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Abstract

We present novel bounds on the capacity of the independent and identically distributed binary

deletion channel. Four upper bounds are obtained by providing the transmitter and the receiver with

genie-aided information on suitably-defined random processes. Since some of the proposed bounds

involve infinite series, we also introduce provable inequalities that lead to more manageable results. For

most values of the deletion probability, these bounds improve the existing ones and significantly narrow

the gap with the available lower bounds. Exploiting the sameauxiliary processes, we also derive, as a

by-product, a couple of very simple lower bounds on the channel capacity, which, for low values of the

deletion probability, are almost as good as the best existing lower bounds.

Index Terms

Binary deletion channel, channel capacity, capacity bounds.

I. INTRODUCTION

We consider a binary deletion channel where each bit in the input sequence gets deleted,

independently of the others, with probabilityd, while the non-deleted bits are received without

errors and in the correct order. The positions at which the deletions occur are unknown to both

the transmitter and the receiver. Formally, letX = {Xn}
N
n=1 be a sequence ofN bits at the input

of the channel, letM be the number of received bits, which is a random variable taking values

in {0, 1, . . . , N} according to the realization of the deletion process, and let Y = {Yn}
M
n=1 be the
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received sequence. The capacity per input bit of this channel, generally referred to as independent

and identically distributed (IID) binary deletion channel, is defined as [1]

C = lim
N→∞

max
P (X)

1

N
I(X;Y) (1)

whereP (X) is the distribution of the input sequence, andI(·; ·) is the average mutual information

between two random sequences [2]. The capacity (1) is unknown, and only some upper and lower

bounds are available in the current literature.

The first lower bound on the capacity of the deletion channel was derived by Gallager in [3],

where he proved that, ford ≤ 0.5, the capacity of interest is at least equal to that of a binary

symmetric channel with bit-flipping probabilityd. A number of lower bounds have since been

proposed (see [4], [5], and references therein), among which the best bounds that we are aware

of are the ones presented in [4] and [5]. In particular, the latter bound outperforms the former

whend ≤ 0.35, that is, for all values ofd for which the authors of [5] could run the required

computations whose execution time grows quickly asd increases. Throughout the paper, the

reference lower bound will thus be the one in [5] ford ≤ 0.35 and the one in [4] ford > 0.35.

Only a few upper bounds have been derived on the capacity of the IID deletion channel. A

simple upper bound is given by the capacity of an IID erasure channel with erasure probabilityd,

since the erasure channel is identical to the deletion channel, except that the receiver additionally

knows the positions of the deleted bits [2]. A combinatorialbound proposed by Ullman in [6],

which was originally derived for particular channels with synchronization errors, had been used

for decades as an upper bound for the deletion channel. However, it is not a true upper bound,

and it has been recently found to be violated by provable lower bounds on the capacity of

the deletion channel [4]. The reason is due to the fact that Ullman focused on systems with

null error probability, while the definition of capacity relies on the weaker condition of error

probability that can be made arbitrarily low by increasing the length of the codewords [2]. The

only non-trivial upper bound that we are aware of is the one presented in [7], which will be

adopted here as a reference benchmark.

This paper presents novel upper bounds on the capacity of theIID deletion channel that
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improve the existing ones for most values of the deletion probability d. All upper bounds are

computed by considering the capacity of some auxiliary channels obtained by providing genie-

aided information on suitable random processes related to the deletion process. In particular,

we show that, when such auxiliary random processes are revealed to the transmitter and/or the

receiver, we obtain memoryless channels whose capacity canbe evaluated by means of the

Blahut-Arimoto algorithm (BAA) [8], [9], leading to provable upper bounds on the capacity of

interest. Moreover, we show that, based on the introduced auxiliary processes, lower bounds on

the capacity of the deletion channel can be derived as well. The obtained lower bounds, yet

close to the ones proposed in [4] and [5] for low values ofd, do not improve them, and will

only be considered as by-product results.

The paper is organized as follows. Section II introduces an auxiliary channel based on which

we derive three upper bounds on the capacity of the IID deletion channel, which are presented in

Sections III, IV, and V, respectively. The fourth upper bound, evaluated by exploiting a different

auxiliary channel, is introduced in Section VI. The main contributions in upper bounding the

capacity of the deletion channel are summarized an discussed in Section VII. Finally, Section VIII

introduces a couple of simple lower bounds, while Section IXgives some concluding remarks.

II. A U SEFUL AUXILIARY CHANNEL

Let L and R be two natural numbers such thatR ≤ L, and let us defineD = L − R.

