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Abstract

This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input

Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given

area. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and non-

coherent processing. Coherent processing requires a common phase reference for all transmit and receive sensors.

The CRLB is shown to be inversely proportional to the signal effective bandwidth in the non-coherent case, but is

approximately inversely proportional to the carrier frequency in the coherent case. We further prove that optimization

over the sensors’ positions lowers the CRLB by a factor equalto the product of the number of transmitting and

receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem.

The BLUE’s utility is in providing a closed form localization estimate that facilitates the analysis of the relations

between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours

are used to map the relative performance accuracy for a givenlayout of radars over a given geographic area.

Index Terms

MIMO radar, spatial processing, adaptive array.

I. I NTRODUCTION

A. Background and Motivation

Research in MIMO radar has been growing as evidenced by an increasing body of literature [1]-[18]. Generally

speaking, MIMO radar systems employ multiple antennas to transmit multiple waveforms and engage in joint

processing of the received echoes from the target. Two main MIMO radar architectures have evolved: with colocated

antennas and with distributed antennas. MIMO radar with colocated antennas makes use of waveform diversity [2],

[4], [12], [14], [15], while MIMO radar with distributed antenna takes advantage of the spatial diversity supported by
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the system configuration [1], [3], [5], [13]. MIMO radar systems have been shown to offer considerable advantages

over traditional radars in various aspects of radar operation such as the detection of slow moving targets [17],

[8], the ability to identify and separate multiple targets [10], [11], and in the estimation of target parameters such

as direction-of-arrival (DOA) [8], [10], and range-based target localization [18]. In particular, [18] studies target

localization with MIMO radar systems utilizing sensors distributed over a wide area.

Conventional localization techniques include time-of-arrival (TOA), time-difference-of-arrival (TDOA), and direction-

of-arrival (DOA) based schemes. MIMO radar system with colocated antenna can perform DOA estimation of targets

in the far-field, in which case, the received signal has a planar wavefront. In this class of systems, extensive research

has focused on waveform optimization. In [7], [14], [15] thesignal vector transmitted by a MIMO radar system is

designed to minimize the cross-correlation of the signals bounced from various targets to improve the parameter

estimation accuracy in multiple target schemes. Some of thewaveform optimization techniques suggested in [16]

are based on the Cramer-Rao lower bound (CRLB) matrix [19],[20]. The CRLB is known to provide a tight

bound on parameter estimation for high signal-to-noise ratio (SNR). Several design criteria are considered, such as

minimizing the trace, determinant, and the largest eigenvalue of the CRLB matrix, concluding that minimizing the

trace of the CRLB gives a good overall performance in terms oflowering the CRLB. In [9], a CRLB evaluation of

the achievable angular accuracy is derived for linear arrays with orthogonal signals. The use of orthogonal signals

is shown to provide better accuracy than correlated signals. For low SNR scenarios, the Barankin bound is derived

in [10], demonstrating that the use of orthogonal signals results in a lower SNR threshold for transitioning into the

region of higher estimation error.

MIMO radar systems with widely spread antennas take advantage of the geographical spread of the deployed

sensors. The multiple propagation paths, created by the transmitted waveforms and echoes from scatterers in their

paths support target localization through either direct orindirect multilateration. With direct multilateration, the

observations collected by the sensors are jointly processed to produce the localization estimate. With indirect

multilateration, the TOAs are estimated first, and the localization is subsequently estimated from the TOAs. The

observations and processing can also be classified as eithernon-coherent or coherent. The distinction between the

two modes relies on the need for mere time synchronization between the transmitting and receiving radars in the

non-coherent case, versus the need for both time and phase synchronization in the coherent case. Note that our

coherent/non-coherent terminology is limited to the processing for localization. Thus, a transmitted signal may have

in-phase and quadrature components, yet the localization processing is non-coherent if it utilizes only information

in the signal envelope. In the sequel, we evaluate the performance of localization utilizing both coherent and

non-coherent processing.

MIMO radar systems belongs to the class of active localization systems, where the signal usually travels a round

trip, i.e. the signal transmitted by one sensor in a radar system is reflected by the target and measured by the

same or a different sensor. Traditional single-antenna radar systems, performing active range-based measurements,

are well known in literature [21]-[25]. The target range is computed from the time it takes for the transmitted

signal to get to the target plus the travelling time of the reflected signal back to the sensor. The range estimation

September 24, 2008 DRAFT



3

accuracy is directly proportional to the mean squared error(MSE) of the time delay estimation and is shown to be

inversely proportional to the signal effective bandwidth [21]. A first study of the localization accuracy capability

of MIMO radar systems is provided in [18], where the Fisher information matrix (FIM) is derived for the case of

orthogonal signals with coherent processing and widely separated antennas. The CRLB is analyzed numerically,

pointing out the dependency of the accuracy on the signal carrier frequency in the coherent case, and its reliance on

the relative locations of the target and sensors. In [18], itis observed that the CRLB is a function of the number of

transmitting and receiving sensors, however an analyticalrelation is not developed. The high accuracy capability of

coherent processing is illustrated by the use of the ambiguity function (AF). Active range-based target localization

techniques are also used in multistatic radar systems, proposed in [26]. The TOA of a signal transmitted by a single

transmit radar, reflected by the target and received at multiple receive antennas is used in the localization process.

It is observed that increasing the number of sensors improves localization performance, yet an exact relation is not

specified. This paper addresses deficiencies in the literature by obtaining closed-form expressions of the CRLB for

both coherent and non-coherent cases.

Geolocation techniques has been the subject of extensive research. Geolocation belongs to the class of passive

localization systems, where the signal travels one-way. Since these passive measurement systems employ multiple

sensors, further evaluation of existing results for geolocation systems might provide insightful for the active case.

In wireless communication, passive measurements are used by multiple base stations for localization of a radiating

mobile phone. The localization accuracy performance is evaluated in [27]. It is shown that the localization accuracy

is inversely proportional to the signal effective bandwidth as it does in the active localization case. Moreover,

the accuracy estimation is shown to be dependent on the sensors/base stations locations. In navigation systems, the

target makes use of time synchronized transmission from multiple Global Positioning Systems (GPS) to establish its

location. In [28], [29], the relation between the transmitting sensors location and the target localization performance

is analyzed. GDOP plots are used to demonstrate the dependency of the attainable accuracy on the location of the

GPS systems with respect to the target. In an optimal settingof the GPS systems relative to the target position, the

best achievable accuracy is shown to be inversely proportional to the square root of the number of participating

GPS. In the sequel, we apply the GDOP metric to evaluate the localization performance of MIMO radar.

B. Main Contributions

The main contributions of this paper are:

1) The CRLB of the target localization estimation error is developed for the general case of MIMO radar

with multiple waveforms transmission. The analytical expressions of the CRLB are derived for the case

of orthogonal waveforms with non-coherent and coherent observations. The non-coherent case is used as

benchmark for evaluating the performance of the system withcoherent observations.

2) It is shown that the CRLB expressions for both the non-coherent and coherent cases can be factored into two

terms: a term incorporating the effect of bandwidth and SNR,and another term accounting for the effect of

sensor placement.
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3) The CRLB of the standard deviation of the localization estimate with non-coherent observations is shown

to be inversely proportional to the signals averaged effective bandwidth. Dramatically higher accuracy can

be obtained from processing coherent observations. In thiscase, the CRLB is inversely proportional to the

carrier frequency. This gain is due to the exploitation of phase information, and is referred to ascoherency

gain.

4) Formulating a convex optimization problem, it is shown that symmetric deployment of transmitting and

receiving sensors around a target is optimal with respect tominimizing the CRLB. The closed form solution

of the optimization problem also reveals that optimally placedM transmitters andN receivers reduce the

CRLB on the variance of the estimate by a factorMN/2. This is referred to as theMIMO radar gain.

5) A closed form solution is developed for the BLUE of target localization for coherent MIMO radars. It

provides a closed form solution and a comprehensive evaluation of the performance of the estimator’s MSE.

This estimator provides insight into the relation between sensors locations, target location, and localization

accuracy through the use of the GDOP metric. Contour maps of the GDOP, presented in this paper, provide a

clear understanding of the mutual relation between a given deployment of sensors and the achievable accuracy

at various target locations.

The rest of the paper is organized as follows: The system model is introduced in Section II. In Section III, the

CRLB is derived for the general case of multiple transmittedwaveforms. Analytical expressions are obtained for the

cases of non-coherent and coherent observations with orthogonal signals. Optimization of the CRLB as a function

of sensor location is provided in Section IV. The performance of two localization estimators is evaluated in Section

V. To establish a better understanding of the relations between the radar geographical spread and the target location,

the GDOP metric is introduced in Section V-D. Finally, Section VI concludes the paper.

A comment on notation: vectors are denoted by lower-case bold, while matrices use upper-case bold letters. The

superscripts “T” and “H” denote the transpose and Hermitianoperators, respectively. Complex conjugate is denoted

()
∗. Points in the x-y plane are denoted in upper-caseX = (x, y) .

II. SYSTEM MODEL

We consider a widely distributed MIMO radar system withM transmitting radars andN receiving radars.

The receiving radars may be colocated with the transmittingones or individually positioned. The transmitting

and receiving radars are located in a two dimensional plane(x, y). TheM transmitters are arbitrarily located at

coordinatesTk = (xtk, ytk) , k = 1, . . . ,M , and theN receivers are similarly arbitrarily located at coordinatesRℓ =

(xrℓ, yrℓ) , ℓ = 1, . . . , N. The set of transmitted waveforms in lowpass equivalent formis sk (t) , k = 1, . . . ,M,

where
∫
T
|sk (t)|2 dt = 1, andT is the common duration of all transmitted waveforms. The power of the transmitted

waveforms is normalized such that the aggregate power transmitted by the sensors is constant, irrespective of the

number of transmit sensors. To simplify the notation, the signal power term is embedded in the noise variance term

such that the SNR at the transmitter, denoted SNRt and defined as the transmitted power by a sensor divided by the

noise power at a receiving sensor, is set that a desired level. Let all transmitted waveforms be narrowband signals
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with individual effective bandwidthβk defined asβ2
k =

[(∫
Wk

f2 |Sk (f)|2 df
)
/
(∫

Wk
|Sk (f)|2 df

)]
, where the

integration is over the range of frequencies with non-zero signal contentWk [21]. We further define the signals

averaged effective bandwidth or rms bandwidth asβ2 = 1
M

∑M
k=1 β

2
k and the normalized bandwidth terms as

βRk
= βk/β. The signals are narrowband in the sense that for a carrier frequency offc, the narrowband signal

assumption impliesβ2
k/ f

2
c ≪ 1 andβ2/ f2

c ≪ 1.

