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Abstract

A word-valued sourceY = Y1, Y2, . . . is discrete random process that is formed by sequentially

encoding the symbols of a random processX = X1, X2, . . . with codewords from a codebookC .

These processes appear frequently in information theory (in particular, in the analysis of source-coding

algorithms), so it is of interest to give conditions onX and C for which Y will satisfy an ergodic

theorem and possess an Asymptotic Equipartition Property (AEP). In this correspondence, we prove the

following: (1) if X is asymptotically mean stationary, thenY will satisfy a pointwise ergodic theorem

and possess an AEP; and, (2) if the codebookC is prefix-free, then the entropy rate ofY is equal to

the entropy rate ofX normalized by the average codeword length.
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I. INTRODUCTION

The following notion of a word-valued source appears frequently in source-coding theory [1–4].

Suppose thatA and B are discrete-finite alphabets andX = X1,X2, . . . is an A -valued random

process. LetC be a codebook whose codewords take symbols fromB and have different lengths, and

let f : A → C be a mapping. The word-valued source generated byX andf is theB-valued random

processY = f(X1), f(X2), . . ., which is formed by sequentially encoding the symbols ofX with f and

concatenating (placing end-to-end) the resulting codewords.

It is of fundamental interest to give broad conditions onX, f and C for which Y is guaranteed

to possess an Asymptotic Equipartition Property (AEP). A common approach to this type of problem

is to determine when the random processes of interest are stationary, after which the classic Shannon-

McMillan-Breiman Theorem [5, Thm. 15.7.1] may be used to achieve an AEP. However, this approach

is not particularly useful for word-valued sources: for most choices off andC , Y will not be stationary

– even whenX is stationary. Thus, the primary focuss of this paper is to give broad conditions for an

AEP without direct recourse to stationarity and the Shannon-McMillan-Breiman Theorem.

Nishiara and Morita [1, Thms. 1& 2] derived an AEP as well as a conservation of entropy law for

Y whenX is independent and identically distributed (i.i.d.),f is a bijection andC is prefix-free. (A

codebook is said to be prefix-free if no codeword is a prefix of another codeword [5, Chap. 5].) These

results were later extended from the i.i.d. case to the more general stationary and ergodic case by Goto

et al. in [2, Thm. 2]. We further generalize the results of [1, 2] to the setting whereX is Asymptotically

Mean Stationary (AMS),f is a bijection andC is prefix-free. (This AMS condition is a weaker version

of the stationary condition that permits short-term non-stationary properties [6].) As we will see, the

resulting AEP and entropy-conservation law do not retain the simplicity of those results reported in [1, 2]

for stationary and ergodicX; namely, both extensions are ineluctably linked to an ergodic-decomposition

theorem.

In contrast to the aforementioned results for prefix-free codebooks, very little is know about word-

valued sources generated by codebooks without the prefix-free property. In [1], Nishiara and Morita

derived an upper bound for the sample-entropy rate ofY when X is an i.i.d. process andC is not

prefix-free. This upper bound was later supplemented with a non-matching lower bound by Ishidaet al.

in [4]. These bounds, however, fell short of proving an AEP. We prove an ergodic theorem as well as an

AEP for Y whenX is AMS andC is arbitrary; and, in doing so, we resolve the open problem reported

in [1, 2, 4].
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Our results will follow from a new lemma (Lemma 8) for AMS random processes. This lemma is

an extension of a result by Gray and Saadat [7, Cor. 2.1], and it demonstrates that the AMS property

is invariant to variable-length time shifts: an AMS random process will remain AMS when it is viewed

under different time scales. This invariance property will, in turn, allow us to show thatY is AMS

wheneverX is AMS – no matter whichf and C is used. Finally, Gray and Kieffer’s AEP for AMS

processes [8, Cor. 4] will provide the desired AEP forY.

An outline of the paper is as follows. We introduce some notation and definitions in Section II. We

present an ergodic theorem (Theorem 1-A) in Section III, andin Section IV we restate this ergodic

theorem using the language of AMS random processes (Theorem1-B). We present an AEP (Theorem 2)

in Section V. Finally, Theorems 1-B and 2 are proved in Sections VI and VII respectively.

II. DYNAMICAL SYSTEMS& WORD-VALUED SOURCES

The notion of “time” is problematic for the development of word-valued sources. In particular, each

symbolXi, i = 1, 2, . . ., will produce multiple symbols (a codeword)f(Xi); thus,X andY are naturally

defined by different time scales. We simplify notation for these different time scales by using various shift

transformations to model the passage of time. A brief reviewof these transformations and the resulting

dynamical systems is given in this section – a complete treatment can be found in [6] and [9]. After this

review, we formally define word-valued sources.

A. A Dynamical Systems Model forX

Let us first introduce some notation. Suppose thatA is a discrete-finite alphabet. For any natural

numbern (i.e. n ∈ {1, 2, . . .}), let

A
n = A × A × · · · × A

︸ ︷︷ ︸

n

denote then-fold Cartesian product ofA , and let1 an = a1, a2, . . . , an denote an arbitraryn-tuple from

A n. (These notation conventions will apply to the Cartesian product of every discrete-finite alphabet

used in this paper.)

Now suppose thatX = X1,X2, . . . is anA -valued random process that is characterised by a sequence

of joint probability distributions

p(n)(an) = Pr
(
X1 = a1, X2 = a2, . . . , Xn = an

)
, n = 1, 2, . . . , (1)

1Whenn = 1, we shall omit the superscript for brevity, e.g.,a
1 = a andA

1 = A .
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for which the consistency condition

p(n)(a1, a2, . . . , an) =
∑

ã∈A

p(n+1)
(
a1, a2, . . . , an, ã

)
, n = 1, 2, . . . , (2)

is satisfied. Instead of characterisingX with the sequence of joint distributions given in (1), we mayuse

a dynamical system without loss of generality. A brief review of this fact is as follows.

