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Abstract

We present novel bounds on the capacity of the independehtdemtically distributed binary
deletion channel. Four upper bounds are obtained by pruyitlie transmitter and the receiver with
genie-aided information on suitably-defined random preees Since some of the proposed bounds
involve infinite series, we also introduce provable inedigal that lead to more manageable results. For
most values of the deletion probability, these bounds img@tbe existing ones and significantly narrow
the gap with the available lower bounds. Exploiting the samxgiliary processes, we also derive, as a
by-product, a couple of very simple lower bounds on the ckhoapacity, which, for low values of the
deletion probability, are almost as good as the best egistiwer bounds.

Index Terms

Binary deletion channel, channel capacity, capacity bsund

I. INTRODUCTION

We consider a binary deletion channel where each bit in tpatisequence gets deleted,
independently of the others, with probability while the non-deleted bits are received without
errors and in the correct order. The positions at which tHetidas occur are unknown to both
the transmitter and the receiver. Formally, ¥et= { X,,})_, be a sequence df bits at the input
of the channel, lef\/ be the number of received bits, which is a random variablantpialues

in {0,1,..., N} according to the realization of the deletion process, an¥'le- {Y, }}. be the
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received sequence. The capacity per input bit of this cHagageerally referred to as independent

and identically distributed (1ID) binary deletion channisl defined as [1]

C = lim maxi](X;Y) 1)

N—oo P(X)
whereP(X) is the distribution of the input sequence, afid -) is the average mutual information
between two random sequences [2]. The capdcity (1) is unknamd only some upper and lower
bounds are available in the current literature.

The first lower bound on the capacity of the deletion chanred derived by Gallager in [3],
where he proved that, fat < 0.5, the capacity of interest is at least equal to that of a binary
symmetric channel with bit-flipping probability. A number of lower bounds have since been
proposed (see [4], [5], and references therein), amonghnthie best bounds that we are aware
of are the ones presented in [4] and [5]. In particular, theetebound outperforms the former
whend < 0.35, that is, for all values ofl for which the authors of [5] could run the required
computations whose execution time grows quicklydascreases. Throughout the paper, the
reference lower bound will thus be the one in [5] 16K 0.35 and the one in [4] ford > 0.35.

Only a few upper bounds have been derived on the capacityeofih deletion channel. A
simple upper bound is given by the capacity of an 11D erashemnel with erasure probability
since the erasure channel is identical to the deletion aaarcept that the receiver additionally
knows the positions of the deleted bits [2]. A combinatobalind proposed by Ullman in [6],
which was originally derived for particular channels witmshronization errors, had been used
for decades as an upper bound for the deletion channel. Howievs not a true upper bound,
and it has been recently found to be violated by provable idwainds on the capacity of
the deletion channel [4]. The reason is due to the fact thah&aH focused on systems with
null error probability, while the definition of capacity re$ on the weaker condition of error
probability that can be made arbitrarily low by increasihg tength of the codewords [2]. The
only non-trivial upper bound that we are aware of is the oresg@nted in [7], which will be
adopted here as a reference benchmark.

This paper presents novel upper bounds on the capacity oflEheleletion channel that
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improve the existing ones for most values of the deletiorbabdlity d. All upper bounds are
computed by considering the capacity of some auxiliary nk&nobtained by providing genie-
aided information on suitable random processes relatethéodeletion process. In particular,
we show that, when such auxiliary random processes arelegveathe transmitter and/or the
receiver, we obtain memoryless channels whose capacitybeaavaluated by means of the
Blahut-Arimoto algorithm (BAA) [8], [9], leading to provad upper bounds on the capacity of
interest. Moreover, we show that, based on the introducgiiay processes, lower bounds on
the capacity of the deletion channel can be derived as wakk dbtained lower bounds, yet
close to the ones proposed in [4] and [5] for low valuesipfio not improve them, and will
only be considered as by-product results.

The paper is organized as follows. Sectidn Il introduceswadliary channel based on which
we derive three upper bounds on the capacity of the IID deiathannel, which are presented in
Sectiong 1lI[ 1M, and V, respectively. The fourth upper bduavaluated by exploiting a different
auxiliary channel, is introduced in SectiénlVI. The main tdoutions in upper bounding the
capacity of the deletion channel are summarized an disdussection VIl. Finally, Sectioh VIII

introduces a couple of simple lower bounds, while Sediidrgives some concluding remarks.

