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Two-way source coding with a helper

Haim Permuter, Yossef Steinberg and Tsachy Weissman

Abstract

Consider the two-way rate-distortion problem in which apleelsends a common limited-rate message to both
users based on side information at its disposal. We chaizetide region of achievable rates and distortions where a
Markov form (Helper)-(User 1)-(User 2) holds. The main gigi of the result is that in order to achieve the optimal
rate, the helper may use a binning scheme, as in Wyner-Zeravthe side information at the decoder is the “further”
user, namely, User 2. We derive these regions explicitlyttierGaussian sources with square error distortion, analyze
a trade-off between the rate from the helper and the rate tl@msource, and examine a special case where the
helper has the freedom to send different messages, atefiffeates, to the encoder and the decoder. The converse
proofs use a new technique for verifying Markov relationa undirected graphs.

Index Terms
Rate-distortion, two-way rate distortion, undirectedpdrs, verification of Markov relations, Wyner-Ziv source

coding.

|I. INTRODUCTION

In this paper, we consider the problem of two-way source éimgpwith a fidelity criterion in a situation where

both users receive a common message from a helper. The prablpresented in Fid.]1. Note that the case in

X

Fig. 1. The two-way rate distortion problem with a helpersEHelper Y sends a common message to User X and to User ZUtemZ sends
a message to User X, and finally User X sends a message to UskeZgoal is that User X will reconstruct the sequeute within a fidelity
criterionE [% o d=(Z;, Z})] < D, and User Z will reconstruct the souré&€* within a fidelity criterion%E [ T de (XZ-,XZ-)] < Dg.
We assume that the side informatidh and the two sourceX, Z are i.i.d. and form the Markov chain — X — Z.

which the helper is absent was introduced and solved by Kagpi
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The encoding and decoding is done in blocks of lengtiThe communication protocol is that Helper Y first
sends a common message at rateto User X and to User Z, and then User Z sends a message dtgdteUser
X, and finally, User X sends a message to User Z at fateNote that user Z sends his message after it received
only one message, while Sender X sends its message afteeived two messages. We assume that the sources
and the helper sequences are i.i.d. and form the Markov chainX — Z. User X receives two messages (one
from the helper and one from User Z) and reconstructs thecediit. We assume that the fidelity (or distortion)
is of the formE %Z?:l d.(Z;, Zi) and that this term should be less than a thresliald User Z also receives
two messages (one from the helper and one from User X) anastoots the sourc& ™. The reconstructiork ™
must lie within a fidelity criterion of the form};E [Z?Zl dy (X5, Xi)} < D,.

Our main result in this paper is that the achievable regianttics problem is given byR(D,, D.), which is
defined as the set of all rate triplé®;, R2, R3) that satisfy

Ry = 1(Y;U|Z), €y
Ry > I(Z;V|U,X), 2)
Ry > I(X;W|U,V,Z2), (3)
for some joint distribution of the form
p(x,y, z,u,v,w) = p(x, y)p(z|z)p(uly)p(vlu, 2)p(wlu, v, z), (4)

whereU, V and W are auxiliary random variables with bounded cardinalitie Tfeconstruction variablg is a
deterministic function of the tripléU, V, X), and the reconstructioX is a deterministic function of the triple
(U, W, Z) such that

Ed, (X, X (U,V, Z))

IN

D,,
Ed.(Z,Z({UW,X)) < D.. (5)

The main insight gained from this region is that the helpey mse a code based on binning that is designed for a
decoder with side information, as in Wyner and Ziv [2]. Uséand UserZ do not have the same side information,
but it is sufficient to design the helper's code assuming thatside information at the decoder is the one that is
“further” in the Markov chain, namelyZ. Since a distribution of the forni(4) implies thatU; Z) < 1(U; X), a
Wyner-Ziv code at ratd?; > I(Y;U|Z) would be decoded successfully both by User Z and by User XeGine
helper's message has been decoded by both users, a two-wae smding is performed where both users have
additional side informatiod/”.

Several papers on related problems have appeared in thénpthst literature. Wyner [3] studied a problem of
network source coding with compressed side informatiom iv@rovided only to the decoders. A special case of
his model is the system in Fifj] 1 but without the memoryleds @iformationZ and where the stream carrying
the helper's message arrives only at the decoder (User ZjllAHaracterization of the achievable region can be

concluded from the results of [3] for the special case whieeesburceX has to be reconstructed losslessly. This



problem was solved independently by Ahlswede and Korndgdjnbut the extension of these results to the case
of lossy reconstruction o remains open. Kaspi [5] and Kaspi and Berger [6] derived driezable region for

a problem that contains the helper problem with degenefass a special case. However, the converse part does
not match. In [7], Vasudevan and Perron described a gereeldistortion problem with encoder breakdown and
there they solved the case where in [Eif. 1 one of the sourcesdsta

Berger and Yeung [9] solved the multi-terminal source cgdmoblem where one of the two sources needs
to be reconstructed perfectly and the other source neede teedonstructed with a fidelity criterion. Oohama
solved the multi-terminal source coding case for the twd Hitd L + 1 [11] Gaussian sources, in which only one
source needs to be reconstructed with a mean square eabisthhe other, sources are helpers. More recently,
Wagner, Tavildar, and Viswanath characterized the regiberev both sources [12] at + 1 sources [13] need to
be reconstructed at the decoder with a mean square erreri@nit

In [1], Kaspi has introduced a multistage communicatiormieein two users, where each user may transmit up
to K messages to the other user that depends on the source amglupresceived messages. In this paper we
also consider the multi-stage source coding with a commdpeheThe case where a helper is absent and the
communication between the users is via memoryless chamaslsecently solved by Maor and Merhav [14] where
they showed that a source channel separation theorem holds.

The remainder of the paper is organized as follows. In Sedflove present a new technique for verifying
Markov relations between random variables based on uriditegraphs. The technique is used throughout the
converse proofs. The problem definition and the achievaddgon for two way rate distortion problem with a
common helper are presented in Secfioh Ill. Then we considerspecial cases, first in Sectibn]IV we consider
the case ofR; = 0 and D, = oo, and in Sectiol )V we considegk; = 0 and D, = oo. The proofs of these two
special cases provide the insight and the tricks that ard us¢he proof of the general two-way rate distortion
problem with a helper. The proof of the achievable regiontfa two-way rate distortion problem with a helper
is given in Sectiol M| and it is extended to a multi-stage twaywate distortion with a helper in Sectibn VII. In
SectionVIIl we consider the Gauissan instance of the prokded derive the region explicitly. In SectibnlIX we
return to the special case wheRs = 0 and D, = oo and analyze the trade-off between the bits from the helper
and bits from source and gain insight for the case where tlmeheends different messages to each user, which

is an open problem.

Il. PRELIMINARY: A TECHNIQUE FOR CHECKINGMARKOV RELATIONS

Here we present a new technique, based on undirected gthphpyovides a sufficient condition for establishing
a Markov chain from a joint distribution. We use this techréghroughout the paper to verify Markov relations.

A different technique using directed graphs was introdumgdPearl [15, Ch 1.2], [16].

1 The case where one of the sources is constant was also a@usiddependently in [8].



Assume we have a set of random variablés, Xo, ..., X)), where N is the size of the set. Without loss of

generality, we assume that the joint distribution has threnfo

p(IN) = f(Isl)f(I52) T f(ISK)’ (6)

where Xs, = {X,}jes;, whereS; is a subset 0f1,2,..., N}. The following graphical technique provides a
sufficient condition for the Markov relatioXg, — X¢g, — X¢,, WhereXg,, i = 1,2, 3 denote three disjoint subsets
of XV,
The technique comprises two steps:
1) draw an undirected graph where all the random variakil€sare nodes in the graph and for ak= 1,2, .. K
draw edges between all the nodEs;,
2) if all paths in the graph from a node iKig, to a node inXg, pass through a node iKg,, then the Markov
chain Xg, — Xg, — Xg, holds.