The target model developed here generalizes the model in [21] to a near-field scenario and distributed sensors. In

Skolnik’s model [21], the returns of individual point scatterers have fixed amplitude and phase, and are independent

of angle. For a moving target, the composite return fluctuates in amplitude and phase due to the relative motion of the

scatterers. When the motion is slow, and the composite target return is assumed to be constant over the observation

time, the target conforms to the classical Swerling case I model. We now proceed to generalize this model to a

target observed by a MIMO radar with distributed sensors. Assume an extended target, composed of a collection

of Q individual point scatterers located at coordinatesXq = (xq, yq) , q = 1, . . . , Q. The amplitudesζq of the

point scatterers are assumed to be mutually independent. The pathloss and phase of a signal reflected by a scatterer,

when measured with respect to a transmitted signalsk (t) , are functions of the path transmitter-scatterer-receiver.

Let τℓk (Xq) denote the propagation time from transmitterk, to scattererq, to receiverℓ,

τℓk (Xq) =
1

c

(√
(xtk − xq)

2
+ (ytk − yq)

2
+

√
(xrℓ − xq)

2
+ (yrℓ − yq)

)
, (1)

wherec is the speed of light. Our signal model assumes that the sensors are located such that variations in the

signal strength due to different target to sensor distancescan be neglected, i.e., the model accounts for the effect

of the sensors/target localizations only through time delays (or phase shifts) of the signals. The common path loss

term is embedded inζq. The baseband representation for the signal received at sensor ℓ is:

rℓ (t) =

M∑

k=1

Q∑

q=1

ζq exp (−j2πfcτℓk (Xq)) sk (t− τℓk (Xq)) + wℓ(t), (2)

where the term2πfcτℓk (Xq) is the phase of a signal transmitted by sensork, reflected by scattererq located atXq,

and received by sensorℓ. Phases are measured relative to a common phase reference assumed to be available at the

transmitters and receivers. The termwℓ (t) is circularly symmetric, zero-mean, complex Gaussian noise, spatially

and temporally white with autocorrelation functionσ2
wδ (τ). The noise term is setσ2

w = 1/SNRt, where SNRt is

measured at the transmitter. SNRt is normalized such that the aggregate transmitted power is independent of the

number of transmitting sensors. The SNR at the receiver, dueto a scatterer with amplitudeζq, is SNRr = |ζq|2SNRt.

Signals reflected from the target combine at each of the receive antennas. For example, the resultant signal at receive

antennaℓ is given by
Q∑

q=1

ζqsk (t− τℓk (Xq)) exp (−j2πfcτℓk (Xq)) ≈ ζ′sk (t− τℓk (X ′)) exp (−j2πfcτℓk (X ′)) , (3)

whereζ′ and (2πfcτℓk (X ′)) are respectively the amplitude and phase given by

ζ′ =




(

Q∑

q=1

ζq cos (2πfcτℓk (Xq))

)2

+

(
Q∑

q=1

ζq sin (2πfcτℓk (Xq))

)2



1/2

, (4)
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and

2πfcτℓk (X ′) = tan−1

∑Q
q=1 ζq sin (2πfcτℓk (Xq))

∑Q
q=1 ζq cos (2πfcτℓk (Xq))

. (5)

In obtaining (3), we invoked the narrowband assumptionsk (t− τℓk (Xq)) ≈ sk (t− τℓk (X ′)), for all scatterers,

namely that the change in the lowpass equivalent signals across the target is negligible. It follows from this discussion

that the extended target is represented by a point scattererof amplitudeζ′ and time delaysτℓk (X ′) , where all the

quantities are unknown.

While this target model is completely adequate for our needs, it is possible to extend it slightly, at little cost.

Assume a constant time offset error∆τ at the receivers. Further, assume that the error is small such that it does not

impact the signal envelope, but it does impact the phase. Then we can write the time delaysτℓk (X ′) = τℓk (X)+∆τ

for some locationX = (x, y) . The target model (3) can now be expressed

ζ′sk (t− τℓk (X ′)) exp (−j2πfcτℓk (X ′)) ≈ ζsk (t− τℓk (X)) exp (−j2πfcτℓk (X)) , (6)

whereζ = ζ′e−j2πfc∆τ and the narrowband assumption was invoked once more. The composite target of (3) is

then equivalent to a point scatterer of complex amplitudeζ and time delaysτℓk (X) . For simplicity, the following

notation is used:τℓk = τℓk (X). The signal model (2) becomes

rℓ (t) =
M∑

k=1

ζ exp (−j2πfcτℓk) sk (t− τℓk) + wℓ(t). (7)

We define the vector of received signals asr = [r1, r2, ..., rN ]
T for later use. The radar system’s goal is to estimate

the target locationX = (x, y) . The target location can be estimated directly, for example by formulating the

maximum likelihood estimate (MLE) associated with (7). Alternatively, an indirect method is to estimate first the

time delaysτℓk. Subsequently, the target location can be computed from the solution to a set of equations of the

form (1), viz.,

τℓk =
1

c

(√
(xtk − x)

2
+ (ytk − y)

2
+

√
(xrℓ − x)

2
+ (yrℓ − y)

2

)
. (8)

The unknown complex amplitudeζ is treated as a nuisance parameter in the estimation problem.

Let the unknown target locationX = (x, y) , unknown time delays delaysτℓk, and unknown target complex

amplitudeζ = ζR + jζI , where the notation specifies the real and imaginary components of ζ.

We refer to the processing for estimating the target location asnon-coherent or coherent. The received signal

introduced in (7) is adequate for the coherent case, where the transmitting and receiving radars are assumed to

be both time and phase synchronized. As such, the time delaysinformation, τℓk, embedded in the phase terms

may be exploited in the estimation process by matching both amplitude and phase at the receiver end. In contrast,

non-coherent processing estimates the time delaysτℓk from variations in the envelope of the transmitted signals

sk (t) . A common time reference is required for all the sensors in thesystem. In this case, the transmitting radars

are not phase synchronized and therefore the received signal model is of the form:

rℓ (t) =

M∑

k=1

αℓksk (t− τℓk) + wℓ(t), (9)
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where the complex amplitude termsαℓk integrate the effect of the phase offsets between the transmitting and

receiving sources and the target impact on the phase and amplitude of the transmitted signals. These elements are

treated as unknown complex amplitudes, whereαℓk = αRℓk + jαIℓk. We define the following vector notations:

α = [α11, α12, ..., αℓk, ..., αMN ]T , (10)

αR = Re (α) ; αI = Im (α) ,

whereRe (·) and Im (·) denote the real and imaginary parts of a complex-valued vector/matrix.

III. L OCALIZATION CRLB

The CRLB provides a lower bound for the MSE of any unbiased estimator for an unknown parameter(s). Given

a vector parameterθ, constituted of elementsθi, the unbiased estimatêθi satisfies the following inequality [19]:

var
(
θ̂i

)
≥
[
J
−1 (θ)

]
ii
, i = 1, 2, ... (11)

where
[
J
−1 (θ)

]
ii

are the diagonal elements of the Fisher Information matrix (FIM) J (θ). The FIM is given by:

J (θ) = Eθ

[
∂

∂θ
log p (r|θ)

(
∂

∂θ
log p (r|θ)

)T]
, (12)

wherep (r|θ) is the joint probability density function (pdf) ofr conditioned onθ.

The CRLB is then defined:

CCRLB = [J (θ)]
−1
. (13)

Sometime, it is easier to compute the FIM with respect to another vectorψ, and apply the chain rule to derive the

original J (θ) . In our case, since the received signals in both (7) and (9) arefunctions of the time delays,τℓk, and

the complex amplitudes, by the chain rule,J (θ) can be expressed in the alternative form [19]:

J (θ) = PJ (ψ)P
T , (14)

whereψ is a vector of unknown parameters, and it incorporates the time delays. MatrixJ (ψ) is the FIM with

respect toψ, and matrixP is the Jacobian:

P=
∂ψ

∂θ
. (15)

From this point onward, we develop the CRLB for the case of non-coherent and coherent processing, separately.

A. Non-coherent Processing CRLB

For non-coherent Processing, there is no common phase reference among the sensors. Consequently, the complex-

valued termsαlk incorporate phase offsets among sensors and the effect of the target on the phase and complex

amplitude, following the definitions in (10). The vectors ofunknown parameters is defined:

θnc =
[
x, y, αR, αI

]T
. (16)
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The process of localization by non-coherent processing depends on time delay estimation of the signals observed

at the receive sensors and also on the location of the sensors. To gain insight into how each of the factors affects

the performance of localization, we utilize the form of the FIM given in (14). We define the vector of unknown

parameters:

ψnc =
[
τ, αR, αI

]T
, (17)

whereα is given in (10) andτ = [τ11, τ12, ..., τℓk, ..., τMN ]
T . We are interested only in the estimation ofx andy,

while αR, αI act as nuisance parameters in the estimation problem.

Given a set of known transmitted waveformssk (t− τℓk) parameterized by the unknown time delaysτℓk, which

in turn are a function of the unknown target locationX = (x, y), the conditional, joint pdf of the observations at

the receive sensors, given by (9), is then:

p (r|ψnc) ∝ exp



− 1

σ2
w

N∑

ℓ=1

∫

T

∣∣∣∣∣rℓ(t) −
M∑

k=1

αℓksk (t− τℓk)

∣∣∣∣∣

2

dt



 . (18)

The matrixPnc for (16) and (17), to be used in (14), is defined as:

Pnc =
∂ψnc
∂θnc

=




∂
∂xτ

T ∂
∂x

(
αR
)T ∂

∂x

(
αI
)T

∂
∂y τ

T ∂
∂y

(
αR
)T ∂

∂y

(
αI
)T

∂τ
∂αR

∂αR

∂αR
∂αI

∂αR

∂τ
∂αI

∂αR

∂αI
∂αI

∂αI




(2MN+2)×3MN

, (19)

where ∂
∂xτ is standard notation for taking the derivative with respectto x of each element ofτ, and

∂τ

∂αR
denotes

the Jacobian of the vectorτ with respect to the vectorαR. The subscript denotes the matrix dimensions.

