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Abstract

This paper presents an analysis of target localizationracguattainable by the use of MIMO (Multiple-Input
Multiple-Output) radar systems, configured with multiplertsmit and receive sensors, widely distributed over angive
area. The Cramer-Rao lower bound (CRLB) for target loctiimaaccuracy is developed for both coherent and non-
coherent processing. Coherent processing requires a corpimase reference for all transmit and receive sensors.
The CRLB is shown to be inversely proportional to the sigrfidative bandwidth in the non-coherent case, but is
approximately inversely proportional to the carrier fregay in the coherent case. We further prove that optimiaatio
over the sensors’ positions lowers the CRLB by a factor eqouahe product of the number of transmitting and
receiving sensors. The best linear unbiased estimator EBLib derived for the MIMO target localization problem.
The BLUE's utility is in providing a closed form localizatioestimate that facilitates the analysis of the relations
between sensors locations, target location, and localizaccuracy. Geometric dilution of precision (GDOP) cams
are used to map the relative performance accuracy for a diyeut of radars over a given geographic area.
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. INTRODUCTION
A. Background and Motivation

Research in MIMO radar has been growing as evidenced by aeasiag body of literature [1]-[18]. Generally
speaking, MIMO radar systems employ multiple antennas dosmit multiple waveforms and engage in joint
processing of the received echoes from the target. Two méih@/adar architectures have evolved: with colocated
antennas and with distributed antennas. MIMO radar witlhcatied antennas makes use of waveform diversity [2],

[4], [12], [14], [15], while MIMO radar with distributed aphna takes advantage of the spatial diversity supported by
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the system configuration [1], [3], [5], [13]. MIMO radar sgsts have been shown to offer considerable advantages
over traditional radars in various aspects of radar opmrasuch as the detection of slow moving targets [17],
[8], the ability to identify and separate multiple target®], [11], and in the estimation of target parameters such
as direction-of-arrival (DOA) [8], [10], and range-basedget localization [18]. In particular, [18] studies targe
localization with MIMO radar systems utilizing sensorstdisited over a wide area.

Conventional localization techniques include time-afvaal (TOA), time-difference-of-arrival (TDOA), and diction-
of-arrival (DOA) based schemes. MIMO radar system with cated antenna can perform DOA estimation of targets
in the far-field, in which case, the received signal has aglaravefront. In this class of systems, extensive research
has focused on waveform optimization. In [7], [14], [15] thignal vector transmitted by a MIMO radar system is
designed to minimize the cross-correlation of the signalsnised from various targets to improve the parameter
estimation accuracy in multiple target schemes. Some ofvheeform optimization techniques suggested in [16]
are based on the Cramer-Rao lower bound (CRLB) matrix [20],[The CRLB is known to provide a tight
bound on parameter estimation for high signal-to-noise (@NR). Several design criteria are considered, such as
minimizing the trace, determinant, and the largest eigleevaf the CRLB matrix, concluding that minimizing the
trace of the CRLB gives a good overall performance in termewéring the CRLB. In [9], a CRLB evaluation of
the achievable angular accuracy is derived for linear arvaigh orthogonal signals. The use of orthogonal signals
is shown to provide better accuracy than correlated sigfalslow SNR scenarios, the Barankin bound is derived
in [10], demonstrating that the use of orthogonal signadsilts in a lower SNR threshold for transitioning into the
region of higher estimation error.

MIMO radar systems with widely spread antennas take adgantd the geographical spread of the deployed
sensors. The multiple propagation paths, created by thertritted waveforms and echoes from scatterers in their
paths support target localization through either directnalirect multilateration. With direct multilaterationhe
observations collected by the sensors are jointly prodesseproduce the localization estimate. With indirect
multilateration, the TOAs are estimated first, and the laatibn is subsequently estimated from the TOAs. The
observations and processing can also be classified as aithecoherent or coherent. The distinction between the
two modes relies on the need for mere time synchronizatitwesn the transmitting and receiving radars in the
non-coherent case, versus the need for both time and phashrepization in the coherent case. Note that our
coherent/non-coherent terminology is limited to the pssigg for localization. Thus, a transmitted signal may have
in-phase and quadrature components, yet the localizatiocepsing is non-coherent if it utilizes only information
in the signal envelope. In the sequel, we evaluate the paebce of localization utilizing both coherent and
non-coherent processing.

MIMO radar systems belongs to the class of active locabimasystems, where the signal usually travels a round
trip, i.e. the signal transmitted by one sensor in a radatesyds reflected by the target and measured by the
same or a different sensor. Traditional single-antennarragstems, performing active range-based measurements,
are well known in literature [21]-[25]. The target range Bmputed from the time it takes for the transmitted

signal to get to the target plus the travelling time of theewfd signal back to the sensor. The range estimation
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accuracy is directly proportional to the mean squared €MS8E) of the time delay estimation and is shown to be
inversely proportional to the signal effective bandwid#i]. A first study of the localization accuracy capability
of MIMO radar systems is provided in [18], where the Fishdoimation matrix (FIM) is derived for the case of
orthogonal signals with coherent processing and widehaisgpd antennas. The CRLB is analyzed numerically,
pointing out the dependency of the accuracy on the signalkcdrequency in the coherent case, and its reliance on
the relative locations of the target and sensors. In [18§ @bserved that the CRLB is a function of the number of
transmitting and receiving sensors, however an analytédation is not developed. The high accuracy capability of
coherent processing is illustrated by the use of the amiyigunction (AF). Active range-based target localization
techniques are also used in multistatic radar systemsppeapin [26]. The TOA of a signal transmitted by a single
transmit radar, reflected by the target and received at phellteceive antennas is used in the localization process.
It is observed that increasing the number of sensors imgrimealization performance, yet an exact relation is not
specified. This paper addresses deficiencies in the literéty obtaining closed-form expressions of the CRLB for
both coherent and non-coherent cases.

Geolocation techniques has been the subject of extensteaneh. Geolocation belongs to the class of passive
localization systems, where the signal travels one-wayceSthese passive measurement systems employ multiple
sensors, further evaluation of existing results for geafion systems might provide insightful for the active case.
In wireless communication, passive measurements are yseuibiple base stations for localization of a radiating
mobile phone. The localization accuracy performance isueted in [27]. It is shown that the localization accuracy
is inversely proportional to the signal effective bandwidts it does in the active localization case. Moreover,
the accuracy estimation is shown to be dependent on thersémsge stations locations. In navigation systems, the
target makes use of time synchronized transmission frontipteilGlobal Positioning Systems (GPS) to establish its
location. In [28], [29], the relation between the transmgtsensors location and the target localization perfogaan
is analyzed. GDOP plots are used to demonstrate the depgndéthe attainable accuracy on the location of the
GPS systems with respect to the target. In an optimal setfitige GPS systems relative to the target position, the
best achievable accuracy is shown to be inversely propatito the square root of the number of participating

GPS. In the sequel, we apply the GDOP metric to evaluate tteditation performance of MIMO radar.

B. Main Contributions

The main contributions of this paper are:

1) The CRLB of the target localization estimation error isveleped for the general case of MIMO radar
with multiple waveforms transmission. The analytical eegmions of the CRLB are derived for the case
of orthogonal waveforms with non-coherent and coherenemasions. The non-coherent case is used as
benchmark for evaluating the performance of the system wotierent observations.

2) Itis shown that the CRLB expressions for both the non-patiteand coherent cases can be factored into two
terms: a term incorporating the effect of bandwidth and ShIR] another term accounting for the effect of

sensor placement.
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3) The CRLB of the standard deviation of the localizatiorineate with non-coherent observations is shown
to be inversely proportional to the signals averaged effediandwidth. Dramatically higher accuracy can
be obtained from processing coherent observations. Incéde, the CRLB is inversely proportional to the
carrier frequency. This gain is due to the exploitation oagd information, and is referred to esherency
gain.

4) Formulating a convex optimization problem, it is showmttsymmetric deployment of transmitting and
receiving sensors around a target is optimal with respentitdmizing the CRLB. The closed form solution
of the optimization problem also reveals that optimallycgld M transmitters andV receivers reduce the
CRLB on the variance of the estimate by a facldiV/2. This is referred to as thBIIMO radar gain.

5) A closed form solution is developed for the BLUE of targetdlization for coherent MIMO radars. It
provides a closed form solution and a comprehensive evatuaf the performance of the estimator's MSE.
This estimator provides insight into the relation betweenssrs locations, target location, and localization
accuracy through the use of the GDOP metric. Contour mapseo&GDOP, presented in this paper, provide a
clear understanding of the mutual relation between a giegoyment of sensors and the achievable accuracy
at various target locations.

