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Uncertainty principles and vector
guantization

Yurii Lyubarskii and Roman Vershynin

Abstract— Given a frame in C™ which sat- scalar quantizer (for example, a uniform quan-
isfies a form of the uncertainty principle (as tizer with fixed number of levels).
introduced by Candes and Tao), it is shown A drawback of orthogonal expansions is

how to quickly convert the frame representation . . - .
of every vector into a more robust Kashin's that the information contained in the vector

representation whose coefficients all have the ¢ May get distributed unevenly among the
smallest possible dynamic ranged(1/+/n). The coefficientsa;, which makes this encoding
information tends to spread evenly among these vulnerable to distortions and losses of the
coefficients. As a consequence, Kashin's repre- cqefficients. For example, if is collinear with
sentations have a great power for reduction of the first basis vector; then all the coeffi-
errors in their coefficients, including coefficient 1 . o
losses and distortions. cients excepd; are zero. If the first coefficient

Index  Terms—Frame  representations, ay is lost (for example due to transmission
Kashin’s representations, restricted isometries, failure) then W? can not reconstruct the vector
uncertainty principles x even approximately.

A popular way to improve the stability
of vector encoding is to use redundant sys-
o . ~ tems of vectors(u;)Y, in C* called tight
Quantization is a representation of continusrames. These are generalizations of orthonor-

ous structures with discrete structures. Digitaha| hases in the sense that every veatar
signal processing, which has revolutionizeg-» -an still be represented as

the modern treatment of still images, video N

and audio, employs quantization as a conver-

. ! - T = a;u;, wherea; = (x,u;), (1.1
sion step from the analog to digital world. A ; e o= (o), (1)
survey of the state-of-the-art of quantizatio%ut for N > n frames are clearly linearly

prior to 1998 as well as outline of its nu'dependent systems of vectors. These depen-
merous applications can be found the papey

encies cause the information containedrin
[22] by Gray and Neuhoff. For more recent

spread among several frame coefficiants
developments, we refer the reader to [15] a hich improves the stability of such repre-
references therein.

sentations with respect to errors (for example

In this paper, we are mtereste(_j in rObu%sses and quantization errors), see e.g. [11],
vector encoding and vector quantization. Or21] [10] and references therein

thogonal expansions gi\_/es a Clas_sical WaY The idea of spreading the information
t_o encode vectors in f'_n'te dimensions. On(_?:'venly among the coefficients is developed in
first chooses a convenient orthonormal basme present paper, and in a sense it is pushed
(Ui)?:é:n()fb@"'h Then f?n_e encodnes afv.ectorto its limit. As in the previous approaches, we
v ﬁ Iy the coefficients(a;)i_; of its  gnayl start with a frameu;)Y ;. But instead
orthogonal expansion of the standard frame expansions(l.1) we will

I. INTRODUCTION

n be looking at expansiong = Z?Llaiui
x = Zaiuiv wherea; = (z, u;). with coefficients having the smallest possi-
=1 ble dynamic rangda;| = O(1/v/N). This

An example of this situation is the discreteensures that the information contained an

Fourier transform. At the next step, one quans spread among the coefficienis nearly

tizes the coefficients:; using a convenient uniformly. We call such representations of
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(b) such frames are those that satisfy a 3) the rows of the frame matriXy are
form of the uncertainty principle. More pre- orthonormal;
cisely, their matrices satisfy a weak version 4) u; = Ph; for some orthonormal basis
of the restricted isometry property introduced (hi)XY, of CV, whereP is the orthog-
by Candes and Tao [8]. In particular, many onal projection inC" onto C".
natural random frames have this property;  \when N > n, the tight frames are linearly
(c) there is a fast algorithm which convertgjependent systems, so various coefficients
frame representatiof_(1.1) into a Kashin repopf the frame representation may carry com-
resentation ofr. mon information about vectar € C* This
Kashin's representations withstand errorgakes frames withstand noise in coefficients
in their coefficients in a very strong way —petter than orthonormal bases, see [11], [21],
the representation error gets bounded by thgo]. However, using frame representation
average rather than the sum, of the error may not always be the best way to use the
in the coefficients. These errors may be oframe redundancy. Some coefficients may
arbitrary nature, including distortion (e.g. dugye much bigger than others, and thus carry
to scalar quantization) and losses (e.g. due {fore information about:. In order to help
transmission failures). information spread in the most uniform way,
The article is organized as follows. Secpne should try to make all coefficients of the

tion [ introduces Kashin's representationssame magnitude. Such representations will be
discusses their relation to convex geometryalled Kashin's representations.

(Euclidean projections of the cube) and ex-
plains how one can use Kashin’s representa-
tions for vector quantization. In Sectign]lll,B. Kashin’s representations
we discuss the uncertainty principle for ma- ~gnsider a sequence;)Y, c C". We say
trices and frames. Theorgrﬁ]&S 3.9 Stafgat the expansion
that for frames that satisfy the uncertainty
principle, every frame representation can be N K
replaced by Kashin's representation. A robust = Y _ i, max [a;| < \/—NHCCHz (1.2)
algorithm is given to quickly convert frame =1
into Kashin’s representations. In Sectionl IVis a Kashin’s representation with levet of
we discuss families of matrices and framegectorz e C™.
that satisfy the uncertainty principle. These
include: random orthogonal matrices, random Kashin's representation produce the small-
partial Fourier matrices, and a large family ofst possible dynamic range of the coefficients,
matrices with independent entries (subgauvhich is/n smaller than the dynamic range
sian matrices), in particular random Gaussia@f the frame representations. This is the con-
and Bernoulli matrices. tent of the following simple observation:

Observation 2.1 (Optimality)Let (u;)¥,
be a tight frame inC™. Then:
) (a) There exists a vectar € C™ for which
A. Frame representations. the coefficientsa; = (x,u;) of the frame

