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Two-way source coding with a helper
Haim Permuter, Yossef Steinberg and Tsachy Weissman

Abstract

Consider the two-way rate-distortion problem in which a helper sends a common limited-rate message to both

users based on side information at its disposal. We characterize the region of achievable rates and distortions where a

Markov form (Helper)-(User 1)-(User 2) holds. The main insight of the result is that in order to achieve the optimal

rate, the helper may use a binning scheme, as in Wyner-Ziv, where the side information at the decoder is the “further”

user, namely, User 2. We derive these regions explicitly forthe Gaussian sources with square error distortion, analyze

a trade-off between the rate from the helper and the rate fromthe source, and examine a special case where the

helper has the freedom to send different messages, at different rates, to the encoder and the decoder. The converse

proofs use a new technique for verifying Markov relations via undirected graphs.

Index Terms

Rate-distortion, two-way rate distortion, undirected graphs, verification of Markov relations, Wyner-Ziv source

coding.

I. I NTRODUCTION

In this paper, we consider the problem of two-way source encoding with a fidelity criterion in a situation where

both users receive a common message from a helper. The problem is presented in Fig. 1. Note that the case in
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Fig. 1. The two-way rate distortion problem with a helper. First Helper Y sends a common message to User X and to User Z, thenUser Z sends

a message to User X, and finally User X sends a message to User Z.The goal is that User X will reconstruct the sequenceZn within a fidelity

criterionE
h

1

n

Pn
i=1

dz(Zi, Ẑi)
i

≤ Dz , and User Z will reconstruct the sourceXn within a fidelity criterion 1

n
E

h

Pn
i=1

dx(Xi, X̂i)
i

≤ Dx.

We assume that the side informationY and the two sourcesX,Z are i.i.d. and form the Markov chainY −X − Z.

which the helper is absent was introduced and solved by Kaspi[1].
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The encoding and decoding is done in blocks of lengthn. The communication protocol is that Helper Y first

sends a common message at rateR1 to User X and to User Z, and then User Z sends a message at rateR2 to User

X, and finally, User X sends a message to User Z at rateR3. Note that user Z sends his message after it received

only one message, while Sender X sends its message after it received two messages. We assume that the sources

and the helper sequences are i.i.d. and form the Markov chainY −X − Z. UserX receives two messages (one

from the helper and one from User Z) and reconstructs the sourceZn. We assume that the fidelity (or distortion)

is of the formE

[

1
n

∑n
i=1 dz(Zi, Ẑi)

]

and that this term should be less than a thresholdDz. UserZ also receives

two messages (one from the helper and one from User X) and reconstructs the sourceXn. The reconstruction̂Xn

must lie within a fidelity criterion of the form1
n
E

[

∑n

i=1 dx(Xi, X̂i)
]

≤ Dx.

Our main result in this paper is that the achievable region for this problem is given byR(Dx, Dz), which is

defined as the set of all rate triples(R1, R2, R3) that satisfy

R1 ≥ I(Y ;U |Z), (1)

R2 ≥ I(Z;V |U,X), (2)

R3 ≥ I(X ;W |U, V, Z), (3)

for some joint distribution of the form

p(x, y, z, u, v, w) = p(x, y)p(z|x)p(u|y)p(v|u, z)p(w|u, v, x), (4)

whereU , V andW are auxiliary random variables with bounded cardinality. The reconstruction variablêZ is a

deterministic function of the triple(U, V,X), and the reconstruction̂X is a deterministic function of the triple

(U,W,Z) such that

Edx(X, X̂(U, V, Z)) ≤ Dx,

Edz(Z, Ẑ(U,W,X)) ≤ Dz. (5)

The main insight gained from this region is that the helper may use a code based on binning that is designed for a

decoder with side information, as in Wyner and Ziv [2]. UserX and UserZ do not have the same side information,

but it is sufficient to design the helper’s code assuming thatthe side information at the decoder is the one that is

“further” in the Markov chain, namely,Z. Since a distribution of the form (4) implies thatI(U ;Z) ≤ I(U ;X), a

Wyner-Ziv code at rateR1 ≥ I(Y ;U |Z) would be decoded successfully both by User Z and by User X. Once the

helper’s message has been decoded by both users, a two-way source coding is performed where both users have

additional side informationUn.

Several papers on related problems have appeared in the pastin the literature. Wyner [3] studied a problem of

network source coding with compressed side information that is provided only to the decoders. A special case of

his model is the system in Fig. 1 but without the memoryless side informationZ and where the stream carrying

the helper’s message arrives only at the decoder (User Z). A full characterization of the achievable region can be

concluded from the results of [3] for the special case where the sourceX has to be reconstructed losslessly. This
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problem was solved independently by Ahlswede and Körner in[4], but the extension of these results to the case

of lossy reconstruction ofX remains open. Kaspi [5] and Kaspi and Berger [6] derived an achievable region for

a problem that contains the helper problem with degenerateZ as a special case. However, the converse part does

not match. In [7], Vasudevan and Perron described a general rate distortion problem with encoder breakdown and

there they solved the case where in Fig. 1 one of the sources isa constant1.

Berger and Yeung [9] solved the multi-terminal source coding problem where one of the two sources needs

to be reconstructed perfectly and the other source needs to be reconstructed with a fidelity criterion. Oohama

solved the multi-terminal source coding case for the two [10] andL+1 [11] Gaussian sources, in which only one

source needs to be reconstructed with a mean square error, that is, the otherL sources are helpers. More recently,

Wagner, Tavildar, and Viswanath characterized the region where both sources [12] orL + 1 sources [13] need to

be reconstructed at the decoder with a mean square error criterion.

In [1], Kaspi has introduced a multistage communication between two users, where each user may transmit up

to K messages to the other user that depends on the source and previous received messages. In this paper we

also consider the multi-stage source coding with a common helper. The case where a helper is absent and the

communication between the users is via memoryless channelswas recently solved by Maor and Merhav [14] where

they showed that a source channel separation theorem holds.

The remainder of the paper is organized as follows. In Section II we present a new technique for verifying

Markov relations between random variables based on undirected graphs. The technique is used throughout the

converse proofs. The problem definition and the achievable region for two way rate distortion problem with a

common helper are presented in Section III. Then we considertwo special cases, first in Section IV we consider

the case ofR2 = 0 andDz = ∞, and in Section V we considerR3 = 0 andDx = ∞. The proofs of these two

special cases provide the insight and the tricks that are used in the proof of the general two-way rate distortion

problem with a helper. The proof of the achievable region forthe two-way rate distortion problem with a helper

is given in Section VI and it is extended to a multi-stage two way rate distortion with a helper in Section VII. In

Section VIII we consider the Gauissan instance of the problem and derive the region explicitly. In Section IX we

return to the special case whereR2 = 0 andDz = ∞ and analyze the trade-off between the bits from the helper

and bits from source and gain insight for the case where the helper sends different messages to each user, which

is an open problem.

II. PRELIMINARY : A TECHNIQUE FOR CHECKINGMARKOV RELATIONS

Here we present a new technique, based on undirected graphs,that provides a sufficient condition for establishing

a Markov chain from a joint distribution. We use this technique throughout the paper to verify Markov relations.

A different technique using directed graphs was introducedby Pearl [15, Ch 1.2], [16].

1 The case where one of the sources is constant was also considered independently in [8].
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Assume we have a set of random variables(X1, X2, ..., XN ), whereN is the size of the set. Without loss of

generality, we assume that the joint distribution has the form

p(xN ) = f(xS1
)f(xS2

) · · · f(xSK
), (6)

whereXSi
= {Xj}j∈Si

, whereSi is a subset of{1, 2, . . . , N}. The following graphical technique provides a

sufficient condition for the Markov relationXG1
−XG2

−XG3
, whereXGi

, i = 1, 2, 3 denote three disjoint subsets

of XN .

The technique comprises two steps:

1) draw an undirected graph where all the random variablesXN are nodes in the graph and for alli = 1, 2, ..K

draw edges between all the nodesXSi
,

2) if all paths in the graph from a node inXG1
to a node inXG3

pass through a node inXG2
, then the Markov

chainXG1
−XG2

−XG3
holds.

PSfrag replacements
X1 X2

Y1Y2

Z1 Z2

Fig. 2. The undirected graph that corresponds to the joint distribution given in (7). The Markov formX1 − X2 − Z2 holds since all paths

from X1 to Z2 pass throughX2. The node with the open circle, i.e.,◦, is the middle term in the Markov chain and all the other nodesare

with solid circles, i.e.,•.

Example 1:Consider the joint distribution

p(x2, y2, z2) = p(x1, y2)p(y1, x2)p(z1|x1, x2)p(z2|y1). (7)

Fig. 2 illustrates the above technique for verifying the Markov relationX1 −X2 − Z2. We conclude that since all

the paths fromX1 to Z2 pass throughX2, the Markov chainX1 −X2 − Z2 holds.