Let X = A ×A ×· · · denote the set of all sequences with elements fromA , and letx = x1, x2, . . .

denote an arbitrary member ofX . Now let

[
an
]
=
{
x ∈ X : x1 = a1, x2 = a2, . . . , xn = an

}

denote the cylinder set determined by ann-tuple an ∈ A n, and defineF (X ) to be theσ-field of

subsets ofX that is generated by the collection of all cylinder sets. LetTX : X → X be the left-shift

transform that is defined byTX (x) = x2, x3, . . .. For integersn ≥ 0, let2

T n
X (x) = TX

(

TX

(
· · ·TX (x) · · ·

))

︸ ︷︷ ︸

n

= xn+1, xn+2, . . .

denote then-fold composition ofTX , and let

T−n
X

A =
{

x ∈ X : T n
X (x) ∈ A

}

denote the preimage of an arbitrary setA ∈ F (X ) underT n
X

. Finally, consider the partitionQ = {[a] :

a ∈ A } of X , and define the functionXQ : X → A by settingXQ(x) = a if x ∈ [a]. I.e. XQ(x)

returns the value of the first symbol,x1, from x.

Proposition 1 ([6, 9]): IfX is anA -valued random process that is characterised by a distribution (1)

for which the consistency condition(2) holds, then there exists a unique probability measureµ on

(X ,F (X )) such thatp(n)(an) = µ([an]) for every tuplean ∈ A n and everyn = 1, 2, . . .. In particular,

the distribution of the sequence ofA -valued random variablesXQ ◦ T n
X

, n = 0, 1, . . ., defined on

(X ,F (X ), µ) matches that ofX:

µ

(
{

x ∈ X : XQ(x) = a1, XQ

(
TX (x)

)
= a2, . . . , XQ

(
T n−1

X
(x)
)
= an

}
)

= µ

(
n⋂

i=1

T−i+1

X
[ai]

)

= µ([an]) .

The probability measureµ is called the Kolmogorov measure of the processX.

Proposition 1 shows that the quadruple(X , F (X ), µ, TX ) may be used in place ofX without loss

of generality. We shall use(X , F (X ), µ, TX ) andX interchangeably.

2If n = 0, defineT 0

X (x) = x.
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B. A Dynamical System Model forY

Suppose thatB is a discrete-finite alphabet,N is a natural number, and

B
∗ =

N⋃

i=1

B
i

is the set of allB-valued tuplesbi = b1, b2, . . . , bi whose lengthi is greater than or equal to1 and no

more thanN . Let f : A → B∗ be a mapping andC = Range(f). Finally, let c denote an arbitrary

member ofC and |c| its length. We callf a word function, C a codebook3, andc a codeword.

Definition 1 (Word-Valued Source):Suppose thatX is anA -valued random process andf is a word

function. The word-valued sourceY generated byX andf is defined to be theB-valued random process

that is formed by:

(i) sequentially coding the symbolsXi, i = 1, 2, . . . , with f , and

(ii) concatenating the resulting sequence of codewords:Y = f(X1), f(X2), f(X3), . . ..

For arbitraryf , the particular realisation ofX may not be uniquely determined by observingY. The

following definition describes a class of word functions where X can be uniquely recovered fromY.

Definition 2 (Prefix-Free Word Function):A word functionf is said to be prefix free if:

(i) f : A → C is a bijection, and

(ii) there does not exist two codewordsc andc′ in C such thatci = c′i for i = 1, 2, . . . ,min{|c|, |c′|}.

The distribution of the word-valued sourceY,

q(n)
(
bn
)
= Pr

(
Y1 = b1, Y2 = b2, . . . , Yn = bn

)
, n = 1, 2, . . . ,

may be calculated by combining the distribution ofX with f . With a slight abuse of notation, letf−1bn

denote the set ofn-tuplesan where the firstn symbols of then concatenated codewordsf(a1), f(a2),

. . ., f(an) are equal tobn; that is,

f−1bn =
{

an ∈ A
n : φn

(
f(a1), f(a2), . . . , f(an)

)
= bn

}

,

whereφn : ∪n≤m≤nNBm → Bn is the projection defined byφn(b1, b2, . . . , bn, bn+1, . . . , bm) = b1,

b2, . . . , bn. Using this notation, we have that

q(n)
(
bn
)
=







∑

an∈f−1bn p
(n)
(
an
)
, if f−1bn 6= ∅ and

0, otherwise,
(3)

3By construction, we have that the length|c| of each codewordc ∈ C is bound by1 ≤ |c| ≤ N . In practice, however, the

restriction to codewords with finite length may not be suitable for all applications [1].
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where∅ denotes the empty set.

DescribingY directly with (3) is rather cumbersome, and it is more convenient to use a dynamical

system that is formed by coding(X , F (X ), µ, TX ) with a sequence-to-sequence coder. To this end,

let Y = B × B × · · · denote the collection of all sequences with elements fromB, let b = b1, b2, . . .

denote an arbitrary member ofY , and letF (Y ) be theσ-field of subsets ofY generated by cylinder

sets. Now consider the sequence-to-sequence coder (measurable mapping)F : X → Y that is formed

by settingF (x) = f(x1), f(x2), . . .. WhenF acts on the abstract probability space(X , F (X ), µ),

it induces a probability measureη on (Y ,F (Y )) [10, Ex. 9.4.3] [9, Pg. 80]. In particular,η andµ are

related by

η(A) = µ
(
F−1A

)
, A ∈ F (Y ) , (4)

whereF−1A = {x ∈ X : F (x) ∈ A} denotes the preimage of a setA ∈ F (Y ) underF . Finally,

when (Y ,F (Y ), η) is combined with the left-shift transformTY (y) = y2, y3 . . . and the partition

{[b] : b ∈ B} of Y , the result is a dynamical system model(Y , F (Y ), η, TY ) for Y. In particular,

for eachn = 1, 2, . . . andbn ∈ Bn, we have thatη
(
[bn]
)
= µ

(
F−1[bn]

)
= q(n)

(
bn
)
.

