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Abstract

We consider a MIMO fading broadcast channel and compute achievable ergodic rates when channel state
information is acquired at the receivers via downlink training and it is provided to the transmitter by channel state
feedback. Unquantized (analog) and quantized (digital) channel state feedback schemes are analyzed and compared
under various assumptions. Digital feedback is shown to be potentially superior when the feedback channel uses per
channel state coefficient is larger than 1. Also, we show that by proper design of the digital feedback link, errors in
the feedback have a minor effect even if simple uncoded modulation is used on the feedback channel. We discuss
first the case of an unfaded AWGN feedback channel with orthogonal access and then the case of fading MIMO
multi-access (MIMO-MAC). We show that by exploiting the MIMO-MAC nature of the uplink channel, a much
better scaling of the feedback channel resource with the number of base station antennas can be achieved. Finally,
for the case of delayed feedback, we show that in the realistic case where the fading process has (normalized)
maximum Doppler frequency shift 0 ≤ F < 1/2, a fraction 1− 2F of the optimal multiplexing gain is achievable.
The general conclusion of this work is that very significant downlink throughput is achievable with simple and
efficient channel state feedback, provided that the feedback link is properly designed.

I. INTRODUCTION

In the downlink of a cellular-like system, a base station equipped with multiple antennas communicates with
a number of terminals, each possibly equipped with multiple receive antennas. If a traditional orthogonalization
technique such as TDMA is used, the base station transmits to a single receiver on each time-frequency resource
and thus is limited to point-to-point MIMO techniques [1], [2]. Alternatively, the base station can use multi-user
MIMO to simultaneously transmit to multiple receivers on the same time-frequency resource. Under the assumption
of perfect channel state information at the transmitter (CSIT) and at the receivers (CSIR), a combination of single-
user Gaussian codes, linear beamforming and “Dirty-Paper Coding” (DPC) [3] is known to achieve the capacity
of the MIMO downlink channel [4], [5], [6], [7], [8]. When the number of base station antennas is larger than the
number of antennas at each terminal, the capacity of the MIMO downlink channel is significantly larger than the
rates achievable with point-to-point MIMO techniques [4], [9], [10].

Given the widespread applicability of the MIMO downlink channel model (e.g., to cellular, WiFi, and DSL), it
is of great interest to design systems that can operate near the capacity limit. Although realizing the optimal DPC
coding strategy still remains a formidable challenge (see for example [11], [12], [13]), it has been shown that linear
beamforming without DPC performs quite close to capacity when combined with user selection, again under the
simplifying assumption of perfect channel state information (see for example [14], [15]).

In real systems, however, channel state information is not a priori provided and must be acquired, e.g., through
training. Acquiring the channel state is a challenging and resource-consuming task in time-varying systems, and the
obtained information is inevitably imperfect. It is therefore critical to understand what rates are achievable under
realistic channel state information assumptions, and in particular to understand the sensitivity of achievable rates
to such imperfections. To emphasize the importance of channel state information, note that in the extreme case of
no CSIT at the BS and identical fading statistics (and perfect CSIR) at all terminals, the multi-user MIMO benefit
is completely lost and point-to-point MIMO becomes optimal [4].
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A. Contributions of this work

The focus of this paper is a rigorous information theoretic characterization of the ergodic achievable rates of a
fading multiuser MIMO downlink channel in which the UTs and the BS obtain imperfect CSIR/CSIT via downlink
training and channel state feedback.1 Converse results on the capacity region of the MIMO broadcast channel
with imperfect channel knowledge are essentially open (see for example [16] and [17] for some partial results).
Here, we focus on the achievable rates of a specific signaling strategy, zero-forcing (ZF) linear beamforming.
Consistently with contemporary wireless system technology, we assume that each UT estimates its own channel
during a downlink training phase and then feeds back its estimate over the reverse uplink channel to the BS. The
BS designs beamforming vectors on the basis of the received channel feedback, after which an additional round
of downlink training is performed (essentially to inform the UTs of the selected beamformers). Our results tightly
bound the rate that is achievable after this process in terms of the resources (i.e., channel symbols) used for training
and feedback and the channel feedback technique.

The analysis of this paper inscribes itself in the line of works dealing with “training capacity” [18] of block-
fading channels. Several previous and concurrent works have treated training and channel feedback for point-to-pont
MIMO systems (see for example [19], [20], [21], [22], [23], [24], [25]) and, more recently, for MIMO broadcast
channels (see for example [26], [27], [28], [29], [30], [31], [32]). However, this paper presents a number of novelties
relative to prior/concurrent work:
• Rather than assuming perfect CSIR at the UT’s, we consider the realistic scenario where the UTs have imperfect

CSIR obtained via downlink training. Because the imperfect CSIR is the basis for the channel feedback from
the UTs, this degrades the quality of the CSIT provided to the BS in a non-negligible manner.

• Instead of idealizing the feedback channel as a fixed-rate, error-free bit-pipe, we explicitly consider transmission
from each UT to the BS over the noisy feedback channel. This reveals the fundamental joint source-channel
coding nature of channel feedback. In addition, this allows us to meaningfully measure the uplink resources
dedicated to channel feedback and also allows for a comparison between analog (unquantized) and digital
(quantized) feedback. We begin by modeling the feedback channel as an AWGN channel (orthogonal across
UTs), and later generalize to a multiple-antenna uplink channel that is shared by the UTs. In this way, we
precisely quantify the fundamental advantage of using the multiple BS antennas for efficient channel state
feedback.

• A fundamental property of the system is that UTs are unaware of the chosen beamforming vectors, because
the beamformers depend on all channels whereas each UT only has an estimate of its own channel. Several
previous works (e.g., [26], [33], [34]) have resolved this uncertainty by making the unstated assumption that
each UT has perfect knowledge of the post-beamforming SINR. In contrast, we make no such assumption and
rigorously show that this ambiguity can be resolved by an additional round of (dedicated) training.

• Most prior work has used a worst-case uncorrelated noise argument [35][36][18] to show that imperfect CSI,
at worse, leads to the introduction of additional Gaussian noise and thus the achievable rate is lower bounded
by the mutual information with ideal channel state information and reduced SNR. In our case, however, this
same argument yields a largely uncomputable quantity and a further step must be taken that yields a tractable
lower bound in terms of the rate difference between the ideal and actual cases, rather than in terms of a SNR
penalty.

• We consider delayed feedback and quantify in a simple and appealing form the loss of degrees of freedom
(pre-log factor in the achievable rate) in terms of the fading channel Doppler bandwidth, which is ultimately
related to UT velocity.

The analysis presented in this paper is relevant from at least two related but different viewpoints. On one hand,
it provides accurate bounds on the achievable ergodic rates of the linear zero-forcing beamforming scheme with
realistic channel estimation and feedback. These bounds are useful at any operating SNR (not necessarily large), and
in subsequent work have been used to optimize the system resources allocated for training and feedback [37][38].
On the other hand, it yields sufficient conditions on the training and feedback such that the system achieves the same
multiplexing gain (also referred to as “pre-log factor”, or “degrees of freedom”) of the optimal DPC-based scheme
under perfect CSIR/CSIT. Perhaps the most striking fact about this second aspect is that the full multiplexing gain

1Since this work considers feedback schemes where the role of transmitter and receiver are reversed, we avoid using “transmitter” and
“receiver” and prefer the use of BS and UT instead, in order to avoid ambiguity.
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of the ideal MIMO broadcast channel can be achieved with simple pilot-based channel estimation and feedback
schemes that consume a relatively small fraction of the system capacity. Indeed, a fundamental property of the
MIMO broadcast channel is that the quality of the CSIT must increase with signal-to-noise ratio (SNR), regardless
of what coding strategy is used, in order for the full multiplexing gain to be achievable [16], [17]. Under the
reasonable assumption that the uplink channel quality is in some sense proportional to the downlink channel, our
work shows that this requirement can be met using a fixed number of downlink and uplink channel symbols (i.e.,
system resources used for training and feedback need not increase with SNR).

When there is a significant delay in the feedback loop, the simple scheme analyzed in this paper does not attain
full multiplexing gain. However, for fading processes with normalized Doppler bandwidth F strictly less than 1/2,
we show the achievability of a multiplexing gain equal to M(1 − 2F ), where M is the number of BS antennas.
This result follows from a fundamental property of the noisy prediction error of the channel process and is closed
related to Lapidoth’s high-SNR capacity of single-user fading channels without the perfect CSIR assumption [39].

The paper is organized as follows. Section II introduces the system model, describes linear beamforming, and
defines the baseline estimation, feedback, and beamforming strategy. Section III develops bounds on the ergodic
rates achievable by the baseline scheme. In Section IV we consider an AWGN feedback channel and particularize
the rate bounds to analog and digital feedback (incorporating the effect of decoding errors for digital feedback),
and compare the different feedback options. Section V generalizes the results to the setting where the feedback
link is a fading MIMO multiple access channel (MAC). Section VI considers time-correlated fading and the effect
of delay in the feedback link. Some concluding remarks are provided in Section VII.

II. SYSTEM MODEL

We consider a multi-input multi-output (MIMO) Gaussian broadcast channel modeling the downlink of a system
where a Base Station (BS) has M antennas and K User Terminals (UTs) have one antenna each. A channel use
of such channel is described by

yk = hH
k x + zk, k = 1, . . . ,K (1)

where yk is the channel output at UT k, zk ∼ CN(0, N0) is the corresponding Additive White Gaussian Noise
(AWGN), hk ∈ CM is the vector of channel coefficients from the k-th UT antenna to the BS antenna array
(the superscript H refers to the Hermitian, or conjugate transpose) and x is the vector of channel input symbols
transmitted by the BS. The channel input is subject to the average power constraint E[|x|2] ≤ P .

We assume that the channel state, given by the collection of all channel vectors H = [h1, . . . ,hK ] ∈ CM×K ,
varies in time according to a block-fading model [40], where H is constant over each frame of length T channel
uses, and evolves from frame to frame according to an ergodic stationary spatially white jointly Gaussian process,
where the entries of H are Gaussian i.i.d. with elements ∼ CN(0, 1). Our bounds on the ergodic achievable rate do
not directly depend on the frame size T ; rather, these bounds depend only on whether the training, feedback, and
data phases all occur within a frame or in different frames. In Sections IV - V we consider the simplified scenario
where the three phases all occur within a single frame (i.e., the channel is constant across the phases) and fading
is independent across blocks, but we remove these simplifications in Section VI. It should also be noticed that the
rate lower bounds given in the following should be multiplied by the factor (1−∆/T ), where ∆ denotes the total
number of channel uses per frame dedicated to training and feedback. This factor is neglected in this paper since it
is common to all rate bounds and since ∆� T in a typical slowly-fading system scenario. However, in the general
case where ∆ is not necessarily small with respect to T , the amount of training and feedback should be optimized
by taking this multiplicative factor into account. Based on the bounds developed in the present paper, this system
optimization is carried out in the follow-up works [37], [38].

A. Linear beamforming

Because of simplicity and robustness to non-perfect CSIT, simple linear precoding schemes with standard
Gaussian coding have been extensively considered: the transmit signal is formed as x = Vu, such that V ∈ CM×K

is a linear beamforming matrix and u ∈ CK contains the symbols from K independently generated Gaussian
codewords. In particular, for K ≤ M Zero-Forcing beamforming chooses the k-th column vk of V to be a unit
vector orthogonal to the subspace Sk = span{hj : j 6= k}.
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Fig. 1. Channel estimation and feedback model

We focus on the achievable ergodic rates under ZF linear beamforming and Gaussian coding. In this case, the
achievable rate-sum is given by

maxP
k E[Pk(H)]≤P

K∑
k=1

E
[
log
(

1 +
|hH
k vk|2Pk(H)

N0

)]
. (2)

where the optimal power allocation is obtained by waterfilling over the set of channel gains {|hkvk|2 : k =
1, . . . ,K}. Performance can further be improved by using a user scheduling algorithm to select in each frame an
active user subset not larger than M (if K > M , such selection must be performed if ZF is used). Schemes for
user scheduling have been extensively discussed, for example in [41], [32], [15], [42].