It is not too difficult to show that using (8), the matrixPnc can be expressed in the form:

Pnc = −1

c


 H2×MN 02×2MN

02MN×MN I2MN×2MN


 , (20)

where0 is the all zero matrix,I is the identity matrix, andH ∈ R2×MN incorporates the derivatives of the time

delays in (8) with respect to thex andy parameters. These derivatives result in cosine and sine functions of the

angles the transmitting and receiving radars create with respect to the target, incorporating information on the

sensors and target locations as follows:

H =



 atx1
+ arx1

atx1
+ arx2

... atxM
+ arxN

btx1
+ brx1

btx1
+ brx2

... btxM
+ brxN



 . (21)

The elements ofH are given by:

September 24, 2008 DRAFT



9

atxk
= cosφk; btxk

= sinφk; k = 1, ..,M,

arxℓ
= cosϕℓ; brxℓ

= sinϕℓ; ℓ = 1, .., N,
(22)

φk = tan−1
(
y−ytk

x−xtk

)
; ϕℓ = tan−1

(
y−yrℓ

x−xrℓ

)
,

where the phaseφk is the bearing angle of the transmitting sensork to the target measured with respect to the

x axis; the phaseϕℓ is the bearing angle of the receiving radarℓ to the target measured with respect to the

x axis. See illustration in Figure 1. For later use, we apply the following definitions:φ = [φ1, φ2, ..., φM ]
T ,

ϕ = [ϕ1, ϕ2, ..., ϕN ]
T , atx = [atx1

, atx2
, ..., atxM

]
T , arx = [arx1

, arx2
, ..., arxN

]
T
, btx = [btx1

, btx2
, ..., btxM

]
T

andbrx = [brx1
, brx2

, ..., brxM
]
T .

An expression for the FIMJ (ψnc) , is derived in Appendix I, yielding:

J(ψnc) =
2

σ2
w


 Snc Vnc

V
T
nc Λα




(3MN)×(3MN)

, (23)

with the block matricesSnc, Λα, andVnc defined in the Appendix I in (92), (97), and (100), respectively.

In order to determine the value ofJ (θnc) , we use (23) and (20) in (14), to obtain the following CRLB matrix:

CCRLBnc
= J

−1 (θnc) =
c2

2/σ2
w



 HSncH
T

HVnc

V
T
ncH

T
Λα




−1

. (24)

The CRLB matrix is related to the sensor and target locationsthrough the matrixH, and to the received waveforms

correlation functions and its derivatives through theSnc andVnc matrices.

1) Orthogonal Waveforms: When the waveforms are orthogonal, (92), (97), and (100) simplify to (101) in

Appendix I. This simplification enables to compute the CRLB (24) in closed form. We perform this calculation

next.

While the CRLB expresses the lower bound on the variance of the estimate ofθnc =
[
x, y, αR, αI

]T
, we are

really interested only in the estimation ofx andy. The amplitude termsαR andαI serve as nuisance parameters.

For the variances of the estimates ofx andy, it is sufficient to derive the2×2 upper left submatrix[CCRLBnc
]2×2 =[

(J (θnc))
−1
]

2×2
.

Proposition 1: The CRLB submatrix[CCRLBnc
]2×2 for target localization in thenon-coherent case with orthog-

onal signals is:

[CCRLBnc
]2×2 =

c2

2/σ2
w

(
HSncH

T
)−1

. (25)

Proof: From (101) in Appendix I, we have for terms of (24):

Snc = 4π2β2 [diag(α)B diag(α∗)] , (26)

Vnc = 0,

Λα = I2MN×2MN .
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In (26),diag(α) denotes a diagonal matrix with the elements of vectorα. Matrix B = diag
(
1
[
β2
R1
, β2
R2
, ..., β2

RM

])
,

with βRk
denoting the normalized elementsβRk

= βk/β, and1 = [1, 1, ...1]
T , 1 ∈ RN×1. Using (26) in (24), it is

easy to see that

[CCRLBnc
]2×2 =

c2

2/σ2
w

(
HSncH

T
)−1

(27)

=
ηnc

gxnc
gync

− h2
nc



 gxnc
hnc

hnc gync



 ,

where:
ηnc = c2

8π2β2/σ2
w
,

gxnc
=

M∑
k=1

N∑
ℓ=1

|αℓk|2 β2
Rk

(btxk
+ brxℓ

)
2
,

gync
=

M∑
k=1

N∑
ℓ=1

|αℓk|2 β2
Rk

(atxk
+ arxℓ

)
2
,

hnc = −
M∑
k=1

N∑
ℓ=1

|αℓk|2 β2
Rk

(atxk
+ arxℓ

) (btxk
+ brxℓ

) .

(28)

This concludes the proof of the proposition.

It follows that the lower bound on the variance for estimating thex coordinate of the target is given by

σ2
xncCRB = ηnc

gxnc

gxnc
gync

− h2
nc

. (29)

Similarly, for they coordinate,

σ2
yncCRB = ηnc

gync

gxnc
gync

− h2
nc

. (30)

The termsgxnc
, gync

, andhnc are summations ofatxk
, arxℓ

, btxk
andbrxℓ

terms that represent sine and cosine

expressions of the anglesφ andϕ, and therefore relate to the radars and target geometric layout. It is apparent

that for the non-coherent case, the lower bounds on the variances (29) and (30) are inversely proportional to the

averaged effective bandwidthβ2, andSNR = 1/σ2
w (see expression forηnc in (28)). It is interesting to note that

ηnc is actually the CRLB for range estimation in a single antennaradar, based on the one-way time delay between

the radar and the target (see for example [19]). The other terms in (29) and (30) incorporate the effect of the sensors

locations.

B. Coherent Processing CRLB

We recall that in the section on the signal model, we defined the complex amplitudeαℓk associated with the path

transmitterk → target→ receiverℓ. In the non-coherent case, the complex amplitude is a nuisance parameter in

estimating the target locationx, y. In the coherent case, the transmitting and receiving radars are assumed to be

phase synchronized. By eliminating the phase offsets, the signal model in (7) applies, and the nuisance parameter

role is left to the complex target amplitudeζ = ζR + jζI . The coherent approach to localization seeks to exploit

the target location information embedded in the phase termsexp (−2πfcτℓk) that depend on the delaysτℓk, which

in turn are function of the target coordinatesx, y.

Define the vector of unknown parameters:
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θc =
[
x, y, ζR, ζI

]T
. (31)

As before, define a second vector of unknown parameters in terms of the time delaysτ (rather then the target

location),

ψc =
[
τ, ζR, ζI

]T
, (32)

to be used in (14) to derive the CRLB. In comparing the coherent case in (32) with the non-coherent counterpart

in (17), we note thatψnc incorporates the vectorsαR andαI , while ψc is a function of the scalarsζR andζI . The

reduction in the number of unknown parameters is made possible through the measurement of the phase terms of

αR andαI .

For coherent observations, the conditional, joint pdf of the observations at the receive sensors, given by (7), is

of the form:

p (r|ψc) ∝ exp




− 1

σ2
w

N∑

ℓ=1

∫

T

∣∣∣∣∣rℓ(t) −
M∑

k=1

ζ exp (−2πfcτℓk) sk (t− τℓk)

∣∣∣∣∣

2

dt




 . (33)

We follow the same process used in Section III-A, to develop the CRLB for the coherent case based on the

relation in (14). The matrixPc takes the form:

Pc =
∂ψc
∂θc

= −1

c


 H 0MN×2

02×MN I2×2




4×(MN+2)

, (34)

where matrixH has the same form as in (21), since it is independent of the nuisance parameters in both cases.

An expression for the FIM matrix,J (ψc) , is derived in Appendix II, yielding:

J(ψc) =
2

σ2
w



 Sc Vc

V
T
c Λαc





(MN+2)×(MN+2)

, (35)

where the submatrices are found in Appendix II as follows:Sc in (105),Λαc in (108), andVc in (111).

The CRLB matrix for the coherent case is then found substituting (34) and (35) in (14) and (13), obtaining:

CCRLBc
=

c2

2/σ2
w


 HScH

T
HVc

V
T
c H

T
Λαc



−1

. (36)

As in Section III-A, we develop the closed form solution to the CRLB matrix in (36) for the case of orthogonal

waveforms. Since we are interested only in the lower bound onthe variances of the estimates ofx and y, the

submatrix[CCRLBc
]2×2 =

[
(Jc (θ))

−1
]

2×2
is derived and evaluated next.

Proposition 2: The CRLB2 × 2 submatrix for thecoherent case and orthogonal waveforms is:

[CCRLBc
]2×2 =

c2

2/σ2
w

(
HScH

T − HVcΛ
−1
αcV

T
c H

T
)−1

. (37)
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Proof: From (112) in Appendix II we have the values of the matricesSc, Λαc, and Vc for orthogonal

waveforms. Using this andH defined in (21) in (36), the CRLB matrixCCRLBcor
is obtained. Consequently, the

submatrix[CCRLBc
]2×2 is computed in Appendix III resulting in the form given in (37).

This completes the proof of the proposition.

From (37) and (112), it can be shown that[CCRLBc
]2×2 can be expressed as:

[CCRLBc
]2×2 =

ηc
gxc

gyc
− h2

c


 gxc

hc

hc gyc


 , (38)

where the various quantities are as follows:

ηc = c2

8π2f2
c (|ζ|2/σ2

w)
,

gxc
=

M∑
k=1

N∑
ℓ=1

fRk
(btxk

+ brxℓ
)
2 − 1

MN

(
M∑
k=1

N∑
ℓ=1

(btxk
+ brxℓ

)

)2

,

gyc
=

M∑
k=1

N∑
ℓ=1

fRk
(atxk

+ arxℓ
)2 − 1

MN

(
M∑
k=1

N∑
ℓ=1

(atxk
+ arxℓ

)

)2

,

hc = −
M∑
k=1

N∑
ℓ=1

fRk
(atxk

+ arxℓ
) (btxk

+ brxℓ
)

+ 1
MN

M∑
k=1

N∑
ℓ=1

(atxk
+ arxℓ

)
M∑
k=1

N∑
ℓ=1

(btxk
+ brxℓ

) .

(39)

The lower bound on the error variance is provided by the diagonal elements of the
[
CCRLBcor

]
2×2

submatrix

and are of the form:

σ2
xcCRB = ηc

gxc

gxc
gyc

− h2
c

, (40)

σ2
ycCRB = ηc

gyc

gxc
gyc

− h2
c

.