We consider a channel for which, at each use, the input consists of a sequence ofL bits and

the output consists of a sequence ofR bits. The input/output relationship characterizing each

channel use is the following:D bits are deleted from theL input bits, while the remaining

R bits are received without errors and in the correct order. Ateach channel use, the deletion

pattern, that is, the positions at which theD deletions occur, randomly takes on each of the

possible
(
L

D

)
realizations with equal probability, and is unknown to boththe transmitter and the

receiver. Also, deletion patterns in different channel uses are independent, so that the channel

is memoryless. As an example, the transition probabilitiescharacterizing the use of the channel

are reported in Table I, for the caseL = 3 andR = 2. A andB denote the input sequence and
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P (B|A)

A B = 00 B = 01 B = 10 B = 11

000 1 0 0 0

001 1/3 2/3 0 0

010 1/3 1/3 1/3 0

011 0 2/3 0 1/3

100 1/3 0 2/3 0

101 0 1/3 1/3 1/3

110 0 0 2/3 1/3

111 0 0 0 1

TABLE I

TRANSITION PROBABILITIES FOR THE AUXILIARY CHANNEL.

the output sequence, respectively, whileP (·|·) denotes conditional probability.

The capacity per use of the considered auxiliary channel is defined as

f(L,R) = max
P (A)

I(A;B) , (2)

whereP (A) is the distribution of the input sequence. Since each channel output is a sequence

of R bits, the following upper bound holds

f(L,R) ≤ R . (3)

In some particular cases, it can be shown thatf(L,R) achieves the upper bound (3). These cases

are listed and briefly discussed in the following.

• f(L, 0) = 0. All input bits are deleted and no information can be delivered.

• f(L, 1) = 1. A capacity-achieving scheme consists of transmitting, ateach channel use,

either a sequence ofL zeros or a sequence ofL ones, with equal probability and in-

dependently of the previous/future transmissions. In thiscase, for each channel use, the

only received bit fully determines the input sequence, irrespectively of the deletion pattern.

Formally, adopting the standard notation for the entropy and the conditional entropy [2],

we get

I(A;B) = H(A)−H(A|B) = H(A) = 1

November 1, 2018 DRAFT
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R = 0 R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7

L = 0 0

L = 1 0 1

L = 2 0 1 2

L = 3 0 1 1.48 3

L = 4 0 1 1.35 2.18 4

L = 5 0 1 1.30 1.88 2.87 5

L = 6 0 1 1.28 1.77 2.43 3.62 6

L = 7 0 1 1.26 1.71 2.23 3.04 4.41 7

TABLE II

CAPACITY f(L,R).

which achieves the upper bound (3).

• f(L, L) = L. Since all transmitted bits are correctly received, the capacity is equal toL bits

per channel use, which is achieved by independent and uniformly distributed (IUD) input

bits.

WhenR /∈ {0, 1, L}, we could not find a closed-form expression of the capacityf(L,R). On the

other hand, since the auxiliary channel is memoryless and has finite input/output alphabets, its

capacity can be numerically evaluated by means of the BAA [8], [9]. To run the BAA, we only

need the transition probabilities characterizing the channel, as those reported in Table I. Hence,

in principle, we can compute the capacityf(L,R) based on similar tables, for all desired values

of L andR. Unfortunately, the implementation of the BAA becomes computationally infeasible

for large values ofL — for example,L = 17 is the largest value that we were able to manage

for all possible values ofR, while L = 22 is the largest value that we were able to manage

for R = L − 1, which will be shown later to be a case of particular interest. Some values

of f(L,R) are reported in Table II, where the results obtained by meansof the BAA have a

two-digit precision after the decimal point, and are rounded up to the next hundredth since,

rigorously, the BAA can underestimate the true capacity if afinite number of iterations are

performed [8], [9].

In the following, we introduce several lemmas that will be used in the remaining sections
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to manipulate the capacity of the auxiliary channel when running the BAA seems impossible.

Before providing the lemmas, we define

f̃(L,D) = f(L, L−D) , (4)

so that we can index the capacity of the auxiliary channel either by the number of received bits,

usingf(·, ·), or by the number of deleted bits, using̃f(·, ·). The following definitions will also

be useful in the remaining sections:

α(L,R) = R− f(L,R) , (5)

α̃(L,D) = α(L, L−D) = L−D − f̃(L,D) . (6)

Note that the coefficientsα(·, ·) and α̃(·, ·) cannot be negative due to (3).

Lemma 1: For all values ofL andR, the following holds

f(L+ 1, R) ≤ f(L,R) . (7)

The proof is based on the fact that, when additional information is provided to the transmitter, the

capacity of a system cannot decrease [2]. In particular, thecapacityf(L+1, R) cannot decrease

if, at each channel use, the transmitter knows one of the positions at which theL+1−R deletions

occur. Clearly, the bit transmitted in that position is irrelevant. Moreover, if the revealed position

is chosen according to a uniform distribution on theL + 1 − R possible values, the system is

characterized byL effective input bits,R output bits, and IUD deletion patterns, that is, by

definition, a system with capacityf(L,R). Hence, the lemma is proved.

Lemma 2: For all values ofL andR, the following holds

if L̂ > L then α(L̂, R) ≥ α(L,R) . (8)

The proof thatα(L+1, R) ≥ α(L,R) is simply derived from (5) and (7). The remainder of the

lemma can then be proved by induction.

