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Asymptotic Critical Transmission Radius for
�-Connectivity in Wireless Ad Hoc Networks
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Abstract—A range assignment to the nodes in a wireless ad hoc
network induces a topology in which there is an edge between two
nodes if and only if both of them are within each other’s trans-
mission range. The critical transmission radius for �-connectivity
is the smallest � such that if all nodes have the transmission ra-
dius �, the induced topology is �-connected. In this paper, we study
the asymptotic critical transmission radius for � -connectivity in
a wireless ad hoc network whose nodes are uniformly and inde-
pendently distributed in a unit-area square or disk. We provide
a precise asymptotic distribution of the critical transmission ra-
dius for �-connectivity. In addition, the critical neighbor number
for �-connectivity is the smallest integer � such that if every node
sets its transmission radius equal to the distance between itself
and its �-th nearest neighbor, the induced (symmetric) topology is
�-connected. Applying the critical transmission radius for �-con-
nectivity, we can obtain an asymptotic almost sure upper bound on
the critical neighbor number for �-connectivity.

Index Terms—Asymptotic distribution, critical neighbor
number, critical transmission radius, random geometric graph.

I. INTRODUCTION

L ET be the set of radio nodes in a wireless ad hoc net-
work. A range assignment to specifies a transmission

radius to each node in . The network topology induced by
a range assignment is a graph on with an edge connecting
each pair of nodes whose distance is no more than either of
their transmission radii. There are two simple range assignment
schemes, uniform range assignments and -nearest-neighbor
range assignments, which are both completely determined
by a single parameter. In a uniform range assignment with a
parameter , every node has the same transmission radius
of . The network topology induced by this range assignment,
denoted by , is the -graph on in which each pair of
nodes separated by a distance of at most is connected by an
edge. In a -nearest-neighbor range assignment with an integer
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parameter , every node sets its transmission radius equal
to the distance between itself and its th nearest neighbor. The
network topology induced by this range assignment, denoted
by , is the symmetric -nearest-neighbor graph on in
which there is an edge between each pair of nodes which are
both one of each other’s nearest neighbors.

In general, a range assignment has to ensure that certain topo-
logical properties are met by the induced network topology. Two
topological properties of interest are -connectivity and vertex
degree at least . Let and denote the connectivity and the
smallest vertex degree, respectively, of a graph. Then these two
properties can be simply represented by and ,
respectively. Both properties are monotone-increasing, which
means that all supergraphs of a graph with these properties also
have these properties as well. For a monotone-increasing topo-
logical property , the critical (or hitting) transmission radius,
denoted by , is the smallest at which has prop-
erty , and the critical (or hitting) neighbor number, denoted
by is the smallest at which has property .
Note that is always the distance between some pair of
nodes, and is always an integer no more than the size
of . Thus, for those which can be tested in polynomial time
(such as and ), both and can be
obtained in polynomial time as well.

This paper is concerned with the asymptotic critical transmis-
sion radius and critical neighbor number in a random wireless ad
hoc network. Specifically, the radio devices are represented by a
uniform -point process over a unit-area region , i.e., a set
of independent points each of which is uniformly distributed
over . Then both and are random graphs, and
both and are random variables.
In this paper, the region is assumed to be either a disk or a
square. For such , we provide a precise asymptotic distribu-
tion of when goes to infinity. As a corollary,
applying the result, we can get an asymptotic almost sure upper
bound on for .

In what follows, is the Euclidean norm of a point ,
and is shorthand for two-dimensional Lebesgue measure (or
area) of a measurable set . All integrals considered
will be Lebesgue integrals. The topological boundary of a set

is denoted by . The disk of radius centered at
is denoted by . An event is said to be asymptotic almost
sure (abbreviated by a.a.s.) if it occurs with a probability con-
verges to one as . The symbols always refer to
the limit . To avoid trivialities, we tacitly assume to
be sufficiently large if necessary. For simplicity of notation, the
dependence of sets and random variables on will be frequently
suppressed.
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The remaining of this paper is organized as follows. In
Section II, we briefly describe related works. In Section III,
we give the precise asymptotic distribution of .
In Section IV, based on the result of the critical transmission
radius, we present an asymptotic almost sure upper bound on

as a corollary. Finally, we conclude this paper in
Section V.