We focus, however, on the case K = M with uniform power allocation (across users and frames: Pk(H) = P
M )

and without user selection, in which case the per-user ergodic rate is

RZF
k (P ) = E

[
log
(

1 +
|hH
k vk|2P
N0M

)]
. (3)

Because hk is spatially white and vk is selected independent of hk (by the ZF procedure), it follows that hH
k vk is

∼ CN(0, 1). As a result, RZF
k is the ergodic capacity of a point-to-point channel in Rayleigh fading with average

SNR P
N0M

, and thus can be written in closed form as [43] RZF
k = exp

(
N0M
P

)
Ei
(
1, N0M

P

)
where Ei(n, x) =∫∞

1
e−xt

tn dt, x > 0 [44]. In the remainder of the paper RZF
k serves as a benchmark aginst which we compare the

achievable rates with imperfect CSI.
This restriction is dictated by a few reasons. On one hand, the case K = M without selection makes closed-form

analysis (in the presence of imperfect CSI) possible. In addition, the maximum multiplexing gain is M for all
K ≥ M and hence the case K = M suffices to capture the fundamental aspects of the problem (particularly at
high SNR). Finally, recent results [33], [45] show that the dependence on CSI quality is roughly the same even
when user selection is performed.

B. Channel state estimation and feedback

We assume that each UT estimates its channel vector from downlink training symbols and then feeds this
information back to the BS. This scenario, referred to as “closed-loop” CSIT estimation, is relevant for Frequency-
Division Duplexed (FDD) systems. Our baseline system is depicted in Fig. 1 and consists of the following phases:

1) Common Training: The BS transmits β1M shared pilots (β1 ≥ 1 symbols per antenna) on the downlink2.
Each UT k estimates its channel from the observation

sk =
√
β1P hk + zk (4)

2If β1 is an integer, pilot symbols can be orthogonal in time, i.e., β1 pilots are successively transmitted from each of the M BS antennas
for a total of β1M channel uses. More generally, it is sufficient for β1M to be an integer and to use a unitary M × β1M spreading matrix
as described in [28]; in either case the effective received SNR is β1

P
N0

.
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corresponding to the common training (downlink) channel output, where zk ∼ CN(0, N0I). The MMSE
estimate h̃k of hk given the observation sk is given by [46]:

h̃k = E[hksH
k ]E[sksH

k ]−1sk =
√
β1P

N0 + β1P
sk (5)

The channel hk can be written in terms of the estimate h̃k and estimation noise nk as:

hk = h̃k + nk, (6)

where nk is independent of the estimate and is Gaussian with covariance σ2
1I with

σ2
1 =

1
1 + β1P/N0

(7)

2) Channel State Feedback: Each UT feeds back its channel estimate h̃k to the BS immediately after
completion of the common training phase. We use Ĥ = [ĥ1, . . . , ĥK ] ∈ CM×K to denote the (imperfect)
CSIT available at the BS; the feedback is thus a mapping, possibly probabilistic, from h̃k to ĥk. For now we
leave the feedback scheme unspecified to allow development of general achievability bounds in Section III,
and particularize to specific feedback schemes from Section IV onwards.
In Section IV we consider the simplified setting where the feedback channel is an unfaded AWGN channel
SNR P

N0
, orthogonal across UTs, but in Section V we consider the more realistic setting where the uplink

channel is a MIMO-MAC with fading. Furthermore, the baseline model of Fig. 1 assumes no delay in the
feedback, i.e., the channel is constant across the training, feedback, and data phases. In Section VI we remove
this assumption and consider the case where feedback has delay and the channel state changes from frame
to frame according to a time-correlation model.
We assume each UT transmits its feedback over βfbM feedback channel symbols.

3) Beamformer Selection: The BS selects the beamforming vectors by treating the estimated CSIT Ĥ as if it
was the true channel (we refer to this approach as “naive” ZF beamforming). Following the ZF recipe, v̂k is a
unit vector orthogonal to the subspace Sk = span{ĥj : j 6= k}. We use the notation V̂ = [v̂1, . . . , v̂K ]. Since
K = M and the BS channel estimates ĥ1, . . . , ĥM are independent, the subspace Sk is M − 1 dimensional
(with probability one) and is independent of ĥk. The beamforming vector v̂k is chosen in the one-dimensional
nullspace of Sk; as a result v̂k is independent of the channel estimate ĥk and of the true channel vector hk.

4) Dedicated Training: Once the the BS has computed the beamforming vectors V̂, coherent detection of
data at each UT is enabled by an additional round of downlink training transmitted along each beamforming
vector. This additional round of training is required because the beamforming vectors {v̂k} are functions of
the channel state information {ĥ1, . . . , ĥK} at the BS, while UT k knows only h̃k or, at best, ĥk (if error-free
digital feedback is used). Therefore, the coupling coefficients between the beamforming vectors and the UT
channel vector are unknown.
Let the set of the coefficients affecting the signal received by UT k be denoted by

Ak , {ak,j : j = 1, . . . ,M}

where ak,j = hH
k v̂j is the coupling coefficient between the k-th channel and the j-th beamforming vector.

The received signal at the k-th UT is given by

yk = hH
k V̂u + zk = ak,kuk +

∑
j 6=k

ak,juj + zk

= ak,kuk + Ik + zk (8)

where the interference at UT k is denoted as

Ik =
∑
j 6=k

ak,juj (9)

and ak,k is the useful signal coefficient. The dedicated training is intended to allow the estimation of the
coefficients in Ak at each UT k. This is accomplished by transmitting β2 orthogonal training symbols along
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each of the beamforming vectors on the downlink, thus requiring a total of β2M downlink channel uses.3

The relevant observation model for the estimation of Ak is given by

rk,j =
√
β2P ak,j + zk,j , j = 1, . . . ,M (10)

We denote the full set of observations available to UT k as:

Rk , {rk,j : j = 1, . . . ,M}.

In particular, we shall consider explicitly the case where UT k estimates its useful signal coefficient using
linear MMSE estimation based on rk,k, i.e.,

âk,k =
√
β2P

N0 + β2P
rk,k. (11)

Because v̂k is a unit vector independent of hk, the useful signal coefficient ak,k = hH
k v̂k is complex Gaussian

with unit variance. As a result we have the representation

ak,k = âk,k + fk (12)

where fk and âk,k are independent and Gaussian with variance σ2
2 and 1− σ2

2 , respectively, with

σ2
2 =

1
1 + β2P/N0

. (13)

5) Data Transmission: After the dedicated downlink training phase, the BS sends the coded data symbols
u1, . . . , uK for the rest of the frame duration. The effective channel output for this phase is therefore given
by the sequence of corresponding channel output symbols yk given by (8), and by the observation of the
dedicated training phase Rk given by (10).
When considering the ergodic rates achievable by the proposed scheme, we implicitly assume that coding is
performed over a long sequence of frames, each frame comprising a common training phase, channel state
feedback phase, dedicated training phase and data transmission.

We conclude this section with a few remarks. First, we would like to observe that two phases of training, a common
“pilot channel” and dedicated per-user training symbols is common practice in some wireless cellular systems, as
for example in the downlink of the 3rd generation Wideband CDMA standard [47] and in the MIMO component
of future 4th generation systems [48]. Second, we note that an alternative to FDD is Time-Division Duplexing
(TDD), where uplink and downlink share in time-division the same frequency band. In this case, provided that
the coherence time is significantly larger than the concatenation of an uplink and downlink slot and hardware
calibration, the downlink channel can be learned by the BS from uplink training symbols [28], [49]. Although we
focus on FDD systems, in Remark 4.2 we note the straightforward extension of our results to TDD systems.

III. ACHIEVABLE RATE BOUNDS

We assume that the user codes are independently generated according to an i.i.d. Gaussian distribution, i.e., the
input symbols are uk ∼ CN(0, P/M). The remainder of this section is dedicated to deriving upper and lower
bounds on the mutual information achieved by such Gaussian inputs, indicated by Rk , I(uk; yk,Rk).

A. Lower Bounds

The following lower bound is obtained by using techniques similar to those in [35], [18], [36].
Theorem 1: The achievable rate for ZF beamforming with Gaussian inputs and CSI training and feedback as

described in Section II-B can be bounded from below by:

Rk ≥ E
[
log
(

1 +
|âk,k|2P/(N0M)

1 + σ2
2P/(N0M) + E [|Ik|2|âk,k] /N0

)]
(14)

Proof: See Appendix I. �

3If β2M is an integer but β2 is not, the unitary spreading approach used for common training can also be used here.
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The conditional interference second moment E
[
|Ik|2|âk,k

]
in (14) may be difficult to compute even by Monte

Carlo simulation, due to the complicated dependency of Ik on âk,k (this dependence is unknown even if the
dedicated training is perfect, i.e., âk,k = ak,k). However, we will not need to compute this explicitly, as is seen in
our next results.

A very useful measure is the difference between Rk and RZF
k , the achievable rate with ZF beamforming and

ideal CSI defined in (3). The rate gap is defined as follows

∆R ∆= RZF
k −Rk, (15)

and is upper bounded in the following theorem.
Theorem 2: The rate gap incurred by ZF beamforming with training and feedback as described in Section II-B

with respect to ideal ZF with equal power allocation is upperbounded by:

∆R ≤ log
(

1 + σ2
2

P

N0M
+

E[|Ik|2]
N0

)
(16)

Proof: See Appendix II. �
For clarity of notation, we denote the RHS of the above, referred to as the rate gap upper bound, as ∆R:

∆R , log

(
1 + σ2

2

P

N0M
+

E
[
|Ik|2

]
N0

)
(17)

= log

1 +
P

N0M

σ2
2 +

∑
j 6=k

E
[
|hH
k v̂j |2

] (18)

where the latter follows from a simple calculation of E[|Ik|2]. The term σ2
2 depends only on dedicated training;

on the other hand, E
[
|hH
k v̂j |2

]
is determined by the mismatch between hk and the BS estimate ĥk (because v̂j is

chosen orthogonal to ĥk rather than hk) and therefore depends on the common training and feedback phases.
An obvious result of the rate gap upper bound is the following lower bound to Rk:
Corollary 3.1: The achievable rate for ZF beamforming with Gaussian inputs and CSIT training and feedback

as described in Section II-B can be bounded from below by:

Rk ≥ RZF
k −∆R (19)

Because only the estimate of ak,k is used in the derivation, Corollary 3.1 is also a lower bound to I(uk; yk, rk,k).

B. Upper Bounds

A useful upper bound to Rk is reached by providing each UT k with exact knowledge of the interference
coefficients Ak. Thus, this is referred to as the “genie-aided upper-bound”.