Lemma 3: For all values ofL and all positive values ofD, the following holds

f̃(L+ 1, D) ≤ f̃(L,D − 1)
D

L+ 1
+
[

f̃(L,D) + 1
](

1−
D

L+ 1

)

. (9)

November 1, 2018 DRAFT
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The proof is based on the fact that, when additional information is provided to both the transmitter

and the receiver, the capacity of a system cannot decrease [2]. In particular, we consider the

information on the binary event “the last bit of theL+1 transmitted bits is deleted”, which occurs

with probabilityD/(L+1). When the event occurs, the last transmitted bit is irrelevant and the

system is characterized byL effective input bits andD− 1 deletions on IUD positions, that is,

the system has capacitỹf(L,D−1). When the event does not occur, the last transmitted bit can

be safely sent uncoded, while, for the firstL transmitted bits, the systems is characterized by

L effective input bits andD deletions on IUD positions, that is, the system has capacityf̃(L,D).

Hence, the lemma is proved.

Lemma 4: For all values ofL and all values ofD, the following holds

α̃(L+ 1, D) ≥ α̃(L,D)

(

1−
D

L+ 1

)

. (10)

The lemma is proved after straightforward manipulations of(9) based on (3) and (6).

The lemmas provided hereafter focus on a particular case, that is, the occurrence of exactly

one deletion. The reader may skip them without affecting thearguments exploited in Sections III,

IV, V, and VI. The interest for this case will become evident in Section VII.

Lemma 5: For all values ofL, the following holds

f̃(nL, 1) ≤ f̃(L, 1) + (n− 1)L, ∀n > 0 . (11)

Let us partition the input sequence ofnL bits into n subsequences ofL consecutive bits, and

let us assume that both the transmitter and the receiver knows in which of the subsequences

the deletion occurs. By definition, this subsequence has capacity f̃(L, 1), while the remaining

n− 1 subsequences have capacityL. Hence, since the capacitỹf(nL, 1) cannot exceed that of

the described genie-aided system, the lemma is proved.

Lemma 6: For all values ofL, the following holds

α̃(nL, 1) ≥ α̃(L, 1), ∀n > 0 . (12)

The lemma directly follows from (11) by definition (6).
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Lemma 7: For all values ofL, the following holds

f̃(L+ 1, 1) ≥ f̃(L, 1) + 1−
1

L+ 1
− h

(
1

L+ 1

)

(13)

whereh(·) is the binary entropy function [2].

To prove the lemma, we first notice that the equation

I(A;B) = I(A;B,C)− I(A;C|B)

holds irrespectively of the definition of the random processesA, B, andC [2]. Moreover, since

I(A;C|B) cannot be larger than the entropyH(C) of the processC, we can write

I(A;B) ≥ I(A;B,C)−H(C) . (14)

In particular, letA andB be, respectively, the input sequence and the output sequence of the

auxiliary channel considered in this section, when the input sequence includesL + 1 bits and

exactly one deletion occurs. Also, letC be the binary event “the last bit of theL+1 transmitted

bits is deleted”, whose entropy isH(C) = h(1/(L+1)). Under these definitions, the inequality

f̃(L+ 1, 1) ≥ max
P (A)

I(A;B,C)− h

(
1

L+ 1

)

(15)

follows from (14). Note that the first term at the right-hand side of (15) is the capacity of a

channel identical to the considered one, when the receiver is provided with side information on

the eventC, while the transmitter is not. According to the data-processing inequality [2], the

capacity of this genie-aided system does not increase if, when the eventC occurs, the receiver

deletes one of the received bits, selected with equal probability over the L received bits. In

this case, the channel consists of two independent subchannels: the former is characterized by

L input bits and one deletion on IUD positions, and thus has capacity f̃(L, 1), while the latter

is an erasure channel with erasure probability1/(L+ 1), and thus has capacity1 − 1/(L+ 1).

Hence, we can write

max
P (A)

I(A;B,C) ≥ f̃(L, 1) + 1−
1

L+ 1

which, combined with (15), proves the lemma.

November 1, 2018 DRAFT
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Lemma 8: The following holds

lim
L→∞

α̃(L+ 1, 1)

α̃(L, 1)
= 1 . (16)

To prove the lemma, we first notice that the inequality

α̃(L+ 1, 1) ≤ α̃(L, 1) +
1

L+ 1
+ h

(
1

L+ 1

)

(17)

directly follows from (13) by definition (6). Then, according to (10) and (17), we can write

1−
1

L+ 1
≤

α̃(L+ 1, 1)

α̃(L, 1)
≤ 1 +

1

α̃(L, 1)(L+ 1)
+

1

α̃(L, 1)
h

(
1

L+ 1

)

which proves the lemma since both sides tend to one asL tends to infinity.

Lemma 9: The following holds

lim
L→∞

[

f̃(L+ 1, 1)− f̃(L, 1)
]

= 1 . (18)

To prove the lemma, we first notice that the inequalities

1−
1

L+ 1
− h

(
1

L+ 1

)

≤
[

f̃(L+ 1, 1)− f̃(L, 1)
]

≤ 1 +
L− 1− f̃(L, 1)

L+ 1
(19)

follow from (9) and (13) after simple manipulations. The left-hand side in (19) clearly tends

to one asL tends to infinity. Then, we notice that the limit

lim
L→∞

f̃(L, 1)

L
= 1

follows from the fact that the binary channel with one deletion tends to the binary identity

channel, whose capacity per input bit is one, as the length ofthe input sequence tends to

infinity. Hence, the right-hand side in (19) tends to one asL tends to infinity, and the lemma is

proved. Note that (18) implies (16), but is stronger.