The proof of the technique is based on the observation that ifthree random variablesX,Y, Z have a joint distribution

of the formp(x, y, z) = f(x, y)f(y, z), then the Markov chainX − Y − Z holds. The proof appears in Appendix

A.

III. PROBLEM DEFINITIONS AND MAIN RESULTS

Here we formally define the two-way rate-distortion problemwith a helper and present a single-letter charac-

terization of the achievable region. We use the regular definitions of rate distortion and we follow the notation of

[17]. The source sequences{Xi ∈ X , i = 1, 2, · · · }, {Zi ∈ Z, i = 1, 2, · · · } and the side information sequence
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{Yi ∈ Y, i = 1, 2, · · · } are discrete random variables drawn from finite alphabetsX , Z and Y, respectively.

The random variables(Xi, Yi, Zi) are i.i.d. ∼ p(x, y, z). Let X̂ and Ẑ be the reconstruction alphabets, and

dx : X × X̂ → [0,∞), dz : Z × Ẑ → [0,∞) be single letter distortion measures. Distortion between sequences

is defined in the usual way

d(xn, x̂n) =
1

n

n
∑

i=1

d(xi, x̂i)

d(zn, ẑn) =
1

n

n
∑

i=1

d(zi, ẑi). (8)

Let Mi, denote a set of positive integers{1, 2, ..,Mi} for i = 1, 2, 3.

Definition 1: An (n,M1,M2,M3, Dx, Dz) code for two sourceX andZ with helperY consists of three encoders

f1 : Yn → M1

f2 : Zn ×M1 → M2

f3 : Xn ×M1 ×M2 → M3 (9)

and two decoders

g2 : Xn ×M1 ×M2 → Ẑn

g3 : Zn ×M1 ×M3 → X̂n (10)

such that

E

[

n
∑

i=1

dx(Xi, X̂i)

]

≤ Dx,

E

[

n
∑

i=1

dz(Zi, Ẑi)

]

≤ Dz, (11)

The rate triple(R1, R2, R3) of the (n,M1,M2,M3, Dx, Dz) code is defined by

Ri =
1

n
logMi; i = 1, 2, 3. (12)

Definition 2: Given a distortion pair(Dx, Dz), a rate triple(R1, R2, R3) is said to beachievableif, for any

ǫ > 0, and sufficiently largen, there exists an(n, 2nR1 , 2nR2 , 2nR3 , Dx + ǫ,Dz + ǫ) code for the sourcesX,Z

with side informationY .

Definition 3: The (operational) achievable regionRO(Dx, Dz) of rate distortion with a helper known at the

encoder and decoder is the closure of the set of all achievable rate pairs.

The next theorem is the main result of this work.

Theorem 1:In the two way-rate distortion problem with a helper, as depicted in Fig. 1, whereY −X − Z,

RO(Dx, Dz) = R(Dx, Dz), (13)

where the regionR(Dx, Dz) is specified in (1)-(5).

Furthermore, the regionR(Dx, Dz) satisfies the following properties, which are proved in Appendix B.
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Lemma 2: 1) The regionR(Dx, Dz) is convex

2) To exhaustR(Dx, Dz), it is enough to restrict the alphabet ofU , V , andW to satisfy

|U| ≤ |Y|+ 4,

|V| ≤ |Z||U|+ 3,

|W| ≤ |U||V||X |+ 1. (14)

Before proving the main result (Theorem 1), we would like to consider two special cases, first whereR2 = 0

andDz = ∞ and second whereR3 = 0 andDx = ∞. The main techniques and insight are gained through those

special cases. Both cases are depicted in Fig. 3 where in the first case we assume the Markov formY −X − Z

and in the second case we assume a Markov formY − Z −X .

The proofs of these two cases are quite different. In the achievability of the first case, we use a Wyner-Ziv code

that is designed only for thedecoder, and in the achievability of the second case we use a Wyner-Ziv code that

is designed only for theencoder. In the converse for the first case, the main idea is to observethat the achievable

region does not increase by letting the encoder knowY , and in the converse of the second case the main idea is

to use the chain rule in two opposite directions, conditioning once on the past and once on the future.

  a

PSfrag replacements

X Encoder
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R Decoder X̂

Y

Z

R1

Fig. 3. Wyner-Ziv problem with a helper . We consider two cases; first the source X, Helper Y and the side information Z form the Markov

chainY −X − Z and in the second case they form the Markov chainY − Z −X.

IV. W YNER-ZIV WITH A HELPER WHERE Y-X-Z

In this Section, we consider the rate distortion problem with a helper and additional side informationZ, known

only to the decoder, as shown in Fig. 3. We also assume that thesourceX , the helperY , and the side information

Z, form the Markov chainY −X − Z. This setting corresponds to the case whereR2 = 0 andDz = ∞. Let us

denote byRO
Y −X−Z(D) the (operational) achievable regionRO(Dx = D,Dz = ∞).

We now present our main result of this section. LetRY −X−Z(D) be the set of all rate pairs(R,R1) that satisfy

R1 ≥ I(U ;Y |Z), (15)
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R ≥ I(X ;W |U,Z), (16)

for some joint distribution of the form

p(x, y, z, u, v) = p(x, y)p(z|x)p(u|y)p(w|x, u), (17)

Edx(X, X̂(U,W,Z)) ≤ D, (18)

whereW andV are auxiliary random variables, and the reconstruction variable X̂ is a deterministic function of

the triple(U,W,Z). The next lemma states properties ofRX−Y −Z(D). It is the analog of Lemma 2 and the proof

is omitted.

Lemma 3: 1) The regionRX−Y −Z(D) is convex

2) To exhaustRX−Y −Z(D), it is enough to restrict the alphabets ofV andU to satisfy

|U| ≤ |Y|+ 2

|W| ≤ |X |(|Y| + 2) + 1. (19)

Theorem 4:The achievable rate region for the setting illustrated in Fig. 3, whereX,Y, Z are i.i.d. random

variables forming the Markov chainY −X − Z is

RO
Y−X−Z(D) = RY −X−Z(D). (20)

Let us define an additional regionRX−Y−Z(D) the same asRX−Y−Z(D) but the termp(w|x, u) in (17) is

replaced byp(w|x, u, y), i.e.,

p(x, y, z, u, w) = p(x, y)p(z|x)p(u|y)p(w|x, u, y). (21)

In the proof of Theorem 4, we show thatRY −X−Z(D) is achievable and thatRY−X−Z(D) is an outer bound,

and we conclude the proof by applying the following lemma, which states that the two regions are equal.

Lemma 5:RX−Y−Z(D) = RX−Y −Z(D).

Proof: Trivially we haveRX−Y−Z(D) ⊇ R(D|Z). Now we prove thatRX−Y−Z(D) ⊆ RX−Y −Z(D). Let

(R,R1) ∈ RX−Y−Z(D), and

p(x, y, z, u, w) = p(x, y)p(z|x)p(u|y)p(w|x, u, y) (22)

be a distribution that satisfies (15),(16) and (18). Now we show that there exists a distribution of the form (17)

such that (16),(15) and (18) hold.

Let

p(x, y, z, u, w) = p(x, y, z)p(u|y)p(w|x, u), (23)

where p(w|x, u) is induced byp(x, y, z, u, w). We now show that the termsI(U ;Y |Z), I(X ;W |Z,U) and

Ed(X, X̂(U,W,Z)) are the same whether we evaluate them by the joint distribution p(x, y, z, u, w) of (23), or

by p(x, y, z, u, w); hence(R,R1) ∈ RX−Y−Z(D). In order to show that the terms above are the same it is enough

to show that the marginal distributionsp(y, z, u) and p(x, z, u, w) induced byp(x, y, z, u, w) are equal to the
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marginal distributionsp(y, z, u) andp(x, z, u, w) induced byp(x, y, z, u, w). Clearlyp(y, u, z) = p(y, u, z). In the

rest of the proof we showp(x, z, u, w) = p(x, z, u, w).

A distribution of the formp(x, y, z, u, w) as given in (22) implies that the Markov chainW − (X,U)−Z holds

as shown in Fig. 4. Thereforep(w|x, u, z) = p(w|x, u). Now considerp(x, z, u, w) = p(x, z, u)p(w|x, u), and since

PSfrag replacements

XY
U Z

W

V

Fig. 4. A graphical proof of the Markov chainW − (X,U) − Z. The undirected graph corresponds to the joint distribution given in (22),

i.e., p(x, y, z, u, v, w) = p(x, y)p(z|x)p(u|y)p(w|u, x, y). The Markov chain holds since there is no path fromZ to W that does not pass

through(X,U).

p(x, z, u) = p(x, z, u) andp(w|x, u) = p(w|x, u) we conclude thatp(x, z, u, w) = p(x, z, u, w).