The termsgxc
, gyc

, andhc are summations ofatxk
, arxℓ

, btxk
andbrxℓ

that represent sine and cosine expressions

of the anglesφ andϕ and therefore relate to the radars and target geometric layout, multiplied by the ratio terms

fRk
=
(
1 +

β2

k

f2
c

)
. Invoking the narrowband signals assumptionβ2

k/f
2
c ≪ 1 it follows that fRk

≃ 1. These terms

have some additional elements when compared with the non-coherent case. It is apparent that for the coherent

case, the variances of the target location estimates in (40)are inverse proportional to the carrier frequencyf2
c .

C. Discussion

We make the following observations:

• The lower bound on the variance in the non-coherent case is inversely proportional to the averaged effective

bandwidthβ. For the coherent case, with narrowband signals, whereβ2
k/f

2
c ≪ 1, the localization accuracy is

inversely proportional to the carrier frequencyfc and independent of the signal individual effective bandwidth,

due to the use of the phase information across the different paths. It is apparent that coherent processing offers

a target localization precision gain (i.e., reduction of the localization root mean-square error) of the order of
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fc/β, which we refer to ascoherency gain. Designing the ratiofc/β to be in the range 100-1000, leads to

dramatic gains.

• The termηc in (39) is the range estimate based on one-way time delay withcoherent observations for a radar

with a single antenna [30].

• The CRLB terms are strongly reliant on the relative geographical spread of the radar systems vs. the target

location. This dependency is incorporated in the termsgxnc/xc
, gync/yc

andhnc/c. It is apparent from (40),

(29) and (30) that there is a trade-off between the variancesof the target location computed horizontally and

vertically. A set of sensor locations that minimizes the horizontal error, may result in a high vertical error. For

example, spreading the transmitting and receiving radars in an angular range of−(π/10) to +(π/10) radians

with respect to the target, will result in high horizontal error while providing low vertical error, as we would

expect intuitively. This is caused by the fact that the termsgxnc
/gxc

are summations of sine functions and

gync
/gyc

are summation of cosine functions of the same set of angles. In order to truly determine the minimum

achievable localization accuracy in bothx andy axis, we need to minimize theover-all accuracy, defined as

the total varianceσ2
c =

(
σ2
xcCRB

+ σ2
ycCRB

)
.

• The message of dramatic improvement in localization accuracy needs to be moderated with the observation that

the CRLB is a bound ofsmall errors. As such, it ignores effects that could lead tolarge errors. For example,

MIMO radar with distributed sensors and coherent observations is subject to high sidelobes [1]. Additionally,

a phase coherent system is sensitive to phase errors. These topics are outside the scope of this paper, but they

should be kept in perspective.

• The lower bound as expressed by the CRLB, provides a tight bound at high SNR, while at low SNR, the

CRLB is not tight. As stated in [33], the MLE is asymptotically unbiased and its error variance approaches the

CRLB arbitrarily close for sufficient long observation time, with the condition that the MLE is not subject to

ambiguities. As the MLE of the time estimates is based on matched filters at the receiver end, the ambiguity

features of the signal waveforms arise in low SNR conditionsand predominate the estimation capabilities,

causing erroneous time estimates. As the ambiguity problems are usually addressed trough the signal waveform

design, a more rigid bound needs to be found for the localization variance in the low SNR case.

IV. EFFECT OFSENSORSLOCATIONS

The CRLB for target localization with coherent MIMO radar shows a gain, i.e., reduction in the standard deviation

of the localization estimate, offc/β compared to non-coherent localization. Yet, the CRLB is strongly dependent

on the locations of the transmitting and receiving sensors relative to the target location, through the termsgxnc/xc
,

gync/yc
andhnc/c. To gain a better understanding of these relations, and set alower bound on the CRLB over all

possible sensor placements, further analysis is developedin this section.

We introduce the following general notation: for any given set of vectorsξ = (ξ1, ξ2, ..., ξL) andκ = (κ1, κ2, ..., κL):
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T (ξ) = 1
L

L∑
i=1

ξi

T
(
ξ2
)

= 1
L

L∑
i=1

ξ2i

T (ξκ) = 1
L

L∑
i=1

ξiκi.

(41)

The termsgxc
and gyc

in (28) can be expressed using the conventions defined in (41)and terms defined in

Section III-B, viz.:

gxc
= MN

[
T
(
b

2
tx

)
+ T

(
b

2
rx

)
− [T (btx)]

2 − [T (brx)]
2
]
, (42)

and

gyc
= MN

[
T
(
a

2
tx

)
+ T

(
a

2
rx

)
− [T (atx)]

2 − [T (arx)]
2
]
, (43)

where the narrowband signals assumption is applied. Similarly, the termhc in (39) can be expressed:

hc = MN [T (atxbtx) + T (arxbrx) (44)

−T (atx)E (btx) − T (arx)E (brx)] .

Sincea2
txk

+ b2txk
= cos2 φ

k
+sin2 φ

k
= 1 anda2

rxℓ
+ b2rxℓ

= cos2 ϕℓ+sin2 ϕℓ = 1, the following conditions apply:

T
(
a

2
tx

)
+ T

(
b

2
tx

)
= 1

T
(
a

2
rx

)
+ T

(
b

2
rx

)
= 1

0 ≤ [T (atx)]
2 ≤ 1; 0 ≤ [T (arx)]

2 ≤ 1

0 ≤ [T (btx)]
2 ≤ 1; 0 ≤ [T (brx)]

2 ≤ 1

0 ≤ T
(
a

2
tx

)
≤ 1; 0 ≤ T

(
a

2
rx

)
≤ 1

0 ≤ T
(
b

2
tx

)
≤ 1; 0 ≤ T

(
b

2
rx

)
≤ 1.

(45)

We seek to find sets of anglesφ∗ and ϕ∗, that yield sets of cosine and sine expressionsa
∗
tx,a

∗
rx,b

∗
tx,b

∗
rx

for which the values of the Cramer-Rao bounds for localization along thex and y axes (σ2
xcCRB

and σ2
ycCRB

,

respectively) are jointly minimized, that is:

minimize
atx,arx,btx,brx

(
σ2
xcCRB

+ σ2
ycCRB

)
. (46)

This is equivalent to minimizing the trace of the CRLB submatrix [CCRLBc
]2×2. The explicit minimization problem

is formulated introducing the objective functionf0:

minimize
atx,arx,btx,brx

f0 (atx,arx,btx,brx) = ηc
gxc+gyc

gxcgyc−h
2
c

subject to constraints (45).
(47)
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This representation of the problem is not a convex optimization problem.1 The next steps are undertaken in order

to formulate a convex optimization problem equivalent to (47), i.e., a convex optimization problem that can be

solved through routine techniques and from whose solution it is readily possible to find the solution to (47).

In [28], it is shown that for a given positive definite matrix,in our case[CCRLBc
]2×2, and its inverse matrixF,

in this case:

F =
1

ηc


 gyc −hc

−hc gxc


 , (48)

the following relation exists between the diagonal elements of these matrices:

[CCRLBc
]ii ≥

1

[F]ii
; i = 1, 2. (49)

Equality conditions apply for alli iff F is a diagonal matrix, i.e.,hc = 0. Now, observe that the inverse of the

elements on the diagonal ofF are lower bounding the elements on the diagonal of the matrixCCRLBc
for any

atx,arx,btx,brx. We then define the objective functionf0 (atx,arx,btx,brx) , and the optimization problem

min f0 (atx,arx,btx,brx) =
1

ηc

(
1

gxc

+
1

gyc

)
(50)

subject to (45).

The new objective function and the original objective function are related asf0 (atx,arx,btx,brx) ≥ f0 (atx,arx,btx,brx),

with equality forhc = 0. Substitute the values ofgxc
andgyc

from (42) and (43) in the objective function of (50)

to obtain

f0 (atx,arx,btx,brx) =
1/ (ηcMN)

2 − T (b2
tx) − T (b2

rx) − [T (atx)]
2 − [T (arx)]

2 (51)

+
1/ (ηcMN)

T (b2
tx) + T (b2

rx) − [T (btx)]
2 − [T (brx)]

2 .

It is apparent that the denominator of the first summand is bounded by:

0 ≤ 2 − T
(
b

2
tx

)
− T

(
b

2
rx

)
− [T (atx)]

2 − [T (arx)]
2 ≤ 2 − T

(
b

2
tx

)
− T

(
b

2
rx

)
, (52)

and the denominator of the second summand is bounded by:

0 ≤ T
(
b

2
tx

)
+ T

(
b

2
rx

)
− [T (btx)]

2 − [T (brx)]
2 ≤ T

(
b

2
tx

)
+ T

(
b

2
rx

)
. (53)

1A convex optimization problem is of the form [32]

minimize f0 (x)

subject to fi (x) ≤ 0
P

j ajxj = 0

for some constantsai, i, j, i = 1, ...,m, j = 1, ..., p, and wheref0, ..., fm are convex functions.
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DenoteT
(
b

2
tx

)
+ T

(
b

2
rx

)
= µ, and letT (atx) = T (arx) = T (btx) = T (brx) = 0. Then, from (51)-(53) and

(50), we obtain the following problem:

minimize
µ

f0 (µ) =
1

2 − µ
+

1

µ

subject to µ− 2 ≤ 0

−µ ≤ 0.

(54)

The objective functionf0 (µ) is still not convex. The epigraph form is a way to introduce a linear (and hence

convex) objectivet, while the original objectivef0 is incorporated into a new constraintf0 − t ≤ 0. The key point

here is that whilef0 is not convex, the constraintf0 − t ≤ 0 can be transformed to a convex form. After some

simple algebraic manipulations, the epigraph form turns into the following convex problem:

minimize
µ,t

t

subject to

tµ2 − 2tµ+ 2 ≤ 0

µ− 2 ≤ 0

−µ ≤ 0

−t ≤ 0

.

(55)

A convenient way to solve this convex optimization problem is to employ the concept of Lagrange duality and

exploit the sufficiency of theKarusk-Kuhn-Tucker (KKT) conditions [32]. The Lagrangian of the problem in (55)

is given by:

L(µ, t, λ) = t+ λ1

(
tµ2 − 2tµ+ 2

)
+ λ2 (µ− 2) − λ3µ− λ4t, (56)

whereλi, i = 1, .., 4 is theLagrange multiplier associated with theith inequality constraintfi (µ, t) ≤ 0.