X5 X5
oY
[ J

Z Zo

Fig. 2. The undirected graph that corresponds to the josstridition given in[(¥). The Markov forn¥; — X2 — Z5 holds since all paths
from X1 to Zy pass throughX2. The node with the open circle, i.e, is the middle term in the Markov chain and all the other nodees

with solid circles, i.e..

Example 1:Consider the joint distribution

p(a®, 4%, 2%) = p(x1,y2)p(y1, 22)p(21 |21, 22)p(22|Y1). @)

Fig.[d illustrates the above technique for verifying the kiarrelationX; — X5 — Z,. We conclude that since all
the paths fromX; to Z; pass throughX,, the Markov chainX; — X, — Z5 holds.

The proof of the technique is based on the observation thlateée random variableX, Y, Z have a joint distribution
of the formp(x,y, z) = f(x,y) f(y, z), then the Markov chaitX — Y — Z holds. The proof appears in Appendix
Al

IIl. PROBLEM DEFINITIONS AND MAIN RESULTS

Here we formally define the two-way rate-distortion probleith a helper and present a single-letter charac-
terization of the achievable region. We use the regular tiefirs of rate distortion and we follow the notation of

[17]. The source sequencéX; € X, i =1,2,---}, {Z; € Z, i = 1,2,---} and the side information sequence



{Y; € Y, i = 1,2,---} are discrete random variables drawn from finite alphabétsZ and ), respectively.
The random variable$X;,Y;, Z;) are i.i.d. ~ p(z,y,z). Let ¥ and Z be the reconstruction alphabets, and
dy: X x X = [0,00),d.: Zx Z — [0,00) be single letter distortion measures. Distortion betwesguences

is defined in the usual way

1 n
d(z",2") = EZd(xi,:ﬁi)
i=1

L&
(CRER D DL ®)
Let M;, denote a set of positive integef$, 2, .., M} for i = 1,2, 3.
Definition 1: An (n, My, Ms, M3, D, D) code for two sourc& andZ with helperY consists of three encoders
fi o Y= M
fa @ Z" X Mp— M,
fa @ X" X My x My — Ms )

and two decoders

g2 X" x M, XM2—>ZAR

gs : Z"X Mjx Mg — X" (10)
such that
E lidm(xi,x )] < D,,
i=1
[Xn: d.(Z < D, (11)
=1

The rate triple( Ry, Ro, R3) of the (n, My, My, M3, D,, D.) code is defined by
1
Ri = ZlogM;; i=1,2,3. (12)
n

Definition 2: Given a distortion paifD,, D.), a rate triple(R1, Rz, R3) is said to beachievableif, for any
e > 0, and sufficiently larger, there exists arfn, 2", 2nf2 onfls D+ ¢ D, 4 €) code for the sourceX’, Z
with side informationY’.

Definition 3: The (operational) achievable regidR® (D, D) of rate distortion with a helper known at the
encoder and decoder is the closure of the set of all achievald pairs.
The next theorem is the main result of this work.

Theorem 1:In the two way-rate distortion problem with a helper, as deggl in Fig[1, wher&” — X — Z,
RO(Dszz) :R(Dszz)v (13)

where the regioR(D,, D.) is specified in[(L){(5).
Furthermore, the regioR(D,., D.) satisfies the following properties, which are proved in Atz [B|.



Lemma 2: 1) The regionR(D,, D.) is convex
2) To exhausR(D,, D.), it is enough to restrict the alphabet &f V, and W to satisfy

Ul < [V +4,

V< |Zlul+3,

Wl < uvl|x]+ 1. (14)

Before proving the main result (Theordr 1), we would like tmsider two special cases, first whekg = 0
and D, = oo and second wher&; = 0 and D, = co. The main techniques and insight are gained through those
special cases. Both cases are depicted in[Fig. 3 where inrthecdise we assume the Markov foin— X — Z
and in the second case we assume a Markov fBrm Z — X.

The proofs of these two cases are quite different. In theeaebility of the first case, we use a Wyner-Ziv code
that is designed only for thdecodey and in the achievability of the second case we use a Wynecdie that
is designed only for thencoder In the converse for the first case, the main idea is to obgbatethe achievable
region does not increase by letting the encoder kigwand in the converse of the second case the main idea is

to use the chain rule in two opposite directions, conditigndbnce on the past and once on the future.

Z
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A A
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Fig. 3. Wyner-Ziv problem with a helper . We consider two cad@st the source X, Helper Y and the side information Z fotra Markov
chainY — X — Z and in the second case they form the Markov chair- Z — X.

IV. WYNER-ZIV WITH A HELPER WHERE Y-X-Z

In this Section, we consider the rate distortion problenhwithelper and additional side informatigh known
only to the decoder, as shown in Fig. 3. We also assume thatlnee X, the helpert’, and the side information
7, form the Markov chaint” — X — Z. This setting corresponds to the case whBse= 0 and D, = co. Let us
denote byR{} (D) the (operational) achievable regi® (D, = D, D, = c0).

We now present our main result of this section. It_ x_z(D) be the set of all rate pairfsR, R;) that satisfy

Ry = I(U;Y|Z), (15)



R > I(X;W|U, 2), (16)
for some joint distribution of the form

p(x,y, z,u,v) = pl,y)p(z|e)p(uly)p(w|z, u), (17)

Ed,(X,X(UW,Z)) < D, (18)

whereW andV are auxiliary random variables, and the reconstructiofalsée X is a deterministic function of
the triple (U, W, Z). The next lemma states propertiesk _y _z (D). It is the analog of Lemmia 2 and the proof
is omitted.

Lemma 3: 1) The regionRx_y_z(D) is convex

2) To exhausRx_y_z(D), it is enough to restrict the alphabets¥BfandU to satisfy
< [y[+2

Wl < XY +2) + 1. (19)

Theorem 4:The achievable rate region for the setting illustrated ig. B, whereX,Y, Z are i.i.d. random

variables forming the Markov chaii — X — 7 is
RY_x-z(D) = Ry_x—z(D). (20)

Let us define an additional regioRx_y_z(D) the same aRx_y_z(D) but the termp(w|x,u) in (A7) is
replaced byp(w|z, u,y), i.e.,

p(x,y, z,u,w) = p(x, y)p(z|z)p(uly)p(w|z, u,y). (21)

In the proof of Theoreril4, we show th&y_x_ (D) is achievable and th&y _x_ (D) is an outer bound,
and we conclude the proof by applying the following lemmajchtstates that the two regions are equal.
Lemma 5:Rx_y_z(D) =Rx_v_z(D).
Proof: Trivially we haveRx_y_z(D) 2 R(D|Z). Now we prove thaRx_y_z(D) C Rx_v_z(D). Let
(R,Ry) € Rx_y_z(D), and

p(@,y, 2, u,w) = p(x,y)p(z|z)p(uly)p(w|z, u, y) (22)
be a distribution that satisfies (15).[16) afd](18). Now wewslthat there exists a distribution of the forfn(17)

such that[(T6).(15) and (IL8) hold.
Let

p(z,y, 2, u,w) = p(z,y, 2)p(uly)p(w|z, v), (23)
where p(w|x,u) is induced byp(zx,y, z,u,w). We now show that the term$(U;Y|Z), I(X;W|Z,U) and
IEd(X,X(U, W, Z)) are the same whether we evaluate them by the joint distobutix, y, z, u, w) of (23), or

by B(x,y, z,u,w); hence(R, R1) € Rx_y—z(D). In order to show that the terms above are the same it is enough

to show that the marginal distributionsy, z,u) and p(x, z, u,w) induced byp(z,y, z,u,w) are equal to the



marginal distribution®(y, z, ) andp(x, z, u, w) induced byp(z, y, z, u, w). Clearly p(y, u, z) = p(y, u, z). In the
rest of the proof we show(z, z, u, w) = p(z, z, u, w).
A distribution of the formp(z, y, z, u, w) as given in[(2R) implies that the Markov chdi¥i — (X,U) — Z holds

as shown in Fid.J4. Therefofw|x, u, 2) = p(w|z,u). Now considep(x, z, u, w) = p(z, z, u)p(w|z, ), and since

