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Abstract— In this paper, a mapping between initial states of the In [13] it has been shown how to transform a Fibonacci
Fibonacci and the Galois configurations of NLFSRs is estaldhed. NLFSR into an equivalent Galois NLFSR. While the resulting
We show hovv_ to choose initial states for two configurations so NLFSRs generate the same sets of output sequences, they
that the resulting output sequences are equivalent. .

follow different sequences of states and normally staninfien

Index Terms— Fibonacci NLFSR, Galois NLFSR, initial state, different initial state. The relations between sequenéstates
pseudo-random sequence, stream cipher. and between initial states of two configurations are studied
in this paper. One reason for studying the relation between
sequences of states is that some NLFSR-based stream ciphers
use not only the output of an NLFSR, but also several other

Non-Linear Feedback Shift Registers (NLFSR) are a gebits of its state to produce a pseudo-random sequence. If a
eralization of Linear Feedback Shift Registers (LFSRs) #Ribonacci to Galois transformation is applied to an NLFSR-
which a current state is a non-linear function of the presiolbased stream cipher, it is important to know which bits of the
state [1]. While the theory behind LFSRs is well-understoodtate are affected by the transformation in order to preserv
many fundamental questions related to NLFSRs remain opéfe original algorithm. Changing the algorithm is likely to

The interest in NLFSRs is motivated by their ability tanfluence the security of a cipher. For the same reason, we
generate pseudo-random sequences which are hard to bresdd to map the secret key and the initial value (V) of the
with existing cryptanalytic methods [2]. A common approachriginal cipher into the corresponding ones of the transfet
for encrypting confidential information is to use stream cipher. Finally, knowing which initial state of the Galois
cipher which combines plain text bits with a pseudo-randoronfiguration matches a given initial state of the Fibonacci
bit sequence [3]. The resulting encrypted information can lzonfiguration makes possible validating the equivalendevof
transformed back into its original form only by an authodzeconfigurations by simulation.
user possessing the cryptographic key. While LFSRs areThe paper is organized as follows. Sectioh Il gives an
widely used in testing and simulation [4], for cryptographiintroduction to NLFSRs and describes the Fibonacci to Galoi
applications their pseudo-random sequences are not sectreghsformation. In Sectiof1ll, we study a relation between
The structure of am-bit LFSR can be easily deduced bythe sequences of states generated by two equivalent NLFSRs.
observing 2 consecutive bit of its sequence [5]. Contrary, aBection[I¥ shows how to compute the initial state for the
adversary might need"its of a sequence to determine the&salois configuration which matches a given initial statehef t
structure of then-bit NLFSR which generates it [6]. A numberFibonacci configuration. Sectidn] V concludes the paper and
of NLFSR-based stream ciphers for RFID and smartcardiscusses open problems.
applications have been proposed, including Achterbahn [7]
Grain [8], Dragon [9], Trivium [10], VEST [11], and the
cipher [12].

Similarly to LFSRs, an NLFSR can be implemented either In this section, we give an introduction to NLFSRs and
in the Fibonacci or in the Galois hardware configuration. Ibriefly describe the transformation from the Fibonacci te th
the former, the feedback is applied to the last bit of thestegi Galois configuration. For more details, the reader is reterr
only, while in the latter the feedback can potentially belagap to [13].
to every bit. The depth of circuits implementing feedback
functions in a Galois configuration is usually smaller thiae t _r
one in the equivalent Fibonacci configuration [13]. This emkA' Definition of NLFSRs
the Galois configuration more attractive for stream ciphersA Non-Linear Feedback Shift Register (NLFSRhsist ofn
where high throughput is important. For example, by rdinary storage elements, callbds. Each biti € {0,1,...,n—
implementing the NLFSR-based stream cipher Grain [8] frod} has an associatestate variable x which represents the
the original Fibonacci to the Galois configuration, one carurrent value of the bitand afeedback function; f {0,1}" —
double the throughput with no penalty in area or power [14]0, 1} which determines how the value ios updated. For any
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i€{0,1,...,n—1}, fi depends o 1mod nand a subset of derive a basic property which will be used to prove of the
variables from the sefxp,x1,...,X}. main result of the paper.