Throughout the remainder of this paper, we shall use the following notation:(X , F (X ), µ, TX )

andX will denote an arbitraryA -valued random process;f : A → C will denote a word function;

F : X → Y will denote the sequence-to-sequence coder generated byf ; and,(Y , F (Y ), η, TY ) and

Y will denote the word-valued source generated by coding(X , F (X ), µ, TX ) with F , whereµ andη

are related via (4). In addition, we will use(W , F (W ), ρ, T ) to represent an arbitrary dynamical system.

Here it should always be understood thatW is the sequence space corresponding to some discrete-finite

alphabet (an element of which will be writtenw = w1, w2, . . .); F (W ) is the σ-field generated by

cylinder sets;ρ is a probability measure on(W ,F (W )); and,T : W → W is an arbitrary measurable

mapping. When we are explicitly interested in the special case whereT is the left-shift transform, we

shall use the notationTW (w) = w2, w3, . . ..

III. A P OINTWISE ERGODIC THEOREM

Theorem 1-A:

(i) If the limit

〈g〉(x) = lim
n→∞

1

n

n−1∑

i=0

g
(
T i

X (x)
)

(5)
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exists almost surely with respect toµ (a.s. [µ]) for every bounded-measurableg : X → (−∞,∞),

then the limit

〈g̃〉(y) = lim
m→∞

1

m

m−1∑

j=0

g̃
(
T j

Y
(y)
)

(6)

exists a.s. [η] for every bounded-measurablẽg : Y → (−∞,∞). If f is prefix-free, then the reverse

implication also holds.

(ii) If the limit (5) exists and takes a constant value a.s. [µ] for every bounded-measurableg : X →

(−∞,∞), then the limit(6) exists and takes a constant value a.s. [η] for every bounded-measurable

g̃ : Y → (−∞,∞).

IV. A SYMPTOTICALLY MEAN STATIONARY RANDOM PROCESSES

Theorem 1-A may be restated in a more compact form using the language of asymptotically mean

stationary random processes. For this purpose, let us recall the following definitions from Gray [6].

Consider a dynamical system(W , F (W ), ρ, T), whereT : W → W is an arbitrary measurable

mapping. The system is said to bestationaryif ρ(A) = ρ(T−1A) for everyA ∈ F (W ). A setA ∈ F (W )

is said to beT -invariant if A = T−1A. The system is said to beergodic if ρ(A) = 0 or 1 for every

T -invariant setA. Finally, the system is said to beAsymptotically Mean Stationary(AMS) if the limit

lim
n→∞

1

n

n−1∑

i=0

ρ
(
T−iA

)

exists for everyA ∈ F (W ), in which case the set function

ρ(A) = lim
n→∞

1

n

n−1∑

i=0

ρ
(
T−iA

)
, A ∈ F (W ),

is a stationary probability measure on(W ,F (W )); that is, the system(W , F (W ), ρ, T ) is stationary.

The measureρ is called thestationary meanof ρ.

For brevity, we will say that the measureρ is T -stationary /T -ergodic /T -AMS if the corresponding

dynamical systems is stationary / ergodic / AMS respectively. The next lemma gives necessary and

sufficient conditions for a system to be ergodic and AMS.

Lemma 1:

(i) The system(W , F (W ), ρ, T) is AMS if and only if the limit

〈g〉(w) = lim
n→∞

1

n

n−1∑

i=0

g
(
T i(w)

)
(7)

exists a.s. [ρ] for every bounded-measurableg : W → (−∞,∞).
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(ii) The system(W , F (W ), ρ, T) is ergodic if and only if the limit(7) takes a constant finite value

a.s. [ρ] for every bounded-measurableg : W → (−∞,∞).

The AMS component of Lemma 1 was proved by Gray and Kieffer [8,Thm. 1], and the ergodic

component follows from the definition of ergodicity [6, Sec.6.7]. Using Lemma 1, we may restate

Theorem 1-A as follows. A proof of this result can be found in Section VI.

Theorem 1-B:

(i) If µ is TX -AMS, thenη is TY -AMS.

(ii) If f is prefix-free, thenη is TY -AMS if and only ifµ is TX -AMS.

(iii) If µ is TX -ergodic, thenη is TY -ergodic.

V. A N ASYMPTOTIC EQUIPARTITION PROPERTY

In this section, we extend the AEP of [1, 2, 4] to the setting whereµ is TX -AMS andf is arbitrary.

Two fundamental features of this extension will be the ergodic-decomposition theorem and the AEP for

AMS random processes. We briefly review each of these ideas inSubsections V-A and V-B before stating

our main results in Subsection V-C.

A. The Ergodic Decomposition Theorem

Suppose thatW = W1,W2, . . . is a discrete-finite alphabet random process and(W ,F (W ), ρ, TW )

is the corresponding dynamical system in the sense of Proposition 1, whereTW (w) = w2, w3, . . . is the

left-shift transformation. For each setA ∈ F (W ), let 1A denote its indicator function:

1A(w) =







1, if w ∈ A

0, otherwise.

When the limit exists, let

〈1A〉(w) = lim
n→∞

1

n

n−1∑

i=0

1A

(

T i
W (w)

)

denote the relative frequency of the setA in the sequencew. Finally, for each bounded-measurable

function g : W → (−∞,∞), let E[ρ, g] denote its expected value:

E
[
ρ, g
]
=

∫

g(w) dρ(w) .

The pair(W ,F (W )) belongs to a family of measurable spaces called standard spaces [6, Chap. 2]. A

distinctive property of these spaces is that they possess a countable generating field [6, Cor. 2.2.1]. Let

S be a countable generating field for(W ,F (W )). Now letG(S ) denote the collection of sequencesw

November 1, 2018 DRAFT
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from W such that the limit〈1A〉(w) exists for every generating setA ∈ S . It can be shown that, for each

w ∈ G(S ), the set functionPw obtained by settingPw(A) = 〈1A〉(w) induces a uniqueTW -stationary

probability measurepw on (W ,F (W )). Let E denote the set of sequencesw from G(S ) where the

inducedTW -stationary probability measurepw is alsoTW -ergodic:

E =
{
w ∈ W : w ∈ G(S ) andpw is TW -ergodic

}
.