1. A USEFUL AUXILIARY CHANNEL

Let L and R be two natural numbers such th&t < L, and let us defineD = L — R.
We consider a channel for which, at each use, the input dsnsisa sequence of bits and
the output consists of a sequence Pfbits. The input/output relationship characterizing each
channel use is the followingD bits are deleted from thé input bits, while the remaining
R bits are received without errors and in the correct ordereéth channel use, the deletion
pattern, that is, the positions at which tig deletions occur, randomly takes on each of the
possible(é) realizations with equal probability, and is unknown to btk transmitter and the
receiver. Also, deletion patterns in different channelsuaee independent, so that the channel
is memoryless. As an example, the transition probabiltlesracterizing the use of the channel

are reported in Tablg |, for the cage= 3 and R = 2. A and B denote the input sequence and
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P(BJA)
A [B=0|B=01|[B=10][B=11
000 1 0 0 0
o1 | 1/3 2/3 0 0
010 [ 1/3 1/3 1/3 0
011 0 2/3 0 1/3
100 1/3 0 2/3 0
101 0 1/3 1/3 1/3
110 0 0 2/3 1/3
111 0 0 0 1
TABLE |

TRANSITION PROBABILITIES FOR THE AUXILIARY CHANNEL.

the output sequence, respectively, whité:|-) denotes conditional probability.

The capacity per use of the considered auxiliary channeéimed as

f(L,R) = rlgl(%d(A; B), 2)

where P(A) is the distribution of the input sequence. Since each cHamrput is a sequence

of R bits, the following upper bound holds
f(LLR) < R. (3)

In some particular cases, it can be shown tf(dt, R) achieves the upper bourid (3). These cases
are listed and briefly discussed in the following.
« f(L,0) =0. All input bits are deleted and no information can be debder
. f(L,1) = 1. A capacity-achieving scheme consists of transmittingeaath channel use,
either a sequence ab zeros or a sequence df ones, with equal probability and in-
dependently of the previous/future transmissions. In taise, for each channel use, the
only received bit fully determines the input sequence speztively of the deletion pattern.
Formally, adopting the standard notation for the entropg tre conditional entropy [2],
we get

I(A;B) = H(A)— H(A|B) = H(A) = 1
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| [ R=0]|R=1]|R=2|R=3|R=4|R=5|R=6| R=17]

L=0 0

L=1 0 1

L=2 0 1 2

L=3 0 1 1.48 3

L=14 0 1 1.35 2.18 4

L=5 0 1 1.30 1.88 2.87 5

L=6 0 1 1.28 1.77 2.43 3.62 6

L=7 0 1 1.26 1.71 2.23 3.04 441 7

TABLE I
CAPACITY f(L, R).

which achieves the upper bourid (3).

. f(L,L)= L. Since all transmitted bits are correctly received, theacdp is equal tal bits
per channel use, which is achieved by independent and omifadistributed (IUD) input
bits.

WhenR ¢ {0,1, L}, we could not find a closed-form expression of the capagity, R). On the
other hand, since the auxiliary channel is memoryless asdihae input/output alphabets, its
capacity can be numerically evaluated by means of the BAA[f] To run the BAA, we only
need the transition probabilities characterizing the degras those reported in Talble I. Hence,
in principle, we can compute the capacjtyl, R) based on similar tables, for all desired values
of L and R. Unfortunately, the implementation of the BAA becomes catafionally infeasible
for large values ofl. — for example,L = 17 is the largest value that we were able to manage
for all possible values ofR?, while L = 22 is the largest value that we were able to manage
for R = L — 1, which will be shown later to be a case of particular inter&ime values

of f(L,R) are reported in Tablelll, where the results obtained by medrike BAA have a
two-digit precision after the decimal point, and are rouhdg to the next hundredth since,
rigorously, the BAA can underestimate the true capacity finite number of iterations are
performed [8], [9].

In the following, we introduce several lemmas that will beedisn the remaining sections
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to manipulate the capacity of the auxiliary channel whemnog the BAA seems impossible.

Before providing the lemmas, we define

f(L,D) = f(L, L= D), (4)

so that we can index the capacity of the auxiliary channéleeiby the number of received bits,
using f(-,-), or by the number of deleted bits, usirf¢, ). The following definitions will also

be useful in the remaining sections:

Oé(L,R) = R_f(L7R>7 (5)

&(L,D) = o(L,L—D)=L—D— f(L,D). (6)

Note that the coefficients(-,-) anda(-, -) cannot be negative due tal (3).

Lemma 1: For all values ofL and R, the following holds
f(L+1,R) < f(L,R). (7)

The proof is based on the fact that, when additional infolomais provided to the transmitter, the
capacity of a system cannot decrease [2]. In particularc#ipacity /(L + 1, R) cannot decrease
if, at each channel use, the transmitter knows one of theiposiat which the.+1— R deletions
occur. Clearly, the bit transmitted in that position is exant. Moreover, if the revealed position
is chosen according to a uniform distribution on the- 1 — R possible values, the system is
characterized byl. effective input bits,R output bits, and IUD deletion patterns, that is, by
definition, a system with capacity(L, R). Hence, the lemma is proved.