The rest of the paper is organized as follows: The system hisdetroduced in Section Il. In Section lll, the
CRLB is derived for the general case of multiple transmitteveforms. Analytical expressions are obtained for the
cases of non-coherent and coherent observations withgwtted signals. Optimization of the CRLB as a function
of sensor location is provided in Section IV. The perform@ao€two localization estimators is evaluated in Section
V. To establish a better understanding of the relations eetwthe radar geographical spread and the target location,
the GDOP metric is introduced in Section V-D. Finally, SentV| concludes the paper.

A comment on notation: vectors are denoted by lower-casg, bdiile matrices use upper-case bold letters. The
superscripts “T” and “H” denote the transpose and Hermitiparators, respectively. Complex conjugate is denoted

(). Points in the x-y plane are denoted in upper-case: (z,y) .

Il. SYSTEM MODEL

We consider a widely distributed MIMO radar system withh transmitting radars andv receiving radars.
The receiving radars may be colocated with the transmittings or individually positioned. The transmitting
and receiving radars are located in a two dimensional plang). The M transmitters are arbitrarily located at
coordinated’, = (zw, yu) , k = 1,..., M, and theN receivers are similarly arbitrarily located at coordirsale =
(zre,yre), £ = 1,...,N. The set of transmitted waveforms in lowpass equivalent feemy, (¢), k = 1,..., M,
where [ |sy, (t))* dt = 1, andT is the common duration of all transmitted waveforms. The gowf the transmitted
waveforms is normalized such that the aggregate powerniittesl by the sensors is constant, irrespective of the
number of transmit sensors. To simplify the notation, tlgmal power term is embedded in the noise variance term
such that the SNR at the transmitter, denoted ShiRI defined as the transmitted power by a sensor divided by the

noise power at a receiving sensor, is set that a desired legehll transmitted waveforms be narrowband signals
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with individual effective bandwidth3, defined as? = [( S £2155 ( f)|2df) / ( Jon, 185 € f)|2df)], where the
integration is over the range of frequencies with non-zégoa contentiV, [21]. We further define the signals
averaged effective bandwidth or rms bandwidth/#s= S°L, 32 and the normalized bandwidth terms as
Br, = Pr/B. The signals are narrowband in the sense that for a careguéncy off., the narrowband signal
assumption implieg?/ 2 <1 andg?/ f2 < 1.

The target model developed here generalizes the model Jnd2near-field scenario and distributed sensors. In
Skolnik’s model [21], the returns of individual point seattrs have fixed amplitude and phase, and are independent
of angle. For a moving target, the composite return fluckist@mplitude and phase due to the relative motion of the
scatterers. When the motion is slow, and the compositettaefyern is assumed to be constant over the observation
time, the target conforms to the classical Swerling case dehdMe now proceed to generalize this model to a
target observed by a MIMO radar with distributed sensorsuftge an extended target, composed of a collection
of @ individual point scatterers located at coordinafeés = (x4,v4), ¢ = 1,...,Q. The amplitudes), of the
point scatterers are assumed to be mutually independeatpdthloss and phase of a signal reflected by a scatterer,
when measured with respect to a transmitted sigpdt) , are functions of the path transmitter-scatterer-receiver

Let 741 (X,) denote the propagation time from transmitterto scatterer, to receivert,

ok (Xq) = % (\/(wtk —2g)" + (er — yg)” + \/(wre —24)> + (yre — yq)) ; @

wherec is the speed of light. Our signal model assumes that the sem@se located such that variations in the

signal strength due to different target to sensor distasaesbe neglected, i.e., the model accounts for the effect
of the sensors/target localizations only through time yiel@r phase shifts) of the signals. The common path loss

term is embedded ig,. The baseband representation for the signal received aprséiis
M Q

re(t) =Y ) Coexp (—i2m feron (Xq)) sk (t = Ton (X)) + we(t), )

k=1q=1
where the tern2r f. 7, (X,) is the phase of a signal transmitted by serisaeflected by scattererlocated atX,,,
and received by sensér Phases are measured relative to a common phase referenoeeds® be available at the
transmitters and receivers. The tetm (¢) is circularly symmetric, zero-mean, complex Gaussianeyapatially
and temporally white with autocorrelation functie,s (7). The noise term is set? = 1/SNR,, where SNR is
measured at the transmitter. SNR normalized such that the aggregate transmitted powerdispiendent of the
number of transmitting sensors. The SNR at the receiveri@aescatterer with amplitudg, is SNR. = |§q|QSNRt.
Signals reflected from the target combine at each of theweeegitennas. For example, the resultant signal at receive

antenn& is given by

Q
D s (t = 7o (Xg)) exp (=527 feron (X)) = Csp (¢ = 7ar, (X)) exp (=27 forar, (X)), ®3)
q=1
where(’ and (27 f. o (X’)) are respectively the amplitude and phase given by
0 2 0 27 1/2
¢ = <Z Cqcos (27 feTon (Xq))> + (Z Cqsin (27 feTen (Xq))> , (4)
q=1 q=1
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and
S Cysin (2 feror (Xq))

25:1 Cg c0s (27 foror (X))
In obtaining (3), we invoked the narrowband assumptipfit — 7 (X)) = si (t — 7 (X)), for all scatterers,

27 feron, (X') = tan™?

(®)

namely that the change in the lowpass equivalent signatsathe target is negligible. It follows from this discussio
that the extended target is represented by a point scatieeenplitude¢’ and time delaysy; (X’), where all the
guantities are unknown.

While this target model is completely adequate for our ne@ds possible to extend it slightly, at little cost.
Assume a constant time offset erefarr at the receivers. Further, assume that the error is smdil that it does not
impact the signal envelope, but it does impact the phasen Weecan write the time delaysy, (X') = 7, (X)+ AT

for some locationX = (z,y). The target model (3) can now be expressed
(s (t = Ton (X)) exp (—j2m fetor (X)) = (s (¢ — Tor (X)) exp (=527 ferer, (X)), (6)

where¢ = ('e727/A7 and the narrowband assumption was invoked once more. Theasita target of (3) is
then equivalent to a point scatterer of complex amplitgadend time delaysy (X) . For simplicity, the following

notation is usedry, = 7o (X). The signal model (2) becomes
M

e (t) = Z(exp(—jQﬂ'fcnk) sk (t — Tor) + we(t). (7)

k=1
We define the vector of received signalsras [r1, 2, ..., rN]T for later use. The radar system'’s goal is to estimate
the target locationX = (z,y). The target location can be estimated directly, for examplefdsmulating the
maximum likelihood estimate (MLE) associated with (7).ekhatively, an indirect method is to estimate first the
time delaysry,. Subsequently, the target location can be computed fromdhsgien to a set of equations of the

form (1), viz.,

.= 2 (V6 =20 + =0+l = 2 4 =007 ®

The unknown complex amplitudgis treated as a nuisance parameter in the estimation problem

Let the unknown target locatioX = (z,y), unknown time delays delays;, and unknown target complex
amplitude¢ = ¢ + j¢!, where the notation specifies the real and imaginary compgsru.

We refer to the processing for estimating the target locatisnon-coherent or coherent. The received signal
introduced in (7) is adequate for the coherent case, wherdrémsmitting and receiving radars are assumed to
be both time and phase synchronized. As such, the time dél&ysnation, 7, embedded in the phase terms
may be exploited in the estimation process by matching bwotplitude and phase at the receiver end. In contrast,
non-coherent processing estimates the time delgygrom variations in the envelope of the transmitted signals
sk (t) . A common time reference is required for all the sensors instrstem. In this case, the transmitting radars

are not phase synchronized and therefore the received sigdel is of the form:
M
re(t) = ounsi (t — 7o) + we(t), 9)

k=1
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where the complex amplitude termg; integrate the effect of the phase offsets between the tristirggnand
receiving sources and the target impact on the phase andtagepbf the transmitted signals. These elements are

treated as unknown complex amplitudes, wherg = ot + jal, . We define the following vector notations:
a = [a11, 012, ey Qs oy g N L (20)
af=Re(a); of =Im(a),

whereRe (-) andIm (-) denote the real and imaginary parts of a complex-valuecviaatrix.

Ill. LocaALizAaTiION CRLB

The CRLB provides a lower bound for the MSE of any unbiaseiinagbr for an unknown parameter(s). Given

a vector parametét, constituted of element$;, the unbiased estimate satisfies the following inequality [19]:

var (5) >[3710),, i=12,.. (11)

where [J‘l (9)}“. are the diagonal elements of the Fisher Information mafI¥Mj J (6). The FIM is given by:

J(0) = E,

T
9 toap (xl0) (%bgp(rw)) ] , (12)

wherep (r|f) is the joint probability density function (pdf) af conditioned ory.
The CRLB is then defined:

Cerre=[J ()] ". (13)

Sometime, it is easier to compute the FIM with respect to larovectory, and apply the chain rule to derive the
original J (6) . In our case, since the received signals in both (7) and (9juaretions of the time delaysyy, and

the complex amplitudes, by the chain rule(f) can be expressed in the alternative form [19]:
J(0) =PI () PT, (14)

where is a vector of unknown parameters, and it incorporates the tielays. MatrixJ (¢) is the FIM with

respect toy, and matrixP is the Jacobian:
_o
00"

From this point onward, we develop the CRLB for the case of-ooimerent and coherent processing, separately.