A stateof an NLFSR is an ordered set of values of its state Lets= (sy,s1,...,5, 1) be a state of an NLFSR, € {0,1}.
variables(xo, X, .., Xn-1). At every clock cycle, the next stateThroughout the paper, we uggs) to denote the value of the
is determined from the current state by updating the valuggction g evaluated for the vectos. We also useyj|.m to
of all bits simultaneously to the values of the correspogdirienote the function obtained from the functigrby increasing
fi's. Theoutputof an NLFSR is the value of its Oth bit. Theindexes of all variables of by m. For example, ifg; = x; -
period of an NLFSR is the length of the longest cyclic outpuk, @ x3, thengs| 2 = X3 - X4 ® xs. To simplify the exposition,
sequence it produces. we do not list variables of a function explicitly if it does o

If for all i € {0,1,...,n—2} the feedback functions arecause any ambiguity, i.e. in the previous example we wgpte
of type fi = %1, we call an NLFSR theFibonacci type. instead ofg; (x1, X2, X3).

Otherwise, we call an NLFSR th@alois type. Lemma 1:Let N; be ann-bit uniform NLFSR with the
Two NLFSRs arequivalenif their sets of output sequenceserminal bitt, 0< T < n— 1, which has the feedback function
are equivalent. of type
Feedback functions of NLFSRs are usually represented
using the algebraic normal form. Tlegebraic normal form fr = X1 11)mod n® G & P
(ANF) of a Boolean functiorf : {0,1}" — {0,1} is a polyno-
mial in GF(2) of type and letN, be an equivalent uniform NLFSR obtained frdyp
1 by shifting fromt to 1— 1 the set of product-terms represented
f (X0 .., X 1) = 20 GoX0 XL X:’Il’]il’ by the functionp.
i= If Nj is initialized to a stats= (s,S1,...,5-1) andNy is

wherec; € {0,1} and (ipi1...in_1) is the binary expansion of initialized to the stat€so, S, ..., S-1,ft;St41,- -, S-1), Where
i with ig being the least significant bit. Throughout the paper,
we call a term of the ANF @roduct-term =St ® prf-1(9) 1)

then they generate sequences of states which differ in the bi
T only.

Proof: Suppose thatN; is initialized to a states =
(%0,S1,---,S—1) andNj is initialized to a state = (ro,r1,...,

rn—1), such thatr; = s for all i excepti =1 andr; is given by

B. The transformation from the Fibonacci to the Galois con
figuration

Let fi and f; be feedback functions of bitsand j of an
n- blt NLFSR, respectively. The operatighifting, denoted by
fi L fj, moves a set of product-terns from the ANF of
fi to the ANF of f;. The index of each variablg of each
product-term inP is changed to<_i, ) mod n-

The terminal bit T of an n-bit NLFSR is the bit with the
maximal index which satisfies the following condition: S, =200 1(SL,%, .., 1)

On one hand, foN;, the next state is"™ = (s§,s{,...,st ;)
such that

For all bitsi such that < 1, f; is of type fi = X;1.
' S S =S 1@ Gr(%0, 51, -, St-1) B Pr(S1, 82, -+, )

An n-bit NLFSR isuniformif the following two condition St 1=
hold:
(a) all its feedback functions amengular functions of type $ =Si.
fi(X0,- - Xn-1) = X+ ymod n® Gi(X0; - -, Xn-1), Note that, sincé\; is uniform, the functionsin_1,9n_2, .. ., Gt

may only depend on variables with indexes between .to
Furthermoregn_1,0n-2,-..,0; cannot depend on the variable
Xt, since otherwiseéNp, would not be uniform after shifting.
For the same reason, the functipp cannot depend on the
variablexg.

On the other hand, forN,, the next state isrt =
(rg.,r{,....r1 1), where

whereg; does not depend OXi;1)mod n
(b) for allits bitsi such that > 1, the index of every variable
of g; is not larger tharr.
Theorem 1:[13] Given a uniform NLFSR with the terminal
bit T, a shiftingg: A gv, U < T, results in an equivalent NLFSR
if the transformed NLFSR is uniform as well.