A sequenceu;)Y, c C" is called a tight representatiorl(Il1) satisfy

frame if it satisfies Parseval’s identity
n
N max [a;| > /= [|2]2-
2 2 n ‘ N
|23 = [z, u;)|* for all z € C™. (II.1)

i=1 (b) For every vectorr € C™, every repre-
|_sentation of the formx = Zfi 1 a;u; satisfies

Il. KASHIN'S REPRESENTATIONS

This definition differs by a constant norma

ization factor from one which is often used in 1

the literature, but[(IL1) will be more conve- mﬁx|az‘| 2 —N|\9C||2-

nient for us to work with. Proof. (a) Since the tight frame satisfies
A frame (u;)}L, C C" can be identified S |u;|2 = n, one hasmax; [[u;]2 >

with then x N frame matrixU whose columns  //N. From this part (a) follows.
are u;. The following properties are easily ' (p) The correspondence between tight
seen to be equivalent: frames and orthonormal bases (property 4)
1) (w;)X, is a tight frame forC"; above) yields Bessel's inequalitfx|s <
2) every vectorz € C" admits frame (32N, |a;[?)!/2, from which part (b) follows.
representatiorf (T11); [ |



Not every tight frame admits Kashin's rep- The first inclusion in[(IL#) means that the
resentations with constant leveél’; this is columnsu; of the matrixU form a system for
clear if one considers an orthonormal basis iwhich every vector has a Kashin's represen-
C™ repeated~ N/n times and properly nor- tation. Since the rows of/ are orthonormal,
malized. Nevertheless, some natural classes @f;) is a tight frame. This proves Theorém]2.2.
frames do have this property. [ ]

We start with the following existence result.

Theorem 2.2 (Existence)there exist tight In geometric functional analysis, many
frames inC™ with arbitrarily small redun- classes of matriceg are known to realize Eu-
dancy A = N/n > 1, and such that every clidean projections of the cube asln{Jl.4). We
vector z € C" has Kashin’s representationdiscuss them in more details in Sectlon IV-A.
with level K that depends on only (not on In fact we will see that random matrik/

n or N). with orthonormal rows picked with respect
Proof. This statement is in essence a reto a rotationally invariant distribution satisfies
formulation of the classical result from ge-(IL4) with high probability.

ometric functional analysis due to KashinRemark Since the levelK™ of Kashin's rep-

[28] (Vl”th anl optlmal dependence( resentation depends on redundancy only, this
O(y/x=7log x=7) given later by Garnaev representation become especially efficient in
and Gluskin [17]). To see this, we shall Iookhigh dimensions when when the factgi in
at Kashin’s representations from the geometrigie expression for the dynamic range of the
viewpoint. LetQ™ = {z : ||zl < 1} and frame expansion overpowers the value fof

B™ = {z : |lz||]2 < 1} stand for the unit (which ideally isO (%)).There-

cube and unit Euclidean ball i@® and C" ) o
fore we are interested mainly in low redundant

rgspectlvely. The ob_sgr_vatlon belO\.N,fO”OW%rames just in order to avoid getting too large
directly from the definition of Kashin’s rep- . : .
volumes of information to be transmitted.

resentations.
Observation 2.3: (Kashin’s representations
and projections of the cubeLonsider a tight C. Stability, vector quantization

frame (Ui)f_vzl in C* and a numberx > 0. Kashin's representations have maximal

The following are equivalent: power to reduce errors in the coefficients.
(i) Every vectorz € C" has a Kashin's |ngeed, consider a tight franfe;)Y, in C",

representation of level’ with respect to the pyt instead of using frame representations

system(u;);L;; we shall use Kashin's representations with
(i) The n x N matrix U whose columns some constant levek = O(1). So we rep-
areu; satisfies resent a vector € Cm, [jz|lz < 1, with
K its Kashin's coefficientgay, ...,ay) € CV,

B" C —NU(QN)- (I1.3)  |a;| < K/V/N. Assume these coefficients are

Inclusion [II.3) yields an equivalence damaged (due to quantization, losses, flips of

bits, etc.) and we only know noisy coeffi-

B" C £U(QN) C KB", (.4) cients(ay,...,an) € CN. When we try to
VN reconstructr from these coefficients a8 =

N ~ . .
the second inclusion holds trivially. Since theX~i—1 @:u:, the accuracy of this reconstruction
rows of the frame matriX/ are orthonormal, 'S

the operatorU : CN — C” is unitarily N

equivalent to an orthogonal projection. We |l — |2 = H Z(ai — Gi)u;

thus may say that/ realizes Euclidean pro- i=1 ?
jection of the cubeWe refer the reader to [34] N 1/2

Section 6 for more thorough discussion of this < (Z lai — CAlz'|2) : (1.5)
topic. =1

Kashin’s theorem [28] states that there ex- Combined with the fact that the coefficients
ists an orthogonal projection of the unit cube; have the dynamic rang®(1/v/N), this
in CY onto a subspace of dimensiapwhich yields greater robustness of Kashin’s represen-
is equivalent to a Euclidean ball and the coeffitations with respect to noise, and in particular
cient K depends on the redundanky= N/n  to quantization errors Suppose we need to
only. In other words, there exists anx N quantize a vector € C". We may do this by
matrix U whose rows are orthonormal andjuantizing each coefficieni; separately by
which satisfies[(IL4). performing a uniform scalar quantization of



the dynamic rangé—K/v/N, K/v/N| with, take O(log N) multiplications of the

say, L levels. The quantization error for each matrix U by a vector.

coefficient is thusla; — d;| < K/LvN. By 2) The uncertainty principle will thus be a

(IL5), this produces the overall quantization guarantee that a given franfe;) yields

error Kashin’s representation for every vector.
This can help to identify frames that
yield Kashin’s representations.