P (15)

A. Non-coherent Processing CRLB

For non-coherent Processing, there is no common phasemefeamong the sensors. Consequently, the complex-
valued termsy;, incorporate phase offsets among sensors and the effecedhtpet on the phase and complex

amplitude, following the definitions in (10). The vectorswofknown parameters is defined:

One = [a:,y,aR,aI]T. (16)
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The process of localization by non-coherent processingdp on time delay estimation of the signals observed
at the receive sensors and also on the location of the seff&ormin insight into how each of the factors affects
the performance of localization, we utilize the form of thiMFgiven in (14). We define the vector of unknown

parameters:

T L (17)

wherea is given in (10) andr = [r11, T12, .-y Teks ...,TMN]T. We are interested only in the estimationaofindy,
while o', o act as nuisance parameters in the estimation problem.

Given a set of known transmitted waveforms(t — 74 ) parameterized by the unknown time delays, which
in turn are a function of the unknown target locatiédh= (z,y), the conditional, joint pdf of the observations at

the receive sensors, given by (9), is then:

2

M
ro(t) = > oksk (t— k)| dt (18)
k=1

N
=17
The matrixP,,. for (16) and (17), to be used in (14), is defined as:

p (rwjnc) X exp § —

sqw| =

T T
%7 5 (@) 7 (ef)
T T
TR S W S o
e 8971(: or BLR L“I ’
dalt dalt dalt
Ot da”t 9ol
dal dal dal (2MN+2)x3MN

. : . L . 0
Wherea%r is standard notation for taking the derivative with resgect of each element of, and B—TR denotes
«
the Jacobian of the vecter with respect to the vectar”. The subscript denotes the matrix dimensions.

It is not too difficult to show that using (8), the matrkx,. can be expressed in the form:

P, — 1 Hoxmn O2x2m N 7 (20)
OcvivxmN  lomnxomn

where0 is the all zero matrix] is the identity matrix, andI € R?>*M¥ incorporates the derivatives of the time
delays in (8) with respect to the andy parameters. These derivatives result in cosine and singtidms of the
angles the transmitting and receiving radars create witipaet to the target, incorporating information on the

sensors and target locations as follows:

H— Az, + Argq Az, + Arygq oo Qig gy + aranN . (21)
btwl + brml bt;ﬂl + brmg bt;vM + brmN

The elements oH are given by:
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Az, = COSQ; by, =singg; k=1,..,.M,
try, d)k try, d)k (22)

Qryp, = COSWp; bpy, =singy; €=1,..,N,
— -1 —Yt . _ -1 —Yr
b = tan~! (128} oy = tan ! (=),
where the phasey, is the bearing angle of the transmitting sengoto the target measured with respect to the
x axis; the phasey, is the bearing angle of the receiving radato the target measured with respect to the
x axis. See illustration in Figure 1. For later use, we applg tbllowing definitions:¢ = [¢1,¢2,...,¢M]T,

T T T T
Y = [90179023-'-599]\7] y Ay = [atmlaatm27---7atzM] » Arz = [aTmlaaTmza-'-aaTIN] ) btz = [bt117bt127'-'7bt1M]

andb, = [bra,, brag, s bray, | -

An expression for the FIMI (¢,,.) , is derived in Appendix |, yielding:

2 Sne Ve

(3MN)x(3MN)
with the block matrices,,., A, andV,,. defined in the Appendix | in (92), (97), and (100), respedfive
In order to determine the value df(d,..), we use (23) and (20) in (14), to obtain the following CRLB matr

—1
02 HSncHT HVnc

CerrB,e =37 (Une) =
2/0’121) VZCHT Aa

(24)

The CRLB matrix is related to the sensor and target locatiorsigh the matrixH, and to the received waveforms
correlation functions and its derivatives through #e. andV,,. matrices.

1) Orthogonal Waveforms: When the waveforms are orthogonal, (92), (97), and (100pkiynto (101) in
Appendix |. This simplification enables to compute the CRLIB)(in closed form. We perform this calculation
next.

While the CRLB expresses the lower bound on the variance efestimate of),,. = [x,y,ozR,o/}T, we are
really interested only in the estimation ofandy. The amplitude term&” anda! serve as nuisance parameters.
For the variances of the estimateswoéindy, it is sufficient to derive th@ x 2 upper left submatri¥CcorrB,.]oy o =
[(J (9"6))71} 2x2

Proposition 1: The CRLB submatriCcrrs,.],y fOr target localization in theon-coherent case with orthog-

onal signals is:

02

1
[CCRLB,.Jaxo :2/7 (HS, .H") . (25)

Proof: From (101) in Appendix |, we have for terr7hus of (24):
Sne = 4% [diag(a)B diag(a”)] (26)
Vnc = Oa

Ay =IopynxomN.
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In (26), diag(c) denotes a diagonal matrix with the elements of veatdvlatrix B = diag (1 [5%,.5%,, .-, 0%, ])
with 3z, denoting the normalized elements, = 3;./43, and1 =[1,1,...1]", 1 € R¥N*1. Using (26) in (24), it is

easy to see that
2

C —1
[CCRLBnC]Qx2 = 2—2 (HSnCHT) (27)
et
- 7’]nc gwnc hnC
JoneGyne — Nie hne  Gyn. ’
where:
Nne = Wa
M N . v )
Gape = D D |oun] 5Rk (btwy, + bra,)”
k=14=1
M N 2 ) (28)
Gyne = 2 |over | 5Rk (atzy, + ara,)”,
k=1/=1
M N 2 o
hnc = - Z Z |04€k| ﬁRk (atmk + armg) (btwk + brmg) .
k=14=1
This concludes the proof of the proposition. ]
It follows that the lower bound on the variance for estimgtthe 2 coordinate of the target is given by
2 e
1o = Npe————2——. 29
wneCRE nncgwncgync —hi. (9)
Similarly, for they coordinate,
2 Jyne
1o = Npe——22——. 30
UncCRE fIne 9z pcGync — h72u: ( )

The termsgy,... gy,.., andh,. are summations od:,, , Grz,, biy, andb,,, terms that represent sine and cosine
expressions of the angles and ¢, and therefore relate to the radars and target geometriaiajois apparent
that for the non-coherent case, the lower bounds on then@@$a(29) and (30) are inversely proportional to the
averaged effective bandwidth?, andSNR = 1/02 (see expression fof,. in (28)). It is interesting to note that
ne IS actually the CRLB for range estimation in a single anteratiar, based on the one-way time delay between
the radar and the target (see for example [19]). The otherstén (29) and (30) incorporate the effect of the sensors

locations.

B. Coherent Processing CRLB

We recall that in the section on the signal model, we definecctimplex amplitudey,;, associated with the path
transmitterk — target— receiver/. In the non-coherent case, the complex amplitude is a nuéspacameter in
estimating the target locatian, y. In the coherent case, the transmitting and receiving sader assumed to be
phase synchronized. By eliminating the phase offsets, itrasmodel in (7) applies, and the nuisance parameter
role is left to the complex target amplitude= ¢ + j¢!. The coherent approach to localization seeks to exploit
the target location information embedded in the phase tesp$—27 f.7) that depend on the delayg., which
in turn are function of the target coordinatesy.

Define the vector of unknown parameters:
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T

0. = [,y, ¢, ('] (31)

As before, define a second vector of unknown parameters iinsteff the time delays (rather then the target
location),
T

z/Jc = [Ta CRa <I} ) (32)

to be used in (14) to derive the CRLB. In comparing the cohtetase in (32) with the non-coherent counterpart
in (17), we note that),,. incorporates the vectors™ anda!, while v is a function of the scalarg’ and¢’. The
reduction in the number of unknown parameters is made gdessibough the measurement of the phase terms of
aft andal.

For coherent observations, the conditional, joint pdf af tdbservations at the receive sensors, given by (7), is

of the form:
X M 2
p(rlte) o exp —O_—QZ/ ro(t) — Y _Cexp (=2 forer) sk (t— 7a)| dt ¢ . (33)
wop_1 i k=1

We follow the same process used in Section IlI-A, to develop CRLB for the coherent case based on the

relation in (14). The matri®. takes the form:

H 0,
_ 81116: 1 MNx2 7 (34)

P.
00, c

0 1
2XMN 2X2 Ax (MN+2)

where matrixH has the same form as in (21), since it is independent of theanaé parameters in both cases.

An expression for the FIM matrixJ (¢..) , is derived in Appendix Il, yielding:

2 | Se V¢
M= | o , (35)

(MN+2)x(MN+2)
where the submatrices are found in Appendix Il as follo®s:in (105), A,. in (108), andV. in (111).