The setE is called the set ofergodic sequences. Finally, let p∗ be an arbitraryTW -stationary and

TW -ergodic probability measure on(W ,F (W )), and for each sequencew ∈ W define

ρ
w
=







pw, if w ∈ E

p∗, otherwise.

The collection of probability measures{ρw : w ∈ W } is called theergodic decompositionof (W ,F (W )).

Lemma 2 (AMS Ergodic Decomposition Theorem [6, 9]): Let{ρ
w

: w ∈ W } be the ergodic decom-

position of(W ,F (W )) andE the set of ergodic sequences. Then,

(i) the setE is TW -invariant: E = T−1
W

E,

(ii) ρ
w
(A) = ρTW (w)(A) for every setA ∈ F (W ) and every sequencew ∈ W ,

(iii) for any pair w and w′, the probability measuresρ
w

and ρ
w′ are either identical or mutually

singular.

Additionally, if ρ is T -AMS with stationary meanρ, then

(iv) ρ(E) = ρ(E) = 1,

(v) for each setA ∈ F (W )

ρ(A) =

∫

ρ
w
(A) dρ(w) ,

(vi) the limit

〈g〉(w) = lim
n→∞

1

n

n−1∑

i=0

g
(
T i

W (w)
)
= E

[
ρ
w
, g
]

holds a.s. [ρ] for each bounded-measurable functiong : W → (−∞,∞).

B. An AEP for AMS Random Processes

As before, suppose thatW = W1,W2, . . . is a discrete-finite alphabet random process and(W , F (W ),

ρ, TW ) is the corresponding dynamical system. For each sequencew ∈ W , the probabilityρ([wn]) is

non-increasing inn. If ρ is TW -AMS, then Gray and Kieffer’s AEP [8] asserts that this decrease is

exponential inn on a set of probability one; in particular, the (asymptotic)rate of decent is given by the
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entropy rate of the underlyingTW -stationary andTW -ergodic probability measureρ
w

from the ergodic

decomposition theorem. A formal statement of this idea is given in the next lemma. However, before this

lemma is given, we briefly review the concepts of joint entropy, entropy rate and sample-entropy rate.

The joint entropyH(W n) of the firstn-random variablesW n from W is defined as [5]

H(W n) =
∑

wn

Pr
[
W n = wn

]
log

1

Pr
[
W n = wn

] .

With respect to the Kolmogorov measureρ, we define the joint entropy of the firstn random variables

to be

Hn(ρ) =
∑

wn

ρ
(
[wn]

)
log

1

ρ
(
[wn]

) .

From Proposition 1, these functionals are consistent in that H(W n) = Hn(ρ). When the limit exists, the

entropy rateof W is defined asH(W) = limn→∞(1/n)H(W n) [5, Chap. 4]. Similarly, we define the

entropy rate ofW with respect toρ to beH(ρ) = limn→∞(1/n)Hn(ρ) when the limit exists. Finally,

we define thesample-entropy rateof a sequencew ∈ W with respect toρ as

h(ρ,w) = lim
n→∞

1

n
log

1

ρ
(
[wn]

) ,

when the limit exists.

Lemma 3 (Asymptotic Equipartition Property [10]): Let{ρ
w
: w ∈ W } be the ergodic decomposition

of (W ,F (W )). If ρ is TW -AMS with stationary meanρ, then there exists a setΩ ∈ F (W ) with

probability ρ(Ω) = 1 such that the sample-entropy rateh(ρ,w) of any sequencew ∈ Ω exists and is

given by

h(ρ,w) = ϕ(w) , (8)

whereϕ is theTW -invariant function that is defined byϕ(w) = H(ρ
w
). Furthermore, the entropy rate

of ρ exists and is given by

H(ρ) = H(ρ) = E
[
ρ, ϕ

]
.

Finally, if ρ is TW -ergodic, thenh(ρ,w) = H(ρ) = H(ρ) for everyw ∈ Ω.

C. An AEP for Word Valued Sources

We now return to the problem of establishing an AEP forY. From Theorem 1-B and Lemma 3, it

is clear thatY satisfies an AEP wheneverµ is TX -AMS. It turns out, however, that not only does the

limit h(η,y) exist almost surely, but its value may also be bound from above by the entropy rate ofX

normalized by the expected codeword length. We formalize this idea in the following theorem.
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Theorem 2: Let{µ
x

: x ∈ X } be the ergodic decomposition of(X ,F (X )). If µ is TX -AMS, then

η is TY -AMS and there exists a setΩx ∈ F (X ) with probabilityµ(Ωx) = 1 such that, for every sequence

x ∈ Ωx, the sample-entropy rateh(η, F (x)) of the word-valued sequenceF (x) = f(x1), f(x2), . . . exists

and is bound from above by

h
(
η, F (x)

)
≤

H(µ
x
)

E
[
µ
x
, l
] , (9)

where l : X → {1, 2, . . . , N} is given byl(x) = |f(x1)|. In addition, if f is prefix free, then the

inequality in (9) becomes an equality.

A proof of Theorem 2 follows in Section VII. The next corollary demonstrates that ifX is AMS, then

the entropy in each symbol ofX is conserved with respect to each stationary and ergodic sub-source

from the ergodic-decomposition theorem. This behaviour isconsistent with the entropy-conservation laws

of variable-to-fixed length source codes [11, 12].

Corollary 2.1: If µ is TX -AMS, then the entropy rate ofη exists and is bound from above by

H(η) ≤

∫
H(µ

x

)

E
[
µ
x
, l
] dµ(x) . (10)

In addition, if f is prefix-free, then the inequality in(10) becomes an equality.

Finally, the next corollary resolves the open problem reported in [1, 2, 4]: ifX is stationary and ergodic,

then an AEP holds forY.

Corollary 2.2: If µ is TX -stationary andTX -ergodic, thenη is TY -ergodic and

h
(
η,y

)
≤

H(µ)

E
[
µ, l
] a.s. [η] . (11)

In addition, if f is prefix-free, then the inequality in(11) becomes an equality.