Theorem 3: The achievable rate for ZF beamforming with Gaussian inputs and CSI training and feedback is
upper bounded by the rate achievable when, after the beamforming matrix V̂ is chosen, a genie provides the k-th
UT with perfect knowledge of the coefficients Ak = {ak,j = hH

k v̂j : j = 1, . . . ,M}:

Rk ≤ E

[
log

(
1 +

|ak,k|2P/(N0M)
1 +

∑
j 6=k |ak,j |2P/(N0M)

)]
. (20)

Proof: Since Rk is a noisy version of Ak, the data-processing inequality yields

Rk = I(uk; yk,Rk) ≤ I(uk; yk,Ak) (21)

Because yk conditioned on Ak is complex Gaussian with variance N0 +
∑M

j=1 |ak,j |2P/M while yk conditioned
on (Ak, uk) is complex Gaussian with variance N0 +

∑
j 6=k |ak,j |2P/M , we immediately obtain (20).

The practical relevance of Theorem 3 is two-fold: on one hand, (20) is easy to evaluate by Monte Carlo
simulation.4 On the other hand, this bound can be approached for large β2, since in this case each UT can accurately
estimate all interference coupling coefficients and not only the useful signal coefficient.

4It is usually difficult if not impossible to obtain in closed form the joint distribution of the coefficients Ak.
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IV. CHANNEL STATE FEEDBACK OVER AN AWGN CHANNEL

In this section we quantify the rate gap upper bound for different feedback strategies under the assumption that
the feedback channel is an unfaded AWGN channel with the same SNR as the downlink, i.e., P/N0, and that
the UTs access the channel orthogonally. Each UT uses βfbM feedback channel symbols, and therefore the total
number of feedback channel uses is βfbM

2.

A. Analog feedback

Analog feedback refers to transmission (on the feedback link) of the estimated downlink channel coefficients
by each UT using unquantized quadrature-amplitude modulation [28], [32], [50], [51]. More specifically, each UT
transmits on the feedback channel a scaled version of its common downlink training observation sk defined in (4).
The resulting feedback channel output (BS observation) relative to UT k is given by:

gk =
√
βfbP√

β1P +N0
sk + w̃k (22)

=
√
βfbβ1P√
β1P +N0

hk +
√
βfbP√

β1P +N0
zk + w̃k (23)

=
√
βfbβ1P√
β1P +N0

hk + wk (24)

where w̃k represents the AWGN noise on the uplink feedback channel (variance N0) and zk is the noise during the
common training phase. The power scaling βfb corresponds to the number of channel uses per channel coefficient
(we require βfb ≥ 1 so that each coefficient is transmitted at least once), assuming that transmission in the feedback
channel has per-symbol power P (averaged over frames) and that the channel state vector is modulated by a
βfbM ×M unitary spreading matrix [28]. Because w̃k and zk are each complex Gaussian with covariance N0I
and are independent, wk is complex Gaussian with covariance σ2

wI with:

σ2
w = N0

(
1 +

βfbP/N0

1 + β1P/N0

)
(25)

The BS computes the MMSE estimate of the channel vector hk based on gk as:

ĥk =
√
βfbβ1P√

β1P +N0 (βfbP +N0)
gk. (26)

Using (24), the channel can be written in terms of the BS estimate and estimation error ek as:

hk = ĥk + ek (27)

where ek is independent of the estimate and is Gaussian with covariance σ2
eI with:

σ2
e =

σ2
w

σ2
w + βfbβ1P 2

β1P+N0

=
1

1 + βfb
P
N0

+
βfb

P
N0

(1 + βfb
P
N0

)(1 + β1
P
N0

)
. (28)

This characterization of (hk, ĥk) can be used to derive the rate gap upper bound for analog feedback:
Theorem 4: If each UT feeds back its channel coefficients in analog fashion over βfbM channel uses of an

AWGN uplink channel with SNR P
N0

, the rate gap upper bound is given by (“AF” standing for Analog Feedback):

∆RAF = log

(
1 +

P

N0M

(
1

1 + β2
P
N0

+ (M − 1)

(
1

1 + βfb
P
N0

+
βfb

P
N0

(1 + βfb
P
N0

)(1 + β1
P
N0

)

)))
. (29)

Proof: See Appendix III.
It is straightforward to see that ∆RAF can be upper bounded as

∆RAF ≤ log
(

1 +
1

Mβ2
+
M − 1
M

(
1
β1

+
1
βfb

))
, (30)

Hence, the rate gap is uniformly bounded for all SNRs and therefore the multiplexing gain is preserved (i.e.,
limP→∞

Rk
log2 P

= 1) in spite of the imperfect CSI.
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An intuitive understanding of this rate loss is obtained if one re-examines the UT received signal in the form
used in Theorem 1:

yk = âk,kuk + fkuk︸︷︷︸
Self Noise

+
∑
j 6=k

(hH
k v̂j)uj︸ ︷︷ ︸

Interference

+ zk︸︷︷︸
Noise

(31)

The imperfect channel state information (at the UT and BS) effectively increases the noise from the thermal noise
level N0 to the sum of the thermal noise, self-noise, and interference power, and the rate gap upper bound ∆RAF

is precisely the logarithm of the ratio of the effective noise to the thermal noise power.
Remark 4.1: In many systems, the uplink SNR is smaller than the downlink SNR because UT’s transmit with

reduced power. If the uplink SNR is Γ P
N0

rather than P
N0

, ∆RAF is equal to the expression in Theorem 4 with βfb

replaced with Γβfb. This does not change the multiplexing gain, but can have a significant effect on the rate gap. ♦
Remark 4.2: It is easy to see that a TDD system with perfectly reciprocal uplink-downlink channels where

each UT transmits βTDD pilots (a single pilot trains all M BS antennas) in an orthogonal manner corresponds
exactly to an FDD system with perfect feedback (βfb →∞) and β1 = βTDD, because the downlink training in an
FDD system is equivalent to the uplink training in a TDD system. Therefore, as a byproduct of our analysis, we
obtain a result for TDD open loop CSIT estimation:

∆RTDD = log

[
1 +

P

N0M

(
1

1 + β2
P
N0

+
M − 1

1 + βTDD
P
N0

)]
(32)

≤ log
(

1 +
1

Mβ2
+
M − 1
M

1
βTDD

)
. (33)

Dedicated training is necessary even in TDD systems because UT’s do not know the channels of other UT’s and
thus are not aware of the beamforming vectors used by the BS. Finally, note that in TDD a total of MβTDD uplink
training symbols and Mβ2 downlink (dedicated) training symbols are needed. ♦

B. Digital feedback

We now consider “digital” feedback, where the estimated channel vector is quantized at each UT and represented
by B bits. The packet of B bits is fed back by each UT to the BS. We begin by computing the rate gap upper
bound in terms of bits, and later in the section relate this to feedback channel uses.

Following [21], [20], [19], [26], we consider a specific scheme for channel state quantization based on a
quantization codebook C = {p1, . . . ,p2B} of unit-norm vectors in CM . The quantization ĥk of the estimated
channel vector h̃k is found according to the decision rule:

ĥk = arg max
p ∈ C

|h̃H
kp|2 (34)

and thus ĥk is the quantization vector forming the minimum angle with h̃k. The corresponding B-bits quantization
index is fed back to the BS. Because ĥk is unit-norm, no channel magnitude information is conveyed.

In [24], [26] it is shown that for a random ensemble of quantization codebooks referred to as Random Vector
Quantization (RVQ), obtained by generating 2B quantization vectors independently and uniformly distributed on
the unit sphere in CM (see [26] and references therein), the average (angular) distortion is given by:

E
[
sin2

(
h̃k, ĥk

)]
= 2Bβ

(
2B,

M

M − 1

)
≤ 2−

B

M−1 (35)

where β(·) is the beta function and sin2
(
h̃k, ĥk

)
= 1− |

ehH
k
bhk|2

‖ehk‖2 . As in [26] we assume each UT uses an independently
generated codebook. For this particular quantization scheme, we can compute the rate gap upper bound:

Theorem 5: If each UT quantizes its channel to B bits (using RVQ) and conveys these bits in an error-free
fashion to the BS, the rate gap upper bound is given by (“DF” standing for Digital Feedback):

∆RDF = log

(
1 +

P

N0M

(
1

1 + β2
P
N0

+
M

1 + β1
P
N0

[
M − 1
M

+
β1P

N0
2Bβ

(
2B,

M

M − 1

)]))
. (36)
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Proof: See Appendix IV.
Using (35), the rate gap upper bound is further upper bounded as:

∆RDF ≤ log
(

1 +
1

Mβ2
+
M − 1
M

1
β1

+
(
P

N0

)
2−

B

M−1

)
(37)

Comparing this to the rate gap in the analog feedback case (30), we notice that the dependence on β1 and β2 are
precisely the same for both analog and digital feedback.

The next step is translating the rate gap upper bound so that it is in terms of feedback symbols rather than bits.
For the time being, we shall make the very unrealistic assumption that the feedback link can operate error-free at
capacity, i.e., it can reliably transmit log2(1 + P/N0) bits per symbol.5

The analog feedback considered before provides a noisy version of the channel vector norm in addition to its
direction. Although this information is irrelevant for the ZF beamforming considered here, it might be useful in
some user selection algorithms such as those proposed in [41], [32], [15], [42]. In contrast, digital feedback based
on unit-norm quantization vectors provides no norm information. Thus, for fair comparison, we assume that βfbM
feedback symbols in the analog feedback scheme correspond to βfb(M − 1) feedback symbols for the digital
feedback scheme; i.e., a system using digital feedback could use one feedback symbol to transmit channel norm
information. An alternative justification for this is to notice that the analog feedback system could be modified
to operate in βfb(M − 1) channel symbols by transmitting only the M − 1 relative phases and amplitudes of the
channel coefficients, since the absolute norm and phase are irrelevant to the ZF beamforming considered here.

Under this assumption, the number of feedback bits per mobile is B = βfb(M − 1) log2(1 + P/N0). Plugging
this into (37) gives:

∆RDF ≤ log

1 +
1

Mβ2
+
M − 1
M

1
β1

+
P
N0(

1 + P
N0

)βfb

 (38)

Similar to analog feedback, if βfb ≥ 1 then the rate gap is upper bounded and full multiplexing gain is preserved.

However, it should be noticed that for βfb strictly larger than 1 digital feedback yields a term
(
P
N0

)1−βfb

that

vanishes as P/N0 →∞. This should be contrasted with the constant term 1
βfb

for the case of analog feedback.

C. Effects of feedback errors

We now remove the optimistic assumption that the digital feedback channel can operate error-free at capacity. In
general, coding for the CSIT feedback channel should be regarded as a joint source-channel coding problem, made
particularly interesting by the non-standard distortion measure and by the fact that a very short block length is
required. A thorough discussion of this subject is out of the scope of the present paper and is the matter of current
investigation (see for example [52], [53]). Here, we restrict ourselves to the detailed analysis of a particularly simple
scheme based on uncoded QAM. Perhaps surprisingly, this scheme is sufficient to achieve a vanishing rate gap in
the high SNR region, for an appropriate choice of the system parameters.

In the proposed scheme, the UTs perform quantization using RVQ and transmit the feedback bits using plain
uncoded QAM. The quantization bits are randomly mapped onto the QAM symbols (i.e., no intelligent bit-labeling
or mapping is used). Therefore, even a single erroneous feedback bit from UT k makes the BS’s CSIT vector ĥk
essentially useless. Also, no particular error detection strategy is used and thus the BS computes the beamforming
matrix on the basis of the received feedback, although this may be in error.

We again let βfb(M −1) denote the number of channel uses to transmit the feedback bits (per UT). Interestingly,
even for this very simple scheme there is a non-trivial tradeoff between quantization distortion and channel errors. In
order to maintain a bounded rate gap, the number of feedback bits must be scaled at least as (M−1) log2

(
1 + P

N0

)
≈

(M − 1) log2
P
N0

. Therefore, we consider sending B = α(M − 1) log2
P
N0

bits for 1 ≤ α ≤ βfb in βfb(M − 1)
channel uses, which corresponds to α

βfb
log2

P
N0

bits per QAM symbol.