3) The algorithm to transform frame repre-
sentations into Kashin’s representations
is simple, natural, and robust. It has

|z — 2|2 < v/n/L a potential to be implemented on ana-

log devices. Followed by some robust
scalar quantization of coefficients (such

|z — &|]2 < K/L = O(1/L).

Similar quantization of frame representations
(LI) would only give the bound

because its dynamic range {gn larger than

that of Kashin's representations (by Observa- ;¢ one-bit 3-quantization [13], [14])
tion [ﬂ) . . this algorithm may be used for robust
Kashin’s decompositions also withstaad

] X one-bit vector quantization schemes for
bitrary errors made to a small fraction of the analog-to-digital conversion.

coefficientsa;. These may include losses of
coefficients and arbitrary flips of bits. Sup- _ o
pose at mosi N coefficients(as, ...,ay) are A. The uncertainty principle

damaged in an arbitrary way, which results The classical uncertainty principle says that
in coefficients(s, ..., an). Since allla;| < g function and its Fourier transform cannot
K/vN, we can assume (by truncation) thahe simultaneously well-localized. We refer the
all |d;| < K/v'N. When we reconstruct reader to fundamental monograph [25] for his-
from these damaged coefficients (as beforeyry survey and also for numerous realization
the accuracy of this reconstruction can bgf this heuristic rule. In particular a variant
estimated usind_(Il5) as of the uncertainty principle due to Donoho
|z — &2 < 2K/3 = O(V3). ?nd Stark [16] states” that if € Lo(R) is
almost concentrated” on a measurable set
Thus the reconstruction error is small whenZ' while its Fourier transformf is "almost
ever the (related) number of damaged coeffeoncentrated” on a measurable set then
cientsé is small. then the product of measuré¢®||2| admits
By Theoren 2.2, the maximal error reduca natural low bound. Donoho and Stark pro-
tion effect is achieved using frames with onlyposed applications of this principle for signal
aconstant redundangyn fact any redundancy recovery [16].
factor A = N/n > 1 has the error reduction For signals on discrete domains no satisfac-
power of maximal possible order. This is intory version of the uncertainty principle was
contrast with traditional methods, in whichknown until recently. For the discrete Fourier
increasing redundancy of the frame graduallfransform in CV the uncertainty principle
reduces the representation error. states thatsupp(z)|[supp(z)| > N for all
x € CV (see [16]). This inequality is sharp
— both terms in this product can be of order
V'N.

In papers by Candes, Romberg and Tao [4],
Computing the coefficienta; of Kashin’s [7], [3] and by Rudelson and Vershynin [35],
representation (T]2) of a given vectarcan [36], a much stronger discrete uncertainty

be described as a linear feasibility problemprinciple was established foandomsets of
which can be solved in (weakly) polynomialsjze proportional tav. Moreover, one of these
time using linear programming methods.  sets (say support of the signal in frequency
In this paper, we take a different approacijomain) can be arbitrary (non-random), and
to computing Kashin’s representations, by eshe other (random support in time domain) can
tablishing their connection with the uncerpe almost the whole domain. The following
tainty principle. This will have several advan—esult is a consequence of [35], [36]:
tages over the linear programming approach: Theorem 3.1 (uncertainty principle):et

IIl. COMPUTING KASHIN'S
REPRESENTATIONS

1) Whenever a framéu,) satisfies theun- N = (1 + p)n for some integern and
certainty principle, one can effectivelyu € (0,1). Consider a random subsgt of
transform every frame representation$0,...,N — 1} of average cardinalityn,

into Kashin’s representation. This will which is obtained from independent random



{0, 1}-valued variables dg,...0n—-1 with The uncertainty principle is a weaker as-
Eé; = n/N asQ := {i: §; = 1}. ThenQ2 sumption (thus easier to verify) than the UUP:
satisfies the following with high probability. Observation 3.3:For matrices with or-
For everyz € C¥, thonormal rows, the UUP with parameters
o ) implies the uncertainty principle with param-
supp(z) C Q implies |supp(2)| > dN, etersy = £= /7 5.

where § = cp2/log> N and e > 0 is an Proof. Sji;ncge th]g columns; of the matrixUU
absolute constant. satisfy",", [Juil|3 = n, there exists a column
Moreover, for everyr € CV, [supp(z)| < With norm ||u,|[; < /n/N. This column is
SN, one has a preimage of somé-sparse unit vectoe,,
i.e. u; = Ue; wheree; = (0,...,0,1,...,0)
|2 - 1all2 < (1 — cp)|z]|2, (.1)  with 1 on thei-th place. Using the UUP for

wherelq denotes the indicator function 6f. % = e; We obtain

The first, qualitative, part of the theorem n
! g P ore A1 =€) < Juilla < y/—.
easily follows from the second, quantitative

N
part with z = &. If supp(@) € Q and 1w . : .
Hence) < ——.,/Z . In view of this estimate
— 17 N ’
[supp(x)|] < dN then, by the second part’the upper band in the UUP reads as follows:

lZll2 = ||z - 1all2 < ||z|l2, which would L

. , <
contradict Parseval equality. [supp(x)| < 0N implies

We can regard inequality (TTN11) as a prop- |Ual]s < 14¢ 2” H
erty of the partial Fourier matrix/, which T2 = 772 v iiFlz:

cons_ists of the rows qf th_e DFT (discrete-l-hiS is what we wanted to prove.

Fourier transform) matrix indexed by the

random sef). Then [[IL.1) says tha Uz |, < The uncertainty principle can be reformu-

(1—cp)||z||2 for all vectorsz € CN such that lated as a property of systems of vectors

|supp(z)| < JN. (u;)X_;, which form the columns of the matrix
Now we can abstract from the harmonid/. We will use it for tight (or almost tight)

analysis in question and introduce a generflames, in which case it is a nontrivial prop-

uncertainty principle (UP) as a property oferty:

matrices. Definition 3.4 (UP for frames)A system
Definition 3.2 (UP for matrices)An n x  Of vectors(u;);L, in C" satisfies the uncer-

N matrix U satisfies the uncertainty principletainty principle with parameters, d < (0,1)

with parameters), § € (0,1) if, for z € CV, if
1/2
c<n(Dlal?) T any
i€Q

jsupp(x)] < ON implies [Uz]l> < nllallo. || aius
(1.2) i€Q
We will only use the uncertainty principle for every subsef) c {1,2,... N}, |9 <
for matricesU with orthonormal (or almost sy
orthonormal) rows, in which case it is always
a nontrivial property.