VI. PROOF OFTHEOREM 1

The proof of Theorem 1-B (and Theorem 1-A) will use Lemmas 4 through 9, which are given

respectively in Subsections VI-A through VI-E. The forwardand reverse implications of Theorem 1-

B are proved in Subsections VI-F and VI-G respectively.

A. Subsequences, Weighted Sequences& Density

Suppose thatζ = ζ0, ζ1, ζ2, . . . is a strictly increasing subsequence in the non-negative integersZ∗ =

{0, 1, 2, . . .}. Let ξ = ξ0, ξ1, ξ2, . . . be theweight sequenceobtained fromζ by setting

ξn =







1, if n = ζk for somek = 0, 1, . . .

0, otherwise.
(12)
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When the limit exists, the densitydζ of ζ in Z
∗ is defined as

dζ = lim
n→∞

1

n

n−1∑

i=0

ξi . (13)

The next lemma follows directly from these definitions, e.g., see [13, Prop. 1.7].

Lemma 4: Suppose thatζ is a strictly increasing subsequence inZ∗ with densitydζ > 0 and weight

sequenceξ. For any sequencer = r0, r1, . . . of real numbers, we have that

dζ lim
k→∞

1

k

k−1∑

j=0

rζj = lim
n→∞

1

n

n−1∑

i=0

ξi ri ;

that is, the existence of either limit implies the existenceof the other.

B. Invariant Sets& Asymptotic Mean Stationarity

The next lemma gives some equivalence conditions for AMS dynamical systems.

Lemma 5 (Cor. 6.3.4, [6]; Thm. 2.2, [14]): For a dynamical system(W , F (W ), ρ, T), the following

statements are equivalent:

(i) ρ is T -AMS.

(ii) There exists aT -stationary probability measurẽρ on (W ,F (W )) such that ρ̃ asymptotically

dominatesρ; that is, ρ̃(A) = 0 implies limn→∞ ρ
(
T−nA

)
= 0 .

(iii) The limit limn→∞ (1/n)
∑n−1

i=0 g(T iw) exists a.s. [ρ] for every bounded-measurableg : W →

(−∞,∞). (See also Lemma 1.)

(iv) There exists aT -stationary probability measurẽρ on (W ,F (W )) such thatA = T−1A and

ρ̃(A) = 0 together imply thatρ(A) = 0.

C. Stationary, Ergodic& AMS Sequence Coders

In Section II, we defined the word-valued source(Y , F (Y ), η, TY ) using a sequence coderF :

X → Y . In the proof of Theorem 1-B, it will be necessary to determine when such a sequence coder

will transfer stationary / ergodic / AMS properties from theinput to the output. For this purpose, we

now review the notions of stationary, ergodic and AMS sequence coders.

Suppose that(W , F (W ), ρα, Tα) and (U , F (U ), ρβ, Tβ) are dynamical systems, whereW and

U are sequence spaces corresponding to some discrete-finite alphabets;F (W ) andF (U ) areσ-fields

generated by cylinder sets;Tα : W → W andTβ : U → U are arbitrary measurable maps;G : W → U

is a sequence coder;ρα is a probability measure on(W ,F (W )); and,ρβ is induced byG

ρβ
(
A
)
= ρα

(
G−1A

)
, A ∈ F (U ) .
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The sequence coderG also induces a probability measureραβ on the product space4 (W ×U ,F (W )×

F (U )) via

ραβ
(
A×B

)
= ρα

(
A ∩G−1B

)
, A ∈ F (W ), B ∈ F (U ) .

The two shiftsTα andTβ together define a product shiftTαβ : W × U → W × U via Tαβ

(
w,u

)
=

(
Tα

(
w
)
, Tβ

(
u
))

. The combination ofραβ andTαβ yields a dynamical system(W ×U , F (W )×F (U ),

ραβ, Tαβ).

The sequence coderG is said to be(Tα, Tβ)-stationary/ (Tα, Tβ)-ergodic / (Tα, Tβ)-AMS if, for any

Tα-stationary /Tα-ergodic /Tα-AMS probability measureρα, the induced measureραβ is Tαβ-stationary

/ Tαβ-ergodic /Tαβ-AMS.

Lemma 6 (Ex. 9.4.3, [10]): A sequence coderG is (Tα, Tβ)-stationary if and only ifG
(
Tα(w)

)
=

Tβ

(
G(w)

)
.

Lemma 7 (Lems. 9.3.2& 9.4.1, [10]): If G is (Tα, Tβ)-stationary, thenG is also(Tα, Tβ)-ergodic and

(Tα, Tβ)-AMS.

We note in passing that the sequence coderF generated by the word functionf is not (TX , TY )-

stationary. Thus, Theorem 1-B does not follow directly fromLemma 7. The additional result needed to

prove Theorem 1-B is given in the next section.

D. AMS Processes& Variable Length Shifts

Suppose thatW is a discrete-finite alphabet random process and(W , F (W ), ρ, TW ) is the corre-

sponding dynamical system, whereTW (w) = w2, w3, . . . is the left-shift transform. Now, suppose that

N is a natural number andW is parsed into a sequence of non-overlapping blocks of length N to

form the block-valued processWN =
{
(WnN+1,WnN+2, . . . ,W(n+1)N ); n = 0, 1, . . .

}
. I.e. WN is

simply W viewed in blocks of lengthN . The appropriate shift transform forWN is theN -block shift

T
W N : W → W of Gray and Kieffer [8] (see also Gray and Saadat [7]), which is defined by

TW N (w) = TN
W (w) = wN+1, wN+2, . . . .

The following proposition shows that the AMS property transcends block-time scales.

4We useF (W )×F (U ) to denote the productσ-field induced by rectangles of the formA×B, A ∈ F (W ), B ∈ F (U ) [15,

Pg. 97].
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Proposition 2 (Cor. 2.1, [7]): Ifρ is T
W N -AMS for any natural numberN , thenρ is T

W M -AMS for

every natural numberM .

Proposition 2 does not have analogues for stationary and / orergodic random processes; it is a unique

property of AMS random processes. We now extend this proposition to include the more general notion

of “variable-length” parsing, which will be necessary for our study of word-valued sources.