Lemma 2: For all values ofLZ and R, the following holds
if L>L then a(L,R)>a(L,R). (8)

The proof thata(L + 1, R) > «(L, R) is simply derived from[(5) and{7). The remainder of the
lemma can then be proved by induction.

Lemma 3: For all values ofL. and all positive values oD, the following holds

f(L+1,D)< f(L,D— 1)% + [f(L,D) +1] (1 — LLH) . (9)

November 1, 2018 DRAFT



FERTONANI AND DUMAN: NOVEL BOUNDS ON THE CAPACITY OF THE BINARY DELETION CHANNEL 7

The proof is based on the fact that, when additional inforomas provided to both the transmitter
and the receiver, the capacity of a system cannot decredsén [Rarticular, we consider the
information on the binary event “the last bit of thetr 1 transmitted bits is deleted”, which occurs
with probability D/(L + 1). When the event occurs, the last transmitted bit is irreieead the
system is characterized by effective input bits and) — 1 deletions on IUD positions, that is,
the system has capacif{ L, D —1). When the event does not occur, the last transmitted bit can
be safely sent uncoded, while, for the filsttransmitted bits, the systems is characterized by
L effective input bits and) deletions on IUD positions, that is, the system has capa?chIyD).
Hence, the lemma is proved.

Lemma 4: For all values ofL. and all values ofD, the following holds

&(L+1,D) > &(L, D) (1 - %) . (10)

The lemma is proved after straightforward manipulationg®fbased on[(3) and(6).

The lemmas provided hereafter focus on a particular case,ghthe occurrence of exactly
one deletion. The reader may skip them without affectingatigeiments exploited in Sections| I,
V] V] and[VIl The interest for this case will become evidemtSectior V.

Lemma 5: For all values ofZ, the following holds
f(nL, 1) < f(L,)+(n—1L, ¥Yn>0. (11)

Let us partition the input sequence ©of. bits into n subsequences di consecutive bits, and
let us assume that both the transmitter and the receiver kmowhich of the subsequences
the deletion occurs. By definition, this subsequence haacxiia{pf(L, 1), while the remaining
n — 1 subsequences have capadityHence, since the capaciyi(nL, 1) cannot exceed that of
the described genie-aided system, the lemma is proved.

Lemma 6: For all values ofZ, the following holds
a(nl,1) > a(L,1), Vn > 0. (12)

The lemma directly follows from{11) by definitiofl(6).
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Lemma 7: For all values ofL, the following holds

. . 1 1
f(L+1,1)2f(L,1)+1—L—+1—h(L—+1) (13)

whereh(-) is the binary entropy function [2].

To prove the lemma, we first notice that the equation
I(A;B)=1(A;B,C) - I(A;C|B)

holds irrespectively of the definition of the random proesss, B, andC [2]. Moreover, since

I(A; C|B) cannot be larger than the entropf(C) of the proces<C, we can write
I(A;B) > I(A;B,C)— H(C) . (14)

In particular, letA and B be, respectively, the input sequence and the output segueEnihe
auxiliary channel considered in this section, when the tirggguence includes + 1 bits and
exactly one deletion occurs. Also, I€t be the binary event “the last bit of thle+ 1 transmitted

bits is deleted”, whose entropy B(C) = h(1/(L +1)). Under these definitions, the inequality

- 1
F(L+1.1) > maxI(A;B,C) — h <L—+1) (15)

follows from (14). Note that the first term at the right-haridesof (15) is the capacity of a
channel identical to the considered one, when the recesvpravided with side information on
the eventC, while the transmitter is not. According to the data-preoes inequality [2], the
capacity of this genie-aided system does not increase i&nvthe eventC occurs, the receiver
deletes one of the received bits, selected with equal pilityabver the L received bits. In
this case, the channel consists of two independent subelsgarthe former is characterized by
L input bits and one deletion on IUD positions, and thus hasd#pf(L, 1), while the latter
is an erasure channel with erasure probabilityL + 1), and thus has capacity— 1/(L + 1).
Hence, we can write

» 1
I(A:B.C)> f(L.1)+1— ——
r}gl(aA>)<( ;B,C) > f(L,1) + 11

which, combined with[(15), proves the lemma.
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Lemma 8: The following holds

(L +1,1
limia( +11)

T (16)

To prove the lemma, we first notice that the inequality

1 1
. <a 1 1
a(L+1,1)_a(L,1)+L+1+h<L+1) (17)
directly follows from [13) by definition[(6). Then, accordirio (10) and[(1l7), we can write
1 a(L+1,1) 1 1 1
1-— < <1 h
I+i- &L = +MLU@+D+d@J)(L+J

which proves the lemma since both sides tend to oné sends to infinity.