B. Converting frame representations into
A related uniform uncertainty principle Kashin's representations

(UUP) was introduced by Candes and Tao in For every tight frame that satisfies the

the context of the sparse recovery problemgncertainty principle, one can convert frame

[8]. The UUP with parameters,é € (0,1) representations into Kashin’s representations.
states that there exists > 0 such that, for  The conversion procedure is natural and

N HY - ]
z € C%, the condition|supp(z)| < 6N fast. We truncate the coefficients of the frame

implies representation [(II11) ofz at level M =
A1 = o)|zll2 < [Uzll2 < A1 + &)[|z]2. lz]l2/vON in hope to achieve a Kashin’s

representation with levek = 1/v/5. How-
See also [5], [6] for more refined versionsever, the truncated representation may sum
Known also as the Restricted Isometry Condiup to a vectorz(!) different from z. So we
tion, UUP was shown in [8] to be a guaranteeonsider the residuat — z(!), compute its
that one can efficiently solve underdetermineftame representation and again truncate its
systems of linear equationsz = b under coefficients, now at a lower levejM. We
the assumption that the solution is sparseontinue this process of expansion, truncation
|supp(z)| < 6N. This is a part of the fast and reconstruction, each time reducing the
developing area of Compressed Sensing [9]truncation level by the factor of.



Using the uncertainty principle, we will be as
able to show that the norm of the residual o \1)2
reduces by the factor of at each iteration. ||z — Taz|2 < n(z |b; — bi|2) <
So we can compute Kashin’s representations ieQ
of level K = K(n,d) with accuracye in N 1/2
O(log(1/¢)) iterations. Our analysis of this n(z |bs] ) W(Z|bi|2) =nl[z|2.
algorithm will yield: i€Q i=1
Theorem 3.5 (frame to Kashin conversion)fhis completes the proof. ]
Let (u;)Y, be a tight frame inC"™ which
satisfies the Uncertainty Principle withProof of Theorem 3.5 Given z € C", for
parameters;, 5. Then each vector € C* k=1,2,... we define the vectors
admits a Kashin representation of level 2@ =g 0 .= =) oy (k=)
K=(1-n)"'""2
In order to prove this result, we introduceThen, for each- =0,1,2,... we have
and study the truncation operator for frame

representations. Given a numbgi > 0, T = Z Tk + 2+,
the one-dimensional truncation at levél is
defined forz € C\ {0} as It follows from LemdeB by induction that
2 2|2 < n* |2, thus
ta(z) = mmin{|z|,M}, (1.4) o
r= Z Tz*)
and tI\{( ) 0.

Consider a framéu;);Y, satisfying the as- Fyrthermore, by the definition of the trun-
sumptions of the theorem. For everye C",  cation operatorT, each vectorTz*) has

we consider the frame representation an expansion in the systerfu;)~, with
N coefficients bounded by||lz*)||y/VON <

2= biu; whereb; = (z,u;) n*||z||2/v/dN. Summing up these expansions

i1 for k£ = 0,1,2,..., we obtain an expan-

, . sion of z with coefficients bounded byl —

and define the truncation operator @ft as m)~L|z]ls/VEN. In other words,z admits

N Kashin's representation with levét = (1 —

Tz =" biu; whereb; = tar(b;) n)~16~1/2. This completes the proof. m
i=1

and M = ||z|2/VEN. (lIl.5)

The proof yields an algorithm to compute
Kashin’s representations:

The uncertainty principle helps us to bound ALGORITHM TO COMPUTE KASHIN'S

the residual of the truncation: REPRESENTATIONS
Lemma 3.6 (Truncation)In the above no- Input:
tations, for every vector € C" we have « A tight frame (u;)Y, in C" which sat-
isfies the uncertainty principle with pa-
lo = Tals <nllaf2. (11.6) Y prineipie Wil b

rametersy, ¢ € (0,1).
e« A vector x € C™ and a number of
iterationsr.
Q={i: b # i)i} ={i: |b| > M}. Output: Kashin’s decomposition of: with
level K = (1 —n)~'6~/2 and with accuracy
By the definition of tight frame, we have  47||z||,. Namely, the algorithm finds coeffi-
cientsaq,...,ay such that

Proof. Let z € C". Consider the subset
QC{l,...,N} defined as

N
)3 =Y Ibil* > 1212,

N

=1 Hx— g a;u;
. 2
i=1

Q| < |l=[|3/M?* = N. Inzax|al-| <

<" [|z|l2,
thus

lzll2- (11.7)
\/_
Using the uncertainty principle, we can estinitialize the coefficients and the truncation

mate the norm of the residual level:

= Tue =) (b —bju a0, i=1,. N Mo Al
i€ VON



Repeat the following: times: any functiont(z) : C — C which satisfies for
« Compute the frame representation of Somev, 7 € (0,1):

and truncate at level/: .
o —t(e) < RIS Ty
b < {(m,u;), by + ty(by), 1=1,...,N “||z| forall 2, '
« Reconstruct and compute the error: and|t(z)| < 1 for all z.
R The approximate truncation at levéll is
Tz« Y b < ax—Ta. defined asty(u) = Mt(%). An analysis
i=1 similar to that above yields:
. Update Kashin's coefficients and the Theorem 3.7: (Approximate  truncation)
truncation level: The above algorithm remains valid if one
A replaces exact truncation by any approximate
a; +a;+VNb, i=1,...,N; one and also adjust the parameters: level
M « nM. M should be replaced witdd’ = 771 M,

parameter  should be replaced with

! = /1?2 + 12, finally, level K is replaced
Remark. (Redistributing information).One with K/ = 11 - 77/)71571/2, provided
can view this algorithm as a method of redisthat’ < 1.
tributing information among the coefficients. Moreover, the approximate truncation can
At each iteration, it “shaves off” excessivepe different each time it is called by the
information from the few biggest coefficientsalgorithm, provided that it satisfies (I1.8).
(using truncation) and redistributes this excesphis facilitates the algorithm implementation
more evenly. This process is continued untibn analog devices. In particular, one can use
all coefficients have a fair share of the inforthijs algorithm to build robust vector quantizers
mation. for analog-to-digital conversion.