Suppose now thatW is parsed into a sequence of non-overlapping blocks, where the length of each

block is determined by a simple functionγ : W → {1, 2 . . . , N}. The appropriate transform for this

variable-length parsing is the variable-length shift of Gray and Kieffer [8, Ex. 6].

Definition 3 (Variable-Length Shift):Suppose thatγ : W → {1, 2, . . ., N} is a simple measurable

function and that there exists a natural numberM such thatγ(w) = γ(w′) for every pair of sequences

w, w′ ∈ W with wi = w′
i for everyi = 1, 2, . . . ,M . The variable-length shiftT

W γ : W → W generated

by γ is defined by [8]

TW γ (w) = T
γ(w)
W

(w) = wγ(w)+1, wγ(w)+2, . . . .

Our extension of Proposition 2 is given in the next lemma. This lemma will be the centrepiece of our

proof of Theorem 1-B.

Lemma 8: Ifρ is T
W γ -AMS for any variable-length shiftT

W γ : W → W , then ρ is T
W λ -AMS for

every variable-length shiftT
W λ : W → W .

We note that Gray’s proof of Proposition 2 [6, Sec. 7.3] elegantly combines convergent subsequences

with the notion of asymptotic dominance. It is not clear if this argument can be extended to prove the

more general Lemma 8. Instead, we take a more laborious approach and prove the lemma by showing

an ergodic theorem and applying Lemma 5 (iii).

Proof: We first show that ifρ is T
W γ -AMS, thenρ must also beTW -AMS. We then show that if

ρ is TW -AMS, thenρ must also beT
W λ-AMS.

Assume thatρ is T
W γ -AMS. From Lemma 5 (iv), there exists aT

W γ -stationary probability measureργ

on (W ,F (W )) such thatT−1
W γA = A andργ(A) = 0 together imply thatρ(A) = 0. Using the procedure

given by Gray and Kieffer in [8, Ex. 6], it can be shown thatργ is alsoTW -AMS. A second application

of Lemma 5 (iv) shows that there exists aTW -stationary probability measureρ on (W ,F (W )) such that

T−1
W

A = A andρ(A) = 0 together imply thatργ(A) = 0. Note also that if a setA is TW -invariant, then

it is alsoT
W γ -invariant:A = T−1

W
A ⇒ A = T−1

W γA. On combining these facts, we have the following:

if A = T−1
W

A and ρ(A) = 0, then it must be true thatργ(A) = 0, A = T−1
W γA and ρ(A) = 0. Thus,
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we have demonstrated the existence of aTW -stationary probability measureρ on (W ,F (W )) such that

T−1
W

A = A andρ(A) = 0 together imply thatρ(A) = 0. A third application of Lemma 5 (iv) shows that

ρ must indeed beTW -AMS.

We now show: ifρ is TW -AMS, thenρ must also beT
W λ-AMS. To do this, it will be useful to identify

the orbit5 of T
W λ on each sequencew ∈ W with a time subsequenceζ = ζ0, ζ1, . . .. Namely, for each

n = 0, 1, . . . setζn to be

ζn =







0, if n = 0
∑n−1

i=0 λ
(

T i
W λ(w)

)

, if n ≥ 1 ,
(14)

so, by construction, we have that

T n
W λ(w) = wζn+1, wζn+2, . . . = T ζn

W
(w) . (15)

Let ξ = ξ0, ξ1, . . . be the weight sequence that corresponds toζ, as given by (12). Since the length of

each shift is at mostN , the densitydζ of ζ in Z
∗, as given by (13), can be no smaller than1/N (when

the limit exists).

Let U denote the collection of all sequences with elements from{1, 2, . . . , N}, let F (U ) be the

σ-field on U generated by cylinder sets, and letTU (u) = u2, u3, . . . be the left-shift transform. Let

Λ : W → U be the mapping defined by

Λ(w) = λ
(
w
)
, λ
(
TW (w)

)
, λ
(
T 2

W (w)
)
, . . . .

From Lemma 6, this mapping is(TW , TU )-stationary sinceTU (Λ(w)) = Λ(TW (w)). Finally, from

Lemma 7 the induced measureρwu

(
A×B

)
= ρ
(
A ∩ Λ−1B

)
on (W × U , F (W )× F (U )) is TW U -

AMS, whereTW U (w,u) =
(
TW (w), TU (u)

)
.

Let Z denote the collection of all sequences with elements from{0, 1}, let F (Z ) be theσ-field

generated by cylinder sets, and letTZ (z) = z2, z3, . . . be the left-shift transform. We now construct a

finite-state coderG : W × U → Z , which identifies the orbit of the variable-length shiftT
W λ . Define

G = {0, 1, . . . , N − 1} to be the internal state space of the coder, and define the state update function

gs and the output functiongo by

gs(w, u, s) =







u− 1, if s = 0

s− 1, otherwise.

go(w, u, s) =







1, if s = 0

0, otherwise.

5The orbit ofT
W λ on w is the sequence of pointsw, T

W λ(w), T 2

W λ (w), . . . from W .
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Set s1 = 0 and calculate the first outputz1 = go(w1, u1, 0) = 1. Update the states2 = gs(w1, u1, 0) =

u1−1 and determine the next outputz2 = go(w2, u2, u1−1). Continue in this fashion to obtain the finite

state coderG : W × U → Z . As with sequence coders, the finite-state coderG is measurable and it

induces a probability measure

ρwuz(A×B × C) = ρwu

(
(A×B) ∩G−1C

)

on (W × U × Z , F (W ) × F (U ) × F (Z )). Moreover, this finite state coder is an example of a

one-sided Markov channel [16], so it follows from6 [16, Thm. 6] thatρwuz is TW U Z -AMS, where

TW U Z (w,u, z) =
(
TW (w), TU (u), TZ (z)

)
.