%

U \

Fig. 4. A graphical proof of the Markov chai’ — (X, U) — Z. The undirected graph corresponds to the joint distrilbutitven in [22),
i.e., p(z,y, z,u,v,w) = p(z,y)p(z|x)p(u|y)p(w|u, z,y). The Markov chain holds since there is no path fréfrto W that does not pass
through (X, U).

p(z, z,u) = p(z, z,u) andp(w|z, u) = p(w|z,u) we conclude thap(z, z, u, w) = p(z, z, u, w). [ |

Proof of Theorenl4:

Achievability: The proof follows classical arguments, and therefore tlohrteal details will be omitted. We
describe only the coding structure and the associated Madoditions. Note that the condition (17) in the definition
of Rx_y_z(D), implies the Markov chai/ —Y — X — Z. The helper (encoder df) employs Wyner-Ziv coding
with decoder side informatio# and external random variablg as seen froni(15). The Markov conditions required
for such codingl/ — Y — Z, are satisfied, hence the source decoder, at the destinaéinmecover the codewords
constructed fronU. Moreover, since[(17) implie§ —Y — X — Z, the encoder ofX can also reconstrudf (this
is the point where the Markov assumptidh— X — 7 is needed). Therefore in the coding/decoding scheme of
X, U serves as side information available at both sides. Theceoidf) encoder now employs Wyner-Ziv coding
for X, with decoder side informatio, coding random variabl&/’, andU available at both sides. The Markov
conditions needed for this scheme &¥e— (X, U) — Z, which again are satisfied by {17). The rate needed for this
coding isI(X;W|U, Z), reflected in the bound oR in (L8). Once the two codes (helper and source code) are
decoded, the destination can use all the available randoiables,U, W, and the side informatio#, to construct
X.

Converse: Assume that we have am, M; = 2" M, = 1, M3 = 2" D, = D,D. = oo) code as in
Definition [4. We will show the existence of a tripld/, W, X) that satisfy [I5)H{18). Denotd;, = fi(Y") e
{1,..,2n} andT = f3(X™,Th) € {1,...,2"%}. Then,

an Z H(Tl)
> H(Th|Z")
> I(Y™,Ty|Z")

n

S H(Yi|Z) - HYi|Y*™!, Ty, Z")
i=1



@S HZ) - HOGX LY LT, 27
=1

> Y H(Yi|Z) - HY,|X™', Ty, 2", (24)
=1
where equality (a) is due to the Markov fori — (Y1, f1(Y™"), Z™) — X*~1. Furthermore,

nRk

Y

H(T)

Y

H(T|Ty, 2"

Y

I(X™T| Ty, Z™)
= Y H(Xi|Ty, 2", X" = H(X,|T, Ty, 2", X"~ ) (25)
=1
Now, let W; £ T andU; £ (X*~!, 2"\, T}), where Z"\* denotes the vectaZ™ without thei?" element, i.e.,

(Z'=1,Z2.). Then [2#) and[(25) become

177.
R, > E;I(K‘;Uﬂzi)
177.
>~ I U, Z:) (26)

=1

Now we observe that the Markov chalfy — Y; — (X;, Z;) holds since we havex—t, Z"\{ Ty(Y")) —Y; —
(X;, Z;). Also the Markov chaidV; — (U;, X;,Y;) — Z; holds sincel(Ty, X™) — (X%, Y;, T1(Y™), Z"\') — Z;. The
reconstruction at time, i.e., X;, is a deterministic function ofZ™,T,Ty), and in particular it is a deterministic
function of (U;, W;, Z;). Finally, let@ be a random variable independent®f, Y™ Z", and uniformly distributed
over the sef{1,2,3,..,n}. Define the random variabld$ 2 (Q,Ug), W 2 (Q,Wy), and X £ (X) (Xg is a
short notation for time sharing over the estimators). ThekdarelationsU — Y — (X, Z) andW — (X, U,Y) — Z,
the inequalityEd(X, X) = Y1, LEd(X, X;) < D, the fact thatX is a deterministic function ofU, W, Z) , and
the inequalities?; > I(Y;U|Z) andR > I(X,Y; W|U, Z) (implied by [26)), imply tha{ R, R;) € Rx_y_z(D),
completing the proof by Lemnid 5. ]

V. WYNER-ZIV WITH A HELPER WHEREY — 7 — X

Consider the the rate-distortion problem with side infotiota and helper as illustrated in Figl 3, where the
random variablesX, Y, Z form the Markov chaint” — Z — X. This setting corresponds to the case whige= 0
and exchanging betweek and Z. Let us denote byR{} , (D) the (operational) achievable region.

Let Ry_z_x (D) be the set of all rate pairsk, R;) that satisfy

R = I(U;Y[X), (27)

R

v

I(X; VU, Z), (28)
for some joint distribution of the form

p(x,y,2,u,0) = p(z,y)p(z|2)p(uly)p(v]z, u), (29)
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Ed(X,X(U,V,Z)) < D, (30)

whereU and V are auxiliary random variables, and the reconstructiofefe X is a deterministic function of
the triple (U, V, Z). The next lemma states properties®f _z_ x (D). It is the analog of Lemmi 2 and therefore
omitted.

Lemma 6: 1) The regionRy_z_x (D) is convex

2) To exhausRy_z_x (D), it is enough to restrict the alphabets¥fand U to satisfy

. < Y/ +2

V< 1X[(YI+2) +1. (31)

Theorem 7:The achievable rate region for the setting illustrated ig. B, whereX;,Y;, Z; are i.i.d. triplets

distributed according to the random variablEsY, Z forming the Markov chairt” — 7 — X is
RY_z-x(D) = Ry-z-x(D). (32)

Proof:

Achievability: The proof follows classical arguments, and therefore tlohrteal details will be omitted. We
describe only the coding structure and the associated Mathaditions. The helper (encoder &f) employs
Wyner-Ziv coding with decoder side informatiaki and external random variablEg, as seen from[{27). The
Markov conditions required for such coding,— Y — X, are satisfied, hence the source encoder, at the destination
can recover the codewords constructed frfmMoreover, since[(29) implie& — Y — Z — X, the decoder, at the
destination, can also reconstru¢t Therefore in the coding/decoding schemeXof U serves as side information
available at both sides. The sout&eencoder now employs Wyner-Ziv coding fat, with decoder side information
7, coding random variabl®, and U available at both sides. The Markov conditions needed figr sbhheme are
V — (X,U) — Z, which again are satisfied bly (29). The rate needed for thitngois I(X; V|U, Z), reflected in
the bound onk in (28). Once the two codes (helper and source code) are dd¢ctite destination can use all the
available random variable#], V, and the side informatio#, to constructX.

Converse: Assume that we have a code for a souftewith helperY and side informatiorZ at rate(R;, R).
We will show the existence of a triplél/, V, X) that satisfy [2I7)[{30). Denot&(Y") € {1,...,2"F1}, and
T(X™ T1) € {1,...,2"7%}. Then,

an 2 H(Tl)
> H(TX™)
> I(Y™,Th|X"™)

= Y HIX) - HEGY'™ T, X7)
=1

S
INgE

H(Y;|Xi) = HY;|[Y'™!, T, X1y, Xa),

i=1
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H(Y;|X;) — HY;|Y" Ty, X[, X, 2070,

S
INgE

i=1

—~

c

>

I

s
Il
-

H(}/’L|Xi)_H(}/i|T17X'ZL+17Xi7Zi71)7 (33)

where (a) and (b) follow from the Markov chakj — (V=1 T1(Y™), X) — (X1, Z=1) (see Fig[h for the

Xi-1 AR yi-1
[ @ 6

X Z; Y
o ° ® Ti(Y™)
G @

X 24 Y

Fig. 5. A graphical proof of the Markov chaili; — (Y1, 71 (Y™), X?) — (X*~1, Zi~1). The undirected graph corresponds to the joint
distribution p(z* =%, 2= )p(y* 7 |28 )p(wi, 2:)p(yi|2:)p(@ 1, 20 )P (YT, |28 )p(t [y™). The Markov chain holds since all paths from