The CRLB matrix for the coherent case is then found substgui34) and (35) in (14) and (13), obtaining:

1
o 2 | HS,HT HV, .
CREBe = 9)02 | yTHT AL ' (39)

As in Section llI-A, we develop the closed form solution t@ t8RLB matrix in (36) for the case of orthogonal
waveforms. Since we are interested only in the lower boundhenvariances of the estimates ofand y, the
submatrix[CcerrB.loys = [(Jc (9))_1}2X2 is derived and evaluated next.

Proposition 2: The CRLB2 x 2 submatrix for thecoherent case and orthogonal waveforms is:

02

[CorLB.]axo =3/07

(HS H” - HV A VIH") " (37)
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Proof: From (112) in Appendix Il we have the values of the matri&s A,., and V. for orthogonal
waveforms. Using this anHl defined in (21) in (36), the CRLB matrixCcrrp,, is obtained. Consequently, the
submatrix[CcrrB. |5, IS computed in Appendix Il resulting in the form given in (37

This completes the proof of the proposition. ]

From (37) and (112), it can be shown th#€crr5.],,, Can be expressed as:

Ne gz, hc

— : (38)
9z.9y. — hg he gy,

[CorLB.]axs =

where the various quantities are as follows:

2
P C
Mle = §r2p2(1C /02
M N

Jz. = Z Zka (btwk + bmz)Q i

2
(bt;ﬂk + brwg)) )
k=14=1

Z‘H
VRS

M=

M=

o
Il
—
o~
Il
-

M N ) 2
9y = kz_:u;ka (atmk =+ armz) — MN (atmk + amﬁe)) ) (39)

M N
hc == _kzg ka (atmk + arm[) (btmk + brm[)
=1¢=1

S
2)—'

7 N
Mz
M=

o~
Il
-
~
I
-

N M N
Z (Qtay, + arwe) Z Z (bte, + brwe)-
(=1 k=14=1

Mz

1
+MN
k

1

The lower bound on the error variance is provided by the diajelements of théCCRLBCOT] ..o Submatrix

2
and are of the form:

9z,

2
P — (40)
z.CRB ngcgyc — hz
2 gyc
o =N—"—.
yeCRE cgzcgyc - hg

The termsy,, g,., andh, are summations af.,, , a,4,, bz, andb,,, that represent sine and cosine expressions
of the anglesp and ¢ and therefore relate to the radars and target geometriciagultiplied by the ratio terms
fre = (1 + ﬁ—é) Invoking the narrowband signals assumptigfy f> < 1 it follows that fr, ~ 1. These terms
have some additional elements when compared with the nberent case. It is apparent that for the coherent

case, the variances of the target location estimates ing#jnverse proportional to the carrier frequerfgdy

C. Discussion

We make the following observations:

« The lower bound on the variance in the non-coherent casevésgealy proportional to the averaged effective
bandwidthgs. For the coherent case, with narrowband signals, whéyg? < 1, the localization accuracy is
inversely proportional to the carrier frequengtyand independent of the signal individual effective bandwid
due to the use of the phase information across the differhtsplt is apparent that coherent processing offers

a target localization precision gain (i.e., reduction of thcalization root mean-square error) of the order of
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f/B, which we refer to agoherency gain. Designing the ratiof./3 to be in the range 100-1000, leads to
dramatic gains.

« The termy, in (39) is the range estimate based on one-way time delayapitlerent observations for a radar
with a single antenna [30].

o The CRLB terms are strongly reliant on the relative geogiagspread of the radar systems vs. the target
location. This dependency is incorporated in the tegms /..., 9y../y. @andhy, .. It is apparent from (40),
(29) and (30) that there is a trade-off between the variantéise target location computed horizontally and
vertically. A set of sensor locations that minimizes theitamtal error, may result in a high vertical error. For
example, spreading the transmitting and receiving ragaesiangular range of (7/10) to +(7/10) radians
with respect to the target, will result in high horizontatarwhile providing low vertical error, as we would
expect intuitively. This is caused by the fact that the tegns./g.. are summations of sine functions and
9un./9y. @re summation of cosine functions of the same set of anglesder to truly determine the minimum
achievable localization accuracy in bathandy axis, we need to minimize thever-all accuracy, defined as
the total variancer? = (02 crp + 02 crB)-

« The message of dramatic improvement in localization acyunaeds to be moderated with the observation that
the CRLB is a bound o$mall errors. As such, it ignores effects that could leadlénge errors. For example,
MIMO radar with distributed sensors and coherent obseymatis subject to high sidelobes [1]. Additionally,
a phase coherent system is sensitive to phase errors. Tdpss are outside the scope of this paper, but they
should be kept in perspective.

« The lower bound as expressed by the CRLB, provides a tighhdb@i high SNR, while at low SNR, the
CRLB is not tight. As stated in [33], the MLE is asymptotigallnbiased and its error variance approaches the
CRLB arbitrarily close for sufficient long observation timeith the condition that the MLE is not subject to
ambiguities. As the MLE of the time estimates is based on heatdilters at the receiver end, the ambiguity
features of the signal waveforms arise in low SNR conditiand predominate the estimation capabilities,
causing erroneous time estimates. As the ambiguity prabbme usually addressed trough the signal waveform

design, a more rigid bound needs to be found for the locédmatariance in the low SNR case.

IV. EFFECT OFSENSORSL OCATIONS

The CRLB for target localization with coherent MIMO radaosls a gain, i.e., reduction in the standard deviation
of the localization estimate, of./3 compared to non-coherent localization. Yet, the CRLB isrgjty dependent
on the locations of the transmitting and receiving senseletive to the target location, through the terms_ /..,
Gyn./y. @Nd N, .. TO gain a better understanding of these relations, and ketex bound on the CRLB over all
possible sensor placements, further analysis is develiptds section.

We introduce the following general notation: for any givenasf vectors = (&1, &e, ..., &) andk = (k1, K2, ..., K1):
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L
T (€)= %Zlé? (41)
=
T (5“) = %;giﬁz

The termsg,, and g,, in (28) can be expressed using the conventions defined ingdd)terms defined in

Section 1lI-B, viz.:
9o, = MN [T (b3,) + T (b2,) = [T (b))’ = [T (b (42)

and
g = MN [T (a,) + T (a,) = [T (a))” = [T (a0)?] (43)

where the narrowband signals assumption is applied. Sigithe term#h. in (39) can be expressed:

he = MN [T (at:btr) + T (ar:brz) (44)
—T (at) E (biz) — T (ay2) E (byy)] .
Sincea?,, +b7, = cos®¢, +sin’ ¢, =1 anda?,, +b?,, = cos® ¢, +sin® ¢, = 1, the following conditions apply:

T (a},) + T (b7,) =
T (a%,)+T (b2,) =1

OS[T( tm)] SLOS[ (amc)] <1 (45)
0< [T (btz)]Q <1 0< [T (brz)]2 <1
0<T(a},)<1;0<T(a2,) <1
0<T(by,)<1;0<T(bZ,) <1

We seek to find sets of angles’ and ¢*, that yield sets of cosine and sine expressiajs a’,, b}, b,
for which the values of the Cramer-Rao bounds for localkmatlong ther andy axes ¢- oz and o, crp;

respectively) are jointly minimized, that is:

Atq,arz,btz,bra

This is equivalent to minimizing the trace of the CRLB submxaCcryr5.],,,. The explicit minimization problem

is formulated introducing the objective functigi:

inimi JwcFGy.
minimize fo(ate, arg, bz, bry) = Mo g ey
atz,arz,bte,bre TcIYe c (47)

subject to constraints (45).
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This representation of the problem is not a convex optirorgproblem? The next steps are undertaken in order
to formulate a convex optimization problem equivalent t@)(4.e., a convex optimization problem that can be
solved through routine techniques and from whose solutiég rieadily possible to find the solution to (47).

In [28], it is shown that for a given positive definite matrir,our cas€Ccrr.B, 5,5, and its inverse matri¥,

in this case:

F=— , (48)
Ne _hc Jzc

the following relation exists between the diagonal elemaritthese matrices:

[CcrLB.); = ﬁ’ i=1,2. (49)
Equality conditions apply for ali iff F is a diagonal matrix, i.e.h. = 0. Now, observe that the inverse of the
elements on the diagonal & are lower bounding the elements on the diagonal of the mé&leix; 5, for any
sz, arz, byz, bre. We then define the objective functi(j_la(am,am,bm, b,.), and the optimization problem
min T (@ i) = - (Lt L) (50)
Ne \Yz. Yy

subject to (45).