III. T HE FIRST UPPERBOUND

In this section, we derive an upper bound onC by providing side information on a random

processZ, defined in the following. LetD be a non-negative integer parameter and let us assume

that the total number of deleted bits is a multiple ofD+1, so thatS = (N −M)/(D+1) is an

integer — this assumption does not affect the capacity evaluation, where the limitN → ∞ is to

November 1, 2018 DRAFT
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Z1 = 3 Z2 = 4 Z3 = 7

Fig. 1. A possible realization of the processZ, whenD = 1 andS = 3. Each white square represents a transmitted bit that

is correctly received, while each gray square represents a transmitted bit that is deleted. The positions of the bold-faced bits

define the processZ.

be considered. We defineZ = {Zi}
S
i=1 such thatZ1 is equal to the position in the transmitted

sequence of the[D + 1]-th deleted bit and, for each value ofi in {2, 3, . . . , S}, Zi is equal to

the difference between the position in the transmitted sequence of the[(D + 1)i]-th deleted bit

and that of the[(D+1)(i−1)]-th deleted bit. An example is depicted in Fig. 1 and discussed in

the related caption. Given the assumption of IID deletions,the processZ is IID too, and each

element ofZ takes on the valueL+ 1 with probability

P (Zi = L+ 1) =

(
L

D

)

dD+1(1− d)L−D (20)

according to the Pascal distribution [10], for all values ofL such thatL ≥ D. To point out various

similarities between the bounds presented in this paper, itis useful to define, forL ≥ R ≥ 0

andL ≥ D ≥ 0, the terms

p(L,R) =

(
L

R

)

dL−R(1− d)R (21)

p̃(L,D) = p(L, L−D) =

(
L

D

)

dD(1− d)L−D (22)

so that we get

P (Zi = L+ 1) = d · p̃(L,D) . (23)

The realizations of the processZ are actually unknown to both the transmitter and the receiver.

Hence, an upper bound on the capacity of the deletion channelcan be obtained by providing

them with genie-aided information onZ. We will refer to the capacity per input bit of this

genie-aided system asC1. With this side information, we haveS blocks that do not interfere

with each other, where thei-th block hasZi input bits,D + 1 of which get deleted. The last

November 1, 2018 DRAFT
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input bit of each block is irrelevant, since both the transmitter and the receiver know that it

gets deleted. Thei-th block is thus characterized byZi − 1 effective input bits andD deletions

on IUD positions, so that the related capacity isf̃(Zi − 1, D), as defined in Section II. Hence,

defining the expectation operatorE[·] and considering that

lim
N→∞

N

S
= E[Zi]

by the law of large numbers [10], we get

C1 = lim
N→∞

1

N

S∑

i=1

f̃(Zi − 1, D)

=
1

E[Zi]
lim
S→∞

1

S

S∑

i=1

f̃(Zi − 1, D)

=
1

E[Zi]
E
[

f̃(Zi − 1, D)
]

where the last equality follows from the law of large numbers. Finally, by exploiting the properties

of the Pascal distribution [10], the upper bound yields

C1 =
d2

D + 1

∞∑

L=D

f̃(L,D)p̃(L,D)

which can be also written as

C1 =
d2

D + 1

∞∑

L=D

[L−D] p̃(L,D)

︸ ︷︷ ︸

1−d

−
d2

D + 1

∞∑

L=D

[

L−D − f̃(L,D)
]

p̃(L,D)

= 1− d−
d2

D + 1

∞∑

L=D

α̃(L,D)p̃(L,D) . (24)

Since the coefficients̃α(·, ·) cannot be negative, the bound (24) is at least as good as the trivial

bound1− d. In particular, by combining Lemma 4 with the available outcomes of the BAA, it

can be proved that the bound (24) equals1− d whenD = 0, otherwise it is strictly better.

UnlessD = 0, it seems infeasible to evaluate the coefficientsα̃(L,D) for all values ofL

required in (24). Let us assume that we know the coefficientsα̃(L,D) for all values ofL such

thatL ≤ LMAX , but not for larger values ofL — in particular, we haveLMAX = 17. In this case,

we can exploit the inequality in (10) to manipulate the coefficientsα̃(L,D) for L > LMAX . The

November 1, 2018 DRAFT
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C

d

C*
1, from D=0 to D=17

Upper bound from [7]

Lower bound from [4] and [5]

Fig. 2. Different bounds on the capacity of the deletion channel.

obtained results are reported in Fig. 2, for all values ofD in {0, 1, . . . , 17} andLMAX = 17. The

resulting bounds, referred to asC∗

1 , are actually larger than the capacityC1 in (24), because of

the use of (10) forL > LMAX . Hence, the reported curves can be improved when an inequality

tighter than (10) is exploited to manipulate the coefficients α̃(L,D) for L > LMAX . In Fig. 2,

the upper bound proposed in [7] and the lower bounds proposedin [4] and [5], which are the

best existing bounds that we are aware of, are also reported for comparison.1 We point out that

the upper boundC∗

1 improves the upper bound presented in [7] for a wide range ofd values, in

particular whend > 0.35.