Proof of Theorem 4:

Achievability: The proof follows classical arguments, and therefore the technical details will be omitted. We

describe only the coding structure and the associated Markov conditions. Note that the condition (17) in the definition

of RX−Y−Z(D), implies the Markov chainU −Y −X−Z. The helper (encoder ofY ) employs Wyner-Ziv coding

with decoder side informationZ and external random variableU , as seen from (15). The Markov conditions required

for such coding,U − Y −Z, are satisfied, hence the source decoder, at the destination, can recover the codewords

constructed fromU . Moreover, since (17) impliesU − Y −X −Z, the encoder ofX can also reconstructU (this

is the point where the Markov assumptionY − X − Z is needed). Therefore in the coding/decoding scheme of

X , U serves as side information available at both sides. The source (X) encoder now employs Wyner-Ziv coding

for X , with decoder side informationZ, coding random variableW , andU available at both sides. The Markov

conditions needed for this scheme areW − (X,U)−Z, which again are satisfied by (17). The rate needed for this

coding isI(X ;W |U,Z), reflected in the bound onR in (16). Once the two codes (helper and source code) are

decoded, the destination can use all the available random variables,U , W , and the side informationZ, to construct

X̂.

Converse: Assume that we have an(n,M1 = 2nR1 ,M2 = 1,M3 = 2nR, Dx = D,Dz = ∞) code as in

Definition 4. We will show the existence of a triple(U,W, X̂) that satisfy (15)-(18). DenoteT1 = f1(Y
n) ∈

{1, ..., 2nR1}, andT = f3(X
n, T1) ∈ {1, ..., 2nR}. Then,

nR1 ≥ H(T1)

≥ H(T1|Z
n)

≥ I(Y n;T1|Z
n)

=

n
∑

i=1

H(Yi|Zi)−H(Yi|Y
i−1, T1, Z

n)
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(a)
=

n
∑

i=1

H(Yi|Zi)−H(Yi|X
i−1, Y i−1, T1, Z

n)

≥

n
∑

i=1

H(Yi|Zi)−H(Yi|X
i−1, T1, Z

n), (24)

where equality (a) is due to the Markov formYi − (Y i−1, f1(Y
n), Zn)−X i−1. Furthermore,

nR ≥ H(T )

≥ H(T |T1, Z
n)

≥ I(Xn;T |T1, Z
n)

=
n
∑

i=1

H(Xi|T1, Z
n, X i−1)−H(Xi|T, T1, Z

n, X i−1) (25)

Now, let Wi , T andUi , (X i−1, Zn\i, T1), whereZn\i denotes the vectorZn without theith element, i.e.,

(Zi−1, Zn
i+1). Then (24) and (25) become

R1 ≥
1

n

n
∑

i=1

I(Yi;Ui|Zi)

R ≥
1

n

n
∑

i=1

I(Xi;Wi|Ui, Zi). (26)

Now we observe that the Markov chainUi − Yi − (Xi, Zi) holds since we have(X i−1, Zn\i, T1(Y
n)) − Yi −

(Xi, Zi). Also the Markov chainWi− (Ui, Xi, Yi)−Zi holds sinceT (T1, X
n)− (X i, Yi, T1(Y

n), Zn\i)−Zi. The

reconstruction at timei, i.e., X̂i, is a deterministic function of(Zn, T, T1), and in particular it is a deterministic

function of (Ui,Wi, Zi). Finally, letQ be a random variable independent ofXn, Y n, Zn, and uniformly distributed

over the set{1, 2, 3, .., n}. Define the random variablesU , (Q,UQ), W , (Q,WQ), and X̂ , (X̂Q) (X̂Q is a

short notation for time sharing over the estimators). The Markov relationsU −Y − (X,Z) andW − (X,U, Y )−Z,

the inequalityEd(X, X̂) =
∑n

i=1
1
n
Ed(X, X̂i) ≤ D, the fact thatX̂ is a deterministic function of(U,W,Z) , and

the inequalitiesR1 ≥ I(Y ;U |Z) andR ≥ I(X,Y ;W |U,Z) (implied by (26)), imply that(R,R1) ∈ RX−Y−Z(D),

completing the proof by Lemma 5.

V. WYNER-ZIV WITH A HELPER WHEREY − Z −X

Consider the the rate-distortion problem with side information and helper as illustrated in Fig. 3, where the

random variablesX,Y, Z form the Markov chainY − Z −X . This setting corresponds to the case whereR3 = 0

and exchanging betweenX andZ. Let us denote byRO
Y −Z−X(D) the (operational) achievable region.

Let RY−Z−X(D) be the set of all rate pairs(R,R1) that satisfy

R1 ≥ I(U ;Y |X), (27)

R ≥ I(X ;V |U,Z), (28)

for some joint distribution of the form

p(x, y, z, u, v) = p(z, y)p(x|z)p(u|y)p(v|x, u), (29)
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Ed(X, X̂(U, V, Z)) ≤ D, (30)

whereU and V are auxiliary random variables, and the reconstruction variable X̂ is a deterministic function of

the triple(U, V, Z). The next lemma states properties ofRY−Z−X(D). It is the analog of Lemma 2 and therefore

omitted.

Lemma 6: 1) The regionRY −Z−X(D) is convex

2) To exhaustRY −Z−X(D), it is enough to restrict the alphabets ofV andU to satisfy

|U| ≤ |Y|+ 2

|V| ≤ |X |(|Y|+ 2) + 1. (31)

Theorem 7:The achievable rate region for the setting illustrated in Fig. 3, whereXi, Yi, Zi are i.i.d. triplets

distributed according to the random variablesX,Y, Z forming the Markov chainY − Z −X is

RO
Y−Z−X(D) = RY −Z−X(D). (32)

Proof:

Achievability: The proof follows classical arguments, and therefore the technical details will be omitted. We

describe only the coding structure and the associated Markov conditions. The helper (encoder ofY ) employs

Wyner-Ziv coding with decoder side informationX and external random variableU , as seen from (27). The

Markov conditions required for such coding,U −Y −X , are satisfied, hence the source encoder, at the destination,

can recover the codewords constructed fromU . Moreover, since (29) impliesU − Y − Z −X , the decoder, at the

destination, can also reconstructU . Therefore in the coding/decoding scheme ofX , U serves as side information

available at both sides. The sourceX encoder now employs Wyner-Ziv coding forX , with decoder side information

Z, coding random variableV , andU available at both sides. The Markov conditions needed for this scheme are

V − (X,U)− Z, which again are satisfied by (29). The rate needed for this coding is I(X ;V |U,Z), reflected in

the bound onR in (28). Once the two codes (helper and source code) are decoded, the destination can use all the

available random variables,U , V , and the side informationZ, to constructX̂ .

Converse: Assume that we have a code for a sourceX with helperY and side informationZ at rate(R1, R).

We will show the existence of a triple(U, V, X̂) that satisfy (27)-(30). DenoteT1(Y
n) ∈ {1, ..., 2nR1}, and

T (Xn, T 1) ∈ {1, ..., 2nR}. Then,

nR1 ≥ H(T1)

≥ H(T1|X
n)

≥ I(Y n;T1|X
n)

=

n
∑

i=1

H(Yi|Xi)−H(Yi|Y
i−1, T1, X

n)

(a)
=

n
∑

i=1

H(Yi|Xi)−H(Yi|Y
i−1, T1, X

n
i+1, Xi),
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(b)
=

n
∑

i=1

H(Yi|Xi)−H(Yi|Y
i−1, T1, X

n
i+1, Xi, Z

i−1),

(c)

≥

n
∑

i=1

H(Yi|Xi)−H(Yi|T1, X
n
i+1, Xi, Z

i−1), (33)

where (a) and (b) follow from the Markov chainYi − (Y i−1, T1(Y
n), Xn

i ) − (X i−1, Zi−1) (see Fig. 5 for the

PSfrag replacements

X i−1

Xi

Xn
i+1

Y i−1

Yi

Zn
i+1 Zi−1

Zi

Zn
i+1 Y n

i+1

T (Xn, T1)

T1(Y
n)

Fig. 5. A graphical proof of the Markov chainYi − (Y i−1, T1(Y n), Xn
i )− (Xi−1, Zi−1). The undirected graph corresponds to the joint

distributionp(xi−1, zi−1)p(yi−1|zi−1)p(xi, zi)p(yi|zi)p(x
n
i+1

, zni+1
)p(yni+1

|zni+1
)p(t1|yn). The Markov chain holds since all paths from

Yi to Xi−1, Zi−1 pass through(Y i−1, T1(Y n), Xn
i ). The nodes with the open circle, i.e.,◦, constitute the middle term in the Markov chain,

i.e., (Y i−1, T1(Y n), Xn
i ) and all the other nodes are with solid circles, i.e.,•. The nodesY i−1, Yi, Y n

i+1
andT1 are connected due to the

term p(t1|yn).

proof), and (c) follows from the fact that conditioning reduces entropy. Consider,

nR ≥ H(T )

≥ H(T |T1, Z
n)

≥ I(Xn;T |T1, Z
n)

=

n
∑

i=1

H(Xi|X
n
i+1, T1, Z

n)−H(Xi|X
n
i+1, T1, Z

n, T )

(a)
=

n
∑

i=1

H(Xi|X
n
i+1, T1, Z

i−1, Zi)−H(Xi|X
n
i+1, T1, Z

n, T )

(b)

≥
n
∑

i=1

H(Xi|X
n
i+1, T1, Z

i−1, Zi)−H(Xi|X
n
i+1, T1, Z

i−1, Zi, T ), (34)

where (a) is due to the Markov chainXi− (Xn
i+1, T1(Y

n), Zi)−Zn
i+1 (this can be seen from Fig. 5 since all paths

from Xi to Zn
i+1 goes throughZi), and (b) is due to the fact that conditioning reduces entropy. Now let us denote

Ui , Zi−1, T1(Y
n), Xn

i+1, andVi , T (Xn, T1). The Markov chainsUi−Yi−(Xi, Zi) andVi−(Xi, Ui)−(Zi, Yi)

hold (see Fig. 6 for the proof of the last Markov relation).