Lemma 9: The following holds

hm[ﬂL+LD—f@Jﬂ:1. (18)

L—oo

To prove the lemma, we first notice that the inequalities

L—1-f(L1)
L+1

1—_3_—h(]')g[ﬂL+Ln—f@Jﬂg1+ (19)

L+1 L+1
follow from (@) and [IB) after simple manipulations. Thetleand side in[(19) clearly tends

to one asL tends to infinity. Then, we notice that the limit

oy
Jm == =1

follows from the fact that the binary channel with one deletitends to the binary identity
channel, whose capacity per input bit is one, as the lengtthefinput sequence tends to
infinity. Hence, the right-hand side ih_(19) tends to onelaends to infinity, and the lemma is
proved. Note that (18) implie§ (IL6), but is stronger.

[1l. THE FIRST UPPERBOUND

In this section, we derive an upper bound ©nby providing side information on a random
proces<, defined in the following. LeD be a nhon-negative integer parameter and let us assume
that the total number of deleted bits is a multiple/oft 1, so thatS = (N — M)/(D+1) is an

integer — this assumption does not affect the capacity evalu, where the limitV — oo is to
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Z=3 Zy=4 Zy =T

- > > >

Fig. 1. A possible realization of the proce&s when D = 1 and S = 3. Each white square represents a transmitted bit that
is correctly received, while each gray square representarsmitted bit that is deleted. The positions of the botzeéhbits
define the procesg.

be considered. We defiré = {Z,}7_, such thatZ, is equal to the position in the transmitted
sequence of théD + 1]-th deleted bit and, for each value oin {2,3,...,5}, Z; is equal to
the difference between the position in the transmitted eegel of the[(D + 1)i]-th deleted bit
and that of thg(D + 1)(: — 1)]-th deleted bit. An example is depicted in Fig. 1 and discdisse
the related caption. Given the assumption of 1ID deletidhs, proces< is IID too, and each

element ofZ takes on the valué + 1 with probability

}%&ZJH%J:<L)P“G—dV4) (20)

D
according to the Pascal distribution [10], for all valued.cduch thatl. > D. To point out various
similarities between the bounds presented in this papés, useful to define, fol. > R > 0

andL > D > 0, the terms

p(LR) = (f%)dH(l —d) (21)
pLD) = pe-D)= ()0 -a? @22)

so that we get
P(Z=L+1)=d-p(L,D). (23)

The realizations of the proce%sare actually unknown to both the transmitter and the receive
Hence, an upper bound on the capacity of the deletion chararebe obtained by providing
them with genie-aided information 0. We will refer to the capacity per input bit of this
genie-aided system &sS;. With this side information, we hav8 blocks that do not interfere

with each other, where theth block hasZ; input bits, D + 1 of which get deleted. The last
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input bit of each block is irrelevant, since both the trarttgniand the receiver know that it
gets deleted. Théth block is thus characterized I3 — 1 effective input bits andD deletions
on 1UD positions, so that the related capacityfisZ; — 1, D), as defined in SectionlIl. Hence,

defining the expectation operatéi{-] and considering that

S
o1 x
C; = lim NE f(Z;—1,D)

where the last equality follows from the law of large numbé&isally, by exploiting the properties

of the Pascal distribution [10], the upper bound yields

- gDﬂL,D)ﬁ(L,D)

which can be also written as

[e.e]

?

o, = D+1L:ZD[L—D] (L, [L D- fLD)]ﬁ(L,D)
e
= 1—d—D+1LZ;) a(L, D)p(L, D) . (24)

Since the coefficient&(-, -) cannot be negative, the bouridi(24) is at least as good asivta tr
bound1 — d. In particular, by combining Lemma 4 with the available ames of the BAA, it
can be proved that the bourdd {24) equhls d when D = 0, otherwise it is strictly better.
UnlessD = 0, it seems infeasible to evaluate the coefficiefifd, D) for all values of L
required in [(24). Let us assume that we know the coefficienfs D) for all values ofL such
that L < Lyax, but not for larger values of — in particular, we havd.yax = 17. In this case,

we can exploit the inequality in_(10) to manipulate the ceedfitsa(L, D) for L > Lyax. The
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1.0
0.9

C), fromD=0 toD=17

\ —®— Upper bound from [7]
\

0.8 —®— | ower bound from [4] and [5
. \ \\\\ Y [4] and [5]
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NN \

o 05 N\ W
0.4 \
0.3 \

0.2
0.1

0.0 =
00 01 02 03 04 05 0.6 07 08 09 10

d

Fig. 2. Different bounds on the capacity of the deletion ciehn

obtained results are reported in Higy. 2, for all valuedoh {0,1,...,17} and Lyax = 17. The
resulting bounds, referred to &%, are actually larger than the capacity in (24), because of
the use of[(I0) for, > Lyax. Hence, the reported curves can be improved when an ingguali
tighter than [(ID) is exploited to manipulate the coefficdeftL, D) for L > Lyax. In Fig.[2,
the upper bound proposed in [7] and the lower bounds propwsgtl and [5], which are the
best existing bounds that we are aware of, are also repantembfnparisoH. We point out that
the upper bound’; improves the upper bound presented in [7] for a wide rangé \aflues, in

particular whend > 0.35.