The KKT conditions state that the optimal solution for the primal problem (minimization oft in (55)) is given

by the solution to the set of equations:

∂L(µ, t, λ)

∂µ
= 0 (57)

∂L(µ, t, λ)

∂t
= 0

fi(µ, t) ≤ 0; i = 1, .., 4

λi ≥ 0; i = 1, .., 4

λifi(µ, t) = 0; i = 1, .., 4.
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Applied to (55) and (56), these equations specialize to

λ1 (2tµ− 2t) + λ2 − λ3 = 0 (58)

1 + λ1

(
µ2 − 2µ

)
− λ4 = 0

λ1

(
tµ2 − 2tµ+ 2

)
= 0

λ2 (µ− 2) = 0

−λ3µ = 0

−λ4t = 0.

It is not difficult to show that the solution to this system is given by

µ∗ = 1

t∗ = 2

λ∗1 = 1

λ∗2 = λ∗3 = λ∗4 = 0

. (59)

Recalling thatµ = T
(
b

2
tx

)
+ T

(
b

2
rx

)
, the optimal solution can be rewritten as:

µ∗ = T
(
b
∗2
tx

)
+ T

(
b
∗2
rx

)
= 1. (60)

In addition to (60),a∗
tx,a

∗
rx,b

∗
tx,b

∗
rx have to satisfy the relations (45), and the equality conditions for (49), (52)

and (53), viz.,

T
(
a
∗2
tx

)
+ T

(
a
∗2
rx

)
= 1

T (b∗
tx) = 0; T (b∗

rx) = 0

T (a∗
tx) = 0; T (a∗

rx) = 0

T (a∗
txb

∗
tx) + T (a∗

rxb
∗
rx) = 0.

(61)

Substituting these results in (42) and (43), we compute the optimal g∗xc
andg∗yc

,

g∗xc
= g∗yc

= MN.

It follows that the minimum value of the trace of the Cramer Rao matrix
[
CCRLBcor

]
2×2

, f0 in (47), is given by:

f0 (a∗
tx,a

∗
rx,b

∗
tx,b

∗
rx) =

2ηc
MN

. (62)

The final step in determining the effect of sensor locations on the localization CRLB is to recall that the

multivariable argument off0 in (62) is actually a function of the transmitting sensors anglesφk, k = 1, . . . ,M,

and receiving sensors anglesϕℓ, ℓ = 1, . . . , N (see definitions in the previous section). What are then the optimal
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setsφ∗ andϕ∗ that minimize the variance of the localization error? The optimal angles can be found from the

relations (61). For example, for the cosine of the transmitters bearingsT (a∗
tx) = 0, means

1

M

M∑

k=1

cosφ∗k = 0. (63)

A symmetrical set of angles of the formφ∗ =
{
φ∗i |φ∗i = φ

0
+ 2π(i−1)

M ; i = 1, ..,M ;M ≥ 2
}

, is a solution to

(63) for any arbitraryφ
0
. The same solution is obtained for the sines,T (b∗

tx) = 0. The relationsT (a∗
rx) = 0,

T (b∗
rx) = 0 lead to a solution constituted by a symmetrical set of anglesϕ∗ of the same form asφ∗. The relation

T (a∗
txb

∗
tx) + T (a∗

rxb
∗
rx) = 0 expressed in terms of angles is

1

M

M∑

k=1

cosφ∗k sinφ∗k +
1

N

N∑

ℓ=1

cosϕ∗
ℓ sinϕ∗

ℓ = 0. (64)

It can be shown that (64) is met by anglesφ∗k andϕ∗
ℓ symmetrically distributed around the unit circle, but the

number of sensors has to meetM ≥ 3, N ≥ 3. The conditionT
(
b
∗2
tx

)
+ T

(
b
∗2
rx

)
= 1 in (61), expressed in its

explicit form, is

1

M

M∑

k=1

cos2 φ∗k +
1

N

N∑

ℓ=1

cos2 ϕ∗
ℓ = 1. (65)

The symmetrical set of angles that meet (63) and (64) provide1
M

∑M
k=1 cos2 φ∗k = 1

N

∑N
ℓ=1 cos2 ϕ∗

ℓ = 1
2 and there-

fore meet the requirement of (65). The same applies toT
(
a
∗2
tx

)
+T

(
a
∗2
rx

)
= 1 , where we have1

M

∑M
k=1 sin2 φ∗k =

1
N

∑N
ℓ=1 sin2 ϕ∗

ℓ = 1
2 .

We conclude thatM ≥ 3 transmitting, andN ≥ 3 receiving sensors, symmetrically placed on a circle around

the target at angular spacings of2π/M and2π/N, respectively, lead to the lowest value of the localization CRLB.

This result can be extended by noticing that relations (61) also hold for anysuperposition of symmetrical sets

containing no less than3 transmitting and/or receiving sensors. Therefore, the complete set of optimal points is

given by:

φ∗ =

{
φ∗k

∣∣∣∣
(
φ∗k = φ

v
+ 2π(z−1)

Zv

)∣∣∣
z=1,..,Zv

;Zv ≥ 3;

V∑

v=1

Zv = M

}

ϕ∗ =

{
ϕ∗
ℓ

∣∣∣∣
(
ϕ∗
ℓ = ϕ

u
+ 2π(z−1)

Zu

)∣∣∣
z=1,..,Zu

;Zu ≥ 3;

U∑

u=1

Zu = N

}
,

(66)

where the total number of transmitting (M ) and receiving (N ) radars may be divided intoV and U sets of

symmetrically placed radars, each set consists ofZv andZu radars, respectively. The anglesφ
v

andϕ
u

are an

initial arbitrary rotation of the symmetric setsZv andZu, correspondingly.

As a special case, it is interesting to evaluate the CRLB in (38) with 1 transmitter andMN receivers, i.e., a

Single-Input Multiple-Output (SIMO) system. This scheme makes use of(MN + 1) radars instead of(M +N)

radars used in a MIMO system withM transmitters andN receivers. From (66) it is apparent the this case does not

provide optimality since the number of transmitters is smaller than3. To evaluateσ2
xcCRB

+σ2
ycCRB

for this setting

we assume1 transmitter is located at an arbitrary angleφ
1

with respect to the target, and a set ofMN receivers
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are located symmetrically around the target, at anglesϕ∗ that follow the condition in (66). The expressions in (42),

(43), and (44) reduce to the form:

gxc
= MN

[
T
(
b

2
rx

)
− [T (brx)]

2
]

=
1

2
MN, (67)

gyc
= MN

[
T
(
a

2
rx

)
− [T (arx)]

2
]

=
1

2
MN,

hc = MN [T (arxbrx) − T (arx)E (brx)] = 0,

and the trace of the CRLB submatrix[CCRLBc
]2×2, defined byf0 (atx,arx,btx,brx) = σ2

xcCRB
+ σ2

ycCRB
=

ηc
gxc +gyc

gxcgyc−h
2
c
, is

f0 (atx,arx,btx,brx) =
4ηc
MN

. (68)

This result expresses an increase in the estimation error inthe factor of2 when compared withM transmitters and

N receivers given in (62).

A. Discussion

The following comments are intended to provide further insight into the results obtained in this section.

• From (62), the lowest CRLB for target localization utilizing phase information is given by2ηc/ (MN). We

interpret the reduction of the CRLB by the factorMN/2 compared to a single antenna range estimation given

by ηc as aMIMO radar gain. This gain reflects two effects: (1) the gain due to the system footprint; (2) the

advantage of usingM transmitters andN receivers, rather than, for example,1 transmitter andMN receivers.

The latter gain is apparent whenMN ≫ (M +N).

• The CRLB obtained through the use of a single transmit antenna andMN receive antennas in (68) is

4ηc/ (MN). It follows that MIMO radar, with a total ofM +N sensors, has twice the performance (from the

point of view of localization CRLB) of a system with a single transmit antenna andMN receive antennas.

• The best accuracy is obtained when the transmitting and receiving radars are located on a virtual circle, centered

at the target position, with uniform angular spacings of2π/M and2π/N , respectively, or anysuperposition

of such sets.

• The optimization analysis presented in this section is intended to provide insight into the effect the sensors

locations have on the CRLB. Naturally, in practice, it is notpossible to control in real time the location of the

sensors relative to a target. However, the results here teach us that selecting among the sensors those who are

most symmetrical with respect to the target may lead to the most accurate localization.

So far we have focused on the theoretical lower bound of the localization error. In the next section, we discuss

specific techniques for target localization and their performance as a function of sensors locations. For this purpose,

the GDOP metric and GDOP contour mapping tools are introduced.
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V. M ETHODS FORTARGET LOCALIZATION

In Section III, was formulated the lower bound on the variance of any localization estimate. Here, it is of interest

to discuss some specific target localization estimators. Inparticular, two estimators are presented: the MLE and the

BLUE. The MLE is motivated by its asymptotic optimality, while the BLUE by its closed form expression.

A. MLE Target Localization

The MLE is a practical estimator in the sense that its application to a problem of observations in white Gaussian

noise is relatively straightforward. Moreover, under mildconditions on the probability density function of the

observations, the MLE of the unknown parameters is asymptotically unbiased, and it asymptotically attains the

CRLB [19].

For the case of coherent MIMO radar, the signal waveform received by radarℓ is given in (2). The MLE of the

unknown parameter vectorθ = [x, y, ζ]
T given the observation vectorr is given by [19]:

θ̂
ML

= arg

{
max
θ

[log p (r|θ)]
}
, (69)

wherep (r|θ) is given by (33) noting that the time delaysτℓk are known functions ofx andy. To jointly maximize

log p (r|θ) with respect toθ = [x, y, ζ]
T
, we start by maximizing it with respect toζ:

∂

∂ζ
log p (r|x, y, ζ) |ζ=bζ= 0. (70)

Using (33) in (70), the estimatêζ can be found, and it is a function ofx andy. By substituting it back into (69),

it is said tocompress the log-likelihood function [31] tolog p
(
r|x, y, ζ̂

)
. The MLE of the target location is then

given by

∂

∂x
log p

(
r|x, y, ζ̂

)
|x=bxML

= 0

∂

∂y
log p

(
r|x, y, ζ̂

)
|y=byML

= 0. (71)

Since a closed form expression can not be found for the MLE in (71), numerical methods need to be applied. A grid

search or an iterative maximization of the likelihood function needs to be performed to determinex̂ML and ŷML.

This might involve a significant computational effort. In practice, we can limit the search grid for high resolution

target localization estimation to an area around a coarse initial estimate obtained by the non-coherent approach.

B. BLUE Target Localization

The MLE presented in Section (V-A) does not lend itself to a closed form expression, and numerical methods

need to be used to solve it. A closed form solution to the target localization can be obtained by application of the

BLUE.