Next, we need to show that there exists a sequence of functionX̂i(Ui, Vi, Zi) such that

1

n

n
∑

i=1

E[d(Xi, X̂i(Ui, Vi, Zi))] ≤ D. (35)
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PSfrag replacements
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Fig. 6. A graphical proof of the Markov chainXi−1 − (Zi−1, T1(Y n), Xn
i ) − (Zi, Yi), which impliesVi − (Xi, Ui) − (Zi, Yi). The

undirected graph corresponds to the joint distributionp(xi−1, zi−1)p(yi−1|zi−1)p(xi, zi)p(yi|zi)p(xn
i+1

, zni+1
)p(yni+1

|zni+1
)p(t1|yn). The

Markov chain holds since all paths fromXi−1 to (Zi, Yi) pass through(Zi−1, T1(Y n), Xn
i ).

By assumption we know that there exists a sequence of functions X̂i(T, T1, Z
n) such that

∑n
i=1 E[d(Xi, X̂i(T, T1, Z

n))] ≤ nD, and trivially this implies that there exists a sequence of functions

X̂i(X
i−1, T, T1, Z

n) such that
n
∑

i=1

E[d(Xi, X̂i(X
n
i+1, T, T1, Z

i, Zn
i+1))] ≤ D. (36)

Note that the Markov chainXi − (Xn
i+1, T1, Z

i, T ) − Zn
i+1 holds (see Fig. 7 for the proof). Therefore, for an

arbitrary functionf̃ of the form f̃(Xn
i+1, T1, Z

i, T ) we have
n
∑

i=1

E[d(Xi, X̂i(X
n
i+1, T, T1, Z

i, Zn
i+1))] ≤ min

f̃

n
∑

i=1

E[d(Xi, X̂i(X
n
i+1, T, T1, Z

i, f̃(Xn
i+1, T1, Z

i, T )))], (37)

and since each summand on the RHS of (37) includes only the random variables(Xn
i+1, T, T1, Z

i) we conclude

that there exists a sequence of functions{Xi(X
n
i+1, T, T1, Z

i)} for which (35) holds.

PSfrag replacements

X i−1

Xi

Xn
i+1

Y i−1

Yi

Zn
i+1

Zi−1

Zi

Zn
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i+1
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n)

Fig. 7. A graphical proof of the Markov chainXi − (Xn
i+1

, T1, Z
i, T ) − Zn

i+1
. The undirected graph corresponds to the joint distribution

p(xi−1, zi−1)p(yi−1|zi−1)p(xi, zi)p(yi|zi)p(xn
i+1

, zni+1
)p(yni+1

|zni+1
)p(t1|yn)p(t|xn, t1). The Markov chain holds since all paths from

Xi to Zn
i+1

pass through(Xn
i+1

, T1, Z
i, T ).

Finally, let Q be a random variable independent ofXn, Y n, Zn, and uniformly distributed over the set

{1, 2, 3, .., n}. Define the random variablesU , (Q,UQ), W , (Q,WQ), andX̂ , X̂Q (X̂Q is a short notation

for time sharing over the estimators). Then (33)-(35) implies that (27)-(30) hold.
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VI. PROOF OFTHEOREM 1

In this section we prove Theorem 1, which states that the (operational) achievable regionRO(Dx, Dz) of the

two-way source coding with helper problem as in Fig. 1 equalsR(Dx, Dz). In the converse proof we use the ideas

used in proving the converses of Theorems 4 and 7. Namely, we will use the chain rule based on the past and

future, and will show thatRO(Dx, Dz) ⊆ R(Dx, Dz), whereR(Dx, Dz) is defined asR(Dx, Dz) in (1)-(5) but

with one difference: the termp(w|u, v, x) in (4) should be replaced byp(w|u, v, x, y), i.e.,

p(x, y, z, u, v, w) = p(x, y)p(z|x)p(u|y)p(v|u, z)p(w|u, v, x, y). (38)

The following lemma states that the two regionsR(Dx, Dz) andR(Dx, Dz) are equal.

Lemma 8:R(Dx, Dz) = R(Dx, Dz).

Proof: Trivially we haveR(Dx, Dz) ⊇ R(Dz, Dz). Now we prove thatR(Dx, Dz) ⊆ R(Dx, Dz). Let

(R1, R2, R3) ∈ R(Dx, Dz), and

p(x, y, z, u, v, w) = p(x, y)p(z|x)p(u|y)p(v|u, z)p(w|u, v, x, y), (39)

be a distribution that satisfies (1)-(3) and (5). Next we showthat there exists a distribution of the form of (4) (which

is explicitly given in (39)) such that (1)-(3) and (5) hold. Let

p(x, y, z, u, v, w) = p(x, y)p(z|x)p(u|y)p(v|u, z)p(w|u, v, x), (40)

wherep(w|u, v, x) is induced byp(x, y, z, u, v). We show that all the terms in (1)-(3) and (5) i.e.,I(Y ;U |Z),

I(Z;V |U,X), Edz(Z, Ẑ(U, V,X)), I(X ;W |U, V, Z), andEdx(X, X̂(U,W,Z)) are the same whether we evaluate

them by the joint distributionp(x, y, z, u, v) of (40), or by p(x, y, z, u, v, w) of (39); hence(R1, R2, R3) ∈

R(Dx, Dz). In order to show that the terms above are the same it is enoughto show that the marginal distributions

p(x, y, z, u, v) andp(x, z, u, v, w) induced byp(x, y, z, u, v, w) are equal to the marginal distributionsp(x, y, z, u, v)

andp(x, z, u, v, w) induced byp(x, y, z, u, v, w). Clearly p(x, y, z, u, v) = p(x, y, z, u, v). In the rest of the proof

we showp(x, z, u, v, w) = p(x, z, u, v, w).
PSfrag replacements

XY
U Z

W

V

Fig. 8. A graphical proof of the Markov chainW − (X,U, V )−Z. The undirected graph corresponds to the joint distribution given in (39),

i.e., p(x, y, z, u, v, w) = p(x, y)p(z|x)p(u|y)p(v|u, z)p(w|u, v, x, y). The Markov chain holds since there is no path fromZ to W that does

not pass through(X,U, V ).

A distribution of the formp(x, y, z, u, v, w) as given in (39) implies that the Markov chainW−(X,U, V )−Z holds

(see Fig. 8 for the proof). Thereforep(w|u, x, v, z) = p(w|u, x, v). Sincep(x, z, u, v, w) = p(x, z, v, u)p(w|x, u, v),
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and sincep(x, z, v, u) = p(x, z, v, u) and p(w|x, u, v) = p(w|x,w, v) we conclude thatp(x, z, u, v, w) =

p(x, z, u, v, w).

proof of Theorem 1:

Achievability: The achievability scheme is based on the fact that for the twospecial cases considered above,

namelyR2 = 0 andR3 = 0, the coding scheme for the helper was based on a Wyner-Ziv scheme, where the side

information at the decoder is the random variable that is ”further” in the Markov chainY −X−Z, namelyZ. The

helper (encoder ofY ) employs Wyner-Ziv coding with decoder side informationZ and external random variableU ,

as seen from (1), i.e.,R1 ≥ I(Y ;U |Z). The Markov conditions required for such coding,U −Y −Z, are satisfied,

hence the source decoder, at the destination, can recover the codewords constructed fromU . Moreover, since (29)

impliesU −Y −Z−X , the encoder ofX can also reconstructU . Therefore in the coding/decoding scheme ofX ,

U serves as side information available at both sides. The sourceZ encoder now employs Wyner-Ziv coding forZ,

with decoder side informationX , coding random variableV , andU available at both sides. The Markov conditions

needed for this scheme areV − (X,U) − Z, which again are satisfied by (4). The rate needed for this coding is

I(X ;V |U,Z), reflected in the bound onR2 in (2). Finally, the sourceX encoder now employs Wyner-Ziv coding

for X , with decoder side informationZ, coding random variableW , andU, V available at both sides. The Markov

conditions needed for this scheme areW − (X,U, V ) − Z, which again are satisfied by (4). The rate needed for

this coding isI(X ;W |U, V, Z), reflected in the bound onR3 in (3). Once the codes are decoded, the destination

can use all the available random variables, (U, V,X) at User X, and, (U,W,Z) at User Z, to construct̂Z and X̂,

respectively.