Y; to X¢~1, Zi~1 pass throughY*—1, Ty (Y™), X1*). The nodes with the open circle, i.e,,constitute the middle term in the Markov chain,

i.e., (Y=L, Ti(Y™), X") and all the other nodes are with solid circles, ise.The nodesy*~!, Y;, Y/* , and Ty are connected due to the

termp(t1y™).

proof), and (c) follows from the fact that conditioning reds entropy. Consider,

nR > H(T)

> H(T|Ty, Z")

> I(X™T|Ty, Z"™)

= > H(Xi| X}, Ty, Z") — H(X| X[}, T1, 2", T)
1=1

@ ZH(Xil r TG 2N 2 - H(XG X T, 27, T)
i=1

(i) anH(XilX?H,Tl,Zi—l,Zi)—H(Xi|Xf+1,T1,zi—l,zi,T), (34)
i=1

where (a) is due to the Markov chak; — (X[ ,, 71 (Y™), Zh — Zp | (this can be seen from Figl 5 since all paths
from X; to Z |, goes through?;), and (b) is due to the fact that conditioning reduces entrdjow let us denote
U £ Z71 Ty (Y™), XP,, andV; £ T(X™,Ty). The Markov chaing/; —Y; — (X;, Z;) andV; — (X, U;) — (Z;, ;)
hold (see Figl 6 for the proof of the last Markov relation).

Next, we need to show that there exists a sequence of funﬁtjoﬁi, Vi, Z;) such that

iE[d(XiaXi(UiaViaZi))] <D. (35)
i=1

1
n
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xi-1 Zi-1 yi-1
. O

X; Z; Y;
o ° * Ty (Y™)
G ®

Xt Zia Vit

Fig. 6. A graphical proof of the Markov chaiX®~1 — (Zi=1,T1(Y™), X)) — (Z;,Y;), which impliesV; — (X;,U;) — (Z;,Y;). The
undirected graph corresponds to the joint distributigm’ 1, 2= 1)p(y* =2~ )p(as, zi)p(ys|20)p (P, 5 20 )Py |20 p(t1|y™). The
Markov chain holds since all paths frofi~1 to (Z;,Y;) pass through{(Z*—1, Ty (Y™), X).

By assumption we know that there exists a sequence of fum:tidA(l-(T,Tl,Z") such that
S Eld(X,, Xi(T, Ty, Z™))] < nD, and trivially this implies that there exists a sequence ofcfions
X;(X1, 7, Ty, Z™) such that

ZIE (X, Xo(XPy, T, Th, 20, 20 4))] < D. (36)

Note that the Markov chainX; — (X[,,,T1,Z°,T) — Z!"., holds (see Fig[]7 for the proof). Therefore, for an

arbitrary functionf of the form (X7, |, T1, Z%,T) we have

Z E[d(le Xi(XinJrlv T? Tl, Ziv Zszrl))] < min Z E[d(le Xi(XinJrlv Ta Tla Ziv f(XinJrlv Tlv Ziv T)))]a (37)

=1 =1
and since each summand on the RHS[Gl (37) includes only ttéonarvariables X, ,, T, T}, Z") we conclude

that there exists a sequence of functida$; (X, T, Ty, Z")} for which (35) holds.

Xifl Zi—l Yi—l

|

(X", T 1(Y™)

n n n
Xl-l—l Zi-‘rl }/;+1

Fig. 7. A graphical proof of the Markov chaiX; — (Xz+1’T17 Z4T) — Z}, ;. The undirected graph corresponds to the joint distriloutio
p(e' =1, 2 Dp(y 2 ) p(e, 2:)p(yil z0)p(al 1, 27 )Pyl 127 )t [y™)p(t|z™, t1). The Markov chain holds since all paths from
X; to Z™ | pass througr(XHl,Tl,Z ,T).

1+1
Finally, let @ be a random variable independent &, Y™ Z™, and uniformly distributed over the set

{1,2,3,..,n}. Define the random variabld$ £ (Q,Uy), W 2 (Q,Wy), and X 2 X, (X is a short notation

for time sharing over the estimators). Thénl(33)}(35) implihat [(217)E(30) hold. [ |
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VI. PROOF OFTHEOREM[I

In this section we prove Theorelm 1, which states that therétipmal) achievable regioR® (D, D.) of the
two-way source coding with helper problem as in Eig. 1 eq@&(®,., D. ). In the converse proof we use the ideas
used in proving the converses of Theordms 4 [@and 7. Namely, Weuse the chain rule based on the past and
future, and will show thaR®(D,, D.) C R(D., D.), whereR(D,,, D.) is defined ask(D,, D.) in (@)-(8) but

with one difference: the term(w|u, v, z) in (@) should be replaced by(w|u,v, z,y), i.e.,

p(x,y, z,u,v,w) = p(z, y)p(z|@)p(uly)p(v|u, 2)p(wlu, v, 7, y). (38)

The following lemma states that the two regioR¢D,., D.) andR(D,, D) are equal.
Lemma 8:R(D., D.) = R(D,, D.).
Proof: Trivially we have R(D,,D.) 2 R(D.,D.). Now we prove thatR(D,,D.) C R(D,,D.). Let
(R1, Ra, R3) € R(D,, D.), and

Pz, y, z,u,v,w) = p(a, y)p(z|x)p(uly)p(v]u, 2)p(wlu, v, 2, y), (39)

be a distribution that satisfiels] ()}-(3) ahdl (5). Next we sitioat there exists a distribution of the form bf (4) (which
is explicitly given in [39)) such thaf{1)4(3) and] (5) holdet.

p(@,y, 2, u,v,w) = p(z, y)p(z|2)p(uly)p(v|u, 2)p(wlu, v, ), (40)

wherep(w|u, v, z) is induced byp(z,y, z,u,v). We show that all the terms if](13(3) and (5) i.€(Y;U|Z),
1(Z;V|U,X), Ed.(Z, Z(U,V, X)), I(X;W|U,V, Z), andEd, (X, X (U, W, Z)) are the same whether we evaluate
them by the joint distributionp(z,y, 2, u,v) of @0), or by p(x,y, z,u,v,w) of (B9); hence(R;, Ry, R3) €
R(D.,D.). In order to show that the terms above are the same it is enmusfiow that the marginal distributions
p(z,y, z,u,v) andp(x, z, u, v, w) induced byp(z, y, z, u, v, w) are equal to the marginal distributiopée, y, z, u, v)
andp(z, z, u,v,w) induced byp(z,y, z,u, v, w). Clearly p(x,y, z,u,v) = p(x,y, z,u,v). In the rest of the proof

we showp(z, z, u, v, w) = p(z, 2, u, v, w).

14

Fig. 8. A graphical proof of the Markov chail’ — (X, U, V) — Z. The undirected graph corresponds to the joint distribugiven in [39),
i.e.,p(z,y, z,u,v,w) = p(z,y)p(zlz)p(uly)p(v|u, 2)B(w|u, v, z,y). The Markov chain holds since there is no path fr@hio W that does
not pass throught X, U, V).