The new objective function and the original objective fumetare related ag (ass, a2, bz, brz) > fo (atz, are, b, bra),
with equality forh. = 0. Substitute the values aof,, andg,_ from (42) and (43) in the objective function of (50)

to obtain

— 1/ (meMN
fO (atma Arg, bt;Ea brw) = 5 2/ (77 ) 2 2 (51)
2-T(bg,) =T (b7,) — [T (aw)]” — [T (arz)]
. 1/ (n:MN) |
T (b3,) + T (b2,) - [T (bi)]” = [T (br)]”
It is apparent that the denominator of the first summand isxded by:
0<2-T(b},) - T (b,) — [T (aw)]’ - [T (ar)]* <2-T (b,) =T (b7,) , (52)
and the denominator of the second summand is bounded by:
0< T (b%)+T (b)) — [T (b)) — [T (b)) <T (b2) +T (b2,). (53)

1A convex optimization problem is of the form [32]

minimize fo (z)
subjectto  fi(z) <0
Z]‘ ajr; =0

for some constants;, i, j, i = 1,...,m, 7 = 1, ..., p, and wherefo, ..., fm, are convex functions.
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DenoteT (b?,) + T (b2,) = p, and letT (ay,) = T (ays) = T (b)) = T (bys) = 0. Then, from (51)-(53) and

(50), we obtain the following problem:

_ — 1 1
minimize =-—+ -
" fo (w) 2 u
subject to p—2<0 (54)
—p < 0.

The objective functionf, (1) is still not convex. The epigraph form is a way to introducérear (and hence
convex) objective, while the original objectivefy is incorporated into a new constraifif — ¢ < 0. The key point
here is that whilef, is not convex, the constraifit — ¢ < 0 can be transformed to a convex form. After some

simple algebraic manipulations, the epigraph form turris the following convex problem:

minimize t
Lt
subject to
2_ <
tu? —2tp+2<0 (55)
n—2<0
—pn<0
—t<0

A convenient way to solve this convex optimization problesnta employ the concept of Lagrange duality and
exploit the sufficiency of th&arusk-Kuhn-Tucker (KKT) conditions [32]. The Lagrangian of the problem in (55)

is given by:

L(p, t,N) =t + A1 (tp® = 2tp+2) + Ao (0 — 2) — Asp — Aat, (56)

where);, i = 1,..,4 is the Lagrange multiplier associated with théth inequality constrainf; (u,t) < 0.
The KKT conditions state that the optimal solution for théyal problem (minimization of in (55)) is given

by the solution to the set of equations:

O
OL(t. ) _
ot N
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Applied to (55) and (56), these equations specialize to
A1 (2t — 2t) +X—A3=0 (58)
T+ (02 —20) =X =0

A (tp® —2tp+2) =0

)\2 (,u - 2) =0
—)\3,LL =0
=t = 0.

It is not difficult to show that the solution to this system isem by

pr=1
=2
(59)
Ar=1
AN=X=X\=0
Recalling thaty = T' (b%,) + T (b2,) , the optimal solution can be rewritten as:
p* =T (bj7) + T (bj2) =1. (60)

In addition to (60),a;,,a’,,b;,, b, have to satisfy the relations (45), and the equality coodsifor (49), (52)
and (53), viz.,

T(ai7) + T (a77) =1
T (by,) =0; T (by,) =0
T(a;,)=0; T(a,)=0
T (ai,bi,) + T (a7, by,) = 0.

(61)
Substituting these results in (42) and (43), we compute fitenal g; andg; ,
Yz, = 9y, = MN.

It follows that the minimum value of the trace of the CramepRaatrix [CCRLBCM]2X2 , fo In (47), is given by:

2nc
rhan bl bl = . 62
fO (atm’arm7 tx> rw) MN ( )

The final step in determining the effect of sensor locationstlee localization CRLB is to recall that the
multivariable argument of, in (62) is actually a function of the transmitting sensorgles¢r, £k = 1,..., M,

and receiving sensors angles, £ = 1,..., N (see definitions in the previous section). What are then fignal
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sets¢* and ¢* that minimize the variance of the localization error? Theiropl angles can be found from the

relations (61). For example, for the cosine of the transrstbearingd” (a},) = 0, means
1 M
MZ cos ¢y, = 0. (63)
k=1

A symmetrical set of angles of the forgy* = {¢;-*|¢;* =¢, + w,z =1,.,.M;M > 2}, is a solution to
(63) for any arbitrarys,. The same solution is obtained for the sinégb;,) = 0. The relationsT (af,) = 0,
T (b%,) = 0 lead to a solution constituted by a symmetrical set of anglesf the same form ag*. The relation

T (aj,b},) + T (ai,br,) = 0 expressed in terms of angles is

M N
1 1
Y Z cos ¢y, sin ¢y, + N Z cos gy sinp; = 0. (64)
k=1 =1
It can be shown that (64) is met by angles and ¢; symmetrically distributed around the unit circle, but the
number of sensors has to meet > 3, N > 3. The conditionT (b;2) + T (b;2) = 1 in (61), expressed in its

explicit form, is

1 1
i Z cos® ¢ + N Z cos? ¢} = 1. (65)
k=1 =1

The symmetrical set of angles that meet (63) and (64) profidE,_, cos? ¢ = + 31| cos? ¢} = L and there-
fore meet the requirement of (65). The same appliet (a;2) + 7 (a:2) = 1, where we havels "7 sin® ¢} =
N iy sin’ o} = 3.
We conclude thaf\/ > 3 transmitting, andV > 3 receiving sensors, symmetrically placed on a circle around
the target at angular spacings®f/M and27 /N, respectively, lead to the lowest value of the localizatidRL8.
This result can be extended by noticing that relations (649 hold for anysuperposition of symmetrical sets

containing no less thaB transmitting and/or receiving sensors. Therefore, thepdeta set of optimal points is

P = {cb?;
= {s@?

where the total number of transmittind/() and receiving &) radars may be divided int& and U sets of

given by:

(6 = 0, + 26=1)

|4
z:l,..,Zv;sz3;1;Z - }

U
,,Zu;ZUZ?);uZ_lZUZN}’

(66)

(wzf =, + —2”§:1))

z=1,..

symmetrically placed radars, each set consist&pfand Z,, radars, respectively. The angles and ¢, are an
initial arbitrary rotation of the symmetric sefs, and Z,,, correspondingly.

As a special case, it is interesting to evaluate the CRLB B8) (8ith 1 transmitter andM/ N receivers, i.e., a
Single-Input Multiple-Output (SIMO) system. This schemak®s use of M N + 1) radars instead ofM + N)
radars used in a MIMO system witl/ transmitters andV receivers. From (66) it is apparent the this case does not
provide optimality since the number of transmitters is semahan3. To evaluater? g+ 0. -y for this setting

we assumd transmitter is located at an arbitrary angle with respect to the target, and a set/dfN receivers
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are located symmetrically around the target, at angfethat follow the condition in (66). The expressions in (42),
(43), and (44) reduce to the form:
9o, = MN [T (b2,) — [T (bm)ﬂ - %MN, (67)
1
g = MN [T (a2,) = [T (a)”] = SMN,
he = MN [T (a;zbrr) — T (ay2) E (brz)] =0,

and the trace of the CRLB submatricrrp, 5., defined byfy (ats, arz, bz, bre) = oiccRB + USCCRB =

9z +3y. i
IS
Nle Gz YGye —h% !

4ne
fO (atwaarmabtmabrw) - MN (68)

This result expresses an increase in the estimation ertbeifactor of2 when compared withl/ transmitters and

N receivers given in (62).

A. Discussion
The following comments are intended to provide furtherghsiinto the results obtained in this section.

« From (62), the lowest CRLB for target localization utiligiphase information is given b3n./ (M N). We
interpret the reduction of the CRLB by the facttfN/2 compared to a single antenna range estimation given
by n. as aMIMO radar gain. This gain reflects two effects: (1) the gain due to the systeotpfint; (2) the
advantage of using/ transmitters andV receivers, rather than, for exampletransmitter and\/ N receivers.
The latter gain is apparent whéd N > (M + N).

o The CRLB obtained through the use of a single transmit a@teanmd M/ N receive antennas in (68) is
4n./ (M N). It follows that MIMO radar, with a total o/ + N sensors, has twice the performance (from the
point of view of localization CRLB) of a system with a singlansmit antenna andl/ N receive antennas.

« The best accuracy is obtained when the transmitting andviegeadars are located on a virtual circle, centered
at the target position, with uniform angular spacingefM and 27 /N, respectively, or anguperposition
of such sets.

« The optimization analysis presented in this section isnit& to provide insight into the effect the sensors
locations have on the CRLB. Naturally, in practice, it is possible to control in real time the location of the
sensors relative to a target. However, the results heré teathat selecting among the sensors those who are
most symmetrical with respect to the target may lead to thetraocurate localization.