II. RELATED WORKS

Since implies that is always
at least . A fascinating result proved by Penrose
[1], [2] states that they are equal a.a.s. This means when is
big enough, then with high probability, if one starts with iso-
lated points and adds edges connecting the points of in order
of increasing length, then the resulting graph becomes -con-
nected as soon as the last vertex of degree vanishes. Thus,

and have the same asymptotic dis-
tribution. Although Penrose [1], [2] considered only over a
unit-area square, the same result can be extended to over a
unit-area disk as well with proper modification.

For and over a unit-area square, the precise asymp-
totic distribution of has been derived by Dette and
Henze [3] much earlier: for any constant

The same asymptotic distribution also holds for over a unit-
area disk. For , Penrose [2] presented the following lim-
iting property of for being a unit-area square,
which also holds for being a unit-area disk.

Theorem 1: [2] Let and . Then for any sequence
satisfying

the probabilities of the two events and
both converge to as .

A better understanding of Theorem 1 necessitates a brief ex-
planation of the Poissonization technique used by Penrose [2]
for the proof. Let denote a homogeneous Poisson process
of intensity on . Recall that is characterized by the fol-
lowing property: if are arbitrarily disjoint re-
gions of , then the numbers of points in on
are mutually independent Poisson random variables with inten-
sity , respectively. The relevance of
to is that given that there are exactly points of in a re-
gion , these points are independently and uniformly dis-
tributed in . Thus, can be well approximated by . Due
to the extreme independence property, is much more conve-
nient to be dealt with. Penrose [2] thus first proved a Poissonized
version of Theorem 1 in which is replaced by , and then
de-Poissonize this Poissonized version to complete the proof of
Theorem 1. The value

in Theorem 1 is exactly the expected number of points of
with degree in . The value is thus the limit of the
expected number of points of with degree in .

However, Penrose [2] didn’t provide the explicit form of ,
while stating that is not so easy to find because of the domi-
nance of complicated boundary effect. To explain the boundary
effect, we define the -neighborhood of a point as .
The area of such -neighborhood of a point in determines the
distribution of the number of neighbors in . The larger
this area, the higher the expected number of neighbors. As a
node close to the boundary of has small -neighborhood, in-
tuitively a node around the boundary have smaller vertex degree.
On the other hand, the probability for a node to be around the
boundary is small when the node density is large. The overall
effect produced by the boundary nodes is thus complicated and
even peculiar [4]. In this paper, we will present a partition of
to address the boundary effect, based on which we obtain the
explicit form of .

Other earlier simulation studies and/or loose analytical results
on asymptotic critical transmission radius for connectivity can
be found in [5]–[13].

The problem of how many neighbors is desirable for var-
ious purposes in a wireless ad hoc network whose nodes are
specified by a planar Poisson point process has been studied
since the 1970s. For the purpose of maximizing the one-hop
progress of a packet in the desired direction under the slotted
ALOHA protocol, Kleinrock and Silvester [14] proposed that
if all nodes have the same transmission power then six was
the “magic number,” i.e., on average every node should con-
nect itself to its six nearest neighbors. Later, the magic number
was revised to eight by Takagi and Kleinrock [15]. The same
paper [15] also considered other transmission protocols, which
resulted in some other magic numbers five and seven. Hou and
Li [16] considered the situation when each node is allowed to ad-
just its transmission range individually, and obtained the magic
numbers six and eight. For the purpose of maximizing the trans-
mission efficiency defined as the ratio between the expected
progress and the area covered by the transmission, Hajek [17]
suggested that each node should adjust its power to cover about
three nearest neighbors on average. Mathar and Mattfeldt [18]
analyzed the wireless network generated by a Poisson point
process on a line, and also obtained some magic numbers.