IV. THE SECOND UPPERBOUND

In this section, we derive an upper bound onC by providing side information on a random

processW, defined in the following. LetR be a non-negative integer parameter and let us

assume that the number of bits at the output of the deletion channel is a multiple ofR+1, so that

1As explained in Section I, the lower bound proposed in [5] is adopted whend ≤ 0.35, while the one proposed in [4] is

adopted whend > 0.35.
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W1 = 3 W2 = 4 W3 = 7

Fig. 3. A possible realization of the processW, whenR = 1 andT = 3. Each white square represents a transmitted bit that

is correctly received, while each gray square represents a transmitted bit that is deleted. The positions of the bold-faced bits

define the processW.

T = M/(R+1) is an integer — this assumption does not affect the capacity evaluation, as in the

previous case. We defineW = {Wi}
T
i=1 such thatW1 is equal to the position in the transmitted

sequence of the[R + 1]-th received bit and, for each value ofi in {2, 3, . . . , T}, Wi is equal to

the difference between the position in the transmitted sequence of the[(R + 1)i]-th received bit

and that of the[(R + 1)(i− 1)]-th received bit. An example is depicted in Fig. 3 and discussed

in the related caption. Given the assumption of IID deletions, the processW is IID too, and

each element ofW takes on the valueL+ 1 with probability

P (Wi = L+ 1) = (1− d)p(L,R) (25)

according to the Pascal distribution [10], for all values ofL such thatL ≥ R.

As in the previous case, an upper bound on the capacity of the deletion channel can be obtained

by providing the transmitter and the receiver with genie-aided information on the realizations

of W. We will refer to the capacity per input bit of this genie-aided system asC2. Similarly to

the previous case, we haveT blocks that do not interfere with each other, thei-th block having

Wi input bits andR+1 output bits. The last input bit of each block can be safely sent uncoded,

since both the transmitter and the receiver know that it is correctly received. Hence, following

the same arguments as in the previous section, we get

C2 = lim
N→∞

1

N

T∑

i=1

[f(Wi − 1, R) + 1]

=
1

E[Wi]
lim
T→∞

1

T

T∑

i=1

[f(Wi − 1, R) + 1]

=
1

E[Wi]
E [f(Wi − 1, R) + 1] .

November 1, 2018 DRAFT
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Finally, by exploiting (25) and the properties of the Pascaldistribution, the upper bound yields

C2 =
(1− d)2

R + 1

∞∑

L=R

[f(L,R) + 1] p(L,R)

which can be also written as

C2 =
(1− d)2

R + 1

∞∑

L=R

(R + 1) p(L,R)

︸ ︷︷ ︸

1−d

−
(1 − d)2

R + 1

∞∑

L=R

[R− f(L,R)] p(L,R)

= 1− d−
(1− d)2

R + 1

∞∑

L=R

α(L,R)p(L,R) . (26)

Since the coefficientsα(·, ·) cannot be negative, the bound (26) is at least as good as the trivial

bound1− d. In particular, by combining Lemma 2 with the available outcomes of the BAA, it

can be proved that the bound (26) equals1− d whenR ∈ {0, 1}, otherwise it is strictly better.

When R > 1, it seems infeasible to evaluate the coefficientsα(L,R) for all values ofL

required in (26). Let us assume that we know the coefficientsα(L,R) for all values ofL such

thatL ≤ LMAX , but not for larger values ofL — in particular, we haveLMAX = 17. In this case,

we can exploit (8) to manipulate the coefficientsα(L,R) for L > LMAX , obtaining

C∗

2 =
(1− d)2

R + 1

LMAX∑

L=R

[α(LMAX , R)− α(L,R)] p(L,R) + (1− d)

[

1−
α(LMAX , R)

R + 1

]

(27)

after a few straightforward manipulations — the bound is referred to asC∗

2 because it is actually

larger than the capacityC2 in (26). The obtained results are reported in Fig. 4, for all values

of R in {0, 1, . . . , 17} andLMAX = 17. Clearly, such curves can be improved when an inequality

tighter than (8) is exploited to manipulate the coefficientsα(L,R) for L > LMAX . In Fig. 4, the

upper bound proposed in [7] and the lower bounds proposed in [4] and [5] are also reported for

comparison. We point out that the upper boundC∗

2 improves the upper bound presented in [7]

for most values ofd, in particular whend > 0.1, and, for large values ofd, the gap from the

best lower bound is now roughly halved.