So far we have focused on the theoretical lower bound of thalilation error. In the next section, we discuss

specific techniques for target localization and their penfance as a function of sensors locations. For this purpose,

the GDOP metric and GDOP contour mapping tools are intradluce
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V. METHODS FORTARGET LOCALIZATION

In Section Ill, was formulated the lower bound on the var@an€any localization estimate. Here, it is of interest
to discuss some specific target localization estimatorpalticular, two estimators are presented: the MLE and the

BLUE. The MLE is motivated by its asymptotic optimality, vidaithe BLUE by its closed form expression.

A. MLE Target Localization

The MLE is a practical estimator in the sense that its apfitinao a problem of observations in white Gaussian
noise is relatively straightforward. Moreover, under mddnditions on the probability density function of the
observations, the MLE of the unknown parameters is asyrigptityt unbiased, and it asymptotically attains the
CRLB [19].

For the case of coherent MIMO radar, the signal waveformivedeby radar/ is given in (2). The MLE of the
]T

unknown parameter vectér= [z,y,(]" given the observation vecteris given by [19]:

-~

HZ\/IL = arg {meax [1ng (I‘l@)]} ) (69)

wherep (r|0) is given by (33) noting that the time delayg. are known functions of andy. To jointly maximize
log p (r|@) with respect t&d = [z, y, (]T, we start by maximizing it with respect g

0
3¢ 08P (<l .Q) | = 0. (70)

Using (33) in (70), the estima@ can be found, and it is a function efandy. By substituting it back into (69),
it is said tocompress the log-likelihood function [31] tdogp (r|x,y, Z) The MLE of the target location is then

given by
9 e
% 1ng (I'|.§C,y, C) |$:51&{L: O
9 e
5y 1089 (<12.9.) == 0 (72)

Since a closed form expression can not be found for the MLE 1), (humerical methods need to be applied. A grid
search or an iterative maximization of the likelihood fuantneeds to be performed to determitig; andya/r.
This might involve a significant computational effort. Inaptice, we can limit the search grid for high resolution

target localization estimation to an area around a coaitialinstimate obtained by the non-coherent approach.

B. BLUE Target Localization

The MLE presented in Section (V-A) does not lend itself to @seld form expression, and numerical methods
need to be used to solve it. A closed form solution to the tdggalization can be obtained by application of the
BLUE.

To formulate the BLUE, it is necessary to have an observatiodel in which observations change linearly with

the target location coordinates. That is because it is eriteio the BLUE that the estimate li;mear. To this end,
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we formulate a model in which the time delays are “observallet the observed time delay associated with a

transmitter-receiver pair bgs, then
Mok = Tek + Eek, Vk=1,..,.M,l=1,.., N, (72)

where ey, is the “observation noise.” In practice, the time delays mo¢ directly observable. Rather, they are
estimated, for example by maximum likelihood, from the reee signals. Then, the termy, is the time delay
estimation error. Our BLUE estimation problem of the targetation should not be confused with the estimation
of the time delays. The estimation of the time delays is jupteparatory step in setting up the “observations” of
the BLUE model. Once, the observation model has been set igopnecessary to ensure that the model between
the time delays and target location is linear. Setting thegimof the coordinate system at some nominal estimate
of the target location, and preserving only linear termshaf Taylor expansion of expressions such as in (1), we

can express the time delays as linear functions ahdy,

Y (sin ¢y, + sin ¢y) , (73)

x
Tor = - (cos ¢y, + cos pp) — -

where the angleg; and o, are the bearings that the transmitting sens@nd receiving sensaf, respectively,
subtend with the reference axis (with the origin at the n@higstimate of the target location). Note that the
definitions of the angles here are a little different than angles defined in Section 1ll and also denoteénd
. Here, the vertex of the angles is an arbitrary point in theyimeorhood of the true target location. In Section
[, the vertex is at the true target location. Since only tlegtex is different, we preserved the same notation for

simplicity sake. Utilizing definitions (22), we can exprdhg linear model in the following simplified form:

x
Ttk = _E (atmk + aru) - % (btmk + brwtz) . (74)

Letting, 7 = [711, T12; -+ TMN]T and the vector of unknowns= [z, y, ¢]”, we write (74) in vector notation as

follows:

T = D8, (75)
where the angle dependent matfixis defined as:

at;ﬂl + arml btw1 + brm1 1

D=1 . (76)
(&
ath + aer btzM + ber MN X3
The observation model (72) can then be expressed as
p=D0+e¢, (77)

wherep = [p11, 12, - MMN]T, ande = [e11, €12, ...,aMN]T is the M N x 1 observation noise vector. To reiterate,

a key difference between the MLE and BLUE models is that theEMarget localization is carried out utilizing
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signal observations (which are not linearany), while according to (77), the BLUE’s “observations” are het
form of time delays. So an intermediate step of time delaymedion is implied. The time delays estimates used

as observationg, can be derived for example by MLE as follows:

fuek = argmax [exp (j2m fev) /u (t) sp (t —wv)dt|, (78)

wherewv is a dummy variable for the time delay.
We still need some characterization of the “noise” teaps It is shown in Appendix IV, that the maximum
likelihood time delay estimates are unbiased with erroracience matrix
e = ;QIMNXMNa (79)
872 f2 |CI" /o,
where previous definitions of the various quantities appty: the linear and Gaussian model in (77), the BLUE
is computed from the Gauss-Markov theorem [19] that stdtesBl_UE of the unknown vecta# is given by the

expression:

fp = (D"C:'D) ' DTC (80)

The theorem also establishes that the error covariancexnmstr

Cp = (D'C;'D) . (81)

Using the time error covariance mati@_ and the linear transformation matX in (76), the following estimate

for the target localization is obtained:

M N
T ~ Z (atzk + armz) 12745
= [0s] =Gy | T , (82)
P~ 2x1
Y ) Z Z (thk + brwtz) Mok
k=1¢=1
where iy, are the time observations, and the mafthg is of the form:
Ggp = (83)
913923 - 9on

The elements of matritz, are:
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M N ] M N 2
ZZ btwk + brmg - M— (ZZ btwk + brmg ) ) (84)

k=1¢=1 k=1¢=1
M N M N 2
~3S e o i (LT )
k=1¢=1 k=1¢=1
M N
B = _ZZ ((ata), + ara,) (bia, + bray)) s
k=1£4=1
M N
L 5 NUNEEIN) ) ST
k=1¢=1 k=1¢=1
Using these results in (81) provides the MSE for the BLUE dievics:
2
2 c 918 )
0B = ; (85)
B 87T2f62 |<|2 /0121, (ngng - h123
for the estimation of the: coordinate, and
2
2 C 9>8
o, B = ; (86)
v.B 87T2f02 |<|2/012u (913923 _h123>

for the estimation of the coordinate.

C. Discussion
The following points are worth noting:

« The BLUE estimator in (80) and its variance in (85) and (8&)@ovided in closed form. This enables analysis
without extensive numerical computations.

« In general, the variances (85) and (86) have similar funeti@ependencies on the carrier frequency and on
the sensor deployment as the CRLB (40). The tetms, a,4,, bi,, andb,,, embedded in (85) and (86)
relate the sensors layout to the variance of the BLUE .

From the expressions of the variance of the BLUE, one caneattily visualize the effect of the sensors layout.

A mapping method, acting as a design and decision makingao®IMO radar systems, is proposed and evaluated

in the next subsection.

D. GDOP

In Section 1V, we discussed optimal sensor location for mining the CRLB. In practice, we are faced with a
specific deployment of sensors, and we ask what is the |l@t&lizaccuracy for a given location of the target. GDOP
is a metric that addresses this question. The GDOP is conynuzeld in GPS systems for mapping the attainable
localization accuracy for a given layout of GPS satellitesifions [28], [29]. The GDOP metric emphasizes the
effect of sensors locations by normalizing the localizatesror with the term contributed by the range estimate.

The GDOP metric for the two dimensional case is defined:
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\Jo2 + 05
GDOP= *—— (87)

COe
wheres? and 05 are the variances of localization on theandy axis, respectively, and. is the standard deviation
of the time delay estimation error, assumed the same forealas. Inherently, the GDOP provides a normalized
value that measures the relative contribution of the radacstion to the overall accuracy. When the BLUE is
used, and the linearity conditions hotef ando—; are given by (85) and (86), respectively. Using the resu(7By,

co. for the time delay variance, we get the following GDOP expi@s.

GDOP; = L%BQ_ 88)
9189258 — hB

The GDOP reduces the combined effect of the locations of¢éheas to a single metric. Once we get the values
mapped, the actual localization error is easily derived mjtiplying the GDOP value witheo..