IV. THE SECOND UPPERBOUND

In this section, we derive an upper bound ©@nby providing side information on a random
processW, defined in the following. LetR be a non-negative integer parameter and let us

assume that the number of bits at the output of the deletianradl is a multiple o2+ 1, so that

1As explained in Sectiofl |, the lower bound proposed in [5]demed whend < 0.35, while the one proposed in [4] is
adopted whenl > 0.35.
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Wi=3 Wy =4 Wy =7

Fig. 3. A possible realization of the proce¥€, whenR = 1 andT = 3. Each white square represents a transmitted bit that
is correctly received, while each gray square representarsmitted bit that is deleted. The positions of the botzeéhbits
define the proces®V.

T = M/(R+1) is an integer — this assumption does not affect the capacéipation, as in the
previous case. We defif = {IV;}L_, such thati?; is equal to the position in the transmitted
sequence of théR + 1]-th received bit and, for each value ofn {2,3,...,7}, W, is equal to
the difference between the position in the transmitted eece of thel( R + 1)i]-th received bit
and that of thg(R + 1)(: — 1)]-th received bit. An example is depicted in Hig. 3 and disedss
in the related caption. Given the assumption of 1ID deledjaiie procesdV is IID too, and

each element oW takes on the valué + 1 with probability
P(W;=L+1)=(1-d)p(L,R) (25)

according to the Pascal distribution [10], for all valuesiofuch thatl. > R.

As in the previous case, an upper bound on the capacity ofdietiah channel can be obtained
by providing the transmitter and the receiver with genidedi information on the realizations
of W. We will refer to the capacity per input bit of this genie-aidsystem ag’,. Similarly to
the previous case, we hat/eéblocks that do not interfere with each other, thilh block having
W; input bits andR + 1 output bits. The last input bit of each block can be safelyt s@coded,
since both the transmitter and the receiver know that it iseotly received. Hence, following

the same arguments as in the previous section, we get

T
1
Co = Jim 52 VW= 1R)+1]
1 1 &
- m}gﬂof;[ﬂm-l,mH]
1

- mE[f(Wz-—l,R)H] .
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Finally, by exploiting [25) and the properties of the Pagtiatribution, the upper bound yields

S LR + 1L R)

L=R

Cy =

which can be also written as

Cl=adr S -
C: = 7 ;R(RH) p(L,R)—

Ip(L, R)

1—

%‘ff > (L, R)p(L,R) . (26)

L=R
Since the coefficienta(-, -) cannot be negative, the bourid|(26) is at least as good asivta tr

= 1-d-

bound1 — d. In particular, by combining Lemma 2 with the available aumnes of the BAA, it
can be proved that the bourld [26) equils d when R € {0, 1}, otherwise it is strictly better.
When R > 1, it seems infeasible to evaluate the coefficientd., R) for all values of L
required in [(26). Let us assume that we know the coefficiesifs R) for all values of L such
that L < Lyax, but not for larger values of. — in particular, we havd.yax = 17. In this case,

we can exploit[(B) to manipulate the coefficient&l, R) for L > Lyax, obtaining

_ (1 — d)2 Luax Oé(LMAx,R)
= U 2 (ol ) (L RIp(L ) + (1) [1 - RG] e

after a few straightforward manipulations — the bound iemefd to as”; because it is actually
larger than the capacit¢;, in (26). The obtained results are reported in Fig. 4, for alues

of Rin {0,1,...,17} and Lyax = 17. Clearly, such curves can be improved when an inequality
tighter than([(8) is exploited to manipulate the coefficient€, R) for L > Lyax. In Fig.[4, the
upper bound proposed in [7] and the lower bounds proposedl iand [5] are also reported for
comparison. We point out that the upper bourilimproves the upper bound presented in [7]
for most values of/, in particular whend > 0.1, and, for large values aof, the gap from the

best lower bound is now roughly halved.

V. THE THIRD UPPERBOUND

In this section, we derive an upper bound @by providing side information on a random

processV, defined in the following. Let, be a positive integer parameter, based on which
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1.0 : : :
C,, fromR=0 toR=17

0.9 \ —®— Upper bound from [7]
0.8 N —=—  Lower bound from [4] and [5]
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Fig. 4. Different bounds on the capacity of the deletion ciehn

we partition the input sequencée into subsequenceSX;} of L consecutive bits. Formally, we
define

X = (X—1yr41, Xi—1y42:-- - X)), Vi>1.