Ill. THE RELATION BETWEEN SEQUENCES OFSTATES
Although a Fibonacci NLFSR and a Galois NLFSR can

o =ro®gn-1(rs,rz,...,re1)

generate the same output sequence, they follow different rf =re1®o(ro,ra,...,re1)
sequences of states. Therefore, in order to generate the sam rrtl =r1:® p|-1(ro,ra,...,re—1)
output sequence, they normally have to be set to different ri,=re1

initial states. In this section we study the relation betwee
sequences of states produced by two equivalent NLFSRs and rg =ri.



TABLE |

By substitutingr;j = 5 for all i excepti =1, we get:
y g ! S p g SEQUENCES OF STATES OF THREE EQUIVALENZﬁ-BIT NLFSRs.

+
M1 =%®0n 1(81,%,...,5 1) Galois Fibonacci
... NLFSRN; | NLFSRN, | NLFSR N;
= .S X3X2X1X0 X3X2X1X0 X3X2X1X0
T S OG0, 81, Se-1) 0001 | 0101 | 0001
i1 ="re®pel-1(so,S,...,S-1) 1000 | 1000 | 1000
0100 0100 0100
=g 0010 0010 1010
0 : 1101 1001 1101
By substitutingr; b , we get 1110 1110 0110
y+ orc by @) 9 1011 1111 1011
rry =sS®p-1(8,S1,.--,S-1) P Pr|-1(S0,S15---,Sr-1 0101 0001 0101
1 _s Pel-2(S0,81, -+, Se-2) @ Pel-a(S0,81, - Se-a) 1010 1010 0010
-t 1001 1101 1001
; 1100 1100 1100
So, the next state dfl, is 0110 0110 1110
+ —gf 1111 1011 1111
r =
-1~ %h-1 0111 0011 0111
" 0011 0111 0011
r{ =S 1®(S0,S1,---,S1)
r+ o — gt
-1=51
rg=s/ The following property follows trivially from LemmE]1.

. . . Lemma 2:Let N1 be ann-bit uniform NLFSR with the

i.e. the next states df, andN; can potentially differ only the oo bitt, 0< T < n—1, which has the feedback function

bit positionT. of type
In order to extend this conclusion to a sequence of states, f—x %D

it remains to show that the resulting can be expressed = X(r+Dmod n© GO Pr

according to[(lL). From and letN, be an equivalent uniform NLFSR obtained frdwp

by shifting fromt to T— 1 the set of product-terms represented

S?r = ST+1®gT(S)75ﬂ.7' . ,Sr,]_) S5 pT(317327' . 731') by the functionpr.

we can derive If Np is initialized to a states= (s,S1,...,5-1) andNy is
initialized to the statdsy,s1,...,S_1,r+, ....,S-1), such

Sti1=S © (50,1, ,S-1) & Pr(S1, S, -, S)- - &S0, St ST Ses - Sn1)
Substituting it to the expression of above and eliminating e =St pe|-1(9), 2

the double occurrence ...,S-1), we get
(0,51, Sc-1) 9 thenN; and N, generate the same output sequence.

i =s @ps, S, S) As an example, consider the sequences of states of NLFSRs
since pr(s., % s) = pil 1(5{; Sf S[+ ), we get Ny an_d_Nz shown in the 1st and 2nd cqumr_ls of Taldle I. Since
e TR -1 their initial stateg0001) and (0101) agree with Lemmf]2\;
r{ =st @pel-1(sh) andN, generate the same output sequence 100010110100111.
O

IV. THE MAPPING BETWEENINITIAL STATES

As an example, consider the following 4-bit NLF3®: This section presents the main result of the paper.

fa=Xxo®xg Theorem 2:Let Ng be ann-bit Fibonacci NLFSR andNg
fo = X3 ® X1 B XoX1 be an equivalent uniform Galois NLFSR with the terminal bit
f1 =% 0 <t <n-1 and the feedback functions of type
fo=>. fa1=X0® -1
which has the period 15. Suppose we shift the product term fi2 =Xn-1®0gn_2
xp from the bit 2 to the bit 1. Then we get the following
equivalent NLFSRN\p: fi =% 1D 0 (3)
f3=XDx1 fr1=X
f2 = X3 ® Xox1
fi=X®x% fo = X1
fo=x. If Ng is initialized to a states= (s0,S1,-..,5-1) andNg is

The sequences of states Nf and N, are shown in the 1st initialized to the state(sp,su,. .., St M+1, 42, -, fn-1) such
and 2nd columns of Tab@ I. The initial statesf andN, that
are (s3s1%) = (0001 and (raraorirg) = (0101), respectively.
According to Lemm&ll, we havg =Sy, r1 =1, o = O o,

andrs; = 3. As we can see, these sequences differ in the lbar all i € {n—1,n—2,..., 1+ 1}, thenNg and Ng generate
2 only, which is the terminal bit oN;. the same output sequence.