Consider the set

Υ =
{
(w,u, z) : w ∈ W , u = Λ(w), z = G

(
w,Λ(w)

)}

It can be shown thatΥ is measurable andρwuz(Υ) = 1. Suppose(w,u, z) ∈ Υ, ζ is the time subsequence

from (14), andξ is the weight sequence corresponding toζ. If 1λ : W ×U ×Z → {0, 1} is the indicator

function defined by

1λ(w,u, z) =







1, if z1 = 1

0, otherwise,

then, by construction, we have that

ξi = 1λ
(
T i

W U Z (w,u, z)
)

(16)

for all i = 0, 1, 2 . . .. Moreover, the density ofζ is given by (if the limit exists)

dζ = lim
n→∞

1

n

n−1∑

i=0

ξi

= lim
n→∞

1

n

n−1∑

i=0

1λ
(
T i

W U Z (w,u, z)
)

= 〈1λ〉(w,u, z) . (17)

Finally, since the length of each codeword is no more thanL, it must be true thatdζ ≥ 1/L (when this

limit exists.)

Sinceρwuz is TW U Z -AMS, it follows from Lemma 5 (iii) that there exists a subsetΩ with probability

ρwuz(Ω) = 1 such that, for each(w,u, z) ∈ Ω, the limit

〈g〉(w,u, z) = lim
n→∞

1

n

n−1∑

i=0

g
(
T i

W U Z (w,u, z)
)

6Example (b) from [16] demonstrates that a finite-state coderis a special case of a one-sided Markov channel.
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exists for every bounded-measurableg. Since 1λ is bounded and measurable, this ergodic theorem

guarantees the density (17) exists for every(w,u, z) ∈ Ω ∩Υ.

Let TW U Z λ denote the variable-length shift on the product spaceW × U × V defined by

TW U Z λ(w,u, z) = T
λ(w)
W U Z

(w,u, z) .

From (14), we have thatT n
W U Z λ(w,u, z) = T ζn

W U Z
(w,u, z) for all n = 0, 1, 2 . . ..

If g : W ×U ×Z → (−∞,∞) is bounded-measurable, then1λ × g is bounded and measurable, and

for each(w,u, z) ∈ Ω ∩Υ the following limits will exist:

〈1λ × g〉 = lim
n→∞

1

n

n−1∑

i=0

1λ
(
T i

W U Z (w,u, z)
)
g
(
T i

W U Z (w,u, z)
)

= lim
n→∞

1

n

n−1∑

i=0

ξig
(
T i

W U Z (w,u, z)
)

(18)

= dζ lim
m→∞

1

m

m−1∑

j=0

g
(
T
ζj
W U Z

(w,u, z)
)

(19)

= dζ lim
m→∞

1

m

m−1∑

j=0

g
(
T j

W U Z λ(w,u, z)
)
, (20)

where (18) follows from (16), (19) follows from Lemma 4, and (20) follows from (14). This chain of

equalities guarantees the limit in (20) exists for every(w,u, z) ∈ Ω∩Υ. Sinceg is an arbitrary bounded

measurable function, it follows from Lemma 5 (iii) thatρwuz is TW U Z λ-AMS. Finally, sinceρ is a

marginal ofρwuz, it follows thatρ is T
W λ-AMS.

E. Ergodic Processes& Variable Length Shifts

In Lemma 8, it was shown that an AMS random process remains AMSunder all variable-length

time shifts. The next lemma proves a weaker result for ergodic processes. Again, suppose thatW is a

discrete-finite alphabet random process and(W , F (W ), ρ, TW ) is the corresponding dynamical system.

Lemma 9: Ifρ is T
W γ -ergodic for some variable-length shiftT

W γ : W → W , then ρ is also TW -

ergodic.

Proof: If ρ is T
W γ -ergodic andA is anT

W γ -invariant set, thenρ(A) = 0 or 1. SinceA = T−1
W

A

implies thatA = T−1
W γA, it follows thatρ(A) = 0 or 1 for everyTW -invariant setA.
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F. Proof of Theorem 1-B (Forward Claim)

We now prove the forward claim of Theorem 1-B: ifµ is TX -AMS (and TX -ergodic), thenη is

TY -AMS (andTY -ergodic). LetZ denote the set of all sequences with elements from{1, 2, . . . , N},

let F (Z ) denote theσ-field generated by cylinder sets, and letTZ (z) = z2, z3, . . . denote the left-shift

transform. Using the word functionf , define the mapping

f̃(x) =
(
f(x)1, |f(x)|

)
,
(
f(x)2, |f(x)| − 1

)
, . . . ,

(
f(x)|f(x)|, 1

)
,

wheref(x)j, 1 ≤ j ≤ |f(x)|, denotes thejth symbol of the codewordf(x). By construction,̃f(x) couples

the codewordf(x) with a sequence of indices|f(x)1|, |f(x)1| − 1, . . . , 1, which mark the distance from

the current symbol to the end of the codeword. Usingf̃ , define the sequence coderF̃ : X → Y ×Z via

F̃ (x) = f̃(x1), f̃(x2), . . .. As before, this sequence coder induces a probability measure ηyz(A × B) =

µ
(
F̃−1(A× B)

)
on (Y × Z , F (Y )× F (Z )). Let TY Z (y, z) =

(
TY (y), TZ (z)

)
, and letTY Z γ be

the variable-length shift defined by settingγ(y, z) = z1. Since

F̃
(
TX (x)

)
= TY Z γ

(
F̃ (x)

)
.

it follows from Lemma 6 thatF̃ is a (TX , TY Z γ )-stationary sequence coder. Sinceµ is TX -AMS

(andTX -ergodic), we have from Lemma 7 thatηyz is TY Z γ -AMS (andTY Z γ -ergodic). Finally, from

Lemmas 8 and 9, we can see thatηyz must also beTY Z -AMS (andTY Z -ergodic); therefore,η must

be TY -AMS (andTY -ergodic).

G. Proof of Theorem 1-B (Reverse Claim)

We now prove the reverse claim of Theorem 1-B: ifη is TY -AMS and f is prefix-free, thenµ is

TX -AMS. Define the variable-length shiftT
Y γ : Y → Y by setting

γ(y) =







|c|, if there exists a uniquec ∈ C such thatyi = ci

for all i = 1, 2, . . . , |c|.