For example, whei. = 3, we haveX; = (X1, X5, X3), X = (X4, X5, X¢), X3 = (X7, X3, Xo),
and so on. We assume that is a multiple of L, and thus that there are exactly = N/L
subsequence@(i}?:l — this assumption does not affect the capacity evaluatisninathe
previous cases. We then partition the output sequahigo () subsequence{sYi}?zl, where, for
eachvalueofin {1,2,...,Q}, Y, includes the received bits related to the input subsequXnce
Finally, we define the random proce¥s= {V;}%, such that, for each value ofn {1,2,...,Q},

V; denotes the number of bits in the subsequelige An example is depicted in Fig] 5 and
discussed in the related caption. Given the assumptionDbfd#letions, the procesy¥ is 11D
too, and each element &f takes on the valug? in {0,1,..., L} with probability p(L, R),
according to the binomial distribution.

As in the previous cases, an upper bound on the capacity ofleletion channel can be
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Fig. 5. A possible realization of the proce¥s when L = 3 and ) = 4. Each white square represents a transmitted bit that
is correctly received, while each gray square represemtanarhitted bit that is deleted.

obtained by providing the transmitter and the receiver vg#nie-aided information on the
realizations ofV. We will refer to the capacity per input bit of this genie-@idsystem ag’s.
Similarly to the previous cases, we hageblocks that do not interfere with each other, thif
block havingL input bits andV; output bits. Hence, using similar arguments as in the ptesvio

sections, we get

which can be also written as

L
Co = 7Y Rp(LB) =7 (R J(LR)p(L, B
N R=0 , R=0
124
1 L
= 1-d—+ RXZ:OQ(L, R)p(L,R) . (28)

Hence, since the coefficients-, -) cannot be negative, the bound](28) is at least as good as the
trivial bound 1 — d. In particular, by combining Lemma 2 with the available aumes of the
BAA, it can be proved that the bounld (28) equals d when L € {1, 2}, otherwise it is strictly
better. Note that, unlike the previous cases, the baundoes not involve an infinite series.

The upper bound (28) is plotted in Figl 6, together with th@earpbound proposed in [7]

and the lower bounds proposed in [4] and [5]. For each valug fafr which we could run the
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Fig. 6. Different bounds on the capacity of the deletion ciehn

BAA, the boundCs; improves aslL increases — we conjecture that this behavior holds for any
value of L (see Sectioh_V1I). Note that the considered approach sagmifly improves the bound

presented in [7] for most values of the deletion probabiityn particular whend > 0.08.

VI. THE FOURTH UPPERBOUND

Given any positive value of the integer parametemwe can define a system identical to the
deletion channel, in which the receiver knows the realkiretiof the proces¥y defined in the
previous section, while the transmitter does not. In thisegdt is useful to think of the system
as if there were a “parallel” channel that provides the seqed’ to the receiver. The capacity
per input bit of this system, which will be denoted by, is definitely an upper bound on the
capacity [(1), since, when the parallel outVtis neglected, the original deletion channel is
obtained. Moreover, the upper boud cannot be larger than’; for the same value of,,
since the system with capacity; reduces to the system with capacity when the transmitter
neglects the side information on the procass

As for the system considered in the previous section, we labdocks that do not interfere
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P(Y:|X;)
Xi [ Yi=o| Yi=0 | Yi=1 [Yi=00]|Y;=01|Y;,=10]Y,=11
00 d? 2d(1 — d) 0 (1 — d)? 0 0 0
01 d? d(1—d) | d(1—d) 0 (1 — d)? 0 0
10 d? d(1—d) | d(1—d) 0 0 (1 — d)? 0
11 d? 0 2d(1 — d) 0 0 0 (1 —d)?
TABLE Il

TRANSITION PROBABILITIES FOR THE EVALUATION OFCy (L = 2).

with each other, so that a discrete memoryless channeltse$tdr each use of this channel,
we still have an input sequence 6fbits and, with probabilityp(L, R), an output sequence of
R bits, but now the value of? is unknown to the transmitter. Hence, all transmitted seqgeg

must be taken from the same distribution, and no longer frodis&ribution matched to the
number of deletions in the current channel use. Consequémd results related to the auxiliary

channel introduced in Sectidn Il cannot be exploited hecemially, we get

, 1
Co= gy ey V)

1 1
- — 1 ~ (X
T g max S H(X Y, V)

1
-7 g&% I(X3Y) (29)

When L = 1, this auxiliary channel reduces to the erasure channehaa’t, = 1 — d. In any
other case, we could not find a closed-form expressiofofand still resorted to the BAA. To
run the BAA, we need the transition probabilities charazieg the channel, as those reported
in Table[IIl for the casel. = 2. We point out that, unlike the auxiliary channel consideired
Section(l, the transition probabilities now depend on ta&uig of d, so that the BAA must be
run for each value of the deletion probability.