Converse: Assume that we have a(n,M1,M2,M3, Dx, Dz) code. We now show the existence of a triple

(U, V,W, X̂, Ẑ) that satisfy (1)-(5). DenoteT1 = f1(Y
n), T2 = f2(Z

n, T1), andT3 = f3(X
n, T2, T1). Then using

the same arguments as in (33) and (34) (just exchanging betweenX andZ), we obtain

nR1 ≥

n
∑

i=1

H(Yi|Zi)−H(Yi|X
i−1, T1, Z

n
i ), (41)

nR2 ≥

n
∑

i=1

H(Zi|Z
n
i+1, T1, X

i−1, Xi)−H(Zi|Z
n
i+1, T1, X

i−1, Xi, T2), (42)

respectively. For upper-boundingR3, consider

nR3 ≥ H(T3)

≥ H(T3|T1, T2, Z
n)

≥ I(Xn;T3|T1, T2, Z
n)

=

n
∑

i=1

H(Xi|X
i−1, Zn, T1, T2)−H(Xi|X

i−1, Zn, T1, T2, T3)

(a)
=

n
∑

i=1

H(Xi|X
i−1, Zn

i , T1, T2)−H(Xi|X
i−1, Zn, T1, T2, T3)
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≥

n
∑

i=1

H(Xi|X
i−1, Zn

i , T1, T2)−H(Xi|X
i−1, Zn

i , T1, T2, T3), (43)

where equality (a) is due to the Markov chainXi − (X i−1, Zn
i , T1, T2) − Zi−1 (see Fig. 9). Now let us denote

PSfrag replacements
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n)T2(Z

n, T1)

Fig. 9. A graphical proof of the Markov chainXi − (Xi−1, Zn
i , T1, T2)−Zi−1. The undirected graph corresponds to the joint distribution

p(xi−1, zi−1)p(yi−1|xi−1)p(xi, zi)p(yi|xi)p(xn
i+1

, zni+1
)p(yni+1

|xn
i+1

)p(t1|yn)p(t2|zn, t1). The Markov chain holds since all paths from

Zi−1 to Xi pass through(Xi−1, Zn
i , T1, T2).

Ui , X i−1, T1, Z
n
i+1, Vi , T2 andWi , T3, and we obtain from (41)-(43)

R1 ≥
1

n

n
∑

i=1

I(Yi;Ui|Zi),

R2 ≥
1

n

n
∑

i=1

I(Zi;Vi|Ui, Xi),

R3 ≥
1

n

n
∑

i=1

I(Xi;Wi|Ui, Vi, Zi), (44)

Now, we verify that the joint distribution of(Xi, Yi, Zi, Ui, Vi,Wi) is of the form (38), i.e.,Ui − Yi − (Zi, Xi),

Vi−(Ui, Zi)−(Yi, Xi) andWi−(Ui, Vi, Xi, Yi)−Zi, hold. The Markov chain(T1(Y
n), X i−1, Zn

i+1)−Yi−(Zi, Xi)

trivially holds, and the Markov chains

Zi−1 − (T1(Y
n), X i−1, Zn

i )− (Yi, Xi), (45)

Xn
i+1 − (T1(Y

n), T2(T1, Z
n), X i, Zn

i+1, Yi)− Zi (46)

are proven in is proven in Fig. 10, 11, respectively. Next, weshow that exist sequences of functions

{Ẑi(Ui,Wi, Zi)}, and{X̂i(Ui, Vi, Zi)} such that

1

n

n
∑

i=1

E[d(Xi, X̂i(Ui, Vi, Zi))] ≤ Dx,

1

n

n
∑

i=1

E[d(Xi, Ẑi(Ui,Wi, Xi))] ≤ Dz. (47)

The only difficulty here is that the terms in(Ui, Vi, Zi) do not includeZi−1 and the terms(Ui,Wi, Xi) do not

includeXn
i+1. However, this is solved by the same argument as for the Wyner-Ziv with helper at the end of Section

V, by showing the Markov formsXi − (Ui, Vi, Zi)−Zi−1 andZi− (Ui,Wi, Xi)−Xn
i+1 for which the proofs are

given in Figures 12 and 13, respectively.
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Fig. 10. A graphical proof of the Markov chainZi−1 − (T1(Y n), Xi−1, Zn
i ) − (Yi,Xi). The undirected graph corresponds to the joint

distributionp(xi−1, zi−1)p(yi−1|xi−1)p(xi, zi)p(yi|xi)p(xn
i+1

, zni+1
)p(yni+1

|xn
i+1

)p(t1|yn). The Markov chain holds since all paths from

Zi−1 to (Xi, Yi) pass through(Xi−1, Zn
i , T1).
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Fig. 11. A graphical proof of the Markov chainXn
i+1

− (T1(Y n), T2(T1, Z
n), Xi, Zn

i+1
, Yi) − Zi. The undirected graph corresponds

to the joint distributionp(xi−1, yi−1)p(zi−1|yi−1)p(xi, yi)p(zi|yi)p(x
n
i+1

, yni+1
)p(zni+1

|yni+1
)p(t1|yn)p(t2|zn, t1). The Markov chain

holds since all paths fromZi to Xn
i+1

pass through(T1(Y n), T2(T1, Z
n), Xi, Zn

i+1
, Yi).
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Fig. 12. A graphical proof of the Markov chainZi−1 − (T1(Y n), T2(T1, Z
n), Xi−1, Zn

i )−Xi. The undirected graph corresponds to the

joint distribution p(xi−1, zi−1)p(yi−1|xi−1)p(xi, zi)p(yi|xi)p(xn
i+1

, zni+1
)p(yni+1

|xn
i+1

)p(t1|yn)p(t2|zn, t1). The Markov chain holds

since all paths fromZi−1 to Xi pass through(T1(Y n), T2(T1, Z
n), Xi−1, Zn

i ).

Finally, let Q be a random variable independent ofXn, Y n, Zn, and uniformly distributed over the set

{1, 2, 3, .., n}. Define the random variablesU , (Q,UQ), V , (Q, VQ), W , (Q,WQ), X̂ , X̂Q, and Ẑ , ẐQ.

Then (44)-(47) imply that the equations that defineR(Dx, Dz) i.e., (1)-(5), hold.
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Fig. 13. A graphical proof of the Markov chainZi − (Ui,Wi,Xi) − Xn
i+1

. The undirected graph corresponds to the joint distribution

p(xi−1, zi−1)p(yi−1|xi−1)p(xi, zi)p(yi|xi)p(xn
i+1

, zni+1
)p(yni+1

|xn
i+1

)p(t1|yn)p(t3|xn, t1). The Markov chain holds since all paths from

Zi to Xn
i+1

pass through(T1(Y n), T3(T1, X
n), Xi, Zn

i+1
).

VII. T WO-WAY MULTI STAGE

Here we consider the two-way multi-stage rate-distortion problem with a helper. First, the helper sends a common

message to both users, and then usersX andZ send to each other a total rateRx andRz, respectively, inK

rounds. We use the definition of two-way source coding as given in [1], where each user may transmit up toK

messages to the other user that depends on the source and previous received messages.

Let M denote a set of positive integers{1, 2, ..,M} and letMK the collection ofK sets{M1,M2, ...,MK}.

  a

PSfrag replacements
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Fig. 14. The two-way multi-stage with a helper. First HelperY sends a common message to User X and to User Z at rateRy , and then we

haveK rounds where in each roundk ∈ {1, ...,K} User Z sends a message to User X at rateRz,k, and User X sends a message to UserZ at

rateRx,k. The limitation is on rateRy and on the sum ratesRx =
PK

k=1
Rx,k andRz =

PK
k=1

Rz,k. We assume that the side information

Y and the two sourcesX,Z are i.i.d. and form the Markov chainY −X − Z.