However, none of the analyses in [17], [16], [14], [18], and
[15] took connectivity into consideration. Based on simulations,
Ni and Chandler [10] suggested that six to eight nearest neigh-
bors can make a small size network connected with high proba-
bility. But it turns out that as the number of nodes in the network
increases, the network becomes disconnected with probability
one whether one connects to six or eight nearest neighbors. In
fact, Xue and Kumar [19] proved that even if each node con-
nects bidirectionally to nearest neighbors the prob-
ability of network disconnectivity is asymptotically equal to one
as ; on the other hand, if each node connects bidirection-
ally to more than nearest neighbors, the network
is asymptotically connected. Here the bidirectional nearest
neighbor graph means that two nodes have a link if and only if
at least one is among the other’s nearest neighbors. In [20],
the upper bound was further improved to
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for any constant . Recently, Balister
et al. [21] proved that the critical number is asymptotically lower
bounded by and upper bounded by .
In addition, for a directional version in which node has a di-
rectional link to node if is one of ’s nearest neighbors,
the two asymptotic bounds are and ,
respectively. In this paper, as a corollary of the critical trans-
mission radius, we prove that for any integer and real
number is an upper bound on ,
where is the natural base. Note that is
defined based on the symmetric -nearest-neighbor graph, and
the symmetric -nearest-neighbor graph, bidirectional -nearest-
neighbor graph, and directional -nearest-neighbor graph all are
different from each other.

III. CRITICAL TRANSMISSION RADIUS FOR -CONNECTIVITY

The main results of this section are the following two
theorems.

Theorem 2: Assume that is the unit-area square. Let

where

Then the probabilities of the two events
and both converge to as

.

Theorem 3: Assume that is the unit-area disk. Let

where

Then the probabilities of the two events
and both converge to as

.

We notice that in Theorem 2 and Theorem 3, depends
on the shape of and parameter . This can have an intu-
itive explanation. A node is isolated if and only if there are
no other nodes within its transmission range. Based on the
Poisson point process assumption, the probability of without
neighboring nodes depends on the area of the transmission
range. However, if this node is near the boundary of , then
its transmission range is not fully contained in and thus with
higher probability to be isolated. This is exactly the boundary
effect mentioned in the previous section. Actually, comparing
the proof for Theorem 2 in the Section III-A with the proof for
Theorem 3 in the Section III-B, we can see that the difference

Fig. 1. Area of the shaded region is � ���.

in the formulas of is due to the boundary effect. For the case
of , the boundary effect is the dominating factor. In other
words, nodes with degrees less than are almost surely near

. Moreover, the factor in Theorem 2 and in
Theorem 3 are proportional to 4 and that are the perime-
ters of a unit-area square and a unit-area disk, respectively.
For the case of , the boundary effect is not the only
factor. Isolated nodes also can be found in the internal area of

with some probability. So, the formula of is decided by the
calculation for the internal area and boundary area.

Throughout of this section, we use to denote the value
given either in Theorem 2 or in Theorem 3 depending on
whether is a square or a disk. For any , let

(1)

the area of the shaded region illustrated in Fig. 1. It is easy
to see that equals to length of the boundary chord, i.e.,

. Remind that we will omit all subscript for
simplicity.

We first present the following technical lemma.

Lemma 4: .
Proof: It is straightforward to verify that

Let

(2)

Using integration by parts on the integral yields
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The first term is asymptotically equal to because

The second term is asymptotically negligible because

Thus, the lemma follows.

In the next two subsections, we give the proofs for Theorem
2 and Theorem 3, respectively.

A. Proof for Theorem 2

By Theorem 1, we only need to show that

Fig. 2. Partition of the square �.

To address the boundary effect of the square region , we parti-
tion into three subregions and as illustrated
in Fig. 2. For any , let denote the set of
satisfying that intersects exactly sides of . The areas
of these three regions are

For any

When is exactly , where is the
distance between and the boundary of .

First, we calculate the integration over . If
. Thus

Now, we calculate the integration over . If

Thus

Finally, we calculate the integration over . We further
partition into two regions: consists of all points

whose distance from the boundary of is at most ,
and . Then for any
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Recall that is defined in (1). Thus

The integration over is calculated as follows. A change
of integration variable yields

The last asymptotics is given by Lemma 4.
In summary, if , the integral is asymptotically equal to

If , the integral is asymptotically equal to

In either case, Theorem 2 holds.

B. Proof for Theorem 3

Again by Theorem 1, we only need to show that

To address the boundary effect of the disk region , we partition
into three subregions and as illustrated in

Fig. 3. Without loss of generality, is assumed to be centered
at the origin . is the disk of radius centered at

is the annulus of radii and centered at

; and is the annulus of radii and centered
at . The areas of these three regions are

For any

Fig. 3. Partition of a disk region �.

