formation Theory, Seattle, WA., Jul. 2006, pp. 2032–2036.
[19] W. Fulton, Algebraic Curves. Benjamin, 1969.
[20] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, ser. GTM. Springer-Verlag, New York, 1998, vol. 185.
[21] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra. Perseus Books, 1969.
[22] C. Krattenthaler, “Advanced determinant calculus,” Sém. Lothar. Combin., vol. 42, pp. Art. B42q, 67 pp. (electronic), 1999, the Andrews

Festschrift (Maratea, 1998).
[23] S.-H. Hou and W.-K. Pang, “Inversion of confluent vandermonde matrices,” Computers and Mathematics with Applications, vol. 43,

pp. 1539–1547, 2002.

	Introduction
	Preliminaries
	Hermitian curves
	Hermitian codes
	Local multiplicity of curves on a surface

	Algebraic soft-decision decoding
	An interpolation algorithm
	Generators of the module IM,l over R
	Computing generators of the module IM,l over F[x]
	Computing generators of JN
	Computing y-fb,c
	Converting to a Gröbner basis to pick up the Q-polynomial

	Complexity Analysis
	Simulation results
	[8,4] Hermitian code with QPSK
	[64,32] Hermitian code with BPSK
	[64,32] Hermitian code with 16-QAM

	Conclusion
	References