Definition 4: An (n,My,M
K
x ,MK

z , Dx, Dz) code for two sourcesX and Z with helper Y consists of the

encoders

fy : Yn → My

fz,k : Zn ×Mk−1
x ×My → Mz,k, k = 1, 2, ...,K
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fx,k : Xn ×Mk
z ×My → Mx,k, k = 1, 2, ...,K (48)

and two decoders

gx : Xn ×My ×MK
z → Ẑn

gz : Zn ×My ×MK
x → X̂n (49)

such that

E

[

n
∑

i=1

dx(Xi, X̂i)

]

≤ Dx,

E

[

n
∑

i=1

dz(Zi, Ẑi)

]

≤ Dz, (50)

The rate triple(Rx, Ry, Rz) of the code is defined by

Ry =
1

n
logMy;

Rx =
1

n

K
∑

i=1

logMx,i;

Rz =
1

n

K
∑

i=1

logMz,i; (51)

Let us denote byRO
K(Dx, Dz) the (operational) achievable region of the multi-stage rate distortion with a helper,

i.e., the closure of the set of all triple rate(Rx, Ry, Rz) that are achievable with a distortion pair(Dx, Dz). Let

RK(Dx, Dz) be the set of all triple rates(Rx, Ry, Rz) that satisfy

Ry ≥ I(U ;Y ), (52)

Rz ≥
K
∑

k=1

I(Z;Vk|X,U, V k−1,W k−1), (53)

Rx ≥

K
∑

k=1

I(X ;Wk|Z,U, V
k,W k−1), (54)

for some auxiliary random variables(U, V K ,W k) that satisfy

U − Y − (X,Z), (55)

Vk − (Z,U, V k−1,W k−1)− (X,Y ), k = 1, 2, ...,K, (56)

Wk − (X,U, V k,W k−1)− (Z, Y ), k = 1, 2, ...,K, (57)

Edx(X, X̂(U,WK , Z)) ≤ Dx,

Edz(Z, Ẑ(U, V K , X)) ≤ Dz. (58)
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The Markov chainY − X − Z and the Markov chains given in (55)-(57) imply that the jointdistribution of

X,Y, Z, U, V k,W k is of the formp(x, y)p(z|x)p(u|y)
∏K

k=1 p(vk|z, u, v
k−1, wk−1)p(wk|x, u, v

k, wk−1). Further-

more, (53) and (54) can be written as

Rz ≥ I(Z;V K ,WK |X,U), (59)

Rx ≥ I(X ;V K ,WK |Z,U), (60)

due to the the Markov chainsZ − (X,U, V k,W k−1)−Wk andX − (Z,U, V k−1,W k−1)− Vk.

Lemma 9: 1) The regionRK(Dx, Dz) is convex

2) To exhaustRK(Dx, Dz), it is enough to restrict the alphabet ofU , V , andW to satisfy

|U| ≤ |Y|+ 2K + 1,

|Vk| ≤ |Z||U||Vk−1||Wk−1|+ 2(K + 1− k) + 1, for k = 1, ..,K,

|Wk| ≤ |X ||U||Vk||Wk−1|+ 2(K + 1− k), for k = 1, ..,K. (61)

The proof of the lemma is analogous to the proof of Lemma 2 and therefore omitted.

Theorem 10:In the two-way problem withK stages of communication and a helper, as depicted in Fig. 14,

whereY −X − Z,

RO
K(Dx, Dz) = RK(Dx, Dz). (62)

Theorem 10 is a generalization of Theorem 1 (equations (52)-(58) whereK = 1 are equivalent to (1)-(5)) and

its proof is a straightforward extension. Here we explain only the extensions.

Sketch of achievability: In the achievability proof of Theorem 1, we generated the sequences(Un, V n
1 ,Wn

1 )

that are jointly typical withXn, Y n, Zn. Using the same idea of Wyner-Ziv coding we continue and generate at any

stagek = 1, 2, ...,K, the sequenceV n
k that is jointly typical with the other sequences by transmitting a message

at rateI(Z;Vk|X,U, V k−1,W k−1) from User Z to User X, and similarly the sequenceWn
k that is jointly typical

with the other sequences by transmitting a message at rateI(X ;Wk|Z,U, V
k,W k−1) from User X to User Z. In

the final stage, User X uses the sequences(Xn, Un, V n
1 , ..., V n

K) to constructẐn and, similarly, User Z uses the

sequences(Zn, Un,Wn
1 , ...,W

n
K) to constructX̂n.

Sketch of Converse: Assume that we have an(n,My,M
K
x ,MK

z , Dx, Dz) code and we will show the existence

of a vector(U, V K ,WK , X̂, Ẑ) that satisfy (52)-(58). DenoteTy = fy(Y
n), Tz,k = fz,k(Z

n, Ty, T
k−1
x ), and

Tx,k = fx,k(X
n, Ty, T

k
z ). Then the same arguments as in (41) we obtain

nRy ≥

n
∑

i=1

H(Yi;X
i−1, Ty, Z

n
i+1|Zi) (63)

Then we have

nRz ≥ H(TK
z ) =

K
∑

k=1

H(Tz,k|T
k−1
z )≥

K
∑

k=1

H(Tz,k|T
k−1
z , T k−1

x ), (64)
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nRx ≥ H(TK
x ) =

K
∑

k=1

H(Tx,k|T
k−1
x )≥

K
∑

k=1

H(Tx,k|T
k−1
x , T k

z ). (65)

Applying the same arguments as in (42) and (43) on the terms in(64) and (65), respectively, we obtain that

H(Tz,k|T
k−1
z , T k−1

x ) ≥

n
∑

i=1

I(Zi;Tz,k|Z
n
i+1, X

i, Ty, T
k−1
z , T k−1

x )

H(Tx,k|T
k−1
x , T k

z ) ≥

n
∑

i=1

I(Xi;Tx,k|Z
n
i , X

i−1, Ty, T
k
z , T

k−1
x ). (66)

We define the auxiliary random variables asU , XQ−1, Ty, Z
n
Q+1, Vk = Tz,k andWk = Tx,k, whereQ is

distributed uniformly on the integers{1, 2, ..., n}.

VIII. G AUSSIAN CASE

In this subsection we consider the Gaussian instance of the two way setting with a helper as defined in Section

III and explicitly express the region for a mean square errordistortion (we also note that the multi stage option

does not increase the rate region for this case).

  a

PSfrag replacements

X = Z +A

User X

Helper

Ry

User Z X̂Ẑ

Y = Z +A+B

Z

Ry

Rz

Rx

A ∼ N(0, σ2
A),

B ∼ N(0, σ2
B),

Z ∼ N(0, σ2
Z),

A ⊥ B ⊥ Z,

square-error distortion

Fig. 15. The Gaussian two-way with a helper. The side information Y and the two sourcesX,Z are i.i.d., jointly Gaussian and form the Markov

chainY −X − Z. The distortion is the square error, i.e.,dx(Xn, X̂n) = 1

n

Pn
i=1

(Xi − X̂i)2 anddz(Zn, Ẑn) = 1

n

Pn
i=1

(Zi − Ẑi)2.

SinceX,Y, Z form the Markov chainY −X − Z, we assume, without loss of generality, thatX = Z +A and

Y = Z + A + B, where the random variables(A,B,Z) are zero-mean Gaussian and independent of each other,

whereE[A2] = σ2
A, E[B2] = σ2

B andE[Z2] = σ2
Z .

Corollary 11: The achievable rate region of the problem illustrated in Fig. 15 is

Rz ≥
1

2
log

σ2
Aσ

2
Z

Dz(σ2
A + σ2

Z)
, (67)

Rx ≥
1

2
log

σ2
A

(

σ2
B + σ2

A2
−2Ry

)

Dx(σ2
A + σ2

B)
. (68)
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Proof: The converse and achievability of (67) follows from the Gaussian Wyner-Ziv coding [18] result, which

states that the achievable rate for the Gaussian Wyner-Ziv setting is the same as the case where the side information

is known to the encoder and decoder. Furthermore, because ofthe Markov chainZ −X − Y , the rateRy does not

have any influence onRz, since this rate is the achievable rate even ifY is known to both users. The achievability

and the converse forRx is given in the following corollary.

  a

PSfrag replacements

X = Z +A

Y = Z +A+B

Z

Tx ∈ 2nRx

X̂n

X̂

A ∼ N(0, σ2
A),

B ∼ N(0, σ2
B),

Z ∼ N(0, σ2
Z),

A ⊥ B ⊥ Z,

square-error distortion

Ty ∈ 2nRy

Fig. 16. Gaussian case: the zero-mean Gaussian random variablesA,B,Z are i.i.d. and independent of each other. Their variances are σ2
A,

σ2
B andσ2

Z , respectively. The sourceX and the helperY satisfyX = A+ Z andY = Z + A+ B. The distortion is the square error, i.e.,

d(Xn, X̂n) = 1

n

Pn
i=1(Xi − X̂i)

2.

Corollary 12: The achievable rate region of the problem illustrated in Fig. 16 is

R ≥
1

2
log

σ2
A

(

1−
σ2

A

σ2

A+σ2

B

(1 − 2−2Ry)
)

D
(69)

It is interesting to note that the rate region does not dependon σ2
Z . Furthermore, we show in the proof that for

the Gaussian case the rate region is the same as whenZ is known to the sourceX and the helperY .