V. THE THIRD UPPERBOUND

In this section, we derive an upper bound onC by providing side information on a random

processV, defined in the following. LetL be a positive integer parameter, based on which
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Fig. 4. Different bounds on the capacity of the deletion channel.

we partition the input sequenceX into subsequences{Xi} of L consecutive bits. Formally, we

define

Xi = (X(i−1)L+1, X(i−1)L+2, . . . , XiL), ∀i ≥ 1 .

For example, whenL = 3, we haveX1 = (X1, X2, X3), X2 = (X4, X5, X6), X3 = (X7, X8, X9),

and so on. We assume thatN is a multiple ofL, and thus that there are exactlyQ = N/L

subsequences{Xi}
Q
i=1 — this assumption does not affect the capacity evaluation, as in the

previous cases. We then partition the output sequenceY intoQ subsequences{Yi}
Q
i=1, where, for

each value ofi in {1, 2, . . . , Q}, Yi includes the received bits related to the input subsequenceXi.

Finally, we define the random processV = {Vi}
Q
i=1 such that, for each value ofi in {1, 2, . . . , Q},

Vi denotes the number of bits in the subsequenceYi. An example is depicted in Fig. 5 and

discussed in the related caption. Given the assumption of IID deletions, the processV is IID

too, and each element ofV takes on the valueR in {0, 1, . . . , L} with probability p(L,R),

according to the binomial distribution.

As in the previous cases, an upper bound on the capacity of thedeletion channel can be
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V1 = 2 V2 = 1 V3 = 3 V4 = 0

Fig. 5. A possible realization of the processV, whenL = 3 andQ = 4. Each white square represents a transmitted bit that

is correctly received, while each gray square represents a transmitted bit that is deleted.

obtained by providing the transmitter and the receiver withgenie-aided information on the

realizations ofV. We will refer to the capacity per input bit of this genie-aided system asC3.

Similarly to the previous cases, we haveQ blocks that do not interfere with each other, thei-th

block havingL input bits andVi output bits. Hence, using similar arguments as in the previous

sections, we get

C3 = lim
N→∞

1

N

Q
∑

i=1

f(L, Vi)

=
1

L
lim
Q→∞

1

Q

Q
∑

i=1

f(L, Vi)

=
1

L

L∑

R=0

f(L,R)p(L,R)

which can be also written as

C3 =
1

L

L∑

R=0

Rp(L,R)

︸ ︷︷ ︸

1−d

−
1

L

L∑

R=0

[R− f(L,R)] p(L,R)

= 1− d−
1

L

L∑

R=0

α(L,R)p(L,R) . (28)

Hence, since the coefficientsα(·, ·) cannot be negative, the bound (28) is at least as good as the

trivial bound 1 − d. In particular, by combining Lemma 2 with the available outcomes of the

BAA, it can be proved that the bound (28) equals1−d whenL ∈ {1, 2}, otherwise it is strictly

better. Note that, unlike the previous cases, the boundC3 does not involve an infinite series.

The upper bound (28) is plotted in Fig. 6, together with the upper bound proposed in [7]

and the lower bounds proposed in [4] and [5]. For each value ofL for which we could run the
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Fig. 6. Different bounds on the capacity of the deletion channel.

BAA, the boundC3 improves asL increases — we conjecture that this behavior holds for any

value ofL (see Section VII). Note that the considered approach significantly improves the bound

presented in [7] for most values of the deletion probabilityd, in particular whend > 0.08.

VI. THE FOURTH UPPERBOUND

Given any positive value of the integer parameterL, we can define a system identical to the

deletion channel, in which the receiver knows the realizations of the processV defined in the

previous section, while the transmitter does not. In this case, it is useful to think of the system

as if there were a “parallel” channel that provides the sequenceV to the receiver. The capacity

per input bit of this system, which will be denoted byC4, is definitely an upper bound on the

capacity (1), since, when the parallel outputV is neglected, the original deletion channel is

obtained. Moreover, the upper boundC4 cannot be larger thanC3 for the same value ofL,

since the system with capacityC3 reduces to the system with capacityC4 when the transmitter

neglects the side information on the processV.

As for the system considered in the previous section, we haveQ blocks that do not interfere
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P (Yi|Xi)

Xi Yi = ∅ Yi = 0 Yi = 1 Yi = 00 Yi = 01 Yi = 10 Yi = 11

00 d2 2d(1− d) 0 (1− d)2 0 0 0

01 d2 d(1− d) d(1− d) 0 (1− d)2 0 0

10 d2 d(1− d) d(1− d) 0 0 (1− d)2 0

11 d2 0 2d(1− d) 0 0 0 (1− d)2

TABLE III

TRANSITION PROBABILITIES FOR THE EVALUATION OFC4 (L = 2).

with each other, so that a discrete memoryless channel results. For each use of this channel,

we still have an input sequence ofL bits and, with probabilityp(L,R), an output sequence of

R bits, but now the value ofR is unknown to the transmitter. Hence, all transmitted sequences

must be taken from the same distribution, and no longer from adistribution matched to the

number of deletions in the current channel use. Consequently, the results related to the auxiliary

channel introduced in Section II cannot be exploited here. Formally, we get

C4 = lim
N→∞

max
P (X)

1

N
I(X;Y,V)

=
1

L
lim
Q→∞

max
P (X)

1

Q
I(X;Y,V)

=
1

L
max
P (Xi)

I(Xi;Yi) . (29)

WhenL = 1, this auxiliary channel reduces to the erasure channel, so thatC4 = 1− d. In any

other case, we could not find a closed-form expression ofC4, and still resorted to the BAA. To

run the BAA, we need the transition probabilities characterizing the channel, as those reported

in Table III for the caseL = 2. We point out that, unlike the auxiliary channel consideredin

Section II, the transition probabilities now depend on the value ofd, so that the BAA must be

run for each value of the deletion probability.