A distribution of the fornp(z, y, z, v, v, w) as given in[(3P) implies that the Markov chdin— (X, U, V')—Z holds

(see Fig[B for the proof). Therefofgw|u, z, v, z) = p(w|u, z,v). Sincep(zx, z, u, v, w) = p(z, 2, v, w)p(w|z, u, v),

) ) )
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and sincep(z, z,v,u) = p(z,z,v,u) and p(w|z,u,v) = p(w|z,w,v) we conclude thap(z,z,u,v,w) =
p(z, z,u,v,w). [ |
proof of Theoren]1:

Achievability: The achievability scheme is based on the fact that for the dpexial cases considered above,
namely R, = 0 and R3 = 0, the coding scheme for the helper was based on a Wyner-Zansehwhere the side
information at the decoder is the random variable that istfier” in the Markov chair” — X — Z, namelyZ. The
helper (encoder oY) employs Wyner-Ziv coding with decoder side informatirand external random variablg,
as seen fronl{1), i.eR; > I(Y;U|Z). The Markov conditions required for such codiig— Y — Z, are satisfied,
hence the source decoder, at the destination, can recaveontewords constructed frobh. Moreover, since[{29)
impliesU —Y — Z — X, the encoder ofX can also reconstruéf. Therefore in the coding/decoding schemeXaf
U serves as side information available at both sides. Thecediencoder now employs Wyner-Ziv coding fdf,
with decoder side informatio’, coding random variabl®, andU available at both sides. The Markov conditions
needed for this scheme até— (X,U) — Z, which again are satisfied byl (4). The rate needed for thisngoid
I(X;V|U, Z), reflected in the bound oR, in ([@). Finally, the sourceX encoder now employs Wyner-Ziv coding
for X, with decoder side informatio#, coding random variabl&’, andU,  available at both sides. The Markov
conditions needed for this scheme &e— (X,U,V) — Z, which again are satisfied blyl(4). The rate needed for
this coding isI(X; W|U,V, Z), reflected in the bound oR; in (3). Once the codes are decoded, the destination
can use all the available random variablds, I(, X) at User X, and, (, W, Z) at User Z, to construct and X,
respectively.

Converse: Assume that we have &n, My, Ms, Ms, D,,, D.) code. We now show the existence of a triple
(U,V,W, X, Z) that satisfy [1){5). Denotd, = f,(Y™), Tp = fo(Z",Ty), andTs = f3(X", T, Ty). Then using
the same arguments as [n{33) ahd (34) (just exchanging batWeand Z), we obtain

nRy > > H(Y|Z) - HY|X"' T, 7}, (41)
1=1
nRy > Y H(Zi|ZP Ty, X7 X5) — H(Zi| 2, T, X7 X, T), (42)
=1

respectively. For upper-boundings, consider

nR3 2 H(T3)
> H(T3|Th, T2, Z")
2 I( n;T3|T17T2aZn)

H(X;| X7 2" Ty, To) — H(X | X7, 2™, Ty, To, T3)

I

s
Il
-

H(X;| XY 20T, To) — H(XG| XY 27, T, To, Ts)

S
b

N
Il
-
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N OH(XG|XT 2P Ty, Ty) — H(X| X 20, Ty, T, Ts), (43)
i=1

where equality (a) is due to the Markov chaly — (X*~1, Z", T1,T») — Z~! (see Fig[P). Now let us denote

Zi-1 X1 yi-1

Ty(Z", T1) 2 ot Y Ty (Y")
Ziy X Y

Fig. 9. A graphical proof of the Markov chail; — (X~1,Z",T1,T2) — Z*~1. The undirected graph corresponds to the joint distriloutio
p(x'=1, 2 Dp(y' ot (x4, zi)p(yi|mi)p(m?+1, z;fH)p(yﬁl |m?+1)p(t1 ly™)p(t2]|2™, t1). The Markov chain holds since all paths from
Zi=1 to X; pass through{ X*~1, Z1, Ty, T>).

U £ X711, 20, V; £ T, andW; £ T, and we obtain from{41)-(43)

1n
M e

1 n
EZI(Zz‘;VHUi,Xi),

Ry >
=1
1 n
R > - 1( X W;\U;, Vi, Z;), 44
3 2 n;< | ) (44)

Now, we verify that the joint distribution ofX;,Y;, Z;, U;, Vi, W;) is of the form [38), i.e.U; — Y; — (Z;, X;),
V;—(Ui, Zi)—(Y;, Xz) andWi—(Ui, Vi, X;, Y;)—Zi, hold. The Markov ChallﬁTl (Yn) X1 Zzn-i-l) Y; —(Zi, Xz)
trivially holds, and the Markov chains
Ziil - (Tl(Yn)inila Zzn) - (}/MXz)a (45)
Xpy = (M(Y"), (T, 27), X', 27,1, Ys) = Zi (46)
are proven in is proven in Fig__ L@, 111, respectively. Next, sleow that exist sequences of functions

{Z:(U:, Wi, Z:)}, and{ X, (U, Vi, Z;)} such that

n

1
—ZE (X3, Xi(Ui, Vi, Z0))] < D,

n

1 n

—Z]E (Xi, Zs(Ui, Wi, X3))] < D.. (47)
n

The only difficulty here is that the terms ifi/;, Vi, Z;) do not includeZ‘~! and the termgU;, W;, X;) do not
include X7, ;. However, this is solved by the same argument as for the \Wgivewith helper at the end of Section
IVl by showing the Markov forms\; — (U;, V;, Z;) — Z*~! and Z; — (U;, W;, X;) — X", for which the proofs are
given in Figure$ 12 and 13, respectively.
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Zi—l Xi—l Yi_l

[ O

o ° . Ti(Y™)
Z’Ln+1 Xin+1 izl-l

€, L

Fig. 10. A graphical proof of the Markov chaid®~1 — (T} (Y™), X*~1, Z") — (Yi, X;). The undirected graph corresponds to the joint

distribution p(z* 1, 2= 1 )p(y* = |z* = 1)p(ws, 2:)p(yilwi)p(aly 1, 20 )p(y 4 |27 1 )p(t1 [y™). The Markov chain holds since all paths from
Z=1 to (X;,Y;) pass through X*—1, Zn, Ty).

Zi—1 Xi-1 yi-1

To(2",T)) Zi Y, Ty (Y™)
ZTL =n

n
i+1 Xi+1 YVi+1

Fig. 11. A graphical proof of the Markov chaiX}} | — (Tl(Y"),Tg(Tl,Z"),Xi,Zl."H,YZ-) — Z;. The undirected graph corresponds

to the joint distributionp(xi’l,yiil)p(zi’1|yi’1)p(xi,yi)p(zi|yi)p(x?+1,ygﬁrl)p(zfﬂrl\yﬁl)p(tl\y")p(tz\z”,h). The Markov chain

holds since all paths fronz® to X7, ; pass through{T1(Y™), To(T1, Z™), X*, Z7, 1, Ys).

, X; ,
To(2",T)) Zi ot Y Ty (Y™)

. "
Ziv Xy Y

Fig. 12. A graphical proof of the Markov chaif®~! — (11 (Y™), T2 (T1, Z™), X*~1, Z) — X;. The undirected graph corresponds to the

joint distribution p(mi’l,zi’l)p(yi*1\xifl)p(xi,zi)p(yi|mi)p(x?+1,z{ﬁrl)p(ygﬁrl\x;ﬁrl)p(tl|y”)p(t2|z",t1). The Markov chain holds
since all paths fronZ®~1 to X; pass throughTy (Y™), T»(Ty, Z™), X' =1, Z1).

Finally, let @ be a random variable independent &, Y™ Z™, and uniformly distributed over the set
{1,2,3,..,n}. Define the random variabld$ £ (Q,Uq), V 2 (Q, Vo), W £ (Q, W), X 2 X, andZ 2 Z,.
Then [44){(4¥) imply that the equations that defiReD,, D.) i.e., (1)-[3), hold.

[ |
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Tg(X",Tl) =) \ Tl(Yn)
(’EL n n
Zi-i—l Xi+1 }/;+1

Fig. 13. A graphical proof of the Markov chai&; — (U;, W;, X;) — X7 1. The undirected graph corresponds to the joint distriloutio
p(x'=1, 2 Dp(y' 1zt )p(zy, zi)p(yi|mi)p(m?+1, z;;l)p(yﬁl |m?+1)p(t1 ly™)p(t3]|z™, t1). The Markov chain holds since all paths from
Z'to X7, pass throughTy (Y™), T3(Th, X™), X%, Z7", ,).

VII. TwO-WAY MULTI STAGE

Here we consider the two-way multi-stage rate-distorticobfem with a helper. First, the helper sends a common
message to both users, and then us€érand Z send to each other a total rate, and R, respectively, ink
rounds. We use the definition of two-way source coding asngine[1], where each user may transmit up &b
messages to the other user that depends on the source aimmlipr@ceived messages.

Let M denote a set of positive integefs, 2, .., M} and let M X the collection ofK sets{ M, Mo, ..., Mx}.