Proof of Corollary 12:

Converse: Assume that both encoders observeZn. Without loss of generality, the encoders can subtractZ from

X andY ; hence the problem is equivalent to new rate distortion problem with a helper, where the source isA and

the helper isA+B. Now using the result for the Gaussian case from [7], adaptedto our notation, we obtain (69).

Achievability: Before proving the direct-part of Corollary 12, we establish the following lemma which is proved

in Appendix C.

Lemma 13: Gaussian Wyner-Ziv rate-distortion problem withadditional side information known to the encoder

and decoder.Let (X,W,Z) be jointly Gaussian. Consider the Wyner-Ziv rate distortion problem where the source

X is to be compressed with quadratic distortion measure,W is available at the encoder and decoder, andZ is

available only at the decoder. The rate-distortion region for this problem is given by

R(D) =
1

2
log

σ2
X|W,Z

D
, (70)

whereσ2
X|W,Z

= E[(X − E[X |W,Z])2], i.e., the minimum square error of estimatingX from (W,Z).
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Let V = A+B+Z+D, whereD ∼ N(0, σ2
D) and is independent of(A,B,Z). Clearly, we haveV −Y −X−Z.

Now, let us generateV at the source-encoder and at the decoder using the achievability scheme of Wyner [18].

SinceI(V ;Z) ≤ I(V ;X) a rateR′ = I(V ;Y )− I(V ;Z) would suffice, and it may be expressed as follows:

R′ = I(V ;Y |Z)

= h(V |Z)− h(V |Y )

=
1

2
log

σ2
A + σ2

B + σ2
D

σ2
D

, (71)

and this implies that

σ2
D =

σ2
A + σ2

B

22R′ − 1
. (72)

Now, we invoke Lemma 13, whereV is the side information known both to the encoder and decoder; hence a rate

that satisfies the following inequality achieves a distortion D;

R ≥
1

2
log

σ2
X|V,Z

D

=
1

2
log

σ2
A

D

(

1−
σ2
A

σ2
A + σ2

B + σ2
D

)

(73)

Finally, by replacingσ2
D with the identity in (72) we obtain (69).

IX. FURTHER RESULTS ONWYNER-ZIV WITH A HELPER WHEREY −X − Z

In this section we investigate two properties of the rate-region of the Wyner-Ziv setting ( Fig. 17) with a Markov

form Y − X − Z. First, we investigate the tradeoff between the rate sent bythe helper and the rate sent by the

source and roughly speaking we conclude that a bit from the source is more “valuable” than a bit from the helper.

Second, we examine the case where the helper has the freedom to send different messages, at different rates, to

the encoder and the decoder. We show that “more help” to the encoder than to the decoder does not yield any

performance gain and that in such cases the freedom to send different messages to the encoder and the decoder

yields no gain over the case of a common message. Further, in this setting of different messages, the rate to the

encoder can be strictly less than that to the decoder with no performance loss.

A. A bit from the source-encoder vs. a bit from the helper

Assume that we have a sequence of(n, 2nR, 2nR1) codes that achieves a distortionD, such that the triple

(R,R1, D) is on the border of the regionRY−X−Z(D) (recall the definition ofRY −X−Z(D) in (15)-(17)). Now,

suppose that the helper is allowed to increase the rate by an amount∆′ > 0 to R1 +∆′; to what rateR−∆ can

the source-encoder reduce its rate and achieve the same distortion D?

Despite the fact that the additional rate∆′ is transmitted both to the decoder and encoder, we show that always

∆ ≤ ∆′. Let us denote byR(R1) the boundary of the regionRY−X−Z(D) for a fixedD. We formally show that

∆ ≤ ∆′ by proving that the slope of the curveR(R1) is always less than 1. The proof uses similar technique as

in [19].
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  a

PSfrag replacements

X Encoder

Helper

R Decoder X̂

Y

Z

R1

Fig. 17. Wyner-Ziv problem with a helper where the Markov chain Y −X − Z holds.

Lemma 14:For anyX − Y − Z, D, andR1, the subgradients of the curveR(R1) are less than 1.

Proof: SinceRY−X−Z(D) is a convex set,R(R1) is a convex function. Furthermore,R(R1) is non increasing

in R1. Now, let us defineJ∗(λ) as

J∗(λ) = min
p(x,y,z,u,w)∈P

I(X ;W |U,Z) + λI(Y ;U |Z), (74)

whereP is the set of distributions satisfyingp(x, y, z, u, w, x̂) = p(x, y)p(z|y)p(u|y)p(w|u, x)p(x̂|u,w, z), Ed(X, X̂) ≤

D. The line J∗(λ) = R + λR is a support line ofR(R1), and therefore,λ is a subgradient. The valueJ∗(λ)

is the intersection between the support line with slope−λ and the axisR, as shown in Fig. 18. Because of the

convexity and the monotonicity ofR(R1), J∗(λ) is upper-bounded byR(0), i.e.,

J∗(λ) ≤ min
p(x̂,x,y,z,u,w)∈P

R(0) = min
p(x̂,x,y,z,w)∈PWZ

I(X ;W |Z), (75)

wherePWZ is the set of distributions that satisfiesp(x̂, x, z, w) = p(x)p(z|x)p(w|x)p(x̂|w, z), Ed(X, X̂) ≤ D.

In addition, we observe that

PSfrag replacements

J∗(λ)

R

R1

support line with slope−λ

minp(x̂|x) I(X ; X̂) →

minp(x̂|x,y) I(X ; X̂|Y ) →

Fig. 18. A support line ofR(R1) with a slope−λ. J ∗ (λ) is the intersection of the support line with theR axis.

J∗(1) = min
p(x,y,z,u,w,x̂)∈P

I(X ;W |U,Z) + I(Y ;U |Z)
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PSfrag replacements
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Helper
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Te, rateRe

Fig. 19. The rate distortion problem with decoder side information, and independent helper rates. We assume the Markov relationY −X−Z

(a)
= min

p(x,y,z,u,w,x̂)∈P
I(X,Y ;W,U |Z)

≥ min
p(x,y,z,u,w,x̂)∈P

I(X ;W |Z),

= min
p(x̂,x,y,z,w)∈PWZ

I(X ;W |Z), (76)

where step (a) is due to the Markov chainsU − Y − (Z,X) andW − (U,X)− (Y, Z). Combining (75) and (76),

we conclude that for any subgradient−λ, J∗(λ) ≤ J∗(1). SinceJ∗(λ) is increasing inλ, we conclude thatλ ≤ 1.

An alternative and equivalent proof would be to claim that, sinceR(R1) is a convex and non increasing function,

∆
∆′

≤
∣

∣

∣

dR
dR1

∣

∣

∣

R1=0
, and then to claim that the largest slope atR1 = 0 is whenY = X , which is 1. For the Gaussian

case, the derivative may be calculated explicitly from (69), in particular forR1 = 0, and we obtain

∆ ≤
σ2
A

σ2
A + σ2

B

∆′. (77)

B. The case of independent rates

In this subsection we treat the rate distortion scenario where side information from the helper is encoded using

two different messages, possibly at different rates, one tothe encoder and one to the decoder, as shown in Fig. 19.

The complete characterization of achievable rates for thisscenario is still an open problem. However, the solution

that is given in previous sections, where there is one message known both to the encoder and decoder, provides us

insight that allows us to solve several cases of the problem shown here. We start with the definition of the general

case.

Definition 5: An (n,M,Me,Md, D) code for sourceX with side informationY and different helper messages

to the encoder and decoder, consists of three encoders

fe : Yn → {1, 2, ...,Me}

fd : Yn → {1, 2, ...,Md}

f : Xn × {1, 2, ...,Me} → {1, 2, ...,M}
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(78)

and a decoder

g : {1, 2, ...,M} × {1, 2, ...,Md} → X̂n

(79)

such that

Ed(Xn, X̂n) ≤ D. (80)

To avoid cumbersome statements, we will not repeat in the sequel the words “... different helper messages to the

encoder and decoder,” as this is the topic of this section, and should be clear from the context. The rate pair

(R,Re, Rd) of the (n,M,Me,Md, D) code is

R =
1

n
logM

Re =
1

n
logMe

Rd =
1

n
logMd (81)

Definition 6: Given a distortionD, a rate triple(R,Re, Rd) is said to beachievableif for any δ > 0, and

sufficiently largen, there exists an(n, 2n(R+δ), 2n(Re+δ), 2n(Rd+δ), D + δ) code for the sourceX with side

informationY .

Definition 7: The (operational) achievable regionRO
g (D) of rate distortion with a helper known at the encoder

and decoder is the closure of the set of all achievable rate triples at distortionD.