The upper boundsC3 andC4 are compared in Fig. 7 for three different values ofL — in

both cases,L = 17 is the largest value for which we could run the BAA. We point out that the

difference between the two bounds, yetC4 is rigorously tighter for each value ofL, tends to

vanish asL increases. This is due to the fact that, for large values ofL, the number of deletions
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Fig. 7. Different upper bounds on the capacity of the deletion channel.

for everyL transmitted bits is very likely to be close todL, so that the advantage of knowing the

actual number of such deletions (as it happens to the transmitter for the system with capacityC3)

tends to vanish. As for the boundC3, for each value ofL for which we could run the BAA,

the boundC4 improves asL increases, and we conjecture that this behavior holds for any value

of L (see Section VII).

VII. D ISCUSSIONS ON THEPROPOSEDUPPERBOUNDS

In Table IV, we report a comparison between the best upper bounds found in this paper, that

is, C4 with L = 17 for d ≤ 0.83 andC∗

2 with LMAX = 17 for d > 0.83, and the existing upper

bounds that we are aware of. We remark that the proposed approaches lead to a new state-of-

the-art upper bound on the capacity of the deletion channel for most values ofd, as evident

from the table (where the best values are shown in bold face).

We believe that the values reported in Table IV could be improved if it were possible to run

the BAA for longer sequences. In particular, our conjectureis formalized in the following.
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d Erasure-channel bound Bound from [7] Proposed bound

0.01 0.990 not given in [7] 0.963

0.02 0.980 not given in [7] 0.926

0.03 0.970 not given in [7] 0.891
0.04 0.960 not given in [7] 0.858

0.05 0.950 0.816 0.826

0.10 0.900 0.704 0.689

0.15 0.850 0.619 0.579

0.20 0.800 0.551 0.491

0.25 0.750 0.494 0.420

0.30 0.700 0.447 0.362

0.35 0.650 0.406 0.315

0.40 0.600 0.371 0.275

0.45 0.550 0.340 0.241

0.50 0.500 0.311 0.212

0.55 0.450 0.284 0.187

0.60 0.400 0.258 0.165

0.65 0.350 0.233 0.144
0.70 0.300 0.208 0.126

0.75 0.250 0.183 0.108

0.80 0.200 0.157 0.091

0.85 0.150 0.130 0.073

0.90 0.100 0.100 0.049

0.95 0.050 0.064 0.025

0.96 0.040 not given in [7] 0.020

0.97 0.030 not given in [7] 0.015

0.98 0.020 not given in [7] 0.010

0.99 0.010 not given in [7] 0.005

TABLE IV

DIFFERENT UPPER BOUNDS ON THE CAPACITY OF THE DELETION CHANNEL .

Conjecture 1:

• the boundC1 does not worsen asD increases;

• the boundC2 does not worsen asR increases;

• the boundC3 does not worsen asL increases;

• the boundC4 does not worsen asL increases.

These conjectures are based on the amount of genie-aided information, that is, the entropy

per input bit of the revealed processes. The idea is that the lower the entropy per input bit of the

revealed information, the tighter the upper bound. For example, let us consider the boundC1: if
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we reveal the position of one deletion every 100, we expect a tighter bound than if we reveal the

position of one deletion every 3. Unfortunately, we could not completely prove the conjectures

listed above, but we were able to derive closely related results. For example, we can prove

that C4 does not increase whenL is replaced by any positive multiple ofL. It is sufficient to

note that, whenL = ℓ, V carries the same information as whenL = nℓ (∀n > 0), plus some

additional information. Hence, we get

max
P (Xi)

I(Xi;Yi)

∣
∣
∣
∣
L=nℓ

≤ n max
P (Xi)

I(Xi;Yi)

∣
∣
∣
∣
L=ℓ

which, according (29), proves thatC4 does not increase whenL = ℓ is replaced byL = nℓ.

We now discuss the behavior of the proposed upper bounds for limiting values ofd, that is,

d → 0+ andd → 1−. In particular, after straightforward manipulations, thefollowing results can

be obtained

lim
d→0+

1− C∗

2

d
= α(R + 1, R) + 1 = α̃(R + 1, 1) + 1 (30)

lim
d→0+

1− C3

d
= α(L, L− 1) + 1 = α̃(L, 1) + 1 (31)

lim
d→1−

C∗

2

1− d
= 1−

α(LMAX , R)

R + 1
(32)

which are valid for any finite value ofR, L, andLMAX . The limits reported above are the only

ones leading to closed-form expressions that do not reduce to the trivial erasure-channel bound.