Remark. (Computing exact Kashin’s repre- i o
sentations)With a minor modification, this Rémark. (Almost tight frames)Similar re-
algorithm can compute aexactKashin's rep- sults also hold for frames that are almost, but

resentation after = O(log N) iterations. We not exactly, tight. This is important for natural

just do not need to truncate the coefficiehts classes of frames, such as random gaussian
during the last iteration. and subgaussian frames (see Thedremh 4.6).

Indeed, for suchr, the error factor satis- Dgfinitionn31.8: Fore € (0,1), a sequence
fies 5" < Z<. Thus, duringr-th iteration (ui)i=; C C" is called ane-tight frame if
the frame coefficient$; are all bounded by
éﬁ lz]l2, where is the initial input vector. (1 _ 24|, < (Z| ) )

b; are already sufficiently small, and we
will not apply the truncation at the last itera- < (1 1 ¢)(|z|, for allz eC™.  (I1.9)
tion. This yields an exact Kashin's represen-

tation of = with K’ — 2. An analysis similar to that above yields:

Theorem 3.9:Let (u;)Y, C C" be ane-
Remark. (Robustness)The algorithm above tight frame, which satisfies the uncertainty
is robust in the sense of [12]. principle with parametergs andd. Then The-
Specifically, the truncation operatidn (Ill.4)orem[3.5 and the algorithm above are valid
may be impossible to realize on a physicafor M replaced withM’ = /1 +eM andy
signal exactly, because it is expensive to buildeplaced withyy’ = /14 ¢ n + ¢, provided
an analog scheme that has an exact pha®tyn’ < 1.
transition at the truncation levdk| = M. Remark. (History). The idea behind The-
A robust algorithm should not rely on anyorem[3.5 is certainly not new. Gluskin [19]
assumptions on exact phase transitions of trseiggested to use properties that involved only
operations it uses. Scalar quantizers that afle- || norms (like our uncertainty principle)
robust in this sense were first constructed b deduce results on Euclidean sectiong’bf
Daubechies and DeVore in [12] and furthefwhich by duality is equivalent to Euclidean
developed in [24], [13], [14]. projections [(ILB) of a cube). A similar idea
Our algorithm is also robust in the follow- was essentially used by Talagrand in his work
ing sense: the exact truncatian; can be on theA; problem [38].
replaced by any approximate truncation. Such The algorithm to compute Kashin’'s repre-
an approximate truncation at levélcan be sentations resembles the Chaining Algorithm



of [18], which also detects a few biggestX = O(y/log(N)loglog(N)). It was re-
coefficients and iterates on the residual, bugently proved in [23] that Bourgain’s result
it serves tdfind all big coefficients rather than holds for arbitrarily small redundancy, that is
to spread them out. for N = An with arbitrary A > 1, however at
the cost of a slightly worse logarithmic factor
in K. A similar result can also be deduced
from Theoreni 413 below (along with Theo-
rem[3.5 and["2]3), which is a consequence of
In this section, we give examples of matrithe uncertainty principle in [35], [36].

ces (equivalently, frames) that satisfy the un- No explicit constructions of matricds are
certainty principle. By Observatidn 2.3, suchknown. However, there exists small space con-

nx N matricesU realize Euclidean projection structions that use a small number of random
of the cube[(ILB). Equivalently, these framesits [2], [26], [27].

(u;)X, (the columns ofU) yield quickly
computable Kashin's representations for every  random orthogonal matrices
vectorz € C™.

IV. MATRICES AND FRAMES THAT SATISFY
THE UNCERTAINTY PRINCIPLE

We consider random x N matrices whose
rows are orthonormal. Such matrices can be
A. Matrices known to realize Euclidean pro-obtained by selecting the first rows of
jections of the cube orthogonal N x N matrices. Indeed, denote

Much attention has been paid to EuclideaHy O_(N> th_e space of all _orthogonw x N
projections of the cubel(13) in geometricmatr'ces with the normalized Haar measure.

functional analysis. Results in the Iiteraturérhen

are usually stated in the dual form, about O(nx N)={P,V;V € O(N)}, (IV.1)
dimensional Euclidean subspaces/§f. h N " is th h |
Kashin proved[{ILB) for random orthogonal’’/"€"¢ P" - € - Cris t e orthogona
n x N matrix U (formed by the firstn rows prOjectl_qn on the firstn coordma‘;es. The
of a random matrix iINO(N)), with N = An probability measure od(n x N) is induced
for arbitrary A > 1, and with exponential byTtrP:e Haar4m1§asL;J;e fdﬁ(N )a h |
probability ([28], see also [34] Section 6.) The eorem 4.1 ( or random orthogona

level K (II.3) depends only on\; an optimal matrices)

dependence was given later by Garnaev and-€t # > 0 and N' = (1 + u)n. 2Then,
Gluskin [17]). with probability at leasfi — 2 exp(—cu’n), a

random orthogonah x N matrix U satisfies

A similar result holds foly = @, where the uncertainty principle with the parameters
® is a random Bernoulli matrix, which means yp P P
Cp

that the entries of® are -1 symmetric inde- P s (IV.2)
pendent random variables. Schechtman [37] "~ 4" 7 log(1/p)’ '

first proved this withV = O(n), and in [31] 'y herec > 0 is an absolute constant.