5This assumption is unrealistic in the context of this model because the feedback channel coding block length is very small and because
the need for very fast feedback (essentially delay-free) prevents grouping blocks of channel coefficients and using larger coding block length.



11

The symbol error rate for square QAM with q constellation points is bounded by [54]:

Ps = 1−
(

1− 2
(

1− 1
√
q

)
Q

(
3(P/N0)
q − 1

))2

≤ 2 exp
(
−3

2
P/N0

q − 1

)
. (39)

where Q(x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian probability tail function. Using the fact that q = (P/N0)
α

βfb , we
obtain the upper bound

Ps ≤ 2 exp

(
−3

2

(
P

N0

)1− α

βfb

)
(40)

If α = βfb, which corresponds to signaling at capacity with uncoded modulation, Ps does not decrease with SNR
and system performance is very poor. However, for α < βfb, which corresponds to transmitting at a fraction of
capacity, Ps → 0 as P

N0
→ ∞. The error probability of the entire feedback message (transmitted in βfb(M − 1)

QAM symbols) is given by

Pe,fb = 1− (1− Ps)βfb(M−1) ≤ βfb(M − 1)Ps, (41)

where the inequality follows from the union bound. Note the tradeoff between distortion and feedback error: α
large yields finer quantization but larger Pe,fb, while α small provides poorer quantization but smaller Pe,fb.

Theorem 6: If each UT quantizes its estimated channel using B = α(M − 1) logP/N0 bits (using RVQ), and
transmits on the feedback link using βfb(M − 1) channel uses with uncoded QAM modulation, the resulting rate
gap can be upperbounded by

∆RDF-ERRORS ≤ log

(
1 +

1
Mβ2

+ (1− Pe,fb)

((
P

N0

)1−α
+
M − 1
M

1
β1

)
+

P

N0
Pe,fb

)
, (42)

where Pe,fb is given by (40) and (41).

Proof: See Appendix V.
If 1 < α < βfb, then the effect of feedback vanishes as P

N0
→ ∞, somewhat similar to the case of error-free

feedback. This is because the feedback error probability decays exponentially as (P/N0)1− α

βfb , so that the term
P
N0
Pe,fb vanishes as P

N0
→∞ for all α < βfb, while obviously (P/N0)1−α vanishes for all α > 1.

A number of simple improvements are possible. For example, each UT may estimate its interference coefficients
{ak,j : j 6= k} from the dedicated training phase, and decide if its feedback message was correctly received or
was received in error by setting a threshold on the interference power: if the interference power is ≈ (M − 1)P ,
then it is likely that a feedback error occurred. If, on the contrary, it is ≈ 2−B/(M−1)P , then it is likely that the
feedback message was correctly received. Interestingly, for B = α(M − 1) log2

P
N0

with α > 1, detecting feedback
error events becomes easier and easier as P

N0
increases and/or as the number of antennas M increases. In brief,

for a large number of antennas any terminal whose feedback message was received in error is completely drowned
into interference and should be able to detect this event with high probability. Assuming that the UTs can perfectly
detect their own feedback error events as described above, then they can simply discard the frames corresponding
to feedback errors. The resulting achievable rate in this case is lowerbounded by

RDF-ERRORS-DETECT
k ≥ (1− Pe,fb)

[
RZF
k − log

(
1 +

1
Mβ2

+
M − 1
M

1
β1

+
(
P

N0

)1−α
)]

(43)

in light of (38) (after replacing α instead of βfb) and of Corollary 3.1. Note that this rate lies between the achievable
rate lower bound obtained via the rate gap in (42) and the genie-aided upper bound from Theorem 3.

Remark 4.3: It is interesting to notice that feedback errors make the residual interference behave as an
impulsive noise: it has very large variance with small probability Pe,fb. It is therefore clear that detecting the
feedback errors and discarding the corresponding frames yields significant improvements. Using this knowledge at
the receiver (as in the rate bound (43)), avoids the large “Jensen’s penalty” incurred by the rate gap in (42), where
the expectation with respect to the feedback error events is taken inside the logarithm. ♦

Remark 4.4: We notice here that the naive ZF strategy examined in this paper is robust to feedback errors
in the following sense: the residual interference experienced by a given UT depends only on that particular UT
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feedback error probability. Therefore, a small number of users with poor feedback channel quality (very high
feedback error probability) does not destroy the overall system performance. This observation goes against the
conventional wisdom that feedback errors are “catastrophic”. ♦

D. Comparison between analog and digital channel feedback

Based upon the bounds developed in the previous subsections as well as the genie-aided upper bounds (computed
using Monte Carlo simulation) we can now compare analog, error-free digital, and QAM-based digital feedback.
Because the effect of downlink and common training is effectively the same for all feedback strategies, we pursue
this comparison under the assumption of perfect CSIR, i.e., perfect common and dedicated training corresponding
to β1 = β2 →∞. From (30) and (38) we have:

∆RAF
CSIR ≤ log

(
1 +

1
βfb

)
(44)

∆RDF
CSIR ≤ log

1 +
P
N0(

1 + P
N0

)βfb

 (45)

If βfb = 1 then analog and error-free digital feedback both achieve essentially the same rate gap of 1 bit per channel
user (per UT). However, if βfb > 1, the rate gap for quantized feedback vanishes for P

N0
→ ∞. This conclusion

finds an appealing interpretation in the context of rate-distortion theory. It is well-known (see for example [55] and
references therein) that “analog transmission” (the source signal is input directly to the channel after suitable power
scaling) is an optimal strategy to send an i.i.d. Gaussian source over a AWGN channel with the same bandwidth
under quadratic distortion. In our case, the source vector is hk (Gaussian and i.i.d.) and the feedback channel is
AWGN with with SNR P

N0
. Hence, the fact that analog feedback cannot be essentially outperformed for βfb = 1

is expected. However, it is also well-known that if the channel bandwidth is larger than the source bandwidth
(which corresponds to the case where a block of M source coefficients are transmitted over βfbM channel uses
with βfb > 1), then analog transmission is strictly suboptimal with respect to a digital scheme operating at the
rate-distortion bound, because the distortion with analog transmission is O((P/N0)−1) whereas it is O((P/N0)−βfb)
for digital transmission.

This conclusion is confirmed by the numerical results shown in Figures 2 and 3. In Figure 2 the lower and
genie-aided upper bounds are plotted for analog feedback, digital feedback without error, and digital feedback with
error (QAM) versus SNR for an M = 4 system with βfb = 1. For digital feedback with error, the error detection
bound in (43) is also included. The analog and error-free digital feedback schemes perform virtually identically
and achieve a rate approximately 3 dB away from the perfect channel state information benchmark. Note also
that the gap between the upper and lower bounds is not very large. For digital feedback with uncoded QAM 6,
however, there is a substantial gap between the upper and lower bounds; this gap and the performance with error
detection is explained by Remark 4.3. In Figure 3 only the genie-aided upper bounds are plotted (because the
lower and upper are nearly identical and thus are difficult to distinguish) for the same setting with βfb = 2. We
see that digital feedback with uncoded QAM outperforms analog feedback above approximately 5 dB, and that
the rate with digital feedback (with or without errors) converges to the ideal rate as predicted earlier. This figure
confirms that the effect of feedback vanishes when digital feedback is used, with or without errors, and βfb > 1.
Finally, in Figure 4 the bounds are plotted as a function of βfb for fixed SNR P

N0
= 10 dB and P

N0
= 20 dB. When

βfb ≈ 1 analog and error-free digital feedback are nearly equivalent, but as βfb is increased the rate with error-free
digital quickly approaches the perfect channel state information rate. When feedback errors are introduced, digital
feedback does eventually outperform analog and also approaches the ideal rate, but a larger βfb is required. It is
also worth noticing that as the SNR is increased, the value of βfb at which digital (with or without errors) begins to
outperform analog decreases toward 1: this is to expected based upon the fact that the effect of feedback vanishes
as P

N0
→∞ for any βfb > 1 for digital, whereas it does not for analog feedback.

It is worth noting that the same basic conclusion, i.e., that digital feedback (with or without errors) outperforms
analog for sufficiently large βfb, also holds in the presence imperfect CSIR. However, because imperfect CSIR

6These results are obtained by optimizing the value of 1 ≤ α ≤ βfb for each SNR. We refer to this as “envelope”, that is, the plotted
curve is the pointwise maximum of the rate vs. SNR curves for all α.
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ZF with CSI
Analog FB: Upper + Lower
Error−free Digital FB: Upper + Lower
Digital FB with error (QAM): Upper + Lower
Digital FB with error (QAM): Error−Detect

Fig. 2. Achievable rate lower (dotted lines) and upper (solid lines) bounds for analog, error-free digital, and QAM-based digital feedback
for M = 4 and βfb = 1.
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Analog FB: Upper Bound
Error−free Digital FB: Upper Bound
Digital FB with error (QAM): Upper Bound

Fig. 3. Achievable rate upper bounds for analog, error-free digital, and QAM-based digital feedback for M = 4 and βfb = 2.

leads to a residual term in the rate gap expression that does not vanish (even for large P
N0

), the absolute difference
between digital and analog feedback is reduced.

V. CHANNEL STATE FEEDBACK OVER THE MIMO-MAC

Orthogonal access in the feedback link requires O(M2) channel uses for the feedback, while the downlink
capacity scales at best as O(M). When the number of antennas M grows large, such a system would not scale well
with M . On the other hand, the inherent MIMO-MAC nature of the physical uplink channel suggests an alternative
approach, where multiple UT’s simultaneously transmit on the MIMO uplink (feedback) channel and the spatial
dimension is exploited for channel state feedback too. This idea was considered for an FDD system in [28] and
analyzed in terms of the mean square error of the channel estimate provided to the BS.

As in [28], we partition the M users into M
L groups of size L, and let UTs belonging to the same group transmit

their feedback signal simultaneously, in the same time frame. Each UT transmits its M channel coefficients over
βfbM channel uses, with βfb ≥ 1. Therefore, each group uses βfbM channel symbols and the total number of
channel uses spent in the feedback is βfb

M2

L . Choosing L ∝M (e.g., L = M/2) yields a total number of feedback
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Fig. 4. Achievable rate lower (dotted lines) and upper (solid lines) bounds for analog, error-free digital, and QAM-based digital feedback
for M = 4 and P

N0
= 10 dB and P

N0
= 20 dB.

channel uses that grows linearly with M , such that the feedback resource converges to a fixed fraction of the
downlink capacity. We assume that the uplink feedback channel is affected by i.i.d. block fading (i.e., has the same
distribution as the downlink channel) and that there is no feedback delay.

With respect to the analysis provided in [28], the present work differs in a few important aspects: 1) we consider
both analog and digital feedback; 2) although our analog feedback model is essentially identical to the FDD scheme
of [28], we consider optimal MMSE estimation rather than Least-Squares estimation (zero-forcing pseudo-inverse);
3) we put out results in the context of the rate gap framework, that yields directly fundamental lower bounds on
achievable rates, rather than in terms of channel state estimation error.