Using the same argument as in the proof of Theorem 2, we
can show that

and

Next, we calculate the integration over .
For any , let be the distance between and the

chord of the circle through the two intersecting points
between and (see Fig. 4). Then

In addition

Since , we further have that

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 13:18:22 UTC from IEEE Xplore.  Restrictions apply. 



2872 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

Fig. 4. For � � ����� ���� denotes the distance between � and the chord of
the circle ����� �� through the two intersecting points between ����� �� and
�.

Thus, for any

and

We partition into two regions: consists of all
points with , and .
Then for any

Thus, using the same argument as in the proof of Theorem 2,
we can show that

Finally, we calculate the integration over . By the two
inequalities just before this theorem

Recall that was defined by (2) in the proof of
Lemma 4. A change of integration variable yields

The last asymptotics follows Lemma 4.
Therefore, if , the integral is asymptotically equal to

If , the integral is asymptotically equal to

In either case, Theorem 3 holds.

IV. CRITICAL NEIGHBOR NUMBER FOR -CONNECTIVITY

Based on Theorem 2 and Theorem 3, we can get the following
a.a.s. upper bound on the critical neighbor number

. Remind that the deployment region can be either a disk or
a square.

Theorem 5: For any and , the event
is a.a.s.

We shall actually prove the following stronger result.

Theorem 6: For any two constants , the event
is a.a.s.

Recall that the critical transmission radius for connectivity
was given by Theorem 1 in [1], and the critical transmission
radius for -connectivity is given by Theorem 2 and 3 in
this work (for ). More precisely, the critical transmission

radius for -connectivity is in the form of

for , and for . No

matter what, for given and , we have if
is sufficiently large. In addition, since the probability of

-connectivity is tend to 1 as , to show

is -connected with high probability, we only need to
choose large enough. Then, applying Theorem 6, it is a.a.s. that

is -connected. Therefore, we can conclude
that Theorem 6 together with the result by Penrose [1], Theorem
2 and Theorem 3 implies Theorem 5.

Throughout this section, we let and be fixed constants as
in Theorem 6. Pick another constant and let be
the smallest integer which is greater than . For
any integer , let

Then
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Let be the set of all open disks of radius centered at the
square grid of side with one corner point at the origin which
have nonempty intersections with . Let denote the event
that all disks in contains less than nodes of .

We first claim that the event implies the event that
. Assume that then event

occurs. For any node , there exist a disk in such
that the distance between and the center of is less than

. Thus

Since contains less than nodes of , so does the

disk . This implies that any neighbor of in
is one of its nearest neighbors. Now

consider any edge in . Then both and

are one of each other’s nearest neighbors. Conse-
quently, is also an edge of . So our claim is
true. Therefore, Theorem 6 would follows if we can prove that

is an a.a.s. event. The remaining of this section is devoted to
this proof.

We partition into subsets with
where consists of all disks in centered at the square grid
of side with one corner point at . Correspond-
ingly, for any let denote the event that all
disks in contains less than nodes of . Then

Since the intersection of a constant number of a.a.s. events is
also an a.a.s. event, it is sufficient to show that each is an
a.a.s. event. We prove this by using the same Poissonization
technique as in [19]. Fix two integers . We denote
by the event that all disks in contains less than
nodes of . Recall that denotes a Poisson point process
with node density over the deployment region . Since ,
using the similar proof of [19, Lemma 3.2.3] we can show that
if is an a.a.s. event, so must be . Thus, we only to prove
that is an a.a.s. event. To prove this, we number the disks in

by

where is the index set. For any , let be the number
of points of which fall in . Then can be expressed as

. In the next, we show that

Let and be a Poisson random
variable with rate . The following upper bound on the tail dis-

tribution of follows from [19, Lemma 3.2.5] and Stirling’s
formula:

This bound implies that . Furthermore,
since

we have

For any , let . Then each is a Poisson
random variable with rate . Note that for any integer , the
function is strictly increasing as long as

, since

As , we have

This inequality together with the independence of implies
that

Therefore, each is an a.a.s. event. This completes the proof
of Theorem 6.
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V. CONCLUSION

In this paper, we model the wireless ad hoc network by a uni-
form -point process over a unit-area disk or square . We
derived the precise asymptotic distribution of the critical trans-
mission radius for -connectivity . Based on the
result, we also obtained an asymptotic almost sure upper bound
on the critical neighbor number for -connectivity

.
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