this result is generalized foN = An with

arbitrary A > 1. The dependencE on A was Remark. Assumptiony > 0 is not essential;
improved recently in [1]. In fact, these resultdust expressions fon andé will look differ-
hold for a quite general class of subgaussia@ntly. We are most interested in small values
matrices (which includes Bernoulli and Gausof ¢ when redundancy is small.

sian random matrices). The proof of Theorerfi 411 uses a standard
In is unknown whether Kashin's theoremscheme in geometric functional analysis —
holds for partial Fourier matrix; this conjec-the concentration inequality on the sphere
ture is known as the\; problem. Consider fo|jowed by ane-net argument. Denote by
the Discrete Fourier Transform i@V, where gN-1 gpq on_1 the unit Euclidean sphere
N = O(n), given by the orthogonaN x N jn CN and the normalized Lebesgue measure
matrix ®. It is unknown whether there exists agpn gV -1
submatrixU which consists of some rows Lemma 4.2:For arbitraryt > 0, = €
of ® and such that it realizes an EuclideargN-1 e have
projection of the cube in the sense Bf {I1.3).
In the positive direction, a partial result]p>{||U;U|2 > (1 +t)\/z} < 2€xp(—clt2n),
due to Bourgain, later reproved by Talagrand N
with a general method [38], states that avherec; > 0 is an absolute constant.
random partial Fourier matri satisfies[(IL#) Proof. We use representation (IV.1) and also
with high probability for N = O(n) and the fact thatz = Vz is a random vector

2



uniformly distributed onSN~!. Thus Uz is It now remains to choose parameters appropri-
distributed identically withP,, . We also have ately. Lett = 1/5 ande = u/8. Then since
N/n =1+ p and by the assumption apin
FE = / ||PnZH2 dUN_l(Z) < m, we have
SN—I

2 1/2 n (1+1) £+a<n.
(L 1Pl dona @) = /5 Ntes

. . . . Also, we can estimate the probabilit .3
The mapz — || P,,z|| is al-Lipschitz function P y m{V:3)

on SN=1, The concentration inequality (see
e.g. [29] Section 1.3) then implies that this |A/|. 2exp(—ct®n) <

function is well concentrated about its average 24N ON
value E: (E) -2 exp(—cat®n) <
P{|Uz|]2 > E +u} < 2exp [(261og(24e/dp) — cop®)n],  (IV.4)
on_1(z€ SNV ||Puzlla — E| >u}) < where ca = ¢;/25. By our choice ofd,

2 exp(—cu?N). the right hand side of_ (IVl4) is bounded by
_ 2exp(—cu?n), wherec > 0 is an absolute
Choosingu = ty/n/N completes the proof. constant. We conclude that

P{3z € S: |Uz|2 > n} < 2exp(—cp’n).
Proof of Theorem[4.1. Assume that; and

§ satisfy the assumption5 (IV.2). We have td NS completes the proof. u
prove that [(TI.2) holds with probability at
least1 — exp(—cu®n) . C. Random partial Fourier matrices
Consider the set An important class of matrices that satisfy
S :={z e SN, |supp(z)| < SN} the uncertainty principle can be obtained by
selectingn random rows of an arbitrary or-
We have thogonal N x N matrix & whose entries are
S = U St O(N~1/2). Heren can be an arbitrarily big
[I]<6N fraction of NV, so the Uncertainty Principle
here the union is taken over all subsétef will hold for almost square random submatri-
{1,...,N} of cardinality at mostsN, and ces. This class includes random partial Fourier

S; = SN-1n ! is the set of all unit vectors matricies, multiplication by such matrix cor-
whose supports lie id. Let ¢ > 0. For each responds to sampling random frequencies
I, we can find arz-net of S; in the Euclidean of a signal.
norm, and of cardinality at mog¢8/<)°" (see ~ More precisely, we select rows df using
e.g. [34] Lemma 4.16). Taking the union overandom selectorsj;,...,dy — independent
all setsI with |I| = [§N], we conclude by the Bernoulli random variables, which take value
Stirling’s bound on the binomial coefficientsl each with probabilityn/N. The selected
that there exists anrnet\/ of S of cardinality rows will be indexed by a random subset
O ={i: 9 =1} of {1,...,N}, whose

N SN 5N
V| < < SN >(§) < (3—2) : average cardinality is.
[ONT) \e < Theorem 4.3: (UP for random partial
Then using LemmBa4.2, we obtain Fourier matrices)

Let ® be an orthogonaV x N matrix with

P{Iy e N : |Uyl2> (1 +t)\/z} < uniformly bounded entries®;;| < aN~1/2
N for some constant and alli, j. Let n be an

W] -2exp(—cit®n).  integer such thatV = (1 + u)n for some

Everyz € S can be approximated by somet € (0,1]. Then for eachp € (0,1) there
y € N within ¢ in the Euclidean norm, and Xists a constant = ¢(p, ) > 0 such that

sinceU has norm one, we have the following holds. _
Let U be a submatrix of® formed by

[Uzl2 < [[Uylla+|U(z—y)ll2 < [[Uyll2+e.  selecting a subset of the rows of average
Therefore cardinality n. Then, with probability at least
1 — p, the matrixU satisfies the uncertainty

P{3recS: |Uzls> (1+1) /% te)< principle with parameters

2
w
IN|-2exp(—cit®n). (IV.3) n=1- 1

5=
log® N
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Theorem[4.B is a direct consequence of the condition om in Theoren 4.4 is satisfied
slightly stronger result established in [7] andf

improved in [35], [36]. For an operatdr on r c1e?N (IV.7)
a Euclidean spacd; || will denote its operator ~ log* N
norm. wherec; = c;(a) > 0. Since we have set

Theorem 4.4: (UUP for partial Fourier . _ cpp, condition [IV7) is equivalent to
matrices [35], [36])

Assume the hypothesis of Theoréml4.3 is 5> i
satisfied. Then there exists a constaht= ~log' N
C(a) > 0 such that the following holds. Let \ypereq — c(a) > 0. This completes the proof
r >0 ande € (0,1) be such that of Theoren{ 4.3. =
rlog N rlog N 9
nz C( 22 ) log ( 22 ) log™r. Remarks.