The upper boundg’; and C, are compared in Fid.] 7 for three different valuesiof— in
both cases/. = 17 is the largest value for which we could run the BAA. We point that the
difference between the two bounds, y&f is rigorously tighter for each value df, tends to

vanish asL increases. This is due to the fact that, for large values,dhe number of deletions
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Fig. 7. Different upper bounds on the capacity of the defetihannel.

for every L transmitted bits is very likely to be close #d., so that the advantage of knowing the
actual number of such deletions (as it happens to the tratesrfor the system with capacitys)
tends to vanish. As for the boun@;, for each value ofl. for which we could run the BAA,
the boundC'; improves agl. increases, and we conjecture that this behavior holds fpvalue

of L (see Section VII).

VIl. DISCUSSIONS ON THEPROPOSEDUPPERBOUNDS

In Table[IM, we report a comparison between the best uppendméound in this paper, that
is, Cy with L = 17 for d < 0.83 and C with Lyax = 17 for d > 0.83, and the existing upper
bounds that we are aware of. We remark that the proposed agpes lead to a new state-of-
the-art upper bound on the capacity of the deletion charmmehfost values ofl/, as evident
from the table (where the best values are shown in bold face).

We believe that the values reported in Tablé IV could be imedoif it were possible to run

the BAA for longer sequences. In particular, our conjecigréormalized in the following.
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| d [ Erasure-channel bounfi Bound from [7] | Proposed bound|

0.01 0.990 not given in [7] 0.963
0.02 0.980 not given in [7] 0.926
0.03 0.970 not given in [7] 0.891
0.04 0.960 not given in [7] 0.858
0.05 0.950 0.816 0.826
0.10 0.900 0.704 0.689
0.15 0.850 0.619 0.579
0.20 0.800 0.551 0.491
0.25 0.750 0.494 0.420
0.30 0.700 0.447 0.362
0.35 0.650 0.406 0.315
0.40 0.600 0.371 0.275
0.45 0.550 0.340 0.241
0.50 0.500 0.311 0.212
0.55 0.450 0.284 0.187
0.60 0.400 0.258 0.165
0.65 0.350 0.233 0.144
0.70 0.300 0.208 0.126
0.75 0.250 0.183 0.108
0.80 0.200 0.157 0.091
0.85 0.150 0.130 0.073
0.90 0.100 0.100 0.049
0.95 0.050 0.064 0.025
0.96 0.040 not given in [7] 0.020
0.97 0.030 not given in [7] 0.015
0.98 0.020 not given in [7] 0.010
0.99 0.010 not given in [7] 0.005
TABLE IV

DIFFERENT UPPER BOUNDS ON THE CAPACITY OF THE DELETION CHANNE

Conjecture 1.

« the boundC; does not worsen ab increases;
« the boundC, does not worsen aRB increases;
« the boundC; does not worsen ab increases;

« the boundC, does not worsen ab increases.

These conjectures are based on the amount of genie-aidaehation, that is, the entropy
per input bit of the revealed processes. The idea is thatherlthe entropy per input bit of the

revealed information, the tighter the upper bound. For gdamet us consider the bourtd : if
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we reveal the position of one deletion every 100, we expeigiraer bound than if we reveal the
position of one deletion every 3. Unfortunately, we could completely prove the conjectures
listed above, but we were able to derive closely relatedlteesbor example, we can prove
that C, does not increase wheh is replaced by any positive multiple df. It is sufficient to
note that, when.. = ¢, V carries the same information as whén= n/ (Vn > 0), plus some

additional information. Hence, we get

max [ (X;;Y;) < n max I(X;;Y;)
P(X;) L=nt P(X)

L={
which, according[(29), proves that, does not increase wheh = ¢ is replaced byl = n/.
We now discuss the behavior of the proposed upper bound$nidmig values ofd, that is,

d — 0% andd — 1. In particular, after straightforward manipulations, foowing results can

be obtained

1-C )

dlilr(r]l+ = a(R+1,R)+1=a(R+1,1)+1 (30)
. 1-0Cs .

lim == = a(L,L-1)+1=a(L1)+1 (31)

) (@ a(Luax, R)

| 2 = 1 —-——""""7 32
Am Ty R+1 (32)

which are valid for any finite value oR, L, and Lyax. The limits reported above are the only
ones leading to closed-form expressions that do not redutigettrivial erasure-channel bound.