X A
. Rk .
1 Rk 1
Ry
Y

Fig. 14. The two-way multi-stage with a helper. First Heljfesends a common message to User X and to User Z atRateand then we
have K rounds where in each rouride {1, ..., K} User Z sends a message to User X at fatey, and User X sends a message to UBeat
rate R, . The limitation is on rateR?, and on the sum rateR, = Eszl R, andR, = Zszl R, ;. We assume that the side information

Y and the two sourceX, Z are i.i.d. and form the Markov chaiif — X — Z.

Definition 4: An (n, M,, MX MX D, D,) code for two sources¥ and Z with helperY consists of the

encoders

fy + Y= M,

for @ Z2xMELM, 5 My, k=1,2,.,K
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fer @ A"XMEX M, = My, k=12, K (48)
and two decoders

g XX M, x ME - zn

g: ¢ Z"X My x ME - xn (49)
such that
E lz dm(Xi,Xi)] < D,
=1
E [Z dz(Zlv ZZ) S DZa (50)
=1
The rate triple(R,, Ry, R.) of the code is defined by
1
R, = - log My;
1 K
- ; og M,
1 K
RZ = — 1 Mzza 51
- Zj og M, (51)

Let us denote byR% (D, D..) the (operational) achievable region of the multi-stage distortion with a helper,
i.e., the closure of the set of all triple rat&,, R,, R.) that are achievable with a distortion p&ab,, D). Let

Rk (D, D) be the set of all triple rateR,, R,, R.) that satisfy

R, > IU;Y), (52)
K

R. > Y I(Z;Vi|X,UVEwh 1, (53)
k=1
K

R, > ZI(X;WHZ,U,V’“,W’H), (54)

=
Il
—

for some auxiliary random variablegg/, VX W*) that satisfy

U-Y —(X,2), (55)
Vi — (Z,U, VL WD) —(X)Y), k=1,2,..,K, (56)
Wie — (X, U, VE WY —(Z,Y), k=1,2,..,K, (57)

Ed, (X, X (U, WX, 2))

A
S
8

Ed.(Z,Z(U, VX X)) < D.. (58)



19

The Markov chainY’ — X — Z and the Markov chains given il (59)-{57) imply that the jodistribution of
XY, Z, U, Vk Wk is of the formp(x,y)p(z|z)p(uly) Hszlp(UHz,u,vk_l,wk_l) (wi|z, u, v, wF=1). Further-
more, [58) and[{34) can be written as

33
v

I(Z; VR, WRIX,0), (59)
R, > I(X;VE W¥|zU), (60)
due to the the Markov chaing — (X, U, V* W*=1) — W, and X — (Z,U, Vk=1 Wk=1) — V.
Lemma 9: 1) The regionR g (D, D.) is convex
2) To exhausRk (D, D), it is enough to restrict the alphabet &f V, andW to satisfy
Ul < [Y[+2K+1,

Vil

IN

| Z|[ UV WE 2K +1— k) + 1, fork=1,.,K,

Wil

IN

|X|UVHIIWF 4+ 2(K +1—k), fork=1,.,K. (61)

The proof of the lemma is analogous to the proof of Leniha 2 hedefore omitted.
Theorem 10:In the two-way problem withK stages of communication and a helper, as depicted in[Eig. 14,

whereY — X — 7,
RL(D,, D,) = Rk (D, D). (62)

Theoren{ 1D is a generalization of Theorem 1 (equatibnks @2)whereK = 1 are equivalent td {1}[5)) and
its proof is a straightforward extension. Here we explaitydhe extensions.

Sketch of achievability: In the achievability proof of Theorem 1, we generated theusages(U™, Vi, W)
that are jointly typical withX™, Y™ Z". Using the same idea of Wyner-Ziv coding we continue and gaaeat any
stagek = 1,2, ..., K, the sequenc&,” that is jointly typical with the other sequences by transingt a message
at ratel(Z; Vi, | X, U, V*=1, W*=1) from User Z to User X, and similarly the sequeriég that is jointly typical
with the other sequences by transmitting a message afl (ateW, |Z, U, V¥, W*=1) from User X to User Z. In
the final stage, User X uses the sequences,U", V;*, ..., V) to constructZ™ and, similarly, User Z uses the
sequence$Z™, U™, W7, ...,Wg) to constructX™.

Sketch of Converse: Assume that we have gm, M,,, MX MK D, D,) code and we will show the existence
of a vector (U, VX, WX X, Z) that satisfy [5R)K58). Denot&, = f,(Y"), Tox = f.1(Z" T,, TF 1), and
Tok = for(X™, Ty, TF). Then the same arguments as[in](41) we obtain

nRy, > > H(Y;X'™\.T, Z',|Z) (63)

Then we have

K
nR. > H(TK) = H(T..|TFY>> H(T. . |TF, T8, (64)
k=1
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K K
nRy > H(TK) =Y H(T.xTF N> H(T. x| TS, TF). (65)
k=1 k=1

Applying the same arguments as [n](42) and (43) on the ternf@4nand [[6h), respectively, we obtain that

ZI(Zi; TZJClzinJrl’ Xia Tvazk_la Tf_l)
i=1

H(T. 4|75 T

Y

H(T TN TE) > S0 1K Tl 22, X0 T, TE, 5, (66)
=1

We define the auxiliary random variables Es= XQ‘l,TngH, Vi = T, and Wy = T, WhereQ is

distributed uniformly on the integersl, 2, ..., n}. [ ]

VIIlI. G AUSSIAN CASE

In this subsection we consider the Gaussian instance ofatbevay setting with a helper as defined in Section
[Mand explicitly express the region for a mean square edistortion (we also note that the multi stage option

does not increase the rate region for this case).

X=Z+A

N

A z
A~ N(0,0%),
Yy B ~ N((),O'QB)7
Z ~N(0,0%),
square-error distortion
Y=Z+A+B

Fig. 15. The Gaussian two-way with a helper. The side infoionay” and the two sourceX, Z are i.i.d., jointly Gaussian and form the Markov
chainY — X — Z. The distortion is the square error, i.é, (X", X™) = L 32" | (X; — X;)? andd. (2", Z") = 2 S0 (Z; — Z:)2.

Since X, Y, Z form the Markov chaint’ — X — Z, we assume, without loss of generality, thét= Z + A and
Y = Z 4+ A+ B, where the random variablésl, B, Z) are zero-mean Gaussian and independent of each other,
whereE[A?] = 0%, E[B?] = 0% andE[Z?] = 0%.

Corollary 11: The achievable rate region of the problem illustrated in is

1 o2 o2
R, > -log—42 __ 67
= 2% D.(e% +02) (67)
1 2 (g2 4 g29 2Ry
R, > =log 74 (JB 4 ) (68)

-2 DI(U,%&"'U)QB)
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Proof: The converse and achievability ¢f {67) follows from the Gaars Wyner-Ziv coding [18] result, which
states that the achievable rate for the Gaussian Wynerefiing is the same as the case where the side information
is known to the encoder and decoder. Furthermore, becaube dfarkov chainZ — X — Y, the rateR, does not
have any influence o, since this rate is the achievable rate eveln ifs known to both users. The achievability

and the converse faR, is given in the following corollary. [ ]

7z
nRy i
X=2Z+A —To€2"" g %n
A 07 2 9
T B N( ‘75;)
7~

(0703)7
T, € 2"t N(0, 02),
AlB1Z,

Y=Z+A+B square-error distortion

Fig. 16. Gaussian case: the zero-mean Gaussian randorblearia, B, Z are i.i.d. and independent of each other. Their variancesr%n
023 and a%, respectively. The sourc& and the helpely” satisfy X = A+ Z andY = Z + A + B. The distortion is the square error, i.e.,
d(x™, Xmy =131 (X - X;)2

n

Corollary 12: The achievable rate region of the problem illustrated in E® is

o4 (1- 22 (1-272R))

R > —log )

1
-2

(69)

It is interesting to note that the rate region does not demend?. Furthermore, we show in the proof that for
the Gaussian case the rate region is the same as Whsrknown to the sourc& and the helpet’.