Figure 2 and 3 present contour plots of the GDOP values3for4 and 7 x 7 MIMO radar systems, re-
spectively. The sensors are positioned symmetrically radothe origin. In Figure 2, the transmitting sensors
are located at bearings = [géi = M, i=1,...,3|, and the receiving sensors are positioned at bearings
= {% =7+ w, 1=1,.. 4]. In Figure 3, thel/ = 7 transmitting sensors are positioned as a superposition
of two symmetrical constellations: the first set includese¢hradars and the second four. The sets are located
at bearingsy = [@- =i+ @, i=1,..,3; =7+ W, 1= 4,...,7}. The receiving radars, for
this case, are set in a single symmetrical constellatioh Wwéaringsy = {%- = Mfl), i=1,.., 7}. The first
noticeable factor in the comparison of the two plots is thghbr accuracy obtained with seven radars compared
to four radars. For example, the lowest GDOP value in Figyi®r2the 3 x 4 system is0.4082, while with seven
radars (see Figure 3), the lowest GDOP0ig020, corresponding to &0% reduction. When a target is located
inside the virtual N + M )-sided system footprint, a higher localization accuracghained than when a target is
outside the footprint of the system. In particular, the Hestlization is obtained for a target at the center of the
system. The increase in GDOP values from the center to thiriobboundaries is slow. Outside the footprint,
the GDOP values increase rather rapidly.

In Figure 4 and Figure 5, contours of seven non-symmetyiqadisitioned radars are drawn. When the radars
are relatively widely spread, as in Figure 4, there are stithe areas with good measurement accuracy, though the
coverage is shrunk compared to the case with symmetricdbgment of sensors in Figure 3. When the viewing
angle of the target is very restricted, as in Figure 5, thera marked degradation of GDOP values.

These examples demonstrate the main theoretical resukatio@ 1V, namely that a symmetrical deployment of
sensors around the target yields the lowest GDOP valuethdfarore, calculating the lowest attainable GDOP value
using the optimal results in (62) for® x N MIMO radar, we obtain a GDOP value gf2/M N, and forM = N
it is equal to\/2/N2. As a numerical example, the lowest GDOPs in Figures 2 ane 3/2/3 - 4 ~ 0.4082 and
\/W ~ (.2020, respectively. Comparing this with the results obtained28] [for the case of passive GPS based
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systems, withV satellites optimally positioned around the target, for atthihe lowest achievable GDOP value is

2/v/N, the MIMO system advantage is clearly manifested.

VI. CONCLUSIONS

In this paper, we have developed analytical expressionshforestimation errors of coherent and non-coherent
MIMO radar using the CRLB. It was shown that when the processs coherent and the phase is processed,
there is a reduction in the CRLB values (standard deviatibthe estimates) by a factor of./3 over the case
when the observations are non-coherent. We referred togHiis as coherency gain. Expressions for the CRLB
capture also the impact of the sensors geometry. Furtheimzition of the localization error reveals a MIMO
radar gain directly proportional to the product of the humbgtransmitting and receiving radars. The smallest
CRLB is achieved when the transmitting and receiving senace arrayed symmetrically around the target or any
a superposition of such sets. The GDOP metric and mapping ingoduced as a general tool for the analysis of
the localization accuracy with respect to the given radaid target locations. These plots could serve as a tool
for choosing favorable radar locations to cover a givendbagea. While localization by coherent MIMO radar
provides significantly better performance than non-catitgpeocessing, it faces the challenge of multisite systems

phase synchronizing, and needs to deal with the ambigte@aming from the large separation between sensors.

APPENDIX |

DERIVATION OF THEFIM IN (22)

In this appendix, we develop the FIM for the unknown parameéstor ¢,,., based on the conditional pdf in

(18). The expression faf () = E [Vw logp (r|y)) (Vy 10gp(r|¢))H} =-F {%’W} is derived using:

3 (el = B | Paine)]
I (Wne)l pntiy,unsiy = —F {%ﬁpiéﬂf,:ﬂ :
[J (wnc)](zMNﬂ ),(2MN+i) = -E [%} ) (89)
3 @nlarvsiy aarnary = B Wno)lnnri vy = —F | Sgiidyes]
3 Wncllisranaiy = 13 Wnawsiy o = =B |52l |
[J (wnC)] J(2MN+i') = = (1/’nc)](2MN+i),i/ =-F [%:ipi(ao‘:ff}
i=l-1)«M+Fk i=0-1)«xM+F,
0,0 =1,.. N; kK =1,.., M:
The first derivative of (r|¢,,.) with respect to the elements ofis:
M *
dl T(;wm)] :é I { [W -~ ; oo (t— Tm] o 2 - or)] (90)

M *
0 t—
_Zalk’sk' (t—Tgk/)‘| alkM}dt

or
=1 Lk
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Applying the second derivative to (90), define a masiy. with the following elements:

0.2

[Sneliir = Tw[J (V)]ar = (91)
2
=F {87 / [Oégksk (t — Tgk) Oézk/S;;/ (t — Tgk/)

aTgk 87’[!1«

+ azksz (t — Tgk) Ok Sk (t — Tgk/)] dt}

" 0? .
= Re {OégkOég/k/ {m /Sk (t - Tgk) Sk (t - Tgk/) dt:| } .
Using matrix notation for compactness,
2
Snc = W Re [dlag(a)RS dlag (O‘*)] ’ (92)

wherediag(-) denotes a diagonal matrix, was defined in (10), and we abuse the notation and let

Rl =% Ry 03
E=y [ (93)

o2 o OTOtpyy - 1

?
The elements of matriR, are defined as:

t— (=T )dt L =10
R, = J s (t = Ta) sy (= 7o) 94)
0 Iz
The second and third terms in (89) define a mafix with the following elements:

o2 o2

[Aolii = [Aa)(MN1i),(MN1in) = 771} I (Cne)lvan sy, un iy = 771} I (Une)lomrntiy,emntiny  (95)

9 M
=FE { ol / [Z sk (t — 7o) g i (t— Tonr)
k'=1
M
+Z SZ (t - Tfk) Qpk’ Sk’ (t _ Ték’)] dt}
k'=1
= Re {[Rs]u’} )

and

o o
[AaliMN+iry = [Aa](MN+i),i = ) [J (1/)nc)](MN+i),(2MN+i') ) [J (1/1nc)](2MN+i),(MN+i/) (96)
9 M
—FE —1/ > G) sk (= k) A s (¢ — 7o)
oy —1
M
+> 0 (=4) sk (t— 7o) i (= Ték’)] dt}
k=1
= —Im{[R.],,}.
In matrix notation,
Re[Rs] —Im[Ry]
A, = 97)
—Im[Rs] Re[R4]
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The fourth and fifth terms in (89) define the matiN%,. with the following elements:

o2 o2

[Vnc]ii’ = 71“ [J (Q/Jnc)](MNH),i’ = 7w [J (wnc)]i,(A{NJri’) (98)
0

0 o
=F {m 604Rg/k/ / [QZkSk (t - le) Qppr Spr (t — TEk’)

+OLZkSZ (t — Tgk) Qg Skt (t — Tgk/)] dt}

0
= Re {agka— [RS]W} 5

T ok
and
0'2 0_2
Vneluain = 71:1 J (¢nc)](2MN+i)7i' = 71” [J (1/Jnc)]i,(2MN+i/) (99)
0 o o
= {%m / [akak (t - Tfk) Qppr Spr (t — Ték’)

+OLZkSZ (t — Tgk) Quyk’ Sk! (t — Tgk/)] dt}

0
= —Im{agkﬁ [Rs]ii/} .

In matrix notation:

Ve = { 2 Re[diag(0)Rs]; —7Z Im [diag(a)Rs] } : (100)

Orthogonal Waveforms

Orthogonality implies that all cross elemerfts;, (¢ — 7¢1) s}, (t — 75 ) dt = 0, for £ # ¢ andk # k’,and after

some algebra, the matrices defined by (91)-(99) take theviolly form:
Am23? ||uw* B3, | i=1
[Snc]ii/ = ﬁ [| lk' ﬁRJ
0 i
Aol = (A Lot
alii = al(MN+i),(MN-+i’) =
( M ) 0 i#id (101)

[Aalimntiny = [Aal(mNti),ir =0
[Vnc]ii’ =0

[Vnc]i,(MNJri’) =0.