To formulate the BLUE, it is necessary to have an observationmodel in which observations change linearly with

the target location coordinates. That is because it is inherent to the BLUE that the estimate islinear. To this end,
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we formulate a model in which the time delays are “observable.” Let the observed time delay associated with a

transmitter-receiver pair beµℓk, then

µℓk = τℓk + εℓk, ∀k = 1, ..,M, l = 1, .., N, (72)

where εℓk is the “observation noise.” In practice, the time delays arenot directly observable. Rather, they are

estimated, for example by maximum likelihood, from the received signals. Then, the termεℓk is the time delay

estimation error. Our BLUE estimation problem of the targetlocation should not be confused with the estimation

of the time delays. The estimation of the time delays is just apreparatory step in setting up the “observations” of

the BLUE model. Once, the observation model has been set up, it is necessary to ensure that the model between

the time delays and target location is linear. Setting the origin of the coordinate system at some nominal estimate

of the target location, and preserving only linear terms of the Taylor expansion of expressions such as in (1), we

can express the time delays as linear functions ofx andy,

τℓk ≈ −x
c

(cosφk + cosϕℓ) −
y

c
(sinφk + sinϕℓ) , (73)

where the anglesφk andϕℓ are the bearings that the transmitting sensork and receiving sensorℓ, respectively,

subtend with the reference axis (with the origin at the nominal estimate of the target location). Note that the

definitions of the angles here are a little different than theangles defined in Section III and also denotedφ and

ϕ. Here, the vertex of the angles is an arbitrary point in the neighborhood of the true target location. In Section

III, the vertex is at the true target location. Since only thevertex is different, we preserved the same notation for

simplicity sake. Utilizing definitions (22), we can expressthe linear model in the following simplified form:

τℓk = −x
c

(atxk
+ arxℓ

) − y

c
(btxk

+ brxℓ
) . (74)

Letting, τ = [τ11, τ12, ..., τMN ]T and the vector of unknownsθ = [x, y, ζ]T , we write (74) in vector notation as

follows:

τ = Dθ, (75)

where the angle dependent matrixD is defined as:

D = −1

c




atx1
+ arx1

btx1
+ brx1

1

... ... ...

atxM
+ arxN

btxM
+ brxN

1




MN×3

. (76)

The observation model (72) can then be expressed as

µ = Dθ + ε, (77)

whereµ = [µ11, µ12, ..., µMN ]T , andε = [ε11, ε12, ..., εMN ]T is theMN×1 observation noise vector. To reiterate,

a key difference between the MLE and BLUE models is that the MLE target localization is carried out utilizing
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signal observations (which are not linear inx, y), while according to (77), the BLUE’s “observations” are in the

form of time delays. So an intermediate step of time delay estimation is implied. The time delays estimates used

as observationsµℓk can be derived for example by MLE as follows:

µℓk = arg max
v

[
exp (j2πfcv)

∫
rℓ (t) s∗k (t− v) dt

]
, (78)

wherev is a dummy variable for the time delay.

We still need some characterization of the “noise” termsεℓk. It is shown in Appendix IV, that the maximum

likelihood time delay estimates are unbiased with error covariance matrix

Cε =
1

8π2f2
c |ζ|2 /σ2

w

IMN×MN , (79)

where previous definitions of the various quantities apply.For the linear and Gaussian model in (77), the BLUE

is computed from the Gauss-Markov theorem [19] that states the BLUE of the unknown vectorθ is given by the

expression:

θ̂B =
(
D
T
C

−1
ε D

)−1
D
T
C

−1
ε µ. (80)

The theorem also establishes that the error covariance matrix is

CB =
(
D
T
C

−1
ε D

)−1
. (81)

Using the time error covariance matrixC
ε

and the linear transformation matrixD in (76), the following estimate

for the target localization is obtained:


 x̂

ŷ


 =

[
θ̂B

]

2×1
= −cGB




M∑
k=1

N∑
ℓ=1

(atxk
+ arxℓ

)µℓk

M∑
k=1

N∑
ℓ=1

(btxk
+ brxℓ

)µℓk


 , (82)

whereµℓk are the time observations, and the matrixGB is of the form:

GB =
1

g
1B
g

2B
− h2

B



 g
1B

h
B

h
B

g
2B



 . (83)

The elements of matrixG
B

are:
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g
1B

=

M∑

k=1

N∑

ℓ=1

(btxk
+ brxℓ

)
2 − 1

MN

(
M∑

k=1

N∑

ℓ=1

(btxk
+ brxℓ

)

)2

, (84)

g
2B

=

M∑

k=1

N∑

ℓ=1

(atxk
+ arxℓ

)
2 − 1

MN

(
M∑

k=1

N∑

ℓ=1

(atxk
+ arxℓ

)

)2

,

h
B

= −
M∑

k=1

N∑

ℓ=1

((atxk
+ arxℓ

) (btxk
+ brxℓ

)) ,

+
1

MN

M∑

k=1

N∑

ℓ=1

(atxk
+ arxℓ

)

M∑

k=1

N∑

ℓ=1

(btxk
+ brxℓ

) .

Using these results in (81) provides the MSE for the BLUE as follows:

σ2
x,B =

c2

8π2f2
c |ζ|2 /σ2

w

(
g

1B

g
1B
g

2B
− h2

B

)
, (85)

for the estimation of thex coordinate, and

σ2
y,B =

c2

8π2f2
c |ζ|

2
/σ2

w

(
g

2B

g
1B
g

2B
− h2

B

)
, (86)

for the estimation of they coordinate.

C. Discussion

The following points are worth noting:

• The BLUE estimator in (80) and its variance in (85) and (86) are provided in closed form. This enables analysis

without extensive numerical computations.

• In general, the variances (85) and (86) have similar functional dependencies on the carrier frequency and on

the sensor deployment as the CRLB (40). The termsatxk
, arxℓ

, btxk
and brxℓ

embedded in (85) and (86)

relate the sensors layout to the variance of the BLUE .

From the expressions of the variance of the BLUE, one can not readily visualize the effect of the sensors layout.

A mapping method, acting as a design and decision making toolfor MIMO radar systems, is proposed and evaluated

in the next subsection.

D. GDOP

In Section IV, we discussed optimal sensor location for minimizing the CRLB. In practice, we are faced with a

specific deployment of sensors, and we ask what is the localization accuracy for a given location of the target. GDOP

is a metric that addresses this question. The GDOP is commonly used in GPS systems for mapping the attainable

localization accuracy for a given layout of GPS satellites positions [28], [29]. The GDOP metric emphasizes the

effect of sensors locations by normalizing the localization error with the term contributed by the range estimate.

The GDOP metric for the two dimensional case is defined:
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GDOP=

√
σ2
x + σ2

y

cσε
, (87)

whereσ2
x andσ2

y are the variances of localization on thex andy axis, respectively, andσε is the standard deviation

of the time delay estimation error, assumed the same for all sensors. Inherently, the GDOP provides a normalized

value that measures the relative contribution of the radars’ location to the overall accuracy. When the BLUE is

used, and the linearity conditions hold,σ2
x andσ2

y are given by (85) and (86), respectively. Using the result in(79),

cσε for the time delay variance, we get the following GDOP expression:

GDOPB =

√
g

1B
+ g

2B

g
1B
g

2B
− h2

B

. (88)

The GDOP reduces the combined effect of the locations of the sensors to a single metric. Once we get the values

mapped, the actual localization error is easily derived by multiplying the GDOP value withcσε.

Figure 2 and 3 present contour plots of the GDOP values for3 × 4 and 7 × 7 MIMO radar systems, re-

spectively. The sensors are positioned symmetrically around the origin. In Figure 2, the transmitting sensors

are located at bearingsφ =
[
φi = 2π(i−1)

3 , i = 1, ..., 3
]
, and the receiving sensors are positioned at bearings

ϕ =
[
ϕi = π

4 + 2π(i−1)
4 , i = 1, ..., 4

]
. In Figure 3, theM = 7 transmitting sensors are positioned as a superposition

of two symmetrical constellations: the first set includes three radars and the second four. The sets are located

at bearingsφ =
[
φi = π

18 + 2π(i−1)
3 , i = 1, ..., 3; φi = π

4 + 2π(i−1)
4 , i = 4, ..., 7

]
. The receiving radars, for

this case, are set in a single symmetrical constellation with bearingsϕ =
[
ϕi = 2π(i−1)

7 , i = 1, ..., 7
]
. The first

noticeable factor in the comparison of the two plots is the higher accuracy obtained with seven radars compared

to four radars. For example, the lowest GDOP value in Figure 2, for the3× 4 system is0.4082, while with seven

radars (see Figure 3), the lowest GDOP is0.2020, corresponding to a50% reduction. When a target is located

inside the virtual(N +M)-sided system footprint, a higher localization accuracy isobtained than when a target is

outside the footprint of the system. In particular, the bestlocalization is obtained for a target at the center of the

system. The increase in GDOP values from the center to the footprint boundaries is slow. Outside the footprint,

the GDOP values increase rather rapidly.

In Figure 4 and Figure 5, contours of seven non-symmetrically positioned radars are drawn. When the radars

are relatively widely spread, as in Figure 4, there are stillsome areas with good measurement accuracy, though the

coverage is shrunk compared to the case with symmetrical deployment of sensors in Figure 3. When the viewing

angle of the target is very restricted, as in Figure 5, there is a marked degradation of GDOP values.

These examples demonstrate the main theoretical result of Section IV, namely that a symmetrical deployment of

sensors around the target yields the lowest GDOP values. Furthermore, calculating the lowest attainable GDOP value

using the optimal results in (62) for aM ×N MIMO radar, we obtain a GDOP value of
√

2/MN , and forM = N

it is equal to
√

2/N2. As a numerical example, the lowest GDOPs in Figures 2 and 3 are
√

2/3 · 4 ≃ 0.4082 and
√

2/72 ≃ 0.2020, respectively. Comparing this with the results obtained in [29] for the case of passive GPS based
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systems, withN satellites optimally positioned around the target, for which the lowest achievable GDOP value is

2/
√
N , the MIMO system advantage is clearly manifested.