A. Analog Feedback

In an analog feedback scheme, each UT feeds back a scaled noisy version of its downlink channel, given
by

√
βfbP√

β1P+N0
sk where sk is the observation provided by the common training phase, defined in (4). Due to

the symmetry of the problem, we can focus on the simultaneous transmission of a single group of L UTs. Let
A = [a1 · · · aL] ∈ CM×L denote the uplink fading matrix for this group of UTs (with i.i.d. entries, ∼ CN(0, 1))
and let for k = 1, . . . , L

bk,j =
√
βfbP√

β1P +N0
sk,j =

√
βfbβ1P√
β1P +N0

hk,j +
√
βfbP√

β1P +N0
zk,j (46)

denote the transmitted symbol by UT k for its j-th channel coefficient, where sk,j is the j-th component of sk and,
from (4), zk,j is the common training AWGN. For simplicity, we assume that the BS has perfect knowledge of the
uplink channel state A; we later consider the more general case and see that the main conclusions are unchanged.

The M -dimensional received vector gj , upon which the BS estimates the j-th antenna downlink channel coeffi-
cients h1,j , . . . , hL,j of all users in the group, is given by:

gj =
L∑
i=1

aibi,j + w̃j = Abj + w̃j (47)

where w̃j is an AWGN vector with i.i.d. elements ∼ CN(0, N0). From the i.i.d. jointly Gaussian statistics of the
channel coefficients, downlink noise and uplink (feedback noise) it is immediate to obtain the MMSE estimator for
the downlink channel coefficient hk,j in the form

ĥk,j = c aH
k

[
βfbPAAH +N0I

]−1
gj (48)
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where we define the constant c =
√
βfbβ1P√
β1P+N0

. The corresponding MMSE, for given feedback channel matrix A, is
given by

σ2
k(A) = 1− c2aH

k

[
βfbPAAH +N0I

]−1
ak (49)

Theorem 7: If each UT feeds back its channel coefficients in analog fashion over the MIMO MAC uplink channel,
with groups of L users simultaneously feeding back and βfbM channel uses per group, the rate gap upper bound
is given by:

∆RAF
MIMO-MAC = log

(
1 +

1
M

P
N0

1 + β2
N0
P

+
M − 1
M

P

N0

[
1

1 + β1P
N0

+
β1P
N0

1 + β1P
N0

mmse

(
βfbP

N0

)])
(50)

where we define the average channel state information estimation MMSE as

mmse(ρ) ,
1
L

L∑
k=1

E
[

1
1 + ρλk

]
(51)

and where {λ1, . . . , λL} denote the eigenvalues of the L× L central Wishart matrix AHA.
Furthermore, if L < M the rate gap is bounded and converges at high SNR to the constant

lim
P/N0→∞

∆RAF
MIMO-MAC = log

(
1 +

1
β2M

+
M − 1
M

(
1
β1

+
1

βfb(M − L)

))
. (52)

Proof: See Appendix VI.
Comparing this expression to the rate gap for analog feedback over an AWGN channel (30), we notice that an

SNR (array) gain of M −L is achieved (on the feedback channel) when the feedback is performed over the MIMO
MAC because the feedback (of L users) is received over M antennas.7 In addition, a factor of L fewer feedback
symbols are required when the feedback is performed over the MIMO MAC (βfb

M2

L vs. βfbM
2). On the other

hand, using the second line of the RHS of (89) in Appendix III it is immediate to show that for L = M the rate
gap upper bound grows unbounded as log log

(
P
N0

)
.

From (52) we can optimize the value of L (assuming L < M ) for a fixed number of feedback channel uses,
which we denote by aM for some a ≥ 2 (if L < M there must be at least two groups and thus we must have
at least 2M feedback symbols). By letting aM = βfb

M2

L , we obtain βfb = a LM . Using this in (52), we have that
minimizing the rate gap bound is equivalent to maximizing the term L(M−L) for fixed M and L < M . Therefore,
the optimal group size is given by L∗ = M

2 . Substituting this value in (52) yields

log
(

1 +
1

β2M
+

2(M − 1)
M2βfb

+
M − 1
M

1
β1

)
(53)

and the corresponding total number of feedback symbols is 2βfbM . Interestingly, we notice that in the regime of
large M the term that dominates the optimized rate gap bound (53) corresponds to the downlink common training
phase. In fact, the terms corresponding to dedicated training and feedback vanish as M increases.

When the total number of feedback symbols is larger or equal to 2M (i.e., a ≥ 2) numerical results verify that also
at finite SNR the choice L∗ = M

2 yields the best performance both in terms of the achievable rate lower bound and
of the the genie-aided upper bound. Hence, the optimal MIMO-MAC feedback strategy is a combination of TDMA
and SDMA. In contrast, when total number of feedback symbols is strictly smaller than 2M (i.e., 1 ≤ a < 2),
choosing L = M with βfb = a is the only option. Although this choice yields an unbounded rate gap, it does
provide reasonable performance at finite SNR’s.

A legitimate question at this point is the following: is the condition L < M a fundamental limit of the MIMO-
MAC analog feedback in order to achieve a bounded rate gap, or is it due to the looseness of Theorem 2? In order
to address this question, we examine the genie-aided rate upper bound of Theorem 3 and obtain the following rate
upper bound:

7At high SNR the feedback from a particular UT is effectively received over an interference-free 1× (M −L+1) channel because L− 1
interfering signals are nulled. However, this results in only a M − L multiplicative gain because E[1/χ2

2k] = 1/(k − 1).
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Theorem 8: When a group of L = M UTs feed back the channel coefficients simultaneously over βfbM channels
uses of the fading MIMO-MAC, the difference between RZF

k and the genie-aided upper bound of Theorem 3 is
uniformly bounded for all SNRs.
Proof See Appendix VII. �

Theorem 8 suggests that if the UTs are able to obtain an estimate of their instantaneous residual interference
level in each frame, up to M UTs can feedback their channel state information at the same time. The ability of
estimating the interference coefficients Ak (see (8) and the comment following Theorem 3) depends critically on
the quality of the dedicated training. Hence, the dedicated training has a direct impact on the design and efficiency
of the channel state feedback. Such inter-dependencies between the different system components can be illuminated
thanks to the comprehensive system analysis carried out in this work and are missed by making overly simplifying
assumptions (e.g., genie-aided coherent detection with perfect knowledge of the coefficients Ak).

Remark 5.1: In [28], the same model in (46) for analog channel state feedback over the MIMO-MAC uplink
channel is considered. Instead of the linear MMSE estimator considered here, a zero-forcing approach (via the
pseudo-inverse of the matrix A) is examined. In the case of L = M this yields an infinite error variance, which
does not make sense in light of the fact that each channel coefficient has unity variance. This odd behavior can be
avoided by performing an additional component-wise MMSE step. As a matter of fact, performance very similar
to what we have found for the full MMSE estimator can be obtained for L < M by using a zero-forcing receiver
for the channel state feedback, followed by individual (componentwise) MMSE scaling. We omit the analysis of
such suboptimal scheme for the sake of brevity. ♦

Remark 5.2: It is also possible to analyze the more realistic scenario where the uplink channel matrix A
is known imperfectly at the BS. We consider the following simple training-based scheme: the L UTs within a
feedback group transmit a preamble of βupL training symbols, where βup ≥ 1 defines the uplink training length
(per UT). Without repeating all steps in the details, the uplink channel A admits the following decomposition:

A = Â + Ã (54)

where the channel estimate and estimation error (Â, Ã) are jointly jointly Gaussian and independent, with per-
component variances 1 − σ2

up and σ2
up), respectively, with σ2

up = 1
1+βup

P

N0

. Now, the MMSE estimation of the

downlink channel coefficients hk,j is conditional with respect to Â. By repeating all previous steps, after a lengthy
calculation that we do not report here for the sake of brevity, we obtain the average estimation error in the form

E[σ2
k(Â)] =

1
1 + β1

P
N0

+
β1

P
N0

1 + β1
P
N0

mmse

(
βup

P
N0

1 + βup
P
N0

+ Lβfb
P
N0

βfbP

N0

)
(55)

where mmse(·) was defined in (51). By comparing (55) with (87), we notice that they differ only in the argument
of the function mmse(·). The two expressions coincide for βup → ∞, consistent with the fact that βup → ∞
corresponds to perfect estimation of the channel matrix A. Furthermore, for large SNR, the two arguments differ
by a constant multiplicative factor. Hence, apart from this constant factor that depends on the uplink training
parameter βup, the conclusions about the rate gap obtained for the case of perfect uplink channel knowledge also
hold for the case of training-based uplink channel estimation. ♦

B. Digital Feedback

In the case of digital feedback, we let L ≤M UTs multiplex their channel state feedback codewords at the same
time. The resulting MIMO-MAC channel model is again given by (47), but now the vector bj contains the j-th
symbols of the feedback codewords of the L UTs sharing the same feedback frame. As in Section IV-B, we assume
that feedback messages of α(M−1) log2

P
N0

bits are sent in βfb(M−1) channel uses. Hence, the feedback symbols
transmitted by the L UT’s can be grouped in a L × βfb(M − 1) matrix, while the BS has an M × βfb(M − 1)
observation upon which to estimate the transmitted symbols. We again assume each feedback symbol has average
energy P .

Suppose that the BS receiver operates optimally, by using a joint ML decoder for all the simultaneously
transmitting UTs. The high-SNR error probability performance of the MIMO-MAC channel was characterized
in terms of the diversity-multiplexing tradeoff in [56]. In particular, when each user transmits at rate r log2

P
N0
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bits/symbol (i.e., with multiplexing gain r) over the MIMO-MAC with i.i.d. channel fading (as considered here),
the optimal ML decoder achieves an individual user average error probability

Pe,fb
.=
(
P

N0

)−d∗(r)

where the “dot-equality” notation, introduced in [57], [56], indicates that limP/N0→∞
− logPe,fb
logP/N0

= d∗(r). The error
probability SNR exponent d∗(r) is referred to as the optimal diversity gain of the system. Particularizing the results
of [56] to the case of L ≤M users with 1 antenna each, transmitting to a receiver with M antennas, the optimal
diversity gain is given by

d∗(r) =
{
M(1− r) for 0 ≤ r ≤ 1
0 otherwise

(56)

This is the same exponent of a channel with a single user with a single antenna, transmitting to a receiver with M
antennas (single-input multiple-output with receiver antenna diversity). In other words, under our system parameters,
each UT achieves an error probability that decays with SNR as if TDMA on the feedback link was used (as if
the UT transmitted its feedback message alone on the MIMO uplink channel). From what is said above, it follows
that the multiplexing gain of all UTs is given by r = α

βfb
. Furthermore, from the derivation of Section IV-C, we

require that 1 < α < βfb. It follows that the average feedback error message probability in the MIMO-MAC fading
channel is given by

Pe,fb =
(
P

N0

)−M(1−α/βfb)

× g
(
P

N0

)
(57)

where g(x) is some sub-polynomial function, such that limx→∞ x
−εg(x) = 0 for all fixed ε > 0.

If we examine the rate-gap expression with digital feedback (42), we see that in order to achieve a bounded

rate gap the error probability Pe,fb must go to zero at least as fast as
(
P
N0

)−1
. From (57) we have that for all

1 < α < βfb such that M(1 − α/βfb) is strictly larger than 1, the resulting rate gap is bounded and the effect
of feedback errors vanishes. This imposes the condition βfb >

M
M−1 and α < M−1

M βfb, which is stricter than the
condition βfb > 1 and α < βfb needed in the case of TDMA an unfaded feedback channel previously analyzed in
Section IV-C.