Denote byRO
g (Re, Rd, D) the sectionof RO

g (D) at helper rates(Re, Rd). That is,

RO
g (Re, Rd, D) = {R : (R,Re, Rd) are achievable with distortionD} (82)

and similarly, denote byR(R1, D) the section of the regionRY −X−Z(D), defined in (15)-(18) at helper rateR1.

Recall that, according to Theorem 4,R(R1, D) consists of all achievable source coding rates when the helper sends

common messages to the source encoder and destination at rateR1. The main result of this section is the following.

Theorem 15:For anyRe ≥ Rd,

RO
g (Re, Rd, D) = R(Rd, D) (83)

Theorem 15 has interesting implications on the coding strategy taken by the helper. It says that no gain in

performance can be achieved if the source encoder gets “morehelp” than the decoder at the destination (i.e.,

if Re > Rd), and thus we may restrictRe to be no higher thanRd. Moreover, in those cases whereRe = Rd,

optimal performance is achieved when the helper sends to theencoder and decoder exactly the same message. The

proof of this statement uses operational arguments.
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Proof of Theorem 15:Clearly, the claim is proved once we show the statement forRe = H(Y ). In this situation,

we can equally well assume that the encoder has full access toY . Thus, fix a general scheme like in Definition 5

with Re = H(Y ). The encoder is a function of the formf(Xn, Y n). DefineT2 = fd(Y
n). The Markov chain

Z −X − Y implies thatZn − (Xn, T2)− Y n also forms a Markov chain. This implies, in turn that there exists a

functionφ and a random variableW , uniformly distributed in[0, 1] and independent of(Xn, T2, Z
n), such that

Y n = φ(Xn, T2,W ). (84)

Thus the source encoder operation can be written as

f(Xn, Y n) = f(Xn, φ(Xn, T2,W ))

△
= f̃(Xn, T2,W ) (85)

implying, in turn, that the distortion of this scheme can be expressed as

Ed(Xn, X̂n) = E

[

d(Xn, X̂n(f̃(Xn, T2,W ), T2, Z
n))

]

(a)
=

∫ 1

0

E

[

d(Xn, X̂n(f̃(Xn, T2, w), T2, Z
n))

]

dw

(b)
=

∫ 1

0

E

[

d(Xn, X̂n(fw(Xn, T2), T2, Z
n))

]

dw (86)

where (a) holds sinceW is independent of(Xn, T2, Z
n), and (b) by defining

fw(Xn, T2) = f̃(Xn, T2, w). (87)

Note that for a givenw, the functionfw is of the form of encoding functions where the helper sends one message

to the encoder and decoder. Therefore we conclude that anything achievable with a scheme from Definition 5, is

achievable by time-sharing where the helper sends one message to the encoder and decoder.

The statement of Theorem 15 can be extended to ratesRe slightly lower thanRd. This extension is based on

the simple observation that the source encoder knowsX , which can serve as side information in decoding the

message sent by the helper. Therefore, any messageT2 sent to the source decoder can undergo a stage of binning

with respect toX . As an extreme example, consider the case whereRe ≥ H(Y |X). The source encoder can fully

recoverY , hence there is no advantage in transmitting to the encoder at rates higher thanH(Y |X); the decoder,

on the other hand, can benefit from rates in the regionH(Y |X) < Rd < H(Y |Z). This rate interval is not empty

due to the Markov chainY −X − Z. These observations are summarized in the next theorem.

Theorem 16:

1) Let (U, V ) achieve a point(R,R′) in RY −X−Z(D), i.e.,

R = I(X ;U |V, Z)

R′ = I(Y ;V |Z) = I(V ;Y )− I(V ;Z) (88)

D ≥ Ed(X, X̂(U, V, Z)), (89)
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V − Y −X − Z. (90)

Then (R,Re, R
′) ∈ RO

g (D) for everyRe satisfying

Re ≥ I(V ;Y |Z)− I(V ;X |Z)

= I(V ;Y )− I(V ;X). (91)

2) Let (R,R′) be an outer point ofRY −X−Z(D). That is,

(R,R′) 6∈ RY−X−Z(D). (92)

Then (R,Re, R
′) is an outer point ofRO

g (D) for anyRe, i.e.,

(R,Re, R
′) 6∈ RO

g (D) ∀ Re. (93)

The proof of Part 1 is based on binning, as described above. Inparticular, observe thatRe given in (91) is lower

thanR′ of (88) due to the Markov chainV − Y −X −Z. Part 2 is a partial converse, and is a direct consequence

of Theorem 15. The details, being straightforward, are omitted.

APPENDIX A

PROOF OF THE THE TECHNIQUE FOR VERIFYINGMARKOV RELATIONS

Proof First let us prove that three random variablesX,Y, Z, with a joint distribution of the form

p(x, y, z) = f(x, y)f(y, z), (94)

satisfy the Markov chainY −X − Z. Consider,

p(z|y, x) =
f(x, y)f(y, z)

f(x, y) (
∑

z f(y, z))
=

f(y, z)
∑

z f(y, z)
, (95)

and since the expression does not include the argumentx we conclude thatp(z|y, x) = p(z|y).

For the more general case, we first extend the setsXG1
XG3

. We start by definingG1 = G1 andG3 = G3, and

then we add toXG1
and toXG3

all their neighbors that are not inXG2
(a neighbor to a group is a node that is

connected by one edge to the an element in the group). We repeat this procedure till there are no more nodes to

add toXG1
or XG3

. Note that since there are no paths fromXG1
to XG3

that do not pass throughXG2
, then a node

can not be added to both setsXG1
andXG3

. The set of nodes that are not in(XG1
, XG2

, XG3
) is denoted asXG0

.

The setsXG0
andXG1

andXG3
are connected only toXG2

and not to each other, hence the joint distribution

of (XG0
, XG1

, XG2
, XG3

) is of the following form

p(XG0
, XG1

, XG2
, XG1

) = f(XG0
, XG2

)f(XG1
, XG2

)f(XG3
, XG2

). (96)

By marginalizing overXG0
and using the claim introduced in the first sentence of the proof we obtain the Markov

chainXG1
−XG2

−XG3
, whcih impliesXG1

−XG2
−XG3

.
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APPENDIX B

PROOF OFLEMMA 2

Proof: To prove Part 1, letQ be a time sharing random variable, independent of the sourcetriple (X,Y, Z).

Note that

I(Y ;U |Z,Q)
(a)
= I(Y ;U,Q|Z) = I(Y ; Ũ |Z),

I(Z;V |U,X,Q) = I(Z;V |Ũ ,X),

I(X ;W |U, V, Z,Q) = I(X ;W |Ũ , V, Z),

whereŨ = (U,Q), and in step (a) we used the fact thatY is independent ofQ. This proves the convexity.

To prove Part 2, we invoke the support lemma [20, pp. 310] three times, each time for one of the auxiliary

random variablesU, V,W . The external random variableU must have|Y|−1 letters to preservep(y) plus five more

to preserve the expressionsI(Y ;U |Z), I(Z;V |U,X), I(X ;W |U, V, Z) and the distortionsEdx(X, X̂(U, V, Z))

Edz(Z, Ẑ(U,W,X)). Note that the jointp(x, y, z) is preserved because of the Markov formU − Y −X −Z, and

the structure of the joint distribution given in (4) does notchange. We fixU , which now has a bounded cardinality,

and we apply the support lemma for boundingV . The external random variableV must have|U||Z| − 1 letters

to preservep(u, z) plus four more to preserve the expressionsI(Z;V |U,X), I(X ;W |U, V, Z) and the distortions

Edx(X, X̂(U, V, Z)), Edz(Z, Ẑ(U,W,X)). Note that because of the Markov structureV −(U,Z)−(X,Y ) the joint

distributionp(u, z, x, y) does not change. Finally, we fixU, V which now have a bounded cardinality and we apply

the support lemma for boundingW . The external random variableW must have|U||V||X | − 1 letters to preserve

p(u, v, x) plus two more to preserve the expressionsI(X ;W |U, V, Z) and the distortionsEdz(Z, Ẑ(U,W,X)).

Note that because of the Markov structureW − (U, V,X)− (Z, Y ) the joint distributionp(u, v, x, y, z) does not

change.

APPENDIX C

PROOF OFLEMMA 13

SinceW,X,Z are jointly Gaussian, we haveE[X |W,Z] = αW + βZ, for some scalarsα, β. Furthermore, we

have

X = αW + βZ +N, (97)

whereN is a Gaussian random variable independent of(W,Z) with zero mean and varianceσ2
X|W,Z

. SinceW is

known to the encoder and decoder we can subtractαW from X , and then using Wyner-Ziv coding for the Gaussian

case [18] we obtain

R(D) =
1

2
log

σ2
X|W,Z

D
. (98)

Obviously, one can not achieve a rate smaller than this even if Z is known both to the encoder and decoder, and

therefore this is the achievable region.
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