VI. CONCLUSIONS

In this paper, we have developed analytical expressions forthe estimation errors of coherent and non-coherent

MIMO radar using the CRLB. It was shown that when the processing is coherent and the phase is processed,

there is a reduction in the CRLB values (standard deviation of the estimates) by a factor offc/β over the case

when the observations are non-coherent. We referred to thisgain as coherency gain. Expressions for the CRLB

capture also the impact of the sensors geometry. Further minimization of the localization error reveals a MIMO

radar gain directly proportional to the product of the number of transmitting and receiving radars. The smallest

CRLB is achieved when the transmitting and receiving sensors are arrayed symmetrically around the target or any

a superposition of such sets. The GDOP metric and mapping were introduced as a general tool for the analysis of

the localization accuracy with respect to the given radars and target locations. These plots could serve as a tool

for choosing favorable radar locations to cover a given target area. While localization by coherent MIMO radar

provides significantly better performance than non-coherent processing, it faces the challenge of multisite systems

phase synchronizing, and needs to deal with the ambiguitiesstemming from the large separation between sensors.

APPENDIX I

DERIVATION OF THE FIM IN (22)

In this appendix, we develop the FIM for the unknown parameter vectorψnc, based on the conditional pdf in

(18). The expression forJ (ψ) = E
[
∇ψ log p (r|ψ) (∇ψ log p (r|ψ))H

]
= −E

[
∂2 log p(r|ψ)

∂2ψ

]
is derived using:

[J (ψnc)]ii′ = −E
[
∂2 log p(r|ψnc)
∂τℓk∂τℓ′k′

]
,

[J (ψnc)](MN+i),(MN+i′) = −E
[
∂2 log p(r|ψnc)

∂αR
ℓk

∂αR
ℓ′k′

]
,

[J (ψnc)](2MN+i),(2MN+i′) = −E
[
∂2 log p(r|ψnc)

∂αI
ℓk

∂αI
ℓ′k′

]
,

[J (ψnc)](MN+i),(2MN+i′) = [J (ψnc)](2MN+i),(MN+i′) = −E
[
∂2 log p(r|ψnc)

∂αR
ℓk

∂αI
ℓ′k′

]
,

[J (ψnc)]i,(MN+i′) = [J (ψnc)](MN+i),i′ = −E
[
∂2 log p(r|ψnc)
∂τℓk ∂αR

ℓk

]
,

[J (ψnc)]i,(2MN+i′) = [J (ψnc)](2MN+i),i′ = −E
[
∂2 log p(r|ψnc)

∂τℓk ∂αI
ℓk

]
,

(89)

i = (ℓ− 1) ∗M + k, i′ = (ℓ′ − 1) ∗M + k′,

ℓ, ℓ′ = 1, .., N ; k, k′ = 1, ..,M ;

The first derivative ofp (r|ψnc) with respect to the elements ofτ is:

∂ [log p (r|ψnc)]
∂τℓk

=
1

σ2
w

∫
{[

rℓ(t)−
M∑

k′=1

αℓk′sk′ (t− τℓk′)

]
· α∗

ℓk

∂ [s∗k (t− τℓk)]

∂τ ℓk
(90)

+

[
rℓ(t)−

M∑

k′=1

αℓk′sk′ (t− τℓk′)

]∗
· αℓk

∂ [sk (t− τℓk)]

∂τ ℓk

}
dt.
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Applying the second derivative to (90), define a matrixSnc with the following elements:

[Snc]ii′ =
σ2
w

2
[J (ψ)]ii′ = (91)

= E

{
∂2

∂τℓk∂τℓ′k′

∫
[αℓksk (t− τℓk)α

∗
ℓk′s

∗
k′ (t− τℓk′)

+ α∗
ℓks

∗
k (t− τℓk)αℓk′sk′ (t− τℓk′ )] dt}

= Re

{
αℓkα

∗
ℓ′k′

[
∂2

∂τℓk∂τℓ′k′

∫
sk (t− τℓk) s

∗
k′ (t− τℓk′) dt

]}
.

Using matrix notation for compactness,

Snc =
∂2

∂τ2
Re [diag(α)Rs diag (α∗)] , (92)

wherediag(·) denotes a diagonal matrix,α was defined in (10), and we abuse the notation and let

[
∂2

∂τ2
Rs

]

ii′
≡ ∂

∂τℓk∂τℓ′k′
[Rs]ii′ . (93)

The elements of matrixRs are defined as:

[Rs]ii′ ≡






∫
sk (t− τℓk) s

∗
k′ (t− τℓk′ ) dt ℓ = ℓ′

0 ℓ 6= ℓ′
. (94)

The second and third terms in (89) define a matrixΛα with the following elements:

[Λα]ii′ = [Λα](MN+i),(MN+i′) =
σ2
w

2
[J (ψnc)](MN+i),(MN+i′) =

σ2
w

2
[J (ψnc)](2MN+i),(2MN+i′) (95)

= E

{
∂

∂αRℓ′k′

∫ [ M∑

k′=1

sk (t− τℓk)α
∗
ℓk′s

∗
k′ (t− τℓk′)

+

M∑

k′=1

s∗k (t− τℓk)αℓk′sk′ (t− τℓk′ )

]
dt

}

= Re {[Rs]ii′} ,

and

[Λα]i,(MN+i′) = [Λα](MN+i),i′ =
σ2
w

2
[J (ψnc)](MN+i),(2MN+i′) =

σ2
w

2
[J (ψnc)](2MN+i),(MN+i′) (96)

= E

{
∂

∂αIℓ′k′

∫ [ M∑

k′=1

(j) sk (t− τℓk)α
∗
ℓk′s

∗
k′ (t− τℓk′)

+

M∑

k′=1

(−j) s∗k (t− τℓk)αℓk′sk′ (t− τℓk′)

]
dt

}

= − Im {[Rs]ii′} .

In matrix notation,

Λα =



 Re [Rs] − Im [Rs]

− Im [Rs] Re [Rs]



 . (97)
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The fourth and fifth terms in (89) define the matrixVnc with the following elements:

[Vnc]ii′ =
σ2
w

2
[J (ψnc)](MN+i),i′ =

σ2
w

2
[J (ψnc)]i,(MN+i′) (98)

= E

{
∂

∂τ ℓk

∂

∂αRℓ′k′

∫
[αℓksk (t− τℓk)α

∗
ℓk′s

∗
k′ (t− τℓk′ )

+α∗
ℓks

∗
k (t− τℓk)αℓk′sk′ (t− τℓk′ )] dt}

= Re

{
αℓk

∂

∂τ ℓk
[Rs]ii′

}
,

and

[Vnc]i,(MN+i′) =
σ2
w

2
[J (ψnc)](2MN+i),i′ =

σ2
w

2
[J (ψnc)]i,(2MN+i′) (99)

= E

{
∂

∂τ ℓk

∂

∂αI ℓ′k′

∫
[αℓksk (t− τℓk)α

∗
ℓk′s

∗
k′ (t− τℓk′)

+α∗
ℓks

∗
k (t− τℓk)αℓk′sk′ (t− τℓk′)]dt}

= − Im

{
αℓk

∂

∂τ ℓk
[Rs]ii′

}
.

In matrix notation:

Vnc =
[

∂
∂τ Re [diag(α)Rs] ; − ∂

∂τ Im [diag(α)Rs]
]
. (100)

Orthogonal Waveforms

Orthogonality implies that all cross elements
∫
sk (t− τℓk) s

∗
k′ (t− τℓ′k′ ) dt = 0, for ℓ 6= ℓ′ andk 6= k′,and after

some algebra, the matrices defined by (91)-(99) take the following form:

[Snc]ii′ =





4π2β2
[
|αlk|2 β2

Rk

]
i = i′

0 i 6= i′

[Λα]ii′ = [Λα](MN+i),(MN+i′) =





1 i = i′

0 i 6= i′

[Λα]i,(MN+i′) = [Λα](MN+i),i′ = 0

[Vnc]ii′ = 0

[Vnc]i,(MN+i′) = 0.

(101)

APPENDIX II

DERIVATION OF THE FIM IN (34)

In this appendix, we develop the FIM for the unknown parameter vectorψc, based on the conditional pdf in

(33). The expression forJ (ψ) = E
{
∇ψ log p (r|ψ) (∇ψ log p (r|ψ))H

}
= −E

[
∂2 log p(r|ψ)

∂2ψ

]
is derived using:
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[J (ψc)]ii′ = −E
[
∂2 log p(r|ψc)
∂τℓk∂τℓ′k′

]
,

[J (ψc)](MN+1),(MN+1) = −E
[
∂2 log p(r|ψc)

(∂ζR)2

]
,

[J (ψc)](MN+2),(MN+2) = −E
[
∂2 log p(r|ψc)

(∂ζI )2

]
,

[J (ψc)](MN+1),(MN+2) = [J (ψc)](MN+2),(MN+1) = −E
[
∂2 log p(r|ψc)
∂ζR ∂ζI

]
,

[J (ψc)]i,(MN+1) = [J (ψc)](MN+1),i′ = −E
[
∂2 log p(r|ψc)
∂τℓk ∂ζR

]
,

[J (ψc)]i,(MN+2) = [J (ψc)](MN+2),i′ = −E
[
∂2 log p(r|ψc)
∂τℓk ∂ζI

]
,

(102)

i = (ℓ− 1) ∗M + k, i′ = (ℓ′ − 1) ∗M + k′,

ℓ, ℓ′ = 1, .., N ; k, k′ = 1, ..,M.
.

The first derivative ofp (r|ψc) with respect to the elements ofτ is:

∂ [log p (r|ψc)]
∂τℓk

=
1

σ2
w

∫
{[

rℓ(t)−
M∑

k′=1

ζ exp (−j2πfcτℓk′) sk′ (t− τℓk′)

]
· ζ∗ ∂ [exp (j2πfcτℓk) s

∗
k (t− τℓk)]

∂τ ℓk

(103)

+

[
rℓ(t)−

M∑

k′=1

ζ exp (−j2πfcτℓk′) sk′ (t− τℓk′)

]∗
· ζ ∂ [exp (−j2πfcτℓk) sk (t− τℓk)]

∂τ ℓk

}
dt.

Applying the second derivative to (103) define a matrixSnc with the following elements:

[Sc]ii′ =
σ2
w

2
[J (ψ)]ii′ = (104)

= E

{
∂2

∂τℓk∂τℓ′k′

∫
[ζζ∗ exp (j2πfc (τℓk − τℓ′k′)) sk′ (t− τℓk′ ) s

∗
k (t− τℓk)

+ ζ∗ζ exp (−j2π (τℓk − τℓk′)) s
∗
k′ (t− τℓk′) sk (t− τℓk)] dt}

= Re

{
|ζ|2

[
∂2

∂τℓk∂τℓ′k′
(exp (−j2πfc (τℓk − τℓ′k′ )) [Rs]ii′ )

]}
.