We conclude that a bounded rate gap can also be achieved with digital feedback on the MIMO-MAC uplink
channel. Therefore, also in this case we can achieve a number of feedback channel uses that scales linearly with
the number of the BS antennas M . Explicit design of codes that achieve the optimal divesity-multiplexing tradeoff
of MIMO-MAC channels is not an easy task in general. In the particular case of M users with one antenna each,
simple explicit constructions of MIMO-MAC codes for the digital channel state feedback are presented [53]. These
codes can be optimally decoded by using a Sphere Decoder [58], [59] and achieve the performance promised by
the above analysis. It should be noticed, however, that while in the AWGN case the term P

N0
Pe,fb in the rate gap

expression vanishes rapidly (faster than polynomially, in P/N0), in the MIMO-MAC fading case it vanishes only
as (P/N0)1−M(1−α/βfb). Thus, for finite SNR the rate gap may be significantly larger than in the case of unfaded
feedback channel and the optimal tradeoff between quantization distortion and the feedback error probability must
be sought by careful optimization of the parameters α and βfb (see details in [60]). Also, the same observations
about detecting feedback errors at the UTs and discarding the corresponding frames made at the end of Section
IV-C apply here.

C. Numerical example

Fig. 5 shows both the genie-aided upper bound of Theorem 3 and the lower bound based on (50) of analog
feedback over a fading MIMO-MAC for M = 4 and L = 2, 4. We assume perfect CSIR. We notice that for
L = 2, the lower bound coincides with the genie-aided upper bound and comes very close to the performance of
ZF with ideal CSIT. For L = M , the rate gap of the lower bound (50) is unbounded but the double logarithmic
growth log log(P/N0) yields a very small gap for a wide range of practical SNRs. The genie-aided bound achieves
a constant rate gap even for L = M , in accordance with Theorem 8. Although not shown here, a system using
M = 4, L = 2 and βfb = 1 does outperform M = L = 4, βfb = 2 (both configurations use a total of 8 feedback
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Fig. 5. Impact of L with analog feedback over MIMO-MAC

symbols per frame) in terms of the lower bound and the genie-aided upper bound throughout the SNR range shown;
this validates our earlier claim about the optimality of L = M

2 whenever at least 2M feedback symbols are used.
Fig. 6 compares the achievable rates of analog and digital feedback schemes based on the rate gap (50), (42),

over a fading MIMO-MAC for M = 4. For the digital feedback we assume that there exist some code achieving the
outage probability (57) with g(P/N0) = 1. We compare both schemes for the same total amount of the feedback
symbols (24 symbols). For the analog feedback we choose L = 2, βfb = 3, while for the digital feedback we let
L = 4, βfb = 8, α = 4. We observe that the digital feedback achieves near-optimal sum rate over the all SNR ranges
while the analog feedback achieves a constant gap of roughly 0.7 bit/channel use. Surprisingly, the digital feedback
is able to let M users transmit simultaneously while vanishing both the quantization error and the feedback error.

VI. EFFECTS OF CSIT FEEDBACK DELAY

In this section we wish to take into account the effect of feedback delay in a setting where the fading is
temporally correlated. We assume that the fading is constant within each frame, but changes from frame to frame
according to a stationary random process. In particular, assuming spatial independence, each entry of hk evolves
independently according to the same complex circularly symmetric Gaussian stationary ergodic random process,
denoted by {h(t)}, with mean zero, unit variance and power spectral density (Doppler spectrum) denoted by Sh(ξ),
ξ ∈ [−1/2, 1/2], and satisfying

∫ 1/2
−1/2 Sh(ξ)dξ = 1, Notice that the discrete-time process {h(t)} has time that ticks

at the frame rate.
Because of symmetry and spatial independence, we can neglect the UT index k and the antenna index and

consider scalar rather than vector processes. Generalizing (4), the observation available at each UT at time t − d
from the common training phase takes on the form{

s(t− τ) =
√
β1Ph(t− τ) + z(t− τ) : τ = d, d+ 1, d+ 2, . . . ,∞

}
(58)

where d indicates the feedback delay in frames. This means that the channel state feedback to be used by the BS
at frame time t is formed from noisy observations of the channel up to time t − d. We consider a scheme where
each UT at frame t−d produces the MMSE estimate of its channel at frame t and sends this estimate (using either
analog or digital feedback) to the BS; the BS uses the received feedback to choose the beamforming vectors used
for data transmission in frame t.
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A. Estimation Error at UT

The key quantity in the associated rate gap is the MMSE prediction error at the UT. Let h̃(t) denote the MMSE
estimate of h(t) given the observations in (58). Given the joint Gaussianity of h and s, we can write

h(t) = h̃(t) + n(t) (59)

where E[|n(t)|2] = σ2
1 is the estimation MMSE, and h̃(t) and n(t) are independent with E[|h̃(t)|2] = 1− σ2

1 . From
classical Wiener filtering theory [46], the one-step prediction (d = 1) MMSE error is given by

ε1(δ) = exp

(∫ 1/2

−1/2
log(δ + Sh(ξ))dξ

)
− δ (60)

where δ = N0/(β1P ) is the observation noise variance. The filtering MMSE (d = 0) is related to ε1(δ) as

ε0(δ) =
δε1(δ)
δ + ε1(δ)

. (61)

The scenario considered in all previous sections corresponds to i.i.d. fading (across blocks) and d = 0, in which
case ε1(δ) = 1 (past observations are useless) and thus σ2

1 = ε0(δ) = (1 + β1
P
N0

)−1, which coincides with (7).
More in general, in this section we shall consider 8 σ2

1 = εd(δ) for d = 0, 1.
We distinguish two cases of channel fading statistics: Doppler process and regular process:
• We say that {h(t)} is a Doppler process if Sh(ξ) is strictly band-limited to [−F, F ], where F < 1/2 is the

maximum Doppler frequency shift, given by F = vfc
c Tf , where v is the mobile terminal speed (m/s), fc is

the carrier frequency (Hz), c is light speed (m/s) and Tf is the frame duration (s) [40]. A Doppler process
satisfies

∫ F
−F logSh(ξ)dξ > −∞, and has prediction error9

ε1(δ) = δ1−2F exp
(∫ F

−F
log(δ + Sh(ξ))dξ

)
− δ (62)

8We focus on the case d = 1, because it is very relevant in practical applications. For example, high-data rate downlink systems such as
1xEv-Do [61] already implement a very fast channel state feedback with at most one frame delay. Furthermore, the one-step prediction case
allows an elegant closed-form analysis.

9As in [39], the same result holds for a wider class of processes such that the Lebesgue measure of the set {ξ ∈ [−1/2, 1/2] : Sh(ξ) = 0}
is equal to 1− 2F , and such that

R
D

log(Sh(ξ))dξ > −∞ where D is the support of Sh(ξ).



20

Therefore, limδ→0 ε1(δ) = 0.
• We say that {h(t)} is a regular process if ε1(0) > 0 (see [39] and references therein). In particular, a process

satisfying the Paley-Wiener condition [46]
∫ 1/2
−1/2 logSh(ξ)dξ > −∞ is regular.

For the case of no delay (d = 0), for either type of process the estimation error goes to zero with the observation
noise, i.e., ε0(δ)→ 0 as δ → 0. However, they differ sharply in terms of prediction error: ε1(δ) is strictly positive
for a regular process (even as δ → 0), whereas ε1(δ)→ 0 for Doppler processes as quantified in the following:

Lemma 1: The noisy prediction error of a Doppler process satisfies

ε1(δ) = κδ1−2F +O(δ) (63)

for δ ↓ 0, where κ is a constant term independent of δ.
Proof: Applying Jensen’s inequality to (62) from the fact that

∫
Sh(ξ)dξ = 1, we obtain the upper bound

ε1 (δ) ≤ δ1−2F

[(
1

2F
+ δ

)2F

− δ2F

]
(64)

Using the fact that log is increasing, we arrive at the lower bound

ε1 (δ) ≥ δ1−2F

[
exp

(∫ F

−F
logSh(ξ)dξ

)
− δ2F

]
(65)

Combining these bounds we obtain the result.

B. Rate Gap Upper Bound

When analog feedback is used, each UT transmits a scaled version of its MMSE estimate h̃(t) over the feedback
channel. The only difference from the scenarios studied in Sections V-A (AWGN feedback channel) and IV-A
(MIMO MAC feedback channel) is that the estimation error at the UT is εd (N0/(β1P )) rather than (1+β1P/N0)−1.
As a result, a simple calculation confirms that the expressions for the rate gap upper bound given in Theorems 4
(AWGN) and 7 (MIMO-MAC) apply to the present if εd (N0/(β1P )) is substituted for (1 +β1P/N0)−1. The same
equivalence holds for digital feedback: each UT quantizes its MMSE estimate h̃(t), and as a result the rate gap
upper bound given in Theorem 5 applies with the same substitution. For the sake of brevity, the expressions for
the rate gap upper bound are not provided here.

In fact, the effect of feedback delay is most clearly illustrated by considering perfect feedback (i.e., βfb →∞),
in which case (at frame t) the BS has perfect knowledge of h̃(t), the UT’s prediction of h(t) based on common
training observations up to frame t − d. For the sake of simplicity we further assume perfect dedicated training
(i.e., β2 →∞), in which case the rate gap upper bound is

∆RPREDICT = log
(

1 +
P

N0

M − 1
M

εd

(
N0

β1P

))
. (66)

We now analyze the cases of no delay and one-step delay for both types of processes.
a) No feedback delay (d = 0): Because using past observations can only help, the filtering error is no larger

than the error if the past is ignored, i.e., ε0 (δ) ≤ (1 + β1P/N0)−1. It thus follows that for both Doppler and
regular processes the rate gap is bounded. Based upon (61), Lemma 1, and the property ε0(0) > 0 for regular
processes, it is straightforward to see that (P/N0)ε0 (N0/(β1P )) → 1

β1
as P

N0
→ ∞ for either regular or Doppler

processes. As a result, the rate gap upper bound in (66) converges to log(1 + 1/β1) at high SNR. This matches the
high SNR expression for block-by-block estimation in (30), showing that filtering does not provide a significant
advantage at asymptotically high SNR. However, as later illustrated through numerical results, this convergence
occurs extremely slowly for Doppler processes or highly correlated regular processes, in which case filtering does
provide a non-negligible gain over a wide range of SNR’s.
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b) Feedback delay (d = 1): For regular fading process, since ε1(0) > 0, the quantity (P/N0)ε1 (N0/(β1P ))
increases linearly with P

N0
and thus the rate gap upper bound ∆RPREDICT grows like log P

N0
. As a result, the achievable

rate lower bound RZF
k −∆RPREDICT is bounded even as P/N0 →∞. In addition, in Appendix VIII we show that the

genie-aided upper bound is also bounded due to the fundamentally non-deterministic nature of regular processes.
This shows that with delayed feedback and a channel that evolves according to a regular fading process, a system
that makes use of zero-forcing naive beamforming to M users becomes interference limited. 10 This behavior holds
even with CSIR (i.e., letting β1 →∞).