The limit for small values ofd is determined by the coefficient̃α(L, 1), some values of which

are reported in Table V — note that the coefficients in (30) and(31) are identical, except for

the name of the parameters. The best value that we have found so far is

lim
d→0+

1− C3

d
= 4.19 (33)

obtained whenL = 22. Other than the erasure-channel bound, we are not aware of any upper

bound that leads to closed-form limiting expressions comparable with the reported one. We

believe that (33) could be improved if it were possible to runthe BAA for longer sequences, as

formalized in the following.

November 1, 2018 DRAFT



FERTONANI AND DUMAN: NOVEL BOUNDS ON THE CAPACITY OF THE BINARY DELETION CHANNEL 22

L 10 11 12 13 14 15 16 17 18 19 20 21 22

α̃(L, 1) 2.08 2.21 2.33 2.44 2.55 2.64 2.73 2.82 2.90 2.98 3.05 3.12 3.19

TABLE V

COEFFICIENTα̃(L, 1).

Conjecture 2: For all values ofL, the following holds

if L̂ > L then α̃(L̂, 1) ≥ α̃(L, 1) . (34)

We wish to prove this conjecture since it would imply that theasymptotic upper bound (31)

does not worsen asL increases. Additionally, a strict inequality in (34), which holds for all

available outcomes of the BAA, would imply that the asymptotic upper bound (31) improves as

L increases. Lemma 6 gives a partial proof of (34). We point outthat the limiting value (31)

may not be limited, since (17) does not satisfy any convergence criterion [11].

The limit for large values ofd leads to similar considerations. In particular, the best value

that we have found so far is

lim
d→1−

C∗

2

1− d
= 0.49 , (35)

obtained by (32) whenR = 8 and LMAX = 17. Note that, according to (8), the reported

value could be improved by running the BAA for longer sequences, which unfortunately seems

infeasible. We point out that (35) improves the limiting upper bound

lim
d→1−

C

1− d
≤ 0.7918

derived in [7], and closes the gap from the limiting lower bound

lim
d→1−

C

1− d
≥ 0.1185

derived [12].
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VIII. T WO SIMPLE LOWER BOUNDS

In this section, we derive lower bounds onC by exploiting the random processV defined in

Section V. For any input distributionP (X), the following equation holds

I(X;Y) = I(X;Y,V)− I(X;V|Y) (36)

by definition [2]. Moreover, sinceI(X;V|Y) cannot be larger than the entropyH(V) of the

processV, we can write

I(X;Y) ≥ I(X;Y,V)−H(V) (37)

from which we get the following lower bound on the capacity ofthe deletion channel

C ≥ lim
N→∞

1

N
I(X;Y,V)− lim

N→∞

1

N
H(V) . (38)

If we consider the processV defined before, following the arguments given for the derivation

of (29), we obtain

lim
N→∞

1

N
I(X;Y,V) =

1

L
I(Xi;Yi)

lim
N→∞

1

N
H(V) =

1

L
H(Vi) ,

so that (38) can be written as

C ≥
1

L
I(Xi;Yi) +

1

L

L∑

R=0

p(L,R) log2 [p(L,R)] . (39)

In Fig. 8, the lower bound (39) is compared with the best lowerbound available in the

literature, namely the one from [4] or the one from [5], depending on the value ofd (see

Section I). For the computation of (39), two different inputdistributions have been considered,

that is, the distribution that maximizesI(Xi;Yi), which was considered in the previous section

to deriveC4, and IUD input bits. Note that the difference between the curve related to the

optimized input distribution and that related to IUD input bits is not significant for low values

of d, which is compliant with the fact that IUD input bits are optimal whend = 0. Interestingly,

for low values ofd, both distributions lead to a lower bound roughly as good as the reference

benchmarks, as evident from Table VI (where the best values are shown in bold face).
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Fig. 8. Different lower bounds on the capacity of the deletion channel.

d Bound from [3] Bound from [5] Bound (39),L = 17, optimized input Bound (39),L = 17, IUD input

0.01 0.919 not given in [5] 0.921 0.921

0.02 0.858 not given in [5] 0.862 0.862

0.03 0.805 not given in [5] 0.811 0.811

0.04 0.757 not given in [5] 0.766 0.765

0.05 0.713 0.728 0.724 0.722

0.10 0.531 0.562 0.555 0.546

TABLE VI

DIFFERENT LOWER BOUNDS ON THE CAPACITY OF THE DELETION CHANNEL .

IX. CONCLUSIONS

We have presented novel upper bounds on the capacity of the IID binary deletion channel. All

bounds have been obtained by revealing side information on suitable random processes, and by

computing the capacity of the resulting genie-aided systems. The proposed approaches lead to a

new state-of-the-art upper bound for most values of the deletion probabilityd, and provide novel

insights on the channel capacity in the limiting scenariosd → 0+ andd → 1−. As a by-product

of our approach, we have also presented simple lower bounds,which turn out not to improve
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the existing ones.
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