In matrix form,

Sc = |ζ|2 ∂2

∂τ2
Re
{
diag(e)Rs diag

(
e

∗

)}
, (105)

where the operator∂
2

∂τ2 and the matrixRs were defined in Appendix I,e = [exp (−2πfcτ11) , exp (−2πfcτ12) ,

..., exp (−2πfcτMN )].

The second and third terms in (102) define a matrixΛαc with the following elements:

[Λαc]11 = [Λαc]22 =
σ2
w

2
[J (ψc)](MN+1),(MN+1) =

σ2
w

2
[J (ψc)](MN+2),(MN+2) (106)

= E

{
N∑

ℓ=1

M∑

k=1

∫ [ M∑

k′=1

exp (−j2πfc (τℓk − τℓk′ )) sk (t− τℓk) s
∗
k′ (t− τℓk′ )

+

M∑

k′=1

exp (j2πfc (τℓk − τℓk′)) s
∗
k (t− τℓk) sk′ (t− τℓk′)

]
dt

}

= Re

{
N∑

ℓ=1

N∑

ℓ′=1

M∑

k=1

M∑

k′=1

exp (−j2πfc (τℓk − τℓ′k′)) [Rs]ii′

}
,
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and

[Λαc]12 = [Λαc]21 =
σ2
w

2
[J (ψc)](MN+1)(MN+2) =

σ2
w

2
[J (ψc)](MN+2)(MN+1) = (107)

= E

{
N∑

ℓ=1

M∑

k=1

∫ [ M∑

k′=1

(j)∗ exp (−j2πfc (τℓk − τℓk′)) sk (t− τℓk) s
∗
k′ (t− τℓk′)

+

M∑

k′=1

(j) exp (j2πfc (τℓk − τℓk′ )) s
∗
k (t− τℓk) sk′ (t− τℓk′ )

]
dt

}

= − Im

{
N∑

ℓ=1

N∑

ℓ′=1

M∑

k=1

M∑

k′=1

exp (−j2πfc (τℓk − τℓ′k′)) [Rs]ii′

}
.

In matrix form,

Λαc =


 Re

[
eRse

H
]

− Im
[
eRse

H
]

− Im
[
eRse

H
]

Re
[
eRse

H
]


 . (108)

The fourth and fifth terms in (102) define the matrixVc with the following elements:

[Vc]i1 =
σ2
w

2
[J (ψc)]i,(MN+1) =

σ2
w

2
[J (ψc)](MN+1),i′ (109)

= E

{
∂

∂τℓk

∫ [
ζ

M∑

k′=1

exp (−j2πfc (τℓk − τℓk′)) sk (t− τℓk) s
∗
k′ (t− τℓk′)

+ζ∗
M∑

k′=1

exp (j2πfc (τℓk − τℓk′)) s
∗
k (t− τℓk) sk′ (t− τℓk′)

]
dt

}

=
∂

∂τ ℓk
Re

{
N∑

ℓ′=1

M∑

k′=1

ζ exp (−j2πfc (τℓk − τℓ′k′)) [Rs]ii′ dt

}
,

and

[Vc]i2 =
σ2
w

2
[J (ψc)]i,(MN+2) =

σ2
w

2
[J (ψc)](MN+2),i′ (110)

= E

{
∂

∂τℓk

∫ [
(jζ)

M∑

k′=1

exp (−j2πfc (τℓk − τℓk′)) sk (t− τℓk) s
∗
k′ (t− τℓk′)

+ (jζ)∗
M∑

k′=1

exp (j2πfc (τℓk − τℓk′ )) s
∗
k (t− τℓk) sk′ (t− τℓk′ )

]
dt

}

= − ∂

∂τ ℓk
Im

{
N∑

ℓ′=1

M∑

k′=1

ζ exp (−j2πfc (τℓk − τℓ′k′)) [Rs]ii′ dt

}
.

In matrix form,

Vc =
[

∂
∂τ Re

{
ζ [diag(e)Rs] e

H
}

; − ∂
∂τ Im

{
ζ [diag(e)Rs] e

H
} ]

. (111)

Orthogonal Waveforms
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Orthogonality implies that all cross elements
∫
sk (t− τℓk) s

∗
k′ (t− τℓ′k′ ) dt = o for ℓ 6= ℓ′ andk 6= k′. Therefore,

the matrices defined by (104)-(110) take the following form:

[Scor
]ii′ =





4π2 |ζ|2 f2
c fRk

i = i′

0 i 6= i′

[Λαcor
]11 = [Λαor

]22 =






1
MN i = i′

0 i 6= i′

[Λαcor
]21 = [Λαor

]12 = 0

[Vcor
]i1 = 2πζIfc

[Vcor
]i2 = −2πζRfc.

(112)

wherefRk
=
(
1 +

β2

k

f2
c

)
. When we invoke the narrowband assumptionβ2

k/f
2
c ≪ 1 it follows that fRk

≃ 1.

APPENDIX III

COMPUTATION OF (36)

The submatrix[CCRLBc
]2×2 is defined as:

[CCRLBc
]2×2 = [J (θc)]

−1
2×2 . (113)

For a given matrix of the form:

J (θc) =


 HScH

T
HVc

V
T
c H

T
Λαc


 , (114)

whereΛαc is a diagonal matrix of the formΛαc = dI2×2, andd is some constant.

By definition, the value of[J (θc)]
−1
1,1 is obtained by:

[J (θc)]
−1
1,1 =

∣∣∣J̃ (θc)ex(1,1)

∣∣∣
|J (θc)|

, (115)

where|·| denotes the determinant, andJ̃ (θ)ex(1,1) is a submatrix, obtained by removing the first row and the first

column of theJ (θc) matrix. The determinant ofJ (θc), using the property that the determinant of a matrix does

not change under linear operations, is:

|J (θc)| =

∣∣∣∣∣∣
HScH

T − V
T
c H

T
Λ

−1
ζ HVc 0

V
T
c H

T
Λαc

∣∣∣∣∣∣
. (116)

This can be calculated and expressed as:

|J (θc)| =
∣∣∣HScH

T − V
T
c H

T
Λ

−1
ζ HV

∣∣∣ |Λαc| . (117)

Repeating the same for the matrix̃J (θc)ex(1,1):
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J̃ (θc)ex(1,1) =


 H̃ScH

T
ex(1,1) H̃Vcex(1,)

ṼT
c HT

ex(,1) Λαc


 . (118)

Using the same matrix manipulation, we get:

∣∣∣J̃ (θc)ex(1,1)

∣∣∣ =
∣∣∣H̃ScH

T − ṼT
c HTΛ

−1
αc H̃Vc

∣∣∣ |Λαc| , (119)

and using terms (117) and (119) in (115) yields:

[J (θc)]
−1
1,1 =

∣∣∣H̃ScH
T − ṼT

c HTΛ
−1
αc H̃Vc

∣∣∣
∣∣HScH

T − VT
c HTΛ

−1
αcHVc

∣∣ . (120)

By definition, this expression is identical to:

[J (θc)]
−1
1,1 =

[(
HScH

T − V
T
c H

T
Λ

−1
αcHVc

)−1
]

1,1
. (121)

Repeating the process for term located at(1, 2), (2, 1), and(2, 2), results in:

[
CCRLBcor

]
2×2

=
(
HScH

T − V
T
c H

T
Λ

−1
αcHVc

)−1
. (122)

APPENDIX IV

DERIVATION OF COVARIANCE OF OBSERVATION NOISE (78)

For a set of received waveformsrℓ (t) , 1 ≤ ℓ ≤ N, the time delay estimatesµ = [µ11, µ12, ..., µMN ]T are

determined by maximizing the following statistic:

µℓk = arg max
v

[
exp (j2πfcv)

∫

T

rℓ (t) s∗k (t− v) dt

]
. (123)

Equivalently,
d

dv

[
exp (j2πfcv)

∫

T

rℓ (t) s∗k (t− v) dt

]

v=µℓk

= 0. (124)

The time delay estimates are expressed in (72). The properties of the noiseǫℓk can be computed from (8), and (2).

It is not difficult to show that the following relation holds:

dg(v)

dv

∣∣∣∣
v=µℓk

+ nℓk = 0, (125)

where

g(v) = ζ

∫

T

exp [j2πfc (v − τℓk)] sk (t− τℓk) s
∗
k (t− v) dt, (126)

and

nℓk =

∫

T

d

dv
wℓ(t)s

∗
k (t− v) exp (j2πfcv) dt. (127)
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We wish to write (125) in the form of (72). With a few algebraicmanipulations, including expandingg(v) in a

Taylor series aroundτℓk, and neglecting termso
[
(τℓk − τ̂ℓk)

3
]
, it can be shown that

µℓk = τℓk +
nℓk

4π2f2
c

(
1 +

β2

k

f2
c

)
ζ
. (128)

Comparing this with (72), and invoking the narrowband assumption β2
k/f

2
c ≪ 1, we have for the error term

ǫℓk ≃ nℓk
4π2ζf2

c

. (129)

To find the first and second order statistics ofǫℓk, we need the statistical characterization ofnℓk. As previously

stated, we assume the receiver noisewℓ(t) is a Gaussian random process with zero mean and autocorrelation function

σ2
wδ(τ). Sincenℓk is a linear transformation of the processwℓ(t), since the meanwℓ(t) is zero,E [nℓk] = 0.

Similarly, it can be shown that

E [nℓkn
∗
nm] =





0 ∀ℓk 6= nm

2π2σ2
wf

2
c ∀ℓk = nm

. (130)

Using these results, we finally get

E [ǫℓkǫ
∗
nm] =

E [nℓknnm]

16π4 |ζ|2 f4
c

(131)

=





0 ∀ℓk 6= nm

1

8π2f2
c (|ζ|2/σ2

w)
∀ℓk = nm

,

concluding that the covariance matrix of the termsǫℓk is given by:

Cǫ =
1

8π2f2
c |ζ|

2
/σ2

w

IMN×MN . (132)
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Fig. 1. MIMO radar system layout.
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constellation with the receiving radars set organized in a symmetric constellation of N=4.
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Fig. 4. GDOP contours for an asymmetric constellation of theradar set with M=7 transmitting radars and N=7 receiving radars.
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Fig. 5. GDOP contours for an asymmetric constellation of theradar set with M=7 transmitting radars and N=7 receiving radars, in the case

where the radar are almost aligned.
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