Fortunately, physically meaningful fading processes belong to the class of Doppler processes, at least over a
time-span where they can be considered stationary. For a practical relative speed between BS and UT, such time
span is much larger than any reasonable coding block length. Hence, we may say that Doppler processes are more
the rule than the exception. In this case, the system behavior is radically different. Using Lemma 1, at high SNR
the rate gap upper bound is

log

(
1 +

M − 1
M

P

N0

(
κ

(
β1P

N0

)2F−1

+O

(
N0

β1P

)))
, (67)

and thus the rate gap grows like 2F log P
N0

. Using this in the rate lower bound of Corollary (3.1), and considering
the pre-log factor in high-SNR, we have that the system sum-rate is lowerbounded by

M∑
k=1

Rk ≥M(1− 2F ) log
P

N0
+O(1) (68)

This shows that a multiplexing gain of M(1− 2F ) is achievable.
Remark 6.1: If perfect CSIR is assumed, an interesting singularity is observed for Doppler processes. Under

this assumption each UT is able to perform perfect prediction of its channel state on the basis of its past noiseless
observations of the channel, by the definition of a Doppler process. Thus, it is as if there is no delay and the full
multiplexing gain of M is achieved (even if the feedback link is imperfect). On the other hand, if perfect CSIR
is not assumed and UT’s learn their channel through β1M common training symbols, for any finite value of β1 a
multiplexing gain of only M(1−2F ) is achieved. This point illustrates, again, that neglecting some system aspects
may yield to erroneous conclusions. In this case, by properly modeling imperfect CSIR we have illuminated the
impact of the UTs speed (which determines the channel Doppler bandwidth ) on the system achievable rates in a
concise and elegant way. ♦

Remark 6.2: It is interesting to notice here the parallel with the results of [39] on the high-SNR capacity of
the single-user scalar ergodic stationary fading channel with no CSIR and no CSIT, where it is shown that for a
class of non-regular processes that includes the Doppler processes defined here, the high-SNR capacity grows like
L log(P/N0), where L is the Lebesgue measure of the set {ξ ∈ [−1/2, 1/2] : Sh(ξ) = 0}. In our case, it is clear
that L = 1− 2F . These results, as ours, rely on the behavior of the noisy prediction error ε1(δ) for small δ. ♦

C. Examples

We now present numerical results for the Jake’s model and the Gauss-Markov model, which are two widely used
Doppler and regular processes, respectively. The classical Jakes’ correlation model has the following spectrum [62],
[54]

Sh(ξ) =
1

π
√
F 2 − ξ2

, −F ≤ ξ ≤ F, (69)

and auto-correlation function J0(2πFτ). No closed-form solution is known for the prediction or filtering error.
Under the Gauss-Markov model (i.e., auto regressive of order 1) the channel evolves in time as:

h(τ) = rh(τ − 1) +
√

1− r2∆(τ) (70)

10In order to have a non-interference limited system we can always use TDMA and serve one user at a time. However, in this case the
sum-rate would grow like log(P/N0) instead of M log(P/N0) as promised by the MIMO downlink with perfect CSIT.
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Fig. 7. Achievable rate lower bounds with optimal filtering for the Jake’s and Gauss-Markov models for M = 4 and v = 10 km/hr
(F = 0.0185 and r = 0.9966). Also shown are the rates with perfect CSI and with block-by-block estimation.

where r is the correlation coefficient (0 < r < 1) and the innovation process ∆(τ) is unit-variance complex
Gaussian, i.i.d. in time. The prediction error for such model can be written in closed-form and is given by (see for
example [32])

ε1(δ) = (1− r2)

1 +
−(1 + δ) +

√
1 + δ2 + 2δ 1+r2

1−r2

2

 (71)

For the Jakes’ model we have F = vfc
c Tf . In all results we consider fc = 2 GHz and Tf = 1 msec. Motivated

by the maximum-entropy principle [63], several works in wireless communication modeled channel fading as
Gauss-Markov process with one-step correlation coefficient r = J0(2πF ), given by Jakes’ model. Comparing the
performance of the true Jakes’ model with its Gauss-Markov maximum-entropy approximation, we will point out
that the latter may be overly pessimistic for high-speed mobile terminals.

In Fig. 7 the achievable rate lower bound with delay-free feedback (d = 0) and optimal filtering is plotted versus
SNR for the Jakes and Gauss-Markov models, for M = 4, v = 10 km/hr (F = 0.0185 and r = 0.9966), and β1 = 1.
Filtering is seen to provide an advantage with respect to block-by-block estimation for a wide range of SNR’s. For
the Gauss-Markov model this advantage vanishes around 30 dB, whereas for Jakes’ model this advantage persists
far beyond the range of this plot.

Using the same parameters, in Fig. 8 we plot the lower bound for one-step prediction (d = 1) versus SNR for
v = 3 and 10 km/hr (F = 0.0056 and F = 0.0185). This figure illustrates the contrast between Doppler and regular
processes: for Jakes’ model the achieved rate is quite close to the perfect channel state information rate (although
a slight loss in multiplexing gain is evident), whereas the rate for the Gauss-Markov model saturates at sufficiently
high SNR due to the unpredictability inherent to the model. To further emphasize the difference in behavior, in Fig.
9 we plot the lower bound for one-step prediction (d = 1) versus β1, the number of common training symbols per
block, for P/N0 = 10 and 15 dB and v = 10 km/hr. As β1 increases (and thus the observation noise decreases) the
rate for Jakes’ model converges to the ideal case. On the other hand, the rate for the Gauss-Markov model saturates
at a rate strictly smaller than the ideal channel state information rate because there is strictly positive prediction
error even if noiseless past observations (i.e., β1 →∞) are provided.

In conclusion, the most noteworthy result of this analysis is that under common fading models (Doppler processes),
both analog and digital feedback scheme achieves a potentially high multiplexing gain even with realistic, noisy
and delayed feedback.
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Fig. 8. Achievable rate lower bounds with optimal one-step prediction for the Jake’s and Gauss-Markov models for M = 4.
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VII. CONCLUSIONS

This paper presents a comprehensive and rigorous analysis of the achievable performance of ZF beamforming
under pilot-based channel estimation and explicit channel state feedback. We considered what we believe are the
most relevant system aspects. In particular, the often neglected effect of explicit channel estimation at the UTs
is taken into account, including both common training and dedicated training phases. As for the feedback, our
closed-form bounds allow for a detailed comparison of analog and digital feedback schemes, including the effects
of the MIMO-MAC fading channel, of digital feedback decoding errors, and of feedback delay.

Our results build on prior work, but generalize many results and models. We have focused on the case of FDD,
but our results easily extend to TDD systems with channel reciprocity. It is perhaps important to point out here that
our results show that, even in the case of FDD, a system with explicit CSIT feedback can be implemented, where
the number of training and feedback channel uses scales linearly with the number of BS antennas, and eventually
with the downlink throughput.

The throughput of the system analyzed here can be improved via the use of combined beamforming and user
selection/scheduling. Simulation results show that a system with K = 10 and M = 4, with a greedy scheduling
as proposed in [15], [32], achieves a very small gap with respect to the optimal dirty-paper coding and perfect
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CSIT case with the same parameters. Although a clean closed-form analytical characterization of a system with
beamforming and user selection based on imperfect channel state information appears to be difficult, recent results
[33], [45] indicate that the dependence on CSIT quality when user selection is performed is roughly the same as
the equal-power/no selection scenario analyzed here.

We would like to conclude by noticing that some practically relevant extensions of the present work have been
presented (by the same authors and by others) since the submission of this paper. In particular, the rate gap analysis
was extended to the very relevant case of MIMO OFDM with frequency-correlated fading in [52], the optimal
allocation of training and feedback resources is considered in [37], [38], explicit coding schemes for the CSIT
digital feedback MIMO-MAC channel are presented in [53], and comparisons between single-user and multi-user
MIMO (based on the bounds developed here and related approximations) are performed in [64].

APPENDIX I
PROOF OF THEOREM 1

The proof is closely inspired by that of Lemma B.0.1 of [36]. First, notice that since âk,k is a function of Rk,
by the data-processing inequality we have that

I(uk; yk,Rk) ≥ I(uk; yk, âk,k)

Then, because I(uk; yk, âk,k) = h(uk) − h(uk|yk, âk,k) and h(uk) = log
(
πe PM

)
, a lower bound on mutual

information is derived by upper bounding h(uk|yk, âk,k) as follows:

h(uk|yk, âk,k)
(a)
= h(uk − α yk|yk, âk,k)
(b)

≤ h(uk − α yk|âk,k)
(c)

≤ E
[
log
(
πe · E

[
|uk − α yk|2|âk,k

])]
(72)

where (a) holds for any deterministic function α of yk and âk,k, (b) follows from the fact that conditioning reduces
entropy and (c) follows by the fact that differential entropy is maximized by a Gaussian RV with the same second
moment. Substituting (12) in (8) we have

yk = (âk,k + fk)uk + Ik + zk (73)

where âk,kuk and fkuk+Ik+zk are uncorrelated and zero-mean, even if we condition on âk,k, because âk,k, fk, u1, . . . , uK , zk
are independent, zero-mean Gaussian’s. Thus, we have

E
[
|yk|2 |âk,k

]
= |âk,k|2E[|uk|2] + σ2

2 E[|uk|2] + E
[
|Ik|2|âk,k

]
+N0, (74)

Choosing α that minimizes E
[
|uk − α yk|2|âk,k

]
tightens the bound. This corresponds to setting α yk equal to the

linear MMSE estimate of uk given yk and âk,k, i.e.,

α =
E [uky∗k | âk,k]
E [|yk|2 | âk,k]

=
E[|uk|2]â∗k,k

E [|yk|2 | âk,k]
(75)

Using (74), the corresponding MMSE is given by

E
[
|uk − α yk|2|âk,k

]
= E

[
|uk|2

](
1−

E[|uk|2]|âk,k|2

E [|yk|2 | âk,k]

)
(76)

=
P

M

1 + σ2
2

P
N0M

+ E
[
|Ik|2|âk,k

]
/N0

|âk,k|2 P
N0M

+ 1 + σ2
2

P
N0M

+ E [|Ik|2|âk,k] /N0

(77)

Replacing (77) into (72) and using h(uk) = log
(
πe PM

)
, we obtain (14).
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APPENDIX II
PROOF OF THEOREM 2

Using the lower bound on Rk from Theorem 1 we have:

∆R ≤ E
[
log
(

1 +
|hHvk|2P
N0M

)]
− E

[
log
(

1 +
|âk,k|2P/(N0M)

1 + σ2
2P/(N0M) + E [|Ik|2|âk,k] /N0

)]
(a)

≤ E
[
log
(

1 +
|hHvk|2P
N0M

)]
− E

[
log
(

1 +
P

N0M

(
|âk,k|2 + σ2

2

))]
+ E

[
log

(
1 + σ2

2

P

N0M
+

E
[
|Ik|2|âk,k

]
N0

)]
(b)

≤ E

[
log

(
1 + σ2

2

P

N0M
+

E
[
|Ik|2|âk,k

]
N0

)]
(78)

(c)

≤ log
(

1 + σ2
2

P

N0M
+

E[|Ik|2]
N0

)
(79)

where (a) follows by dropping the non-negative term E
[
|Ik|2|âk,k

]
/N0. Using the fact that hk is spatially white and

vk is selected independent of hk (by the ZF procedure), it follows that hH
k vk is ∼ CN(0, 1) and âk,k ∼ CN(0, 1−σ2

2).
Direct application of Lemma 2, which is provided below, with A = P/(N0M), λ = σ2

2 and X = |hH
k vk|2, thus

proves (b). Finally, (c) follows from the concavity of log(·) and Jensen’s inequality.
Lemma 2: If X is a non-negative random variable with E[X] = 1, for any A > 0 and any 0 ≤ λ ≤ 1:

E [log (1 +XA)] ≤ E [log (1 + (λ+ (1− λ)X)A)] . (80)
Proof: For all 0 ≤ z ≤ 1, define the function

ψ(z) = E [log (1 + zA+ (1− z)XA)] . (81)

Then (80) is equivalent to the inequality ψ(0) ≤ ψ(λ). By the concavity of log(·) and Jensen’s inequality we have

ψ(z) ≤ log (1 + zA+ (1− z)E [X]A) = ψ(1). (82)

In particular, ψ(0) ≤ ψ(1). Moreover, ψ(z) is an expectation of the composition of a concave function and a linear
function of z, and is hence concave [65]. Thus, the concave function ψ(z) for z ∈ [0, 1] lies above the line joining
the points (0, ψ(0)) and (1, ψ(1)). Hence, we have ψ(0) ≤ ψ(λ) for λ ∈ [0, 1], which proves (80).