N=s®0i-1(S)®0i-2[+1(9 @ ... ® Grt|4i-1-1(9



Proof: From the definition of shifting, we can conclude that

V. CONCLUSION

if, after the transformation, the Galois NLFSR has feedback|p this paper, we establish a relation between sequences of

functions of typel(B), then, the feedback function of thelth
bit of the original Fibonacci NLFSR is of type:

N1 =X0DUn-1POn-2/+1PGn-3/+2P ... B G| +n-1-1-

Any uniform Galois NLFSR can be obtained by first shiftin
all product-terms of the original Fibonacci NLFSR but th
ones represented hy, 1 from the bitn— 1 to the bitn—2,
then shifting all product-terms but the ones represented
On_2 from the bitn—2 to the bitn— 3, etc., i.e. using a
sequence oh— 1—T shiftings by one bit. This means that, a
each step, the set of product-terms represented by thedanct

Pn-1-i =On-1-i-1|4+1®On-1-i-2/+2P ... B G| 4n-1-i-t (4)

is shifted from the bith—1—i to the bitn—1—i—1,
for i € {0,1,...,n—1—1—1}. Furthermore, for each €
{0,1,...,n—1—1—1}, by Lemmal®, if the NLFSR before
shifting is initialized to some statéd and the NLFSR after
shifting is initialized to the state where the it-1—i has
the values, 1-i @ pn-1-i|-1(S) and all other bits have the
same values as the corresponding bits pthen two NLFSRs
generate the same output sequence.

Therefore, we can conclude that if the original Fibonacc[n
NLFSR Nk is initialized to the stats= (s,S1,...,5-1) and
the NLFSR Ng obtained using the sequence of-1-—1
shiftings by one bit described above is initialized to thatest
(%0,S1,---5St, Ft+1, 42, - - -, n—1) such that

(1]
(2]

(3]
(4

(5]
(6]

(8]
El

rj=opj -1(s) [10]
for eachj € {n—1,n—2,...,1+1} andp; is defined by[(#), [11]
thenNg andNg generate the same output sequence.

a

Since the functiongn_1,9n-2,-..,9: of a uniform Galois (12]

NLFSR depend on variables with indexes between Odaly,
the following property follows directly from the Theordm 2.
Lemma 3:Let Ng be ann-bit Fibonacci NLFSR andlg be
an equivalent uniform Galois NLFSR with the terminal bit [15]

If both Ne andNg are initialized to any statéso, st,...,S-1)
such thats =0 for alli € {0,1,...,1}, then they generate the[16]
same output sequence.
As an example, consider the 4-bit Fibonacci NLFSR
with the feedback functions:

(13]

f3 = Xo ® X1 D X2 B X1 X2

fo=x3
f1:X2
fo:X1

which is equivalent to the Galois NLFSR¢ and N, from

the previous example. The 3rd column of TaBle | shows the
sequence of states dk. The terminal bits ofN; andN, are

2 and 1, respectively. Therefore,(i5000) is used as an initial
state (2nd row of Tablg 1), all three NLFSRs generate the same
output sequence 000101101001111.

states generated by two equivalent NLFSRs and show how to
compute the initial state for the Galois configuration which
matches a given initial state of the Fibonacci configuration
Many fundamental problems related to NLFSRs remain
open. Probably the most important one is finding a systematic
rocedure for constructing NLFSRs with a guaranteed long
period. Available algorithms either consider some special
ases [15], or applicable to small NLFSRs only [16]. The
Eneral problem is hard because there seems to be no simple
talgebraic theory supporting it. Specifically, so far no agal
of a primitive generator polynomial has been found for the
honlinear case.
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