1. (Computing in almost linear time)The
Fourier matrices can be used to compute
E sup ||idy — EU;“UTH <e. (IV.5) Kashin's representations ii” in time almost

|T|<r n linear inn. Indeed, let for exampl&/ = 2n.

Here the supremum is taken over all subsefshe columns of then x N partial Fourier
T of {1,..., N} with at mostr elements[/;, ~matrix form a tlght frame inC". By Theo-
denotes the submatrix &f that consists of the '8M[4.3 and Section 1Il3B, we can convert a
columns ofU indexed inT, andid, denotes frame representation of every vectore C"
the identity onCT. into a Kashin's representation with levil =
O(log®n) in time O(nlog®n). (Recall that
Proof of Theorem [4.3. Observe that for a the algorithm make®(log n) multiplications
linear operatord on C" one has by a partial Fourier matrix, and each multi-
plication can be done using the fast Fourier

Then the random submatriX satisfies:

lid—A* Al = zecilﬁuzd |((id=A"A)z, 2)| ransform in timeO (n log n)).
_ sup ]||A:EH§ _ ||$|\§’- (IV.6) 2._The constant = c(a,p).dep_ends poly-
2€CN [lz)lz=1 nomially on« and polylogarithmically onp.

The polynomial dependence enis straight-
We use this observation fod = |/ZUr. forward form the proof of Theorefi 4.4 in
Since Urxz = Uz wheneversupp(z) € T, [35], [36]. The proof above gives a polynomial

we obtain dependence on the probability To improve
N ) it to a polylogarithmic dependence, one can
E  sup ‘E”Uﬂb— 1‘ <e. use an exponential tail estimate, proved in
2€C, lzfla=1, [36] Theorem 3.9, instead of the expectation
[supp(z)|<r :
estimate [(TVb).

By Markov’s inequality, with probability at

leastl — p the random matri}U satisfies: 3. We stated Theorerl 3.3 in the range

w € (0,1] which is most interesting for us
(where the redundancy factor is small). A

N 2

‘E”UxH? - 1‘ <e/p similar result holds for arbitrary. > 0.
for all 2 € CV, [supp(x)| <7, ||z]2 = 1.

D. Subgaussian random matrices.

A large family of matrices with indepen-
14+¢/p dent random entries satisfies the uncertainty

T, (E41P principle.

n
VITe/py/ 5 llalls =
Definition 4.5: A random variable ¢ is

N
for all z € C7, [supp(z)| <. called subgaussian with parameter if

Then, if we sete = cpu for an appropriate P{|¢| > u} < exp(1—u?/B%) for all u > 0.
absolute constant > 0, we can bound the pyamples of subgaussian random variables

In particular, for suchJ, one has]|Uz||2 <

factor include GaussianV(0,1) random variables
14¢/p 1 and bounded random variables. _
T+, <1- 1" Th_eorem 4.6: (UP for random subgaussian
matrices)

This proves the uncertainty principle_(Tll.2) Let ® be an x N matrix whose entries are
with § = r/N. To estimated we note that independent mean zero subgaussian random
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variables with parametet. Assume thaiV = Unlike random orthogonal or partial Fourier
An for someX > 2. Then, with probability matrices considered in Sectiofs 1V-B and

at leastl — A", the random matrixU = [V-C|] subgaussian matrices do not in gen-
ﬁ@ satisfies the uncertainty principle witheral have orthonormal rows. Nevertheless, the
parameters rows of subgaussian matrices are almost or-
Tog \ c thogonal, and their c_:olumns form almost tight
n=0Cp o 0= R (IV.8) frames as we describe below. So, one can use

Theoren3.D instead of Theorédm13.5 to com-

whereC', ¢ > 0 are absolute constants. pute Kashin's representations for such almost
Remark. ~ Theorem[4.6 and I-emm@l'gtight frames

below can be deduced from the recent works The almost orthogonality of subgaussian

Lszl],f[?gl' HO\;vzver, r\:ve feeldthatri]t WOUlddbe(rjnatrices can be expressed as follows:
elpful to include short and rather standard | |2 481let ® be an x N matrix

proofs of these results here. whose entries are independent mean zero sub-
Theorem[46 follows easily from an esti-gaussian random variables with parameter

mate on the operator norm of subgaussiaind with variancel. There exist constants

matrix. C = C(B), ¢ = ¢(B) > 0 such that the
Lemma 4.7:([30] Fact 2.4) Letn > k following holds. Assume that

and ® be an x k matrix whose entries are

) . C 2
independent mean zero subgaussian random N > — log (—) “n
variables with parametef. Then N c

P{®| > tv/n} < exp(—cini®/5%) (IV.9) )
for all t > C1 3, hereC}, c; > 0 are absolute P{|[id — N‘M)*” > e} < 2exp(—cNe?).
constants. Remark. The dependence i@'(3), ¢(p) is
Proof of Theorem [46. The uncertainty polynomial. Explicit bounds can be deduced
principle for the matrixJ with parameterg, 5 from [33].
is equivalent to the following norm estimate:

for somee € (0,1). Then

As a straightforward consequence, we ob-
sup || ]| < nv/N, tain:

H=[6N1 Corollary 4.9: (Subgaussian frames are al-
where the supremum is over all subsétss most tight)Let & be a subgaussian matrix as
{1,...,N} of cardinality [6N], and where in Lemmd4.B. Then the columns of the matrix
®; denotes the submatrix cb obtained by LNCIJ form ane-tight frame (u;)Y, in C".
selecting the columns it. ﬁ{r;of of Lemma [48. In this proof,

Without loss of generality; < 1. Since®; Cy,Cs,cy,ca,... will denote positive abso-
is an x [0N] matrix andean < [0N] < n, lute constants. By a duality argument as in
Lemmal[4.y applies fo;. Taking the union ([V6),

bound over allZ, we conclude that for every 1 1 )
L> 01 lid = 52" = swp |gl@"als -1l
P{3I: [|®7]| > tv/n} < Denote the columns ob by ¢,. Fix a vector
N 2 0 x € C", ||z]l2 = 1. Since the entries of
(6N exp(—cint” /%) < the vectorg; are subgaussian with parameter
exp [(log(e/é) _ clt2/62)n} < 5, the_ rand_om variabld¢;, z) is also su_b-
2 ) 0 gaussian with parameter; s, where C; is
exp(—cant”/57) an absolute constant (see Fact 2.1 in [30]).

if we chooset = CpB+/logX and use our Moreover, this random variable has mean zero
choice of§ = ¢/\. (Herecs = ¢;/2 andC and variancel. We can use Bernstein’s in-
are absolute constants). With this choicetof equality (see [39]) to control the average of
we can write the estimate above as the independent mean zero random variables
o [(65,2)F = 1 asP{| |0 (3 — 1| > u} =
P{3I: [|&/] > CB T\/N} <

N
1
exp(—c3C?nlog\) < A" P{‘N E (s, x)|* — 1‘ > u} <
=1

provided we choose the absolute constant _ 2 o4
sufficiently big. This means that the uncer- 2exp(—aNu/f)
tainty principle with parameterd (1\.8) fails for all v < ¢3, wherec; > 0 is an absolute
with probability at most\—". m constant.
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Denote U = LNQ). There exists au- [2] S. Artstein-Avidan, V. D. Milman,Logarithmic re-

n—1 ; : duction of the level of randomness in some prob-
net ' of the sphereS in the Euclidean abilistic geometric constructionsJournal of Func-

norm, and with cardinalityV'| < (3/u)" (see tional Analysis 235 (2006), 297-329
e.g. [34] Lemma 4.16). Using the probability{3] E. J. Candés, J. RomberQuantitative robust un-

; ; certainty principles and optimally sparse decompo-
estimate above, we can take the union bound sitions Found. Compit, Math. 6 (2006), 227-254

to estimate the probability of the event [4] E.J. Candés, J. Romberg, T. T&obust uncertainty
principles: exact signal reconstruction from highly
A= {V?J eEN: |HU*7J||§ - 1| < U} incomplete frequency informatipdEEE Trans. In-
form. Theory 52 (2006), 489-509
as [5] E.J.Candés, J. Romberg, T. T&iable signal recov-
S ery from incomplete and inaccurate measurements
P(A®) < (3/u)™ - 2exp(—c1Nu®/B%). Comm. Pure Appl. Math. 59 (2006), 1207-1223
] ) [6] E. J. Candés, M. Rudelson, T. Tao, R. Vershynin,
Applying Lemma [4F witht = C;3, we Error correction via linear programmingProc. 46th
see that the evenB :— {HU*” < Olﬂ} Annual IEEE Symposium on Foundations of Com-

. L . puter Science (FOCS 2005), IEEE, 2005. pp. 295-308
satisfies P(B¢) < exp(—c2N). Consider a 7] E. J. Candés, T. Tad\ear-optimal signal recovery

realization of the random variables for which = from random projections: universal encoding strate-

the eventA N B holds. Eor everyr € gn—1 gies? IEEE Trans. Inform. Theory 52 (2006), 5406—
: ; 5425

we can find an element _Of Fhe _ngt €N 8] E. J. Candés, T. Tadpecoding by linear program-

such that|z — y||2 < u, which implies by the ming IEEE Trans. Inform. Theory 51 (2005), 4203—

triangle inequality that 4215 ,
[9] Compressed Sensing webpage,
% http://ww. dsp. ece.rice. edu/ CS/
|HU xHQ - 1| < [10] Z. Cvetkovict, Resilience properties of redundant
U *yllz — 1| + [|U*2||2 — |U*yll2| < expansions under additive noise and quantization
- IEEE Trans. Inform. Th. 49 (2003), 644—656
NU*yll3 — 1] + |U*(z —y)|2 < [11] I. DaubechiesTen lectures on waveletsCBMS-

NSF Regional Conference Series in Applied Mathe-
matics, 61. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1992

whereCz =1+ 2C;. Now letu = €/3Q2[3- [12] 1. Daubechies, R.DeVoréypproximating a bandlim-
ThusCy8u = ¢/3 € (0,1), and the estimate ited function using very coarsely quantized data:a

u + 2C1 Bu < CoBu,

above yieIds||\U*x||§ _ 1| < eforal z e family of stable sigma-delta modulators of arbitrary
57-1 once the eventi N B holds. Thus order, Ann. of Math. (2) 158 (2003), 679-710
: [13] I. Daubechies, R. DeVore, C. S. Guntirk, V. A.
1 Vaishampayan,Beta expansions: a new approach
P{Hid — _(I)@*H > g} < to digitally correct A/D conversignProceedings of
N the IEEE International Symposium on Circuits and
P{3z € gn—1. |HU*:C||% —1>e} < Systems ISCAS 2002, Phoenix, May 2002
. B [14] I. Daubechies, R. DeVore, C. S. Gunturk, V. A.
P((A N B) ) < VaishampayanA/D conversion with imperfect quan-

n 2 /4 tizers EEE Trans Inf. Theory 53 (2006), 874-885
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