Proof of Corollary[12:

Converse: Assume that both encoders obse&/. Without loss of generality, the encoders can subtzaétom
X andY’; hence the problem is equivalent to new rate distortion lgrabwith a helper, where the sourcedsand
the helper isA + B. Now using the result for the Gaussian case from [7], adaftexuir notation, we obtai (69).
Achievability: Before proving the direct-part of Corollafy]12, we estdblike following lemma which is proved
in Appendix[C.

Lemma 13: Gaussian Wyner-Ziv rate-distortion problem waitltitional side information known to the encoder
and decoderLet (X, W, Z) be jointly Gaussian. Consider the Wyner-Ziv rate disteorfimoblem where the source
X is to be compressed with quadratic distortion measUreis available at the encoder and decoder, @hds

available only at the decoder. The rate-distortion regmmtis problem is given by

2
1 ox\w,z
R(D) = 5 log =%,

(70)

Whereo—gﬂwz = E[(X — E[X|W, Z])?], i.e., the minimum square error of estimatifgfrom (W, Z).
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LetV = A+ B+Z+ D, whereD ~ N(0,0%) and is independent ¢f4, B, Z). Clearly, we havd/ —Y — X — Z.
Now, let us generat® at the source-encoder and at the decoder using the acHigvabheme of Wyner [18].
Sincel(V;Z) < I(V;X) arateR' = I(V;Y) — I(V; Z) would suffice, and it may be expressed as follows:

R = I(V;Y|Z)

= W(V|Z) - h(V]Y)

1 Ui—f—a%—i—a%

= =1 71
g log AP (71)
and this implies that
0% + o?
ob = Sam 3 (72)

Now, we invoke Lemm&_13, wher¥ is the side information known both to the encoder and degddsrce a rate

that satisfies the following inequality achieves a distortD;
2

1 OXx|v,z
> ~log =02
ko= gle—p
1 o> o2
= —log2(1-——4 73
2 %D ( 0124—1-0]234-0123) (73)
Finally, by replacings%, with the identity in [72) we obtaif{69). [ ]

IX. FURTHER RESULTS ONWYNER-ZIV WITH A HELPER WHEREY — X — Z

In this section we investigate two properties of the ragiene of the Wyner-Ziv setting ( Fig._17) with a Markov
formY — X — Z. First, we investigate the tradeoff between the rate senthbyhelper and the rate sent by the
source and roughly speaking we conclude that a bit from tlieceois more “valuable” than a bit from the helper.
Second, we examine the case where the helper has the freedsemd different messages, at different rates, to
the encoder and the decoder. We show that “more help” to tlkedem than to the decoder does not yield any
performance gain and that in such cases the freedom to séfecedt messages to the encoder and the decoder
yields no gain over the case of a common message. Furthérisirsetting of different messages, the rate to the

encoder can be strictly less than that to the decoder withemfopmance loss.

A. A bit from the source-encoder vs. a bit from the helper

Assume that we have a sequence(af2"% 27f1) codes that achieves a distortidn, such that the triple
(R, Ry, D) is on the border of the regioRy _x_z(D) (recall the definition ofRy _x_~(D) in (@5)-(17)). Now,
suppose that the helper is allowed to increase the rate bynaourg A’ > 0 to Ry + A’; to what rateR — A can
the source-encoder reduce its rate and achieve the sareidistD?

Despite the fact that the additional ra¥ is transmitted both to the decoder and encoder, we show lvays
A < A’. Let us denote byR(R;) the boundary of the regioRy _x_z (D) for a fixed D. We formally show that
A < A’ by proving that the slope of the cun®(R;) is always less than 1. The proof uses similar technique as
in [19].
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X—»W» Decode L»

A A

Ry

Y

Fig. 17. Wyner-Ziv problem with a helper where the Markovioh# — X — Z holds.

Lemma 14:For anyX — Y — Z, D, and R;, the subgradients of the cun®(R;) are less than 1.
Proof: SinceRy _x_z(D) is a convex setR(R;) is a convex function. Furthermor&(R;) is non increasing

in R;. Now, let us defineJ*(\) as

JN) = min  I(X;W|U,Z)+ \(Y;U|Z), (74)

p(z,y,z,u,w)EP
whereP is the set of distributions satisfyingz, y, z, u, w, &) = p(z, y)p(z|y)p(uly)p(wlu, £)p(|u,w, z), Ed(X,X) <
D. The line J*(A\) = R+ AR is a support line ofR(R;), and therefore) is a subgradient. The valué*(\)
is the intersection between the support line with slepk and the axisR, as shown in Figl_18. Because of the

convexity and the monotonicity aR(R;), J*()\) is upper-bounded byz(0), i.e.,

J*(N) < min R(0) = min I(X;W|Z), (75)

T p(&,2,y,2,u,w)EP B p(Z,2,y,2,w)EPwz
where Py is the set of distributions that satisfipéz, z, z, w) = p(z)p(z|z)p(w|x)p(E|w, z), Ed(X,X) < D.

In addition, we observe that

R
ming gz 1(X; X) —

J ()

ming, gz, I(X; X|Y)—

Fig. 18. A support line ofR(R1) with a slope—A. J * () is the intersection of the support line with ti axis.

JH1) = min  I(X;W|U,Z)+1(Y;U|Z)

P(@,,250,0,8)EP
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Fig. 19. The rate distortion problem with decoder side imfation, and independent helper rates. We assume the MagkationY — X — Z

(2) min ](X’ Y: W, U|Z>
p(x,y,z,u,w,&)EP
> min I(X;W|2),
p(x,y,z,u,w,&)EP
T e () 76)

p(&,2,y,2,w)EPwz
where step (a) is due to the Markov challis- Y — (Z, X) andW — (U, X) — (Y, Z). Combining [7b) and (76),
we conclude that for any subgradienf, J*(\) < J*(1). SinceJ*(A) is increasing in\, we conclude thah < 1.
[ |
An alternative and equivalent proof would be to claim thaice R(R;) is a convex and non increasing function,

% < j—g , and then to claim that the largest slopefat= 0 is whenY = X, which is 1. For the Gaussian
R1=0

case, the derivative may be calculated explicitly fréml (6@)particular forR; = 0, and we obtain

o2
0% + og

B. The case of independent rates

In this subsection we treat the rate distortion scenariorgvls@e information from the helper is encoded using
two different messages, possibly at different rates, ortbecencoder and one to the decoder, as shown if Fig. 19.
The complete characterization of achievable rates forgbénario is still an open problem. However, the solution
that is given in previous sections, where there is one meskagwn both to the encoder and decoder, provides us
insight that allows us to solve several cases of the problesws here. We start with the definition of the general

case.

Definition 5: An (n, M, M., My, D) code for sourceX with side informationY” and different helper messages
to the encoder and decoder, consists of three encoders
fe : yn—>{1727"'7M€}
fa = V' —={1,2,..., My}

FoooxTx {12, M)} — {1,2,... M}
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(78)
and a decoder
g {1,2,.. M}x{1,2,.., My} — X"
(79)

such that

Ed(X™,X") < D. (80)

To avoid cumbersome statements, we will not repeat in theaee words “... different helper messages to the
encoder and decoder,” as this is the topic of this sectiod, strould be clear from the context. The rate pair

(R, Re, Ry) of the (n, M, M., Mg, D) code is

1
R = —logM
n
1
R. = —logM,
n
1
Ry = =logMy (81)
n

Definition 6: Given a distortionD, a rate triple(R, R., Rs) is said to beachievableif for any 6 > 0, and
sufficiently largen, there exists an(n,27(fi+9) gn(fe+9) on(Ratd) D 4 §) code for the sourceX with side
informationY'.

Definition 7: The (operational) achievable regidth(D) of rate distortion with a helper known at the encoder
and decoder is the closure of the set of all achievable rggiedrat distortionD.