The limit for small values off is determined by the coefficieat L, 1), some values of which
are reported in TablelV — note that the coefficients[inl (30) ¢1) are identical, except for
the name of the parameters. The best value that we have faufad &

. 1-0Cs
lim
d—0t

— 419 (33)

obtained when, = 22. Other than the erasure-channel bound, we are not awareyafigyer
bound that leads to closed-form limiting expressions caaipa with the reported one. We
believe that[(33) could be improved if it were possible to the BAA for longer sequences, as

formalized in the following.
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L 10 11 12 13 14 15 16 17 18 19 20 21 22
&(L,1) || 208 | 2.21 | 2.33| 244 | 255 | 2.64 | 2.73 | 2.82| 290 | 298 | 3.05| 3.12 | 3.19

TABLE V

COEFFICIENT&(L, 1).

Conjecture 2: For all values ofL, the following holds
if L>L then a(L,1)>a(L,1). (34)

We wish to prove this conjecture since it would imply that tmymptotic upper bound _(B1)
does not worsen a& increases. Additionally, a strict inequality ih_{34), whitiolds for all
available outcomes of the BAA, would imply that the asymigtapper bound[(31) improves as
L increases. Lemma 6 gives a partial proof [ofl (34). We pointtbat the limiting value[(31)
may not be limited, sincé_(17) does not satisfy any convergamiterion [11].

The limit for large values of/ leads to similar considerations. In particular, the bestesa

that we have found so far is

lim G 5= 0.49 , (35)

d—1- 1 —
obtained by [(32) whem? = 8 and Lyax = 17. Note that, according td {8), the reported
value could be improved by running the BAA for longer seq@snaevhich unfortunately seems

infeasible. We point out that (B5) improves the limiting epfpound

lim Ld <0.7918

d—1- 1 —
derived in [7], and closes the gap from the limiting lower bdu
lim Ld > 0.1185

d—1—- 1 —

derived [12].
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VIII. Two SIMPLE LOWER BOUNDS

In this section, we derive lower bounds 6hby exploiting the random proce3ég defined in

SectionVV. For any input distributio?(X), the following equation holds
IX;Y)=1(X;Y,V)—- I(X;V]Y) (36)

by definition [2]. Moreover, since (X; V|Y) cannot be larger than the entrogf(V) of the
processV, we can write

I(X;Y) > I(X;Y, V) — H(V) (37)
from which we get the following lower bound on the capacitytid deletion channel

C> lim —I(X:Y,V)— lim %H(V). (38)

N—o0 N—o0
If we consider the proces¥ defined before, following the arguments given for the déiiva

of (29), we obtain

1 1

1520NI(X7Y,V) = ZI(XNYZ-)

1 1
Jim =H(V) = FH(V),
so that [[38) can be written as
1 1 &
S 27XV 4 ] _
C> 21X Yi) + LRZ:%p(L’ R) log, [p(L, R)] (39)

In Fig. [8, the lower bound[(39) is compared with the best loWweund available in the
literature, namely the one from [4] or the one from [5], degieg on the value ofd (see
Sectionl). For the computation df (39), two different inglistributions have been considered,
that is, the distribution that maximizd$X,;Y;), which was considered in the previous section
to derive C4, and IUD input bits. Note that the difference between theveurlated to the
optimized input distribution and that related to IUD inputshis not significant for low values
of d, which is compliant with the fact that IUD input bits are apél whend = 0. Interestingly,
for low values ofd, both distributions lead to a lower bound roughly as goodhasréference

benchmarks, as evident from Tablel VI (where the best valtestown in bold face).
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Fig. 8. Different lower bounds on the capacity of the deletahannel.

[ d [ Bound from [3] | Bound from [5] | Bound [39),L = 17, optimized input| Bound [39),L = 17, IUD input ||

0.01 0.919 not given in [5] 0.921 0.921

0.02 0.858 not given in [5] 0.862 0.862

0.03 0.805 not given in [5] 0.811 0.811

0.04 0.757 not given in [5] 0.766 0.765

0.05 0.713 0.728 0.724 0.722

0.10 0.531 0.562 0.555 0.546
TABLE VI

DIFFERENT LOWER BOUNDS ON THE CAPACITY OF THE DELETION CHANNE.

IX. CONCLUSIONS

We have presented novel upper bounds on the capacity of@hieimiary deletion channel. All
bounds have been obtained by revealing side informatiorugalkde random processes, and by
computing the capacity of the resulting genie-aided systéirhe proposed approaches lead to a
new state-of-the-art upper bound for most values of thetidel@robabilityd, and provide novel
insights on the channel capacity in the limiting scenatdes 0™ andd — 1~. As a by-product

of our approach, we have also presented simple lower bouwvidsh turn out not to improve
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the existing ones.
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