APPENDIX III
PROOF OF THEOREM 4

Using (18), to compute ∆RAF we only need to find E
[
|hH
k v̂j |2

]
:

E
[
|hH
k v̂j |2

]
(a)= E

[
|ĥH
k v̂j + eH

k v̂j |2
]

(b)= E
[
|eH
k v̂j |2

]
(c)= E

[
v̂H
j E[ekeH

k ]v̂j
]

(d)= σ2
e (83)

where (a) follows from (27), (b) follows from the fact that ĥH
k v̂j = 0 ∀ j 6= k by naive ZF, (c) is obtained from

the independence of ek and v̂j (v̂j is a deterministic function of {ĥi}i 6=j), and (d) follows from E[ekeH
k ] = σ2

eI
and ‖v̂j‖ = 1.



26

APPENDIX IV
PROOF OF THEOREM 5

To compute the rate gap upper bound, we determine E
[
|hH
k v̂j |2

]
by writing the channel in terms of the UT

channel estimate (which is quantized) and the UT estimation error: hk = h̃k + nk from (6). This yields:

E
[
|hH
k v̂j |2

]
(a)= E

[
|h̃H
k v̂j |2

]
+ E

[
|nH
k v̂j |2

]
(b)= E

[
‖h̃k‖2

]
E

[
|h̃H
k v̂j |2

‖h̃k‖2

]
+ E

[
|nH
k v̂j |2

]
(c)=

E
[
‖h̃k‖2

]
M − 1

2Bβ
(

2B,
M

M − 1

)
+ E

[
v̂H
j E[nknH

k ]v̂j
]

(d)=
M

M − 1
β1P

N0 + β1P
2Bβ

(
2B,

M

M − 1

)
+ σ2

1 (84)

where (a) is obtained from the representation hk = h̃k + nk and the fact that E
[
h̃H
k v̂jv̂H

j nk
]

= 0 because nk is

zero-mean Gaussian and is independent of h̃k and v̂j , (b) from the independence of the channel norm and direction
of h̃k, (c) from (35) and from the property [26, Lemma 2] E

[
|ehH
kbvj |2
‖ehk‖2

]
= 1

M−1E
[
sin2

(
h̃k, ĥk

)]
, and finally (d)

by computing the expected norm of h̃k =
√
β1P

N0+β1P
sk using sk =

√
β1P hk + zk. The final result follows by using

the above result in the expression (16) for the rate gap.

APPENDIX V
PROOF OF THEOREM 6

We first decompose the interference variance term as

E
[
|hH
k v̂j |2

]
= (1− Pe,fb)E[|hH

k v̂j |2|no fb. errors] + Pe,fbE[|hH
k v̂j |2|fb. errors] (85)

≤ (1− Pe,fb)
M

M − 1
β1P

N0 + β1P
2Bβ

(
2B,

M

M − 1

)
+ σ2

1 + Pe,fb, (86)

where E[|hH
k v̂j |2|no fb. errors] is the same as in the error-free case and is thus given in (84) while for the case

of feedback errors we trivially have E[|hH
k v̂j |2|fb. errors] ≤ 1. The final result is reached by simply substituting

B = α(M − 1) log2
P
N0

and using the bound in the beta function (35).

APPENDIX VI
PROOF OF THEOREM 7

Using the argument from the proof of Theorem III (analog FB over AWGN channel), the expected interference
coefficient E

[
|hH
k v̂j |2

]
is is equal to the variance of the channel estimation error. This quantity must be averaged

over the uplink channel matrix A, and thus using symmetry and (49), is given by

E[σ2
k(A)] = E

[
1
L

tr
(

I− c2AH
[
βfbPAAH +N0I

]−1
A
)]

= E

[
1
L

L∑
k=1

N0 + (βfbP − c2)λk
N0 + βfbPλk

]

=
1

1 + β1
P
N0

+
β1

P
N0

1 + β1
P
N0

mmse

(
βfb

P

N0

)
(87)

where mmse(ρ) is defined in (51).
In order to obtain the high SNR result, we first state a closed-form expression for mmse(ρ) using well-known

results from multivariate statistics (see for example [66]):

mmse(ρ) =
e1/ρ

ρ

L−1∑
k=0

k∑
`=0

2∑̀
m=0

Xk,`,mEi(M − L+m+ 1, 1/ρ) (88)
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where the coefficients Xk,`,m are given by

Xk,`,m =
(−1)m(2`)!(M − L+m)!
L22k−m`!m!(M − L+ `)!

(
2(k − `)
k − `

)(
2(M − L+ `)

2`−m

)
Based upon this we can characterize the asymptotic behavior of the product ρ mmse(ρ) for ρ → ∞. Using the
asymptotic expansion of e1/ρEi(n, 1/ρ), we have

ρ mmse(ρ) =
{ 1

M−L + o(1) for L < M

−γ + log ρ+
∑L−1

k=0

∑k
`=0

∑2`
m=1

Xk,`,m
m + o(1) for L = M

(89)

where we used the facts:

Ei(1, 1/ρ)e1/ρ = −γ + log ρ+ o(1), ρ→∞ (90)

Ei(n, 1/ρ)e1/ρ =
1

n− 1
+ o(1), for n > 1, ρ→∞ (91)

L−1∑
k=0

k∑
`=0

2∑̀
m=0

Xk,`,m
M − L+m

=
1

M − L
, for L < M (92)

L−1∑
k=0

k∑
`=0

Xk,`,0 = 1, for L = M (93)

APPENDIX VII
PROOF OF THEOREM 8

We can lower bound the genie-aided rate of Theorem 3 as follows.

I(uk; yk,Ak) = E

[
log

(
1 +

|ak,k|2P/(N0M)
1 +

∑
j 6=k |ak,j |2P/(N0M)

)]

= E

log

1 +
∑
j

|ak,j |2P/(N0M)

− E

log

1 +
∑
j 6=k
|ak,j |2P/(N0M)


(a)

≥ RZF
k − E

log

1 +
∑
j 6=k
|ak,j |2

P

N0M


(b)

≥ RZF
k − E

log

1 +
∑
j 6=k

E[|ak,j |2|A]
P

N0M


(c)
= RZF

k − E
[
log
(

1 +
P

N0M
σ2
k(A)

)]
where (a) follows by dropping the non-negative terms and (b) follows by conditioning with respect to the uplink
channel matrix A and then applying Jensen’s inequality in the inner conditional expectation, (c) follows by noticing
E[|Ik|2|A] = (M − 1)Pσ2

e(A) where σ2
k(A) is defined in (49). Then, we obtain an upper bound of for the gap
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between the ideal ZF rate and the genie-aided rate given by

RZF
k − I(uk; yk,Ak) ≤ E

[
log
(

1 +
P

N0

M − 1
M

σ2
k(A)

)]
(a)
=

1
M

M∑
k=1

E
[
log
(

1 +
P

N0

M − 1
M

σ2
k(A)

)]

≤ E

[
log

(
1 +

P

N0

M − 1
M

1
M

M∑
k=1

σ2
k(A)

)]
(b)
= E

[
log

(
1 +

P

N0

M − 1
M

(
1

1 + β1
P
N0

+
β1

P
N0

1 + β1
P
N0

1
M

M∑
k=1

1
1 + βfb

P
N0
λk

))]

≤ E

[
log

(
1 +

M − 1
M

(
1
β1

+
P
N0

1 + βfb
P
N0
λmin

))]
(94)

where (a) follows because the term E
[
log
(

1 + P
N0

M−1
M σ2

k(A)
)]

is independent of k due to the symmetry over k,
(b) follows by using the same derivation that leads to (87) and (51), and the last line follows by monotonicity of
the log, where λmin denotes the minimum eigenvalue of AHA.

Our goal is to show that the term in the last line of (94) is bounded. To this purpose, we write the last line of
(94) as the sum of three terms,

log
(

1 + M−1
Mβ1

+ M−1
M

P
N0

)
+ E

[
log
(

1 +

“
1+M−1

Mβ1

”
βfbP
N0

1+M−1
M

“
1
β1

+ P

N0

”λmin

)]
− E

[
log
(

1 + βfb
P
N0
λmin

)]
(95)

For A M ×M , complex Gaussian with i.i.d. zero-mean components, it is well-known that λmin is chi-squared with
2 degrees of freedom and mean 1 [67]. Hence, the third term in (95) yields

E
[
log
(

1 + βfb
P

N0
λmin

)]
= e

N0
βfbP Ei

(
1,

N0

βfbP

)
= −γ + log

βfbP

N0
+ o(1)

The second term in (95) is bounded by a constant, independent of P/N0, and finally the first term in (95), for high
SNR, can be written as log P

N0
+O(1). It follows that the log(P/N0) terms in the first and the third terms of the

the upper bound cancel, so that (95) is bounded. This establishes the result.

APPENDIX VIII
GENIE-AIDED UPPER BOUND FOR REGULAR PROCESSES WITH DELAYED FEEDBACK

We show that the genie-aided upper bound of Theorem 3, is uniformly bounded for any SNR when the noiseless
prediction error is positive. For analytical simplicity, we assume perfect common training and perfect (delayed)
feedback. Hence, the only source of “noise” in the CSIT is due to the prediction error. We can write hk(t) =
h̃k(t) + nk(t), where h̃k(t) is the one-step prediction of hk(t) from its (noiseless) past, and nk(t) is the prediction
error. From what was stated earlier, we have that hk(t), h̃k(t) and nk(t) are jointly complex Gaussian, i.i.d. in
the spatial domain, with mean zero and variance per component equal to 1, 1 − ε1(0) and ε1(0), respectively. It
is useful to write the error as nk(t) =

√
ε1(0)∆(t), where ∆(t) ∼ CN(0, I). From (20), the genie-aided upper

bound is given by

Rk ≤ E

[
log

(
1 +

P |hH
k (t)v̂k(t)|2

N0M + P
∑

j 6=k |hH
k (t)v̂j(t)|2

)]
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where v̂j(t) is orthogonal to h̃k(t). Using the fact that the upper bound is non-decreasing in P/N0, we let P/N0 →
∞ in (96) and obtain

Rk ≤ E

log

|hH
k (t)v̂k(t)|2 +

∑
j 6=k
|hH
k (t)v̂j(t)|2

− E

log

∑
j 6=k
|hH
k (t)v̂j(t)|2


(a)

≤ log (1 + ε1(0)(M − 1))− E

log

ε1(0)
∑
j 6=k
|∆H

k (t)v̂j(t)|2


(b)
= log

(
1

ε1(0)
+M − 1

)
− E[log(|∆k(t)|2)]− E

log

∑
j 6=k

|∆H
k (t)v̂j(t)|2

|∆k(t)|2


(c)
= log

(
1

ε1(0)
+M − 1

)
− ψ(M) +

1
2M − 1

+
1

2M − 2
(96)

where (a) follows by applying Jensen’s inequality to the first term and noticing that both hH
k (t)v̂k(t) and ∆H

k (t)v̂j(t)

are ∼ CN(0, 1), (b) follows by expressing |∆H
k (t)v̂j(t)|2 = |∆H

k (t)|2 |∆
H

k(t)bvj(t)|2
|∆H

k(t)|2
, (c) is obtained by noticing that

|∆k(τ)|2 is chi-square distributed with 2M degrees of freedom and that
∑

j 6=k
|∆H

k(t)bvj(t)|2
|∆k(t)|2 is beta distributed with

parameters (M − 1, 1), and finally ψ(M) is the Euler-Digamma function. ♦
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