1, otherwise.

From Lemma 7, it follows thatη is T
Y γ -AMS.

Define

Ω =
{
y ∈ Y : there existsx ∈ X such thaty = F (x)

}
,

where it can be shown thatΩ ∈ F (Y ) andη(Ω) = 1.
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Let g : C → A denote the inverse off . If y is in Ω, then there exists a unique sequence of codewords

c1, c2, . . . from C such thaty = c1, c2, . . .. Therefore, usingg, we may define the sequence-coder

G : Ω → X by settingG(y) = F−1(c1, c2, . . .) = g(c1), g(c2), . . ..

For eachy ∈ Ω we have thatG
(
T

Y γ (y)
)
= TX

(
G(y)

)
, so it follows from Lemma 6 thatG is a

(T
Y γ , TX )-stationary sequence coder. From Lemma 6, the induced probability measurẽµ(A) = η(G−1A)

on (X ,F (X )) is TX -AMS. Sinceµ̃(A) = η(G−1A) = µ(F−1G−1A) = µ(A) for eachA ∈ F (X ),

it follows thatµ is TX -AMS.

VII. PROOF OFTHEOREM 2 & COROLLARIES

A. Proof of Theorem 2

Let {µ
x
: x ∈ X } and{η

y
: y ∈ Y } be the ergodic decompositions of(X ,F (X )) and(Y ,F (Y ))

respectively. For eachn = 1, 2, . . ., let φn : Y → Bn be the projectionφn(y) = y1, y2, . . . , yn. From

Lemma 3, there exists a subsetΩx,1 ∈ F (X ) with probabilityµ(Ωx,1) = 1 such that the sample-entropy

rate of each sequencex ∈ Ωx,1 exists and is given byh(µ,x) = ϕx(x), whereϕx(x) = H(µ
x
). Similarly,

there exists a subsetΩy ∈ F (Y ) with probability η(Ωy) = 1 such that the sample-entropy rate of each

sequencey ∈ Ωy exists and is given byh(η,y) = ϕy(y), whereϕy(y) = H(η
y
). Finally, from Lemma 2

there exists a subsetΩx,2 ∈ F (X ) with probability µ(Ωx,2) = 1 such that for each sequencex ∈ Ωx,2

the time-averaged codeword-length exists and is given by

lim
n→∞

1

n

n∑

i=1

|f(xi)| = lim
n→∞

1

n

n−1∑

i=0

l(T i
X (x)) = E

[
µ
x
, l
]
.

For eachx ∈ X , define the time subsequenceζ = ζ0, ζ1, . . . by setting

ζn =







0, if n = 0
∑n

i=1 |f(xi)|, if n ≥ 1 .

For eachn = 1, 2, . . ., we have thatF−1[φζn(F (x))] ⊇ [xn], with set equality iff is prefix free. This

implies
1

n
log2

1

µ
(
[xn]

) ≥
ζn
n

1

ζn
log2

1

η
([

φζn

(
F (x)

)]) , (21)

with equality if f is prefix free. Furthermore,

1

ζn
log2

1

η
([

φζn

(
F (x)

)]) , n = 1, 2, . . . , (22)

is a subsequence of
1

n
log2

1

η
([

φn

(
F (x)

)]) , n = 1, 2, . . . ; (23)
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thus, ifx ∈ F−1Ωy, then (22) and (23) both converge toϕy(F (x)) asn → ∞. To complete the proof, note

that Theorem 2 follows from (21) sincelimn→∞ ζn/n = E[µ
x
, l], limn→∞−(1/n) log2 µ([x

n]) = H(µ
x
)

and limn→∞−(1/n) log2 η([φζn(F (x))]) exists for everyx ∈ Ωx,1 ∩ Ωx,2 ∩ F−1Ωy.

B. Proof of Corollary 2.1

Let {µ
x
: x ∈ X } and{η

y
: y ∈ Y } be the ergodic decompositions of(X ,F (X )) and(Y ,F (Y ))

respectively. As usual, defineϕx(x) = H(µ
x
) andϕy(y) = H(η

y
). Now defineϕ̃x(x) = ϕy(F (x)) and

g(x) =
ϕx(x)

E[µ
x
, l]

.

Supposeµ is TX -AMS. From Theorem 2, we have thatη is TY -AMS andϕ̃x(x) ≤ g(x) on a setΩx

of probability µ(Ωx) = 1 (with equality if f is prefix-free). Therefore,
∫

ϕ̃x(x) dµ(x) ≤

∫

g(x) dµ(x) . (24)

Note, the R.H.S. of (24) is equal to the R.H.S. of (10). By the change of variables formula [6, Lem.

4.4.7] and Lemma 3, we have
∫

ϕ̃x(x) dµ(x) =

∫

ϕy(y) dη(y) = H(η) . (25)

which is the desired result.

C. Proof of Corollary 2.2

Suppose thatµ is TX -stationary andTX -ergodic. From Theorem 1-B,η is TY -ergodic. From Lemma 3,

there exists a subsetΩy ∈ F (Y ) with probability η(Ωy) = 1 such that the sample-entropy rate of each

sequencey ∈ Ωy takes the same constant valueh(η,y) = H(η). From Theorem 2, there exists a subset

Ωx ∈ F (X ) with probability µ(Ωx) = 1 such that the sample-entropy rate of each coded sequence

F (x), x ∈ Ωx, exists and is bound from above by

h(η, F (x)) ≤
H(µx)

E
[
µ
x
, l
] . (26)

SinceF−1Ωy ∩ Ωx 6= ∅, there existsx ∈ Ωx andy ∈ Ωy such thaty = F (x) and

h
(
η,y

)
≤

H(µ
x
)

E
[
µ
x
, l
] =

H(µ)

E
[
µ, l
] (27)

where the R.H.S. equality in (27) follows from the fact thatµ is TX -stationary andTX -ergodic. The result

follows sinceh
(
η,y

)
exists and takes the constant valueH(η) on Ωy. Finally, note that for prefix-free

codes (26) and therefore (27) are equalities.
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