APPENDIXII

DERIVATION OF THE FIM IN (34)

In this appendix, we develop the FIM for the unknown parameéetor ., based on the conditional pdf in

(33). The expression faf () = E {Vw logp (r|y)) (Vy logp(rw))H} =-F {‘921"527’;(‘"“”)} is derived using:
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&2 log p(r|the)
[J (wc)]u’ |: Brigq/k/ :| ’
— 2 log p(r|te)
3 @ aansn aanny = —B | FgEas
92 log p(r|¢e.
[J (wc)] (MN+2),(MN+2) — —FE [%} s (102)
8% 1o r|Y.
[J (¥e)] (MN+1),(MN+2) — [J (1/’c)](MN+2),(MN+1) =-k [%} )
8%lo r|Y.
3 W ey = 1 @elliaanern o = —F [Grstiegel]
[J (wc)]z (MN+2) — = [J (¥e)] (MN+2),i’ — —E [%} )
i=l—-1)«M+k, =00-1)x«xM+F,
0,0 =1,.., N; k,k'=1,.. M.
The first derivative ofy (r|¢.) with respect to the elements ofis:
0 lo r|1. 1 M . L0le 27 f, *(t —
[ gp( |/¢) )] :_21‘ Te(t)—zcexp(—jZchTEk/)Sk/ (t—Tzk/) C [ Xp(] 7Tf le) Sk( Tfk)]
OTex o = OT ok
(103)
M ’ 0 lexp (—j27 fetor) sk (t — Tox)]
+ [re(t) =D Cexp (=2 feron) sur (¢ — Ték’)] ¢ 8072}: : - } .
k=1
Applying the second derivative to (103) define a ma8ix. with the following elements:
0.2
[Scliir = 53 W) = (104)
32
=E{0—F— / [CC* exp (127 fe (Tex — Terwr)) S (= Tarr) sp, (¢ — Ten)
aTgkaTg/k/
+ (*Cexp (—j2m (Tgk — Tgk/)) sp (t— Tgk/) Sk (t — Tgk)] dt}
82
= 2 P Ee— —1 — A% ..y .
= Re{Ie* | 55— (exp (a2l — ) R}
In matrix form,
0? .
2 9 . .
S. = |¢[* 5 Re {dlag(e)Rs diag (e )} , (105)

where the operauofé2 and the matrixRs were defined in Appendix le = [exp (—27f.711), exp (=27 fe12),

oy exp (=27 o))
The second and third terms in (102) define a ma#iy. with the following elements:

02 o2

[Aaclin = [Aac)2 = [ (Ye)l w1y, (mn+1) = 774} [T (¥l (mn+2), (N +2) (106)
_E{ZZ/ [Z exp (=727 fo (e — Toxr)) Sk (6 — Ter) 8k (¢ — Torr)
l=1k=1 k/'=1

M
+Z exp (j??rfc (Tgk — Tgk/)) SZ (t — Tgk) Skt (t — Tgk/)] dt}

k'=1

N N M M
= Re {ZZZZ exp (—j2m fe (Tek — Tor)) [Rs]w} ;

(=10'=1k=1k'=1
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>
Q
5
=
(V]
|
>
Q
A
(V]
=
Iew

+ Y (5) exp (2 fe (Tox — Tu)) 5 (t = Tok) 1 (£ — Tow)

k=1

k'=1

ZZZZ exp j27ch Tgk—Tg/k/)) [R ]ii’

N N M M
:—Im{

In matrix form,

(=10'=1k=1k"=1

AOcC =

[ (U’c)] (MN+1)(MN+2) =

Re [eRSeH }
—Im [eRSeH }

o2
7

—Im [eRSeH]
Re [eRe’]

[J (U’c)] (MN+2)(MN+1) =

Z ()" exp (=527 fe (Tex — Tenr)) sk (¢ — Tan) sy (8 — Tanr)

|}

}

The fourth and fifth terms in (102) define the matN% with the following elements:

g

2

g

2

[Vela = 71” [J (¢c)]i,(MN+1) = 71“ [J (wc)](MNJrl),i’

|

+<* Z exp (j27ch (Tgk — Tgk/)) SZ (t — T[k) Sk’ (t — Tgk/)

M

k'=1
M

k'=1

:—Re

0

and

[Vc]io = 71” [J (Uh:)] J(MN+2) —

=F {81/ [(]C) Z exp (—j27ch (Tgk — le/)) Sk (t _ TEk) Slt/ (t _ le/)

T
Lk =1

M

2
Ow

2

[J (1/)6)](]\4N+2),i/

+ (O™ exp (42 fe (ox — Tuw)) i (t — 7ex) swr (= Ték’)]

k'=1

¢ exp(—j2mfe (ox — Tuw)) s (t — 7ex) ho (£ — 7o)

|}

{Z > Cexp (—g2mfe (1o — o)) Rl dt} :
Tk =1k'=1

:

=——Im{zzgexp j27ch Tgk—Tg/k/)) [Rs]ii’ dt}.

3Tgk

In matrix form,

V.=

Orthogonal Waveforms

September 24, 2008

=1k"=1

[ 8%— Re {( [diag(e)R,]
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(107)

(108)

(109)

(110)

(111)
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Orthogonality implies that all cross eleme(fts;C (t — Ter) sy (t — Top) dt = o for £ # £ andk # k. Therefore,
the matrices defined by (104)-(110) take the following form:
ax? (] f2fr, i=1

[SCOT]iiI = . .
0 1#£14
D S g—t
[Aac,, ]11 = [Aa,,]22 = MN
0 it (112)

[Aac, 21 = [Aa,,]12 =0
Ve, it = 2n¢! fe
Ve, Jiz = —2n(B fe.

where fr, = (1 + ?—E) When we invoke the narrowband assumptighy /2 < 1 it follows that fp, ~ 1.

APPENDIXIII

COMPUTATION OF (36)

The submatriXCcrrB, ], iS defined as:

[Corrplys = [T (0c)]5 - (113)

For a given matrix of the form:

HS,HT HV,
J(0c) = (114)
VIHT A,
where A . is a diagonal matrix of the formA . = dI>«2, andd is some constant.
By definition, the value ofJ (90)];} is obtained by:
3 (60.)caa.n|
- @D (115)

[J(0c)]; 1 = ERTICAT

where|-| denotes the determinant, aﬁd@)em(l 1) IS & submatrix, obtained by removing the first row and the first

column of theJ (6.) matrix. The determinant o (6.), using the property that the determinant of a matrix does

not change under linear operations, is:

HS.H” - VIH'A_'HV, 0
: (116)

I (6c)| =
vIHT Aoe

This can be calculated and expressed as:

13 (6.)| = [HS.H" — VIH"A'HV | [Ay| (117)

Repeating the same for the matﬁxec)em(m):
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—~——

~ HSCHTew(l,l) HVcem(l,)

J (6. = 118
R T Y e
Using the same matrix manipulation, we get:
3 (6e)ar.n)| = [HSHT = VIHTAIAV. | |Au (119)
and using terms (117) and (119) in (115) yields:
| |HSET - VIHTALEY,
J(0.)], 1= . 120
(6l |[HS.H” — VIHT A, HV.| (120)
By definition, this expression is identical to:
I (0))1 = [(HSCHT v HTA;QHVC)”} : (121)
’ 1,1
Repeating the process for term located B2), (2,1), and(2,2), results in:
[Corip., ]y, = (HSHT - VIHTAIHV,) . (122)

APPENDIX IV

DERIVATION OF COVARIANCE OF OBSERVATION NOISE (78)

For a set of received waveforms (t), 1 < ¢ < N, the time delay estimates = [u11, 112, ...,MMN]T are

determined by maximizing the following statistic:

ek, = arg max [exp (j27rfcv)/ re (t) s (t —v) dt} . (123)
v T
Equivalently,
4 {exp (j2mfev) / re (t) s (t — ) dt] = 0. (124)
dU T V=rk

The time delay estimates are expressed in (72). The prepatithe noise,; can be computed from (8), and (2).

It is not difficult to show that the following relation holds:

WO =, (125)
V=H¢ek

where

g(v) = (/ exp [127 fe (v — Tog)] sk (t — Ter) sy, (t — v) dt, (126)
T
and
ng = / iw (t)sy (t —v)exp (j2nfev) dt (127)
Ok - do ¢ k pU c .

September 24, 2008 DRAFT



32

We wish to write (125) in the form of (72). With a few algebramanipulations, including expandingv) in a

Taylor series aroundy;, and neglecting terms {(nk — ?gk)?’} , it can be shown that

n
fiek = Tek + . (128)
1m2f2 (1+ 9 ¢

Comparing this with (72), and invoking the narrowband agstion 37/ f2 < 1, we have for the error term

o % (129)

To find the first and second order statisticsegf, we need the statistical characterizationngf. As previously
stated, we assume the receiver naig€t) is a Gaussian random process with zero mean and autocmmelatction
02 46(t). Sinceny, is a linear transformation of the process(t), since the meanu,(t) is zero, E [ng] = 0.

Similarly, it can be shown that

Bl ‘1 0 Vlk # nm (130)
NekMpm| = .
21202 f2 Vlk =nm

Using these results, we finally get

Elemes,,] = E[L”;"”] (131)
1674 [C|" f2

0 Vlk # nm

71 =
= (R Vlk = nm

concluding that the covariance matrix of the teres is given by:

1

e = WIMNXMN- (132)
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Fig. 1. MIMO radar system layout.
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Fig. 2. GDOP contours for a symmetric positioning of radaxaund the axis origin: case (a) with M=3 transmitting radiar® symmetric

constellation with the receiving radars set organized iyrarsetric constellation of N=4.
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where the radar are almost aligned.

GDOP contours for an asymmetric constellation ofrdmar set with M=7 transmitting radars and N=7 receivingaradin the case
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