Denote byR$ (R., R4, D) the sectionof RY (D) at helper rate$R., Rq). That is,

RgO(Re,Rd,D) = {R: (R,R.,Ry) are achievable with distortio®} (82)

and similarly, denote bfR (R, D) the section of the regioRy_x_ (D), defined in [Ib){{1B) at helper rafe,.
Recall that, according to TheorédthR(R;, D) consists of all achievable source coding rates when theehegnds

common messages to the source encoder and destinatioe &, rathe main result of this section is the following.

Theorem 15:For any R, > Ry,
RS (Re, Rq, D) = R(Rq, D) (83)

Theorem[Ib has interesting implications on the coding esgsattaken by the helper. It says that no gain in
performance can be achieved if the source encoder gets “hel@ than the decoder at the destination (i.e.,

if R > Ry), and thus we may restridg. to be no higher tharR;. Moreover, in those cases whefe = Ry,
optimal performance is achieved when the helper sends tertbeder and decoder exactly the same message. The

proof of this statement uses operational arguments.
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Proof of Theoreri 15Clearly, the claim is proved once we show the statemenffor= H(Y'). In this situation,
we can equally well assume that the encoder has full acce¥s Thus, fix a general scheme like in Definitioh 5
with R, = H(Y). The encoder is a function of the forfi( X", Y"). DefineT, = fq(Y™). The Markov chain
Z — X —Y implies thatZ™ — (X™,T,) — Y™ also forms a Markov chain. This implies, in turn that therésesxa

function ¢ and a random variabl®’, uniformly distributed in[0, 1] and independent afX™, T5, Z™), such that
Y™ = (X", To, W). (84)

Thus the source encoder operation can be written as

f(XnaYn) f(Xnaqs(XanQvW))

f(X™, T, W) (85)

1>

implying, in turn, that the distortion of this scheme can Bpressed as
Ed(X",X") =E [d(X",X"(f(X",TQ, W), Ty, Z”))}
@ /OlE a0, X (F(X, T3, w), T3, 27) | duw
®) /01 E (X", Xm0 (X7, 1), T, 27)| du (86)
where (a) holds sinc&® is independent of X™, T, Z"), and (b) by defining
FOX Ty) = J(X™, Ty w). (87)

Note that for a givenw, the functionf" is of the form of encoding functions where the helper sendsropssage
to the encoder and decoder. Therefore we conclude thatiagysichievable with a scheme from Definitibh 5, is
achievable by time-sharing where the helper sends one ges$sahe encoder and decoder. ]

The statement of Theorem]15 can be extended to mteslightly lower thanR,. This extension is based on
the simple observation that the source encoder kn&wsvhich can serve as side information in decoding the
message sent by the helper. Therefore, any mesbagent to the source decoder can undergo a stage of binning
with respect taX. As an extreme example, consider the case wiigre> H (Y| X). The source encoder can fully
recoverY, hence there is no advantage in transmitting to the encddettes higher tharf/ (Y| X); the decoder,
on the other hand, can benefit from rates in the redidy’ | X) < Rq < H(Y'|Z). This rate interval is not empty
due to the Markov chai” — X — Z. These observations are summarized in the next theorem.

Theorem 16:

1) Let (U, V) achieve a poin{R, R') in Ry_x_z(D), i.e.,
R = I(X;U|V,Z2)
R = IY;V|Z)=1(V;Y)=I(V;Z) (88)

D > Ed(X,X(U,V,Z2)), (89)
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V-Y-X-2Z (90)
Then(R, R., R') € RY(D) for every R, satisfying

R,

Y

I(V;Y|2) - I(V; X|Z)
= I(V;Y)-I(V; X). (91)
2) Let (R, R’) be an outer point oRy _x_z(D). That is,
(R, R') ¢ Ry—x—z(D). (92)
Then (R, R., R') is an outer point ofR¢ (D) for any R, i.e.,
(R,R.,R') ¢ RY(D) V Re. (93)

The proof of Part 1 is based on binning, as described abovgattiicular, observe thak. given in [91) is lower
than R’ of (88) due to the Markov chailv — Y — X — Z. Part 2 is a partial converse, and is a direct consequence

of Theoren Ib. The details, being straightforward, are temit

APPENDIXA

PROOF OF THE THE TECHNIQUE FOR VERIFYINGVIARKOV RELATIONS

Proof First let us prove that three random variablesY’, 7, with a joint distribution of the form

p($,y72) = f(xay)f(yvz)v (94)

satisfy the Markov chait’ — X — Z. Consider,

 fly)fy.z) fy.2)
Pl ) = S ) S fw 2

and since the expression does not include the argumere conclude thap(z|y, x) = p(z|y).

(95)

For the more general case, we first extend the &ets Xg,. We start by defining7; = G, andG3 = Gs, and
then we add taXz and to X3, all their neighbors that are not iXg, (a neighbor to a group is a node that is
connected by one edge to the an element in the group). Wetrtdpegrocedure till there are no more nodes to
add toXg or Xg . Note that since there are no paths fréfg, to Xg, that do not pass throughig,, then a node
can not be added to both setg; and Xz, . The set of nodes that are not (X5 , Xg,, Xz, ) is denoted as\g,.

The setsXg, and Xz and Xg, are connected only t&¢g, and not to each other, hence the joint distribution

of (Xg,, Xg,, Xg,, Xg,) is of the following form

3
p(ng, Xal ) nga Xal) = f(Xgoa ng)f(Xgl ) XQ2)f(X§33 ng)' (96)

By marginalizing overXg, and using the claim introduced in the first sentence of thefprn@ obtain the Markov

chain Xz — Xg, — Xg,, whcih impliesXg, — Xg, — Xg,. ]
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APPENDIXB

PROOF OFLEMMA [2

Proof: To prove Parf1L, let) be a time sharing random variable, independent of the sdupde (X,Y, 7).

Note that
1viU12,Q) Y 1(v;U.Qlz) = 1(v;U|2),
I(Z;V|U,X,Q) = I(z;V|U,X),
I(X; WUV, 2,Q) = I(X;W[U,V,2),

wherelU = (U,Q), and in step (a) we used the fact thatis independent of). This proves the convexity.

To prove Parf2, we invoke the support lemma [20, pp. 310]ettinmes, each time for one of the auxiliary
random variable®’, V, W. The external random variablé must have)| — 1 letters to preserve(y) plus five more
to preserve the expressionsY; U|Z), I(Z;V|U,X), I(X;W|U,V, Z) and the distortion&d,.(X, X (U, V, Z))
Ed.(Z, Z(U, W, X)). Note that the joinp(z, y, z) is preserved because of the Markov fotm-Y — X — Z, and
the structure of the joint distribution given il (4) does ohinge. We fixJ, which now has a bounded cardinality,
and we apply the support lemma for boundivig The external random variab®é must havell/||Z] — 1 letters
to preservep(u, z) plus four more to preserve the expressidg; V|U, X), I(X; W|U,V, Z) and the distortions
Ed.(X,X(U,V, Z)), Ed.(Z, Z(U,W, X)). Note that because of the Markov structiite- (U, Z) — (X, Y) the joint
distributionp(u, z, z, y) does not change. Finally, we fiX, VV which now have a bounded cardinality and we apply
the support lemma for boundirg”. The external random variabl& must haveli/||V||X| — 1 letters to preserve
p(u,v,2) plus two more to preserve the expressiditX’; W|U,V, Z) and the distortionﬁ*:dz(Z,Z(U,W,X)).
Note that because of the Markov structiieé— (U, V, X) — (Z,Y) the joint distributionp(u, v, z,y, z) does not

change. ]

APPENDIXC

ProOOF OFLEMMA [I3

SinceW, X, Z are jointly Gaussian, we havg[X |V, Z] = aW + §Z, for some scalars, 8. Furthermore, we

have

X =aW +BZ+N, (97)

whereN is a Gaussian random variable independentl&f Z) with zero mean and varian(zé(lwz. SinceW is
known to the encoder and decoder we can subtrdictfrom X, and then using Wyner-Ziv coding for the Gaussian

case [18] we obtain

1 quwz
R(D) = 3 log D = (98)

Obviously, one can not achieve a rate smaller than this dveéhis known both to the encoder and decoder, and

therefore